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Introduction: Technology is becoming essential in agriculture, especially with 
the growth of smart devices and edge computing. These tools help boost 
productivity by automating tasks and allowing real-time analysis on devices with 
limited memory and resources. However, many current models struggle with 
accuracy, size, and speed particularly when handling multi-label classification 
problems.

Methods: This paper proposes a Convolutional Neural Network with Squeeze 
and Excitation Enabled Identity Blocks (CNN-SEEIB), a hybrid CNN-based deep 
learning architecture for multi-label classification of plant diseases. CNN-SEEIB  
incorporates an attention mechanism in its identity blocks to leverage the visual 
attention that enhances the classification performance and computational 
efficiency. PlantVillage dataset containing 38 classes of diseased crop leaves 
alongside healthy leaves, totaling 54,305 images, is utilized for experimentation.

Results: CNN-SEEIB achieved a classification accuracy of 99.79%, precision 
of 0.9970, recall of 0.9972, and an F1 score of 0.9971. In addition, the model 
attained an inference time of 64 milliseconds per image, making it suitable for 
real-time deployment. The performance of CNNSEEIB is benchmarked against 
the state-of-the-art deep learning architectures, and resource utilization 
metrics such as CPU/GPU usage and power consumption are also reported, 
highlighting the model’s efficiency.

Discussion: The proposed architecture is also validated on a potato leaf disease 
dataset of 4,062 images from Central Punjab, Pakistan, achieving a 97.77% 
accuracy in classifying Healthy, Early Blight, and Late Blight classes.
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1 Introduction

The importance of agriculture in everyday life cannot be  minimized, as it offers an 
overabundance of direct and indirect benefits. Primarily, agriculture provides food for living 
beings as a direct benefit. Beyond this fundamental function, agriculture yields a range of 
indirect benefits that are equally vital. Moreover, agriculture significantly contributes to the 
Gross Domestic Product (GDP) showcasing its multifaceted impact on economy and the 
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society (U.S. Department of Agriculture, 2020). Despite its positive 
contributions, there are challenges hindering the growth and 
production within this sector. One major issue is the occurrence of 
diseases in plants, which can impede growth and production. When 
a plant becomes diseased, not only does it suffer, but nearby plants are 
also at risk of infection, leading to a decline in overall production. 
Consequently, this affects both the GDP and the direct and indirect 
benefits associated with agriculture. Based on statistics, global crop 
loss is estimated at $220 billion (United States Dollars) annually, with 
plant disease accounting for 14.1% of this total (National Institute of 
Food and Agriculture, 2022). Biotic factors such as oomycetes, fungi, 
viruses, bacteria, nematodes, and viroids, along with abiotic elements 
like environmental factors contribute to this loss. Various rust diseases 
of wheat accounts to a revenue loss of approximately £60,000,000 
worldwide, and India’s share is approximately £4,000,000 (Bayer Crop 
Science, n.d.). The Jowar crop affected by the Smut disease (SlideShare, 
n.d.), due to the fungus called Sphacelotheca Sorghi, resulted in a 
revenue loss of approximately £2,000,000 in the Mumbai region alone. 
Plant diseases affect crop quality, shelf life, and nutritional value, 
ultimately reducing yields and marketability. In addition, the impact 
of climate change and urbanization intensifies pressure on global food 
production systems. Earlier, manual techniques involving the 
identification of diseased areas and discerning the type of disease were 
carried out with the aid of experts and utilized a large amount of 
labour, time, and cost for the process. Manual disease classification is 
a slow and time-consuming process, often lacking accuracy, especially 
when dealing with numerous diseased plants. Several disease 
identification algorithms based on Artificial Intelligence (AI), 
Machine Learning (ML), and Deep Learning (DL) were introduced 
for automating the classification of diseased and healthy plants.

Automated plant disease classification has significantly improved 
the accuracy and efficiency of identifying crop issues. These 
advancements are helping farmers to make better decisions about 
plant health and management. With the integration of cutting-edge 
techniques, farming practices are made more sustainable, resilient, 
and resource-efficient. This paper proposes a deep learning 
architecture called Convolutional Neural Network with Squeeze and 
Excitation Enabled Identity Blocks (CNN-SEEIB), which integrates 
Squeeze-and-Excitation (SE) attention mechanisms within identity 
blocks for efficient plant disease classification. This light-weight model 
is ideal for edge devices with limited resources. It enhances feature 
learning by focusing on the most important information, resulting in 
improved classification accuracy. Designed for real-time inference, it 
ensures quick and efficient predictions.

The main contributions of the proposed CNN-SEEIB are 
as follows.

 • The proposed CNN-SEEIB is a customized lightweight backbone 
with fewer parameters integrated with SE attention to enhance 
feature representation, enabling efficient, accurate, and real-time 
multi-label plant disease classification.

 • A comparative study with 8 different pre-trained models 
demonstrated that CNN-SEEIB outperforms several state-of-
the-art models. The accuracy of CNN-SEEIB was also compared 
with several state-of-the-art approaches for plant 
disease classification.

 • The proposed model’s utilization of system resources, including 
CPU and GPU usage and power consumption, is evaluated and 

analysed as percentage metrics. The analysis of CNN-SEEIB in 
this study focuses on architecture optimization, which involves 
refining the traditional network structure and components to 
enhance overall performance.

With the growing demand for real-time and efficient solutions, 
the proposed CNN-SEEIB addresses the shortcomings of existing 
DL models, mainly in multi-label classification. The CNN-SEEIB 
architecture attained an optimized and efficient model for accurate 
leaf disease prediction. The proposed model resulted in better 
accuracy by leveraging visual attention to prioritize key features, 
without significantly increasing model complexity or size. 
Integrating SE blocks enhances feature representation and allows the 
model to adaptively highlight important features and suppress less 
significant ones, improving both accuracy and efficiency. The 
optimization of computational requirements, particularly for edge 
devices, is important for real-world agricultural applications where 
resource constraints are significant. Deploying the CNN-SEEIB 
model on portable edge devices such as drones or handheld 
diagnostic tools can enable real-time plant disease detection directly 
in the field.

The paper is structured as follows: Section 2 discusses the existing 
studies related to identifying and classifying plant diseases. Section 3 
explains the proposed CNN-SEEIB model along with its 
computational complexity and highlights. Section 4 presents the 
results and discussion that details the dataset utilized, experimentation, 
and analysis of the obtained results. Section 5 concludes with the 
future scope.

2 Literature survey

Over the years, visual and image processing has seen a significant 
improvement in the number of algorithms in various domains, 
coinciding with the boom in the complexity of the problems 
addressed. In the realm of agriculture, for identifying and classifying 
plant diseases, a wide variety of techniques and methodologies have 
been proposed. With simple image processing and ML techniques, the 
field has progressed to embrace the power of AI and advanced DL 
approaches, offering comprehensive end-to-end solutions for 
addressing the challenges posed.

2.1 Image processing and machine learning 
based approaches

Vamsidhar et  al. (2019) analysed co-occurrence feature 
computation and classifiers like K-means, Support Vector Machines 
(SVM), and MultiLayer Perceptron (MLP) for leaf disease 
classification. Leaf images were masked by filtering out green pixels, 
leaving behind the infected regions. Hybrid clustering, combining 
K-means and hierarchical clustering, segmenting the infected areas, 
further improved by a genetic algorithm for disease categorization. 
Co-occurrence features were selected for unsupervised ML techniques 
like K-means, while supervised methods like Naïve Bayes, SVM, and 
MLP were directly used without explicit feature selection, achieving 
an accuracy of 95.87% with SVM. Similarly, to identify disease in 
tomato plant leaves, Xian and Ngadiran (2021) proposed an Extreme 

https://doi.org/10.3389/frai.2025.1640549
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Karthikeyan et al. 10.3389/frai.2025.1640549

Frontiers in Artificial Intelligence 03 frontiersin.org

Learning Machine (ELM) classifier with a single-layer feed-forward 
neural network. Harlick textures for feature extraction were used to 
the pre-processed image, and converted from Red-Green-Blue (RGB) 
to hue-saturation-value color space, resulting in an accuracy 
of 84.94%.

Singla et  al. (2023) used machine learning approach using 
Neural Networks, SVM, and Naïve Bayes to classify plant leaves as 
healthy or infected. This method involved extracting features with 
a CNN, labelling the classes, and assigning probabilities through 
logistic regression. These classifiers were then used to determine the 
leaf categories, with the Neural Network classifier achieving an 
accuracy of 94% on the dataset. Ramesh et  al. (2018) used a 
Random Forest (RF) classifier to distinguish between healthy and 
diseased papaya leaves. This method extracted feature descriptors 
using Histogram of Oriented Gradients, captured leaf edges with 
Hue moments, analysed texture using Haralick features, and 
represented pixel distribution with Color Histograms. The RF 
classifier trained on these features achieved an accuracy of 71%, 
outperforming other classifiers. Sabrol and Satish (2016) classified 
six categories of tomato leaves and stems, one healthy and five 
diseased by extracting shape, color, and texture features after image 
segmentation. Classification tree based on these features were 
developed, which achieved an overall testing accuracy of 
about 97.3%.

Thomkaew and Intakosum (2023) proposed a novel method for 
classifying plant leaves by combining CNN with the Scale Invariant 
Feature Transform (SIFT) algorithm. Leaf images were converted to 
binary followed by morphological transformations, like opening and 
closing that removed noise through erosion and dilation. Canny Edge 
detection was performed to identify edges in this processed images, 
and key-point features were extracted using SIFT. These processed 
images were then processed using a CNN for feature extraction, 
followed by classification using a Random Forest classifier. The 
approach achieved an accuracy of 95.62%.

2.2 Convolutional neural network based 
approaches

Deep learning techniques like CNNs has transformed computer 
vision, expanding its applications from classification to tasks like 
object detection, segmentation, and pose estimation, while increasing 
the algorithm performance across various fields (Alzubaidi et  al., 
2021). Specifically, CNNs have shown great success in identifying and 
classifying plant diseases (Tuğrul et  al., 2022; Saleem et  al., 2020; 
Maeda-Gutiérrez et  al., 2020), leading to models that deliver 
impressive accuracy and efficient resource use. Batchuluun et  al. 
(2022) introduced Periodic Implicit CNN (PI-CNN), a 30-layer CNN 
combining convolutional and residual blocks, which performed well 
on smaller datasets. They also developed PI-GAN, a Generative 
Adversarial Network (GAN) for augmenting dataset samples. Datasets 
like PlantVillage, PlantDoc, Fruits360, and Plants were evaluated 
based on the metrics like true positive rate, positive predictive value, 
F1-score, and accuracy.

Majji and Kumaravelan (2021) developed a CNN to classify 38 
disease categories from the PlantVillage dataset, using only 16% of 
the total samples. The model, trained with a 90 to 10% split, batch 
size of 32, and 0.5 dropout over 200 epochs, attained an accuracy of 

99.89%. Peyal et  al. (2023) developed a lightweight 11-layer 
2D-CNN for smartphone-assisted disease diagnosis, incorporated 
as an Android app called Plant Disease Classifier. This model 
classified 14 classes of tomato and cotton diseases with an average 
accuracy of 97.36% and an AUC of 99.9%. It also outperformed 
transfer learning models such as Inception V3, VGG16, VGG19, and 
MobileNet V1 and V2, while achieving a fast inference speed of 
4.84 ms.

Imanulloh et al. (2023) designed a simple 12-layer CNN to classify 
plant diseases using the augmented PlantVillage dataset. Their model 
achieved accuracy, precision, recall, and F1-score of 97, 98, 97, and 
97% respectively, outperforming other ImageNet models like VGG16, 
MobileNetV2, DenseNet121, ResNet50, and InceptionV3. Pandian 
et al. (2022) proposed a 14-layer deep CNN to classify 58 leaf disease 
classes across 16 plant species. They combined five datasets and 
applied augmentation techniques including Basic Image Manipulation 
(BIM), Neural Style Transfer (NST), and GANs to address class 
imbalance. Trained on multiple GPUs, this model achieved a 
classification accuracy of 99.97%, with weighted average precision, 
recall, and F1 scores of approximately 99.8%.

Naik et  al. (2022) performed comparative analysis of twelve 
pre-trained deep learning architectures, such as VGG19 and 
DarkNet53, to classify five major chilli leaf diseases using a custom 
image dataset. VGG19 attained the highest accuracy of 83.54% on 
non-augmented data, whereas DarkNet53 outperformed others with 
an accuracy of 98.82% on augmented data. A custom squeeze-and-
excitation-based CNN (SECNN) further improved performance, 
reaching 98.63% accuracy without augmentation and 99.12% with it. 
Furthermore, the SECNN model was evaluated on a plant leaf disease 
class from the PlantVillage dataset, resulting a robust generalization 
with an overall accuracy of 99.28%. Bhuyan et al. (2023) proposed 
SE_SPnet, a stacked parallel convolutional neural network integrated 
with a squeeze-and-excitation (SE) block for classifying rice leaf 
diseases. The architecture integrated multiple convolutional layers 
with varying kernel sizes to capture both local and global features, 
while the SE block enhanced relevant feature extraction. The model 
attained the accuracy. Sensitivity, specificity, precision, recall and 
F1-score as 99.2, 98.2, 98.5, 98.4, 98.2 and 98.5%, respectively, using 
SGD with momentum and 0.01 learning rate.

Naresh et  al. (2024) proposed an optimized Squeeze-and-
Excitation Densely Connected Convolutional Neural Network 
(SEDCNN) for early detection of chili leaf diseases. Among various 
SE block configurations, the integration of the standard SE block with 
SEDCNN achieved the best performance with 97% accuracy. With 
data augmentation, the model’s accuracy further improved to 98.86%, 
outperforming conventional CNNs, ResNet variants, and multiple 
transfer learning models. Chen et al. (2021) proposed SE-MobileNet, 
a hybrid model combining the lightweight MobileNet architecture 
with squeeze-and-excitation (SE) blocks to enhance plant disease 
identification. A two-phase transfer learning approach was used: the 
first phase involved training extended layers, followed by fine-tuning 
the entire model in the second phase. The SE-MobileNet model 
achieved a high accuracy of 99.78% on a public dataset with clear 
backgrounds and 99.33% under complex conditions with multiple 
disease classes.

Ashurov et  al. (2025) proposed depthwise CNN model 
integrated with squeeze-and-excitation blocks, residual skip 
connections for accurate plant disease detection. The model 
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attained an accuracy of 98% and an F1-score of 98.2%, resulting as 
a reliable tool for practical agricultural applications. Assaduzzaman 
et  al. (2025) presented XSE-TomatoNet, an improved 
EfficientNetB0-based model enhanced with Squeeze-and-
Excitation (SE) blocks and multi-scale feature fusion for precise 
tomato leaf disease classification. The model achieved 99.11% as 
accuracy and 99% precision and recall by 10-fold 
cross-validation.

Singh and Singh (2025) enhanced the ResNet50V2 model by 
integrating a Squeeze-and-Excitation (SE) block to improve accuracy 
in rice disease identification. Using the Kaggle rice leaf diseases 
dataset, the SE-enhanced model achieved a testing accuracy of 
93.33%, outperforming the original ResNet50V2 which scored 
83.61%. With a slight increase in parameters, the performance gain 
demonstrates the effectiveness of channel-wise attention through 
SE blocks.

The vine plant is economically important not only for grapes but 
also for products like wine, molasses, and culinary-use grape leaves. 
Diseases affecting grape leaves reduce yield and make the leaves 
unusable, leading to significant financial losses. Unal (2025) focused 
on classifying common grape leaf diseases such as scab and downy 
mildew alongside healthy leaves using deep learning models. The 
pre-trained networks performance was enhanced by integrating 
Convolutional Block Attention Module (CBAM) and Squeeze-and-
Excitation (SE) blocks. These improvements increased the 
classification accuracy from 92.73 to 96.36%, demonstrating the 
effectiveness of attention-based enhancements. Nikhileswar et al. 
(2024) proposed custom CNN model named PlantLDNet optimized 
to distinguish diseased and healthy leaves while mitigating 
vanishing gradient problem. The model’s performance was 
compared with previous methods using metrics such as precision, 
recall, F1-score, ROC curves, and AUC. PlantLDNet attained 
F1-scores as 93% for Early Bright, 98% for Healthy, and 92% for Late 
Bright conditions.

2.3 Transfer learning based approaches

Optimizing pre-trained models (Pan and Yang, 2010) allows fine-
tuning to fit specific tasks thus enhancing the performance through 
leveraging the strengths of the original models while saving training 
time (Balafas et  al., 2023). Panchal et  al. (2021) analysed transfer 
learning models like VGG16, ResNet50, and InceptionV3 for 
classifying leaf images into four infection stages (Healthy, Early, 
Middle, and End stages), using a PlantVillage dataset labelled with 
expert guidance. Among these, VGG16 achieved the highest accuracy 
of 93.5%. Parez et al. (2023) developed E-GreenNet, a customized 
version of MobileNetV3Small that enhanced its bottleneck layers. This 
model was trained and tested on PlantVillage, the Data Repository of 
Leaf Images (DRLI), and a combined PlantComposite dataset to 
classify leaves as healthy or infected. E-GreenNet outperformed other 
pre-trained models like VGG16, VGG19, MobileNetV1, and 
EfficientNetB0, achieving accuracies of 100% on PlantVillage, 96% on 
DRLI, and 99% on PlantComposite. Doğan (2023) trained 
MobileNetV3 on the PlantVillage dataset, which was augmented 
offline to 87,000 RGB images, attaining an accuracy of 99.85%, 
outperforming ResNet50, EfficientNetB3, and DenseNet121. 
Pramudhita et  al. (2023) compared MobileNetV3Large and 

EfficientNetB0 on a strawberry leaf dataset with four classes (one 
healthy and three diseased). By tuning learning rate, epochs, and 
optimizers, they found that MobileNetV3Large, trained with a 
learning rate of 0.0001 for 70 epochs using the RMSProp optimizer, 
achieved the best accuracy of 92.14%.

2.4 Hybrid approaches and ensemble 
learning

Sahu et al. (2023) developed a hybrid deep learning and machine 
learning approach using Deep-Dream to classify tomato crops from 
the PlantVillage dataset. The Deep-Dream network was used to 
segment lesions in the images for better interpretability. These 
processed images were then analysed by 24 hybrid models, combining 
8 feature extractors (EfficientNet B0-B8) with 3 machine learning 
classifiers (Random Forest, Stochastic Gradient Boosting, and 
AdaBoost). After hyperparameter tuning with Optuna, the best model 
used Deep-Dream with EfficientNet B4 as the feature extractor and 
AdaBoost as the classifier, achieving 96% accuracy on the dataset and 
100% accuracy on a tomato leaf image database from the Indian 
Agricultural Research Institute. Fenu and Malloci (2023) applied 
ensemble learning to classify four classes of pear leaf diseases using a 
private field dataset called DiaMOS Plant (Ganaie et al., 2022). From 
four networks (EfficientNetB0, InceptionV3, MobileNetV2, and 
VGG19), the top three were selected to build ensemble models. Three 
pairs of two-network ensembles were created using bagging and 
weighted averaging. The best ensemble, combining EfficientNetB0 and 
InceptionV3, achieved the highest classification accuracy of 91.14%.

2.5 Light-weight architectures

Xu et al. (2022) proposed HLNet (High Speed and Light-weight 
Network), an optimized version of ShuffleNetV1 was designed to 
reduce computation time and FLoating-point OPerations (FLOPs). 
The model incorporated enhanced attention mechanisms, combining 
channel attention from the SE Network and spatial attention from the 
convolutional block attention mechanism, to limit computations and 
boost efficiency. Experiments were conducted on a private dataset 
combined with PlantVillage and the UC Irvine Machine Learning 
Repository, covering 28 leaf disease types across 20,490 images from 
six crop varieties. HLNet achieved 99.86% accuracy with an inference 
speed of 0.173 s. Thakur et al. (2023) analysed a lightweight Vision 
Transformer (ViT) (Han et al., 2023; Dosovitskiy et al., 2020) tailored 
for IoT-based agriculture applications. This model has fewer 
parameters than many state-of-the-art alternatives and achieved a 
testing accuracy of 98.86% and precision of 98.90%, outperforming 
existing models. Table 1 provides a summary of studies related to plant 
disease identification, highlighting that popular deep learning models 
like CNN offer various opportunities for enhancing both classification 
accuracy and execution speed.

3 Methodology

The proposed methodology involves designing a customized 
architecture that integrates the Squeeze-and-Excitation (SE) 
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attention mechanism with a deep neural network. Initially, a 
backbone model was constructed for classifying various plant 
disease classes, utilizing convolutional layers, residual/identity 
blocks, max-pooling, batch normalization, and dense layers. This 
identity-enhanced backbone is then combined with the attention 
mechanism to enhance performance and stability in multi-class 
classification. This approach facilitates accurate differentiation 
among multiple plant categories, including both healthy and 
diseased conditions. Figure  1 depicts the backbone framework 
employed for the multi-class classification of plant images.

3.1 CNN-SEEIB backbone architecture

The CNN-SEEIB backbone is a simple variant of the 
conventional CNN architecture, modelled to incorporate squeeze-
and-excitation attention mechanisms. It consists of several 

fundamental components of CNNs: the input layer, convolutional 
blocks, identity blocks, max pooling, batch normalization, and 
activation layers.

3.1.1 Input layer
The input layer accepts a three-channel image which is resized 

into patches of 224 × 224 × 3 pixels to standardize the 
input dimensions.

3.1.2 Convolutional blocks
Each convolutional block performs 3 × 3 convolutions to extract 

local features from the input feature maps, followed by max pooling 
with a 2 × 2 window to reduce spatial dimensions and computational 
speed. This process enhances feature representation by transforming 
local features into more abstract global features as the network 
deepens. In CNN-SEEIB, there are four convolutional blocks that 
form the primary feature extractor.

TABLE 1 Summary of plant disease classification studies with methods, datasets, accuracy, technique type, and computational cost.

Ref. no. Year of 
publication

Method Dataset Accuracy Techniques 
(conventional 
ML or DL)

Computational 
cost (high/
medium/low)

Vamsidhar et al. (2019) 2019 Co-occurrence features 

with SVM and MLP

Private dataset 95.87% Conventional ML Medium

Xian and Ngadiran 

(2021)

2021 Harlick textures and 

Feed-forward NN

Tomato disease from 

PlantVillage dataset

84.94% DL High

Ramesh et al. (2018) 2018 Histogram of Oriented 

Gradient with RF classifier

Private Dataset 71.00% Conventional ML Low

Sabrol and Satish (2016) 2016 Texture features Tomato diseases 97.30% Conventional ML Medium

Thomkaew and 

Intakosum (2023)

2023 CNN and the SIFT 

algorithm

PlantVillage Dataset 95.62% DL Medium

Majji and Kumaravelan 

(2021)

2021 CNN PlantVillage Dataset 99.89% DL Medium

Peyal et al. (2023) 2023 Lightweight 2D-CNN PlantVillage Dataset 97.36% DL Medium

Imanulloh et al. (2023) 2023 12 layered CNN 

architecture

New Plant Diseases 

Dataset

97.00% DL High

Pandian et al. (2022) 2023 14-layered DCNN Private Dataset 99.97% DL High

Panchal et al. (2021) 2021 Transfer learning with 

VGG1

PlantVillage dataset 93.50% DL High

Parez et al. (2023) 2023 CNN with 

MobileNetV3Small

PlantVillage, DRLI and a 

new Plant Composite 

(PC) dataset

100% DL High

Doğan (2023) 2023 MobileNetV3 PlantVillage Dataset 99.85% DL High

Pramudhita et al. (2023) 2023 MobileNetV3Large Private Dataset 92.14% DL High

Sahu et al. (2023) (2023) Deep-Dream Network 

with EfficientNet B4

PlantVillage Dataset 96% Mixed (DL and 

Conventional ML)

High

Fenu and Malloci 

(2023)

2023 Ensemble CNN with the 

EfficientNetB0 and 

InceptionV3

DiaMOS Plant dataset, a 

self-collected dataset

91.14% DL High

Xu et al. (2022) 2022 High Speed and Light-

weight Network

Private Dataset 99.86% DL Medium

Thakur et al. (2023) 2023 Lightweight Vision 

Transformer

PlantVillage Dataset 98.86% DL Medium
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3.1.3 Identity blocks
The identity block is employed as a bottleneck design with a 1 × 1 

convolution to reduce channel dimensions, then a 3 × 3 convolution 
processes these features, and finally another 1 × 1 convolution to 
restore the original channel size. The input of the block is then added 
element-wise to the output of the last convolution, facilitating the 
retention of essential features and avoid vanishing gradient issues 
through skip connections. This mechanism helps to maintain gradient 
flow and supports effective learning of complex features. CNN-SEEIB 
includes four such identity blocks interspersed with 
convolutional blocks.

3.1.4 Max pooling layer
Max pooling, serves to down-sample input feature maps, 

enhancing computational efficiency and mitigating overfitting 
risks. It is typically applied post-convolutional layers to reduce 
spatial dimensions. During max pooling, each channel of the input 
feature map is processed independently using a pooling window, 
typically of size 2 × 2, where the maximum value within the region 
is extracted, discarding others. This process is iterated with a 
defined stride, dictating the window’s movement across the input 
feature map. Mathematically, the max pooling operation for a 
window of size x  × x  where stride of s can be expressed as given in 
Equation 1:

 ( ) ( )( )− −
= = + += 1 1
0 0 , ,max maxx x

ijk p q si p sj q kM N
 

(1)

where ijkM  is the max pooling layer output at position (i,j) in 
channel k, and ( ) ( )+ +, ,si p sj q kN  refers the input value at position 

( + +,si p sj q ) in channel k as stride s and x  are the pooling 
window size.

3.1.5 Batch normalization
Batch normalization normalizes the input activations across each 

mini-batch by subtracting the batch mean and dividing by the batch 
standard deviation, then applying learnable scaling and offset 
parameters. This normalization stabilizes and speeds up training while 
acting as a regularizer to reduce overfitting.

3.1.6 Activation functions
The ReLU activation function, defined as max (0, x), introduces 

non-linearity after each convolution and fully connected layer, 
enabling the network to learn complex patterns. The final classification 
layer employs the SoftMax activation to output class probabilities.

3.1.7 Global average pooling
Global Average Pooling (GAP) condenses the spatial dimensions 

of feature maps and delivers a concise feature representation. It 
includes computing the average of each feature map, yielding a single 
value for each channel, which can effectively reduce the network’s 
parameters and computational load. When applied to a feature map F 
of spatial position (i, j) with dimensions × ×H W C (where H  is height, 
W  is width and C  is the number of channels), the GAP operation 
generates a 1D output vector G with length C. The computation for 
the cth channel in the output vector G is given as Equation 2:

 = =
= ∑∑ , ,

1 1

1 H W

c i j c
i j

G F
HXW

 
(2)

FIGURE 1

(a) The framework of the proposed CNN-SEEIB for plant disease classification. (b) Squeeze – and – Excitation (SE) Block. (c) Identity block with 
Squeeze – and – Excitation (SE).
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This model used a global average pooling after the identity layer. 
GAP helps in making the network translation-invariant by 
summarizing the features in each channel, irrespective of their spatial 
location resulting in compact and informative feature representations.

Table 2 details the summary of the layers and parameters in the 
backbone CNN architecture. In CNN-SEEIB, the interaction between 
convolutional and identity blocks, enhanced by batch normalization 
and ReLU activation, ensures effective feature extraction and gradient 
flow. The model balances depth and computational efficiency with a 
total of approximately 3.34 million parameters, of which around 3.33 
million are trainable, structured across 4 convolutional and 4 
identity blocks.

3.2 Improvisations through squeeze and 
excitation block

The utility of attention mechanisms enhances image recognition 
models by focusing on salient features within images, machine 
translation systems by highlighting relevant parts of a sentence. By 
enabling models to adapt their focus based on the input data, 
attention mechanisms improve the interpretability of neural 
network decisions and enhance the model’s reasoning process, 
boosting performance across diverse tasks (Hu et al., 2018; Woo 
et al., 2018). The SE is an attention mechanism used to adaptively 
reconfigure feature maps to enhance the representational power of 
CNNs. The SE block consists of two main functions: squeeze 
operation and excitation operation.

3.2.1 Squeeze operation
To effectively capture inter-channel dependencies, the output 

features of each channel are analysed, as individual units within the 
transformation output L lack the capacity to extract global contextual 
features due to the constraints imposed by their limited receptive fields. 
Given a set of input feature maps ∈ HXWXC

fI R , where each 
∈c HXW

fI R , it becomes essential to squeeze spatial information 
across the entire feature map into a channel-wise representation. To 
address this, a global average pooling operation which is simple and 
effective is utilized to generate statistics for each channel. This 
operation compresses the spatial dimensions height H and width W of 
the input feature maps, resulting in a channel descriptor ∈ cs R  Each 
component Cs  of this descriptor reflects the aggregated spatial response 
of the corresponding channel c and is derived as shown in Equation 3.

 
( ) ( )

= =
= = ∑∑

1 1

1 ,
H W

c c
C Squeeze f f

p q
s F I I p q

H X W
 

(3)

3.2.2 Excitation operation
To enhance the model’s ability to adaptively recalibrate feature 

representation, the excitation phase is incorporated after the squeeze 
operation. The squeeze operation captures global spatial information 
by condensing each channel’s activation into a single scalar. The 
excitation phase utilizes this global context to effectively model 
channel inter-dependencies capturing the non-linear and 
non-mutually exclusive relationships between channels. To achieve 
this, a gating mechanism equipped with a sigmoid activation function 

is utilized. The excitation function is mathematically expressed in 
Equation 4:

 ( ) ( ( ) ( ( )σ σ= = = 2 1O , , ) )ExcitationF s T gating s T T ReLU T s  (4)

Here, ∈ cs R  represents the channel-wise descriptors obtained 
from the squeeze operation, 

× ×
∈ ∈1 2

c cc c
r rT R and T R  are the 

learnable weights of two fully connected (FC) layers, and r  is the 
reduction ratio which controls the dimentionality compression and 
bottleneck capacity. The ReLU function introduces non-linearity, 
while the sigmoid function σ  ensures, the output values (attention 
weights) lie within the range [0, 1].

This excitation mechanism consists of a lightweight two-layer 
MLP (multi-layer perceptron). The first FC layer reduces the channel 
dimensionality to c

r
, acting as a compression step, and is followed by 

a ReLU activation. The second FC layer restores the original channel 
dimension ,c  thereby resulting in the attention weights for recalibrating 
the original feature maps.

The recalibration is performed via channel-wise multiplication, 
where each channel of the transformation output is scaled by the 
corresponding excitation weight. This operation is described in 
Equation 5:

 
 ( )= = ∗,Ic scale Ic c IcO F O z z O  (5)

In this equation, ∈ H X W
IcO R  denotes the feature map for 

channel c from the transformation output and ∈  0,1cz  is the scalar 
excitation weight corresponding to that channel. The function scaleF  
represents an element-wise channel scaling operation, which 
selectively emphasizes or suppresses channel responses based on their 
contextual importance.

As illustrated in Figure 1b, the complete Squeeze-and-Excitation 
(SE) Attention Block provides an efficient mechanism for dynamic 
channel-wise feature recalibration, enhancing representational capacity 
with minimal additional computational overhead. The proposed 
hybrid architecture integrates convolutional blocks with identity blocks 
(Figure 1c), enabling deeper models while mitigating the vanishing 
gradient problem through skip connections. Concatenation with 
max-pooling operations facilitates multi-scale feature representation 
across different levels of abstraction, thereby enhancing the model’s 
capability to extract rich and discriminative features. Batch 
normalization is utilized to stabilize and accelerate training by 
normalizing intermediate features thus improving convergence and 
generalization. To reduce overfitting and computational complexity, 
global average pooling is incorporated prior to the dense layers for 
effectively decreasing the number of parameters.

The integration of the Squeeze-and-Excitation mechanism 
enhances the model’s representational power by modelling channel-
wise interdependencies. The squeeze operation utilizes global average 
pooling to capture spatially global information, while the excitation 
operation computes adaptive channel weights that are used to 
recalibrate feature maps. This selective importance on informative 
channels allows the network to focus on the most task-relevant 
features, effectively suppressing redundant or noisy information. By 
embedding the SE block, the model achieves superior feature 
discrimination, leading to improved classification accuracy and 
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TABLE 2 Layer-wise summary of the backbone CNN architecture with output shapes, specifications, and parameter count.

Layer type Output 
shape

Details/specifications
*Two sub-columns indicate two parallel processes which will 
be subjected to an add () before the next process

Total number of 
parameters

Input 224,224,3 Input image 0

Conv2D_Block_1 111,111,32 3×3 Conv2D, 32, Stride = 1, activation = relu

2×2 MaxPool, Stride = 1

896

Identity_Block_1 111,111,64 1×1 Conv2D, 32, Stride = 1, activation = relu

+ BatchNorm ()

3×3 Conv2D, 32, Stride = 1, activation = relu

+ BatchNorm ()

1×1 Conv2D, 64, Stride = 1, activation = None

+ BatchNorm ()

1×1 Conv2D, 64, Stride = 1, 

activation = None

+ BatchNorm ()

15,876

Add ()

Activation (relu)

Conv2D_Block_2 55,55,64 3×3 Conv2D, 64, Stride = 1, activation = relu

2×2 MaxPool, Stride = 1

ZeroPadding (1,0), (1,0)

36,928

Concatenate 55,55,96 Concatenate (Conv2D_Block_2, MaxPool (Conv2D_Block_1)) 0

Identity_Block_2 55,55,128 1×1 Conv2D, 64, Stride = 1, activation = relu

+ BatchNorm ()

3×3 Conv2D, 64, Stride = 1, activation = relu

+ BatchNorm ()

1×1 Conv2D, 128, Stride = 1, activation = None

+ BatchNorm ()

1×1 Conv2D, 128, Stride = 1, 

activation = None

+ BatchNorm ()

67,592

Add ()

Activation (relu)

Batch Normalization 512

Conv2D_Block_3 27,27,128 3×3 Conv2D, 128, Stride = 1, activation = relu

2×2 MaxPool, Stride = 1

ZeroPadding (1,0), (1,0)

1,47,584

Concatenate 27,27,224 Concatenate (Conv2D_Block_3, MaxPool (Conv2D_Block_2)) 0

Identity_Block_3 27,27,256 1×1 Conv2D, 128, Stride = 1, activation = relu

+ BatchNorm ()

3×3 Conv2D, 128, Stride = 1, activation = relu

+ BatchNorm ()

1×1 Conv2D, 256, Stride = 1, 

activation = None+BatchNorm ()

1×1 Conv2D, 256, Stride = 1, 

activation = None

+ BatchNorm ()

2,78,544

Add ()

Activation (relu)

Conv2D_Block_4 13,13,256 3×3 Conv2D, 256, Stride = 1, activation = relu

2×2 MaxPool, Stride = 1

ZeroPadding (1,0), (1,0)

5,90,080

Concatenate 13,13,480 Concatenate (Conv2D_Block_4, MaxPool (Conv2D_Block_3)) 0

Identity_Block_4 13,13,512 1×1 Conv2D, 256, Stride = 1, activation = relu

+ BatchNorm ()

3×3 Conv2D, 256, Stride = 1, activation = relu

+ BatchNorm ()

1×1 Conv2D, 512, Stride = 1, activation = None

+ BatchNorm ()

1×1 Conv2D, 512, Stride = 1, 

activation = None

+ BatchNorm ()

11,30,528

Add ()

Activation (relu)

(Continued)
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robustness. This attention-driven enhancement makes the model 
more resilient to variations in input data, which is evident from the 
improved experimental metrics compared to baseline architectures.

3.3 Computational complexity

In general, the overall runtime of the convolution blocks in CNN 
is linear, and therefore for classifying images with n pixels, the 
computational complexity of the feature extractor blocks is ( )O n . This 
is due to the fact that the complexity of the convolution operation is 
( )O n  and the other operations like pooling and SE do not take more 

than the linear time. As given in Lux (n.d.), if the extracted feature 
map is of dimension N , the dense neural network layer (i.e., feed 
forward neural network) has a computational complexity of ( )4O N . 
Therefore, the complexity of the proposed CNN-SEEIB is 
( ) ( )+ ≈4 4O N n O N  since 

4.n N  Note that the computational 
complexity of the proposed architecture is comparable to that of the 
feed forward neural network.

4 Results and discussion

This section details (i) Dataset Description, which outlines the 
dataset’s characteristics, (ii) Experimentation, detailing the 
experimental setup, training parameters, and evaluation criteria, and 
(iii) Result Analysis, which interprets the obtained outcomes, 
including training and validation results, testing outcomes, inferencing 
outcomes, and comparisons with other models.

4.1 Dataset description and processing

This proposed work analysed the widely used PlantVillage dataset, 
renowned for its extensive and diverse collection of plant leaf images 
(Mohanty et al., 2016). The dataset contains a total of 54,305 images 
representing 38 distinct classes, which include 14 crop species such as 
apple, blueberry, cherry, grape, orange, peach, pepper, potato, raspberry, 
soy, squash, strawberry, and tomato. These 38 classes are categorized 
into 17 fungal diseases, 4 bacterial diseases, 2 diseases caused by mold 
(oomycetes), 2 viral diseases, 1 disease caused by a mite, and 12 classes 
representing healthy crops. Figures 2, 3 illustrate the distribution of 
classes across the dataset and shows the representative leaf samples from 
each of the 38 categories. Prior to training, the dataset undergoes a 
preprocessing process involving the removal of duplicate entries and 
validation of file formats. All images are then resized to 224 × 224 × 3 

and the dataset is split into training (80%), validation (10%), and testing 
(10%) subsets to support model training and evaluation.

4.2 Experimental setup

The training, testing, and inference experiments were conducted 
using Google Collaboratory with a T4 cloud GPU backend. The 
implementation was carried out in Python 3.10, utilizing 
TensorFlow-Keras 2.15.0 as the deep learning framework. Model 
inference was performed on a local machine equipped with an Intel 
(R) Core (TM) i7 CPU, 16GB RAM, and an NVIDIA GeForce GTX 
1650 Ti GPU with 4GB of dedicated memory. To monitor hardware 
performance metrics such as CPU and GPU utilization and power 
consumption, HWiNFO software was employed. The software 
tracks four key parameters: total CPU usage, GPU D3D usage, CPU 
package power, and GPU power. For evaluation, 100 samples of 
each parameter were collected over a 3-min interval, and the 
average values were calculated. Additionally, the net_flops (model) 
function from the net_flops Keras library was used to compute the 
FLOPS (floating point operations per second) of the model.

4.3 Hyperparameter tuning

The CNN-SEEIB model was fine-tuned to improve its performance 
by adjusting several key hyperparameters, like dropout rate, batch size, 
epochs, learning rate, and gradient optimizer. This study employed the 
Adam optimizer (adaptive moment estimation) (Kingma and Ba, 2015), 
which is known for its efficiency and low memory requirements. Adam 
combines the benefits of gradient descent with momentum and the 
RMSProp optimizer (GeeksforGeeks, n.d.), enhances the plant leaf 
classification. Table 3 details the list of hyperparameters that are tuned to 
attain better results.

The loss during Back Propagation is computed using Categorical 
Cross entropy loss function as defined as Equation 6.

 
( ) ( )

= =
= ∑∑

N K

i,k i,k
i 1k 1

1L y,y y lo ŷˆ g
N  

(6)

where y  is the ground truth distribution (one-hot encoded labels), 
ŷ  is the predicted probability distribution (the output of the SoftMax 
activation function), i,ky  is the true label for the ith sample in class k, 
and i,kŷ  is the predicted probability for the ith sample belonging to 
class k.

TABLE 2 (Continued)

Layer type Output 
shape

Details/specifications
*Two sub-columns indicate two parallel processes which will 
be subjected to an add () before the next process

Total number of 
parameters

GlobalAveragePooling2D 0

Dense (1024), activation = relu 5,25,312

Dense (512), activation = relu 5,24,800

Batch normalization 2,048

Dropout (0.2) 0

Dense (38), activation = SoftMax 19,494
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4.4 Evaluation metrics

Evaluation metrics play a pivotal role in assessing the efficacy of 
the developed and trained model. In this study, the evaluation metrics 
are categorized into two groups: (i) testing metrics and (ii) 
inferencing metrics.

4.4.1 Metrices for testing
The classification performance of the proposed model was 

evaluated based on four key metrics derived from the confusion 
matrix: accuracy, precision, recall and F1-score. While accuracy 
indicates the overall percentage of correct predictions, there might 
be instances where false predictions have different implications. In 

FIGURE 2

Class wise distribution of the PlantVillage dataset.

FIGURE 3

Sample leaf images from each of the 38 classes from the PlantVillage dataset.
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such scenarios, precision, recall and F1-score provide a more 
comprehensive evaluation of the model.

True Positives (TP) refer to the number of instances where the 
model correctly identifies diseased leaves as belonging to a disease 
class, i.e., actual positives correctly predicted as positives. In the 
context of the PlantVillage dataset, this means the model accurately 
detects the presence of a specific leaf disease. True Negatives (TN) 
denote the number of healthy leaf samples that are correctly identified 
as healthy, i.e., actual negatives predicted as negatives. False Positives 
(FP) represent healthy leaves that are incorrectly classified as diseased, 
i.e., actual negatives mistakenly predicted as positives. False Negatives 
(FN) indicate diseased leaves that the model incorrectly classifies as 
healthy, i.e., actual positives predicted as negatives.

The definitions of the evaluation metrics are given in 
Equations 7–10:

 
+

= ×
+ + +
TP TN 100

TP TN FP FN
Accuracy

 
(7)

 
( ) =

+
TP

TP FP
Precision P

 
(8)
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+

2 P R1
P R
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(10)

4.4.2 Metrics for inferencing
To assess the computational capabilities, the following inference 

metrics were considered: (i) number of parameters and model size, (ii) 
inference time and (iii) frames per second.

4.4.2.1 Number of parameters and model size
These metrics depend upon the architecture of the model based 

on the number of trainable and non-trainable parameters, and the 
memory occupied by these parameters during when the model 
is loaded.

4.4.3 Inference time
It refers to the duration of time required for a model to process 

single input and generate predictions. It measures the computational 
efficiency of the model.

4.4.4 Frames per second
Frames Per Second (FPS) measures the number of frames a model 

can process and render per second. A higher FPS indicates smoother 
performance and better visual quality and is a critical factor in real-
time applications.

4.5 Performance evaluation

During the training phase, the proposed CNN-SEEIB architecture, 
along with eight different pre-trained models, was trained on the 
dataset for 50 epochs using the same set of hyperparameters. The 
pre-trained models used include VGG16, ResNet50, EfficientNetB0, 
DenseNet121, MobileNetV2, InceptionV3, Inception-ResNetV2, and 

XceptionNet. Table 4 presents the accuracy of each model along with 
the input dimensions for both training and validation.

All models were trained to achieve optimal accuracy on the 
training dataset, incorporating regularization techniques to prevent 
overfitting. The selection of models represents a range of architectural 
improvements ranging from depth-scaling design of VGG16 to the 
more intricate scaling strategies employed by EfficientNet-B0. 
ResNet-50 and DenseNet-121 were chosen for their robust deep 
architectures leveraging residual and dense connections, respectively. 
MobileNet-V2 provides a low-weight solution that is appropriate for 
data with limited constraints, making it perfect for applications that 
require real-time processing. Inception-V3 and Inception-ResNetV2 
utilise multi-scale processing and hybrid architectures to successfully 
capture a wide range of features. These models encompass early 
stopping, to halt training upon validation accuracy saturation, and 
model checkpoints to save the model weights with the highest 
accuracy in the validation set. As shown in Table 4, the proposed 
CNN-SEEIB model achieved the highest validation accuracy among 
all compared models, whereas VGG16 recorded the lowest. In 
addition to the enhanced proposed model, only InceptionV3 reached 
a peak accuracy of 99.89%. Figures 4, 5 illustrate the training loss and 
accuracy curves for each pre-trained model as well as the 
CNN-SEEIB model.

Table  5 presents the comparative results of multi-class 
classification performance on the test dataset between the proposed 
CNN-SEEIB model and the pre-trained models. The CNN-SEEIB 
model outperformed all others, achieving an accuracy of 99.79%, 
with precision, recall, and F1-score values of 0.9972, 0.9970, and 
0.9971, respectively. The incorporation of the SE attention mechanism 
enhanced the model’s ability to focus on critical features. Among the 
pre-trained models, DenseNet121 demonstrated the best 

TABLE 3 Hyperparameters for the proposed CNN-SEEIB model.

Hyperparameter Option/value

Optimizer Adam

Epochs 50

Batch size 32

Learning rate 0.001

Learning rate decay 0.5

TABLE 4 Training and validation accuracy comparison of the proposed 
CNN-SEEIB model and pre-trained models.

Model Input 
shape

Training set 
accuracy

Validation 
set accuracy

VGG16 (224,224,3) 100.0% 95.29%

Resnet50 (224,224,3) 100.0% 99.65%

Efficient NetB0 (224,224,3) 100.0% 99.87%

DenseNet121 (224,224,3) 100.0% 99.83%

MobileNetV2 (224,224,3) 100.0% 99.78%

InceptionV3 (299,299,3) 100.0% 99.89%

Inception-ResnetV2 (224,224,3) 100.0% 99.83%

Xception (224,224,3) 100.0% 99.83%

Proposed CNN-SEEIB (224,224,3) 100.0% 99.89%

https://doi.org/10.3389/frai.2025.1640549
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Karthikeyan et al. 10.3389/frai.2025.1640549

Frontiers in Artificial Intelligence 12 frontiersin.org

FIGURE 4

Training loss curves for pre-trained models and the proposed CNN-SEEIB model.

FIGURE 5

Training accuracy curves for pre-trained models and the proposed CNN-SEEIB model.

performance across all evaluation metrics, while VGG16 exhibited 
the lowest.

Models that deliver high classification performance while 
maintaining low resource consumption are considered optimal. 
Through inferencing, the resource utilization metrics such as 
model size, inference time, and frames per second are measured 
and are evaluated. Table 6 show the results of this comparison 
based on inference performance. The measurement of the 
metrics has been carried out in a local runtime to avoid latency 

errors in measurement. The model size and parameters are 
obtained through model statistics when the model is loaded 
while the inference time and frames per second metrics are 
measured as average over time when the model is evaluated in 
real-time. It is clear that mobilenetV2 has the lowest inference 
time, Inception-ResnetV2 has the highest number of parameters 
and memory, and DenseNet121 takes the largest inference time. 
The proposed model improvised through SE mechanism stands 
next to MobileNetV2  in inference time and differs only by a 
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small margin. The proposed CNN-SEEIB has the smallest size 
and number of parameters and performs faster than most of the 
pre-trained models except for MobileNetV2.

Resource utilization and power consumption metrics are vital for 
assessing the feasibility of deploying the CNN-SEEIB model on edge 
devices (Chen and Ran, 2019). To evaluate system resource usage, CPU 

TABLE 5 Performance comparison of models based on accuracy, precision, recall, and F1-score.

Model Accuracy Precision Recall F1-score

VGG16 94.94% 0.9428 0.9256 0.9331

Resnet-50 99.45% 0.9931 0.9919 0.9924

Efficient Net-B0 99.69% 0.9952 0.9950 0.9951

DenseNet-121 99.76% 0.9960 0.9969 0.9965

MobileNet-V2 99.62% 0.9946 0.9948 0.9947

Inception-V3 99.73% 0.9960 0.9959 0.9962

Incpetion-ResnetV2 99.74% 0.9959 0.9959 0.9960

Xception 99.70% 0.9949 0.9957 0.9953

Proposed CNN-SEEIB 99.79% 0.9970 0.9972 0.9971

TABLE 6 Inference performance and resource utilization comparison of models.

Model Number of parameters/
model size (MB)

Inference time (ms) Frames per 
second (FPS)

Floating point 
operations per 
second (FLOPS)

VGG16 15,668,070/59.77 MB 68 14.5 15.347

Resnet-50 25,724,838/98.13 MB 72 13.5 3.864

Efficient Net-B0 4,098,249/15.63 MB 69 14.5 0.385

DenseNet-121 7,076,454/26.99 MB 80 12.3 2.839

MobileNet-V2 3,267,814/12.47 MB 62 16.5 0.567

Inception-V3 23,939,910/91.32 MB 75 12.5 5.784

Inception-ResnetV2 54,395,142/207.50 MB 70 13.5 6.551

Xception 20,939,342/79.88 MB 71 13.5 3.601

Proposed CNN-SEEIB 3,340,194/12.74 MB 64 16.5 2.121

0

2

4

6

8

10

12

CPU Utilization GPU Utilization

U
til

iz
at

io
n 

(in
 %

)

Backbone CNN (without SE) Proposed CNN-SEEIB

FIGURE 6

CPU and GPU utilization between the backbone CNN (without SE) and the proposed CNN-SEEIB.
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FIGURE 7

CPU and GPU power consumption between the backbone CNN (without SE) and the proposed CNN-SEEIB.

and GPU utilization percentages serve as key metrics, while the power 
consumption of both CPU and GPU (measured in watts) indicates the 
load the model imposes on the hardware. Although these metrics do not 
directly impact the classification task, they influence the hardware or 
system where the model operates. Figures 6, 7 illustrate the resource 
utilization details for the proposed CNN-SEEIB and its backbone CNN 
architecture. The results show that integrating the SE mechanism in 
CNN-SEEIB leads to a 0.35% increase in CPU utilization and a 0.4% 
increase in GPU utilization. Similarly, CPU power consumption rises by 
approximately 7%, and GPU power consumption by about 6%. However, 
these increases are justified by the notable gains in classification accuracy 
achieved by the model. Moreover, the efficient design of CNN-SEEIB 
keeps overall GPU utilization relatively low by optimizing resource use 
and minimizing computations.

In resource-constrained environments, these modest trade-offs 
are reasonable, given the enhanced decision-making accuracy of the 
model. Potential further optimizations, such as model quantization 
or pruning, could reduce resource consumption without sacrificing 
performance, improving its suitability for edge deployment. 
Additionally, as energy-efficient hardware becomes more accessible, 
the practical impact of such increases will diminish. These 
considerations underscore the balance between accuracy and 
efficiency, making CNN-SEEIB a scalable and sustainable solution for 
various real-world applications.

4.6 Visualization of activation maps

Activation Maps offer valuable insights into the features captured 
by the model internally, shedding light on its function and behavior. 
As features flow from the input to the output layer, they become 
increasingly global and abstract, a process comprehended by the 
dense layers for accurate classification. Figure 8 visually represents 
the intermediate feature maps of the proposed CNN-SEEIB model, 
illustrating the progression of features through the network.

4.7 Ablation study

To analyze the impact of the SE mechanism on the proposed 
CNN-SEEIB model, an ablation study was conducted by assessing 
the model’s performance without the SE module. Figure  9 
presents the accuracy curves for CNN-SEEIB both with and 
without SE during training and validation. It is observed that, 
without SE, the validation accuracy lags behind the training 
accuracy even at the 50th epoch. In contrast, with the SE 
mechanism included, the validation accuracy aligns closely with 
the training accuracy from the 35th epoch onward. This 
demonstrates that the SE module significantly contributes to the 
accuracy improvement of the proposed CNN-SEEIB model.

TABLE 7 Comparison of accuracy results with the existing state-of-the-art models.

Ref. no Year of publication DL model used Accuracy F1-score

Ahmad et al. (2021) 2021 MobileNetV3-large 99.69% 0.9962

Yao et al. (2024) 2024 Generalized Stacking Multi-output CNN (with InceptionV3) 99.56% 0.9956

Guo (2023) 2023 MobileNetV2 99.41% 0.9941

Vo et al. (2023) 2023 Ensemble of EfficientB0 and MobileNetV2 99.77% 0.9979

Hassan et al. (2021) 2021 EfficientNetB0 99.56% 0.9961

Proposed work CNN-SEEIB 99.79% 0.9971
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FIGURE 8

Intermediate feature maps obtained from the CNN-SEEIB model.

FIGURE 9

Model accuracy of CNN-SEEIB with and without squeeze and excitation (SE) attention.
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4.8 Performance comparison with the 
state-of-the-art

The proposed model in the study is further compared with several 
other architectures from existing studies to highlight its significance 
and performance as shown in Table 7.

Each model achieved peak accuracies ranging from 99.41 to 
99.79%, demonstrating their effectiveness in accurately identifying 
and classifying plant diseases. The proposed CNN-SEEIB, 
outperformed all others, reaching the highest accuracy of 99.79%. The 
model proposed in these studies (Hassan et al., 2021; Brahimi et al., 
2018) diverges from traditional transfer learning approaches as it 
leverages the custom hybrid architecture incorporated with the SE 
mechanism that significantly enhances the model’s capability to 
discern intricate features and patterns within plant images. Despite the 
sophisticated design, the model remains lightweight, offering a 
remarkable balance between performance and computational 
efficiency. The high accuracy attained highlights the model’s potential 
for practical deployment in agricultural settings, where accurate and 
efficient disease identification is crucial for ensuring crop health 
and yield.

4.9 Validation of robustness and 
generalizability

Despite the homogeneous background and controlled 
conditions of the PlantVillage dataset, it has been widely utilized in 
numerous studies as a benchmark for plant disease classification. 
The class imbalance issue with this dataset is a potential challenge 
as certain disease classes contain more samples than others, 
potentially resulting in biased predictions. The datasets may not 
fully reflect actual agricultural contexts because they were collected 
in lab settings with uniform backgrounds and ideal illumination. 
Furthermore, the dataset has noise associated with the labels, which 
allows DL models to alter prediction biases rather than learning the 
disease features itself. This could potentially impact the 
performance of the models in real-world scenarios. To validate the 
robustness and the generalization of the proposed CNN-SEEIB 

model, the experiment is repeated on the potato leaf disease dataset 
(Rashid et  al., 2021). Early detection of potato leaf diseases is 
challenging due to the diversity in crop species, disease symptoms, 
and varying climatic conditions, which add complexity to the 
detection process (Rashid et  al., 2021). The potato leaf disease 
dataset comprises of 4,062 images collected from the Central 
Punjab region of Pakistan.

This dataset comprises a diverse collection of images categorized 
into three distinct classes: early blight, late blight, and healthy each 
representing a specific condition affecting potato crops. Early blight, 
caused by the fungus Alternaria solani, typically affects older plants 
and is also known as target spot. Late blight, caused by Phytophthora 
infestans, is a severe disease that can lead to rapid crop failure without 
proper control measures. In contrast, healthy potatoes are nutrient-
rich, providing essential elements like vitamin C and potassium. The 
dataset was divided into 3,251 training images, 416 testing images, and 
405 validation images. The sample potato leaf images used for training 
and validation is shown in Figure 10.

The proposed CNN-SEEIB was used on this dataset to classify 
three categories: Early Blight, Healthy, and Late Blight. It achieved 
an accuracy of 97.77%, precision of 0.9746, recall of 0.9808 and 
an F1 score of 0.9773. Figures 11, 12 shows the accuracy and loss 
plot and Figure 13 shows the confusion matrix obtained for the 
potato leaf disease detection. The confusion matrix shows that 
Healthy leaves (Class 0) are most often misclassified, with 5 
instances as Early Blight (Class 1) and 2 as Late Blight (Class 2), 
likely due to subtle early-stage symptoms resembling healthy 
leaves, while Early Blight is correctly classified, indicating its 
discrete visual markers like well-defined spots that are easily 
detected. Late Blight (Class 2) has minor errors, with 1 
misclassified as Healthy and 1 as Early Blight, possibly due to 
overlapping features like lesion patterns or discoloration. These 
misclassifications show the CNN-SEEIB model has to 
be  improved with diseases sharing visual traits, such as spot 
shapes or color changes. Enhancing the model’s ability to identify 
fine-grained differences, like texture or spot distribution, an 
improve the performance on the potato leaf disease dataset. The 
performance of the proposed CNN-SEEIB model on a dataset 
distinct from PlantVillage shows its potential for generalization 

Potato Early_blight Potato Late_blight Potato healthy 

FIGURE 10

Sample potato leaf disease images.
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FIGURE 12

Loss plot for CNN-SEEIB’s performance on potato leaf disease dataset.

FIGURE 11

Accuracy plot for CNN-SEEIB’s performance on potato leaf disease dataset.
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across diverse datasets and real-world scenarios. Figure 14 details 
ROC Plot for CNN-SEEIB’s performance on potato leaf disease 
dataset. The inner layers of the proposed CNN-SEEIB model 
generate visual feature representations, as shown in Figure 15, 
using Grad-CAM. These Grad-CAM-based visualizations provide 
a detailed understanding of the discriminative regions the model 

focuses on while analyzing the potato leaf disease dataset. During 
training, each layer produces feature maps that capture specific 
patterns related to disease symptoms. This visualization technique 
is used in highlighting which regions of the potato leaf images 
influence the model’s predictions, showing critical insights into 
the model’s decision-making process and interpretability.

FIGURE 13

Confusion matrix for CNN-SEEIB’s performance on potato leaf disease dataset.

FIGURE 14

ROC plot for CNN-SEEIB’s performance on potato leaf disease dataset.
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5 Conclusion

This paper presents a custom CNN-based model, the CNN-SEEIB 
that integrates the benefits of accurate and lightweight architectures 
to automatically classify various plant leaf diseases from images. 
Initially, a custom backbone CNN architecture was designed, featuring 
a reduced number of parameters. With this CNN acting as the 
backbone, attention-based optimizations are incorporated using 
squeeze and excitation resulting in a unique model with superior 
classification metrics without significantly increasing parameter 
count. The experimentation on the PlantVillage dataset shows that the 
proposed CNN-SEEIB model attained a classification accuracy of 
99.79%, precision of 0.9970, recall of 0.9972, and an F1 score of 0.9971. 
Real-time inferencing revealed an inference time per image of 64 ms. 
Compared to several transfer learning models, the proposed model 
outperforms all others in accuracy, precision, recall, and F1-score. 
With the squeeze-and-excitation model, CNN-SEEIB’s inference time 
is almost equal to that of MobileNetV2. Also, CNN-SEEIB has the 

smallest model size and lowest parameter count, while the execution 
is faster than most pre-trained models except MobileNetV2. To 
further assess its robustness and generalizability, the model was also 
evaluated on the potato leaf disease dataset, achieving an accuracy of 
97.77%, precision of 0.9746, recall of 0.9808, and F1-score of 0.9773. 
These results confirm that CNN-SEEIB performs effectively across 
different datasets and real-world conditions.

Recommendations for further research are as follows:

 • Utilizing additional regularization techniques such as bagging 
and boosting ensemble methods to enhance the generalization 
capability of the model.

 • Extending the classification model to incorporate disease 
detection and identification functionalities by implementing 
object detection and segmentation techniques to identify 
infected regions.

 • Augmenting the existing dataset using GANs, NST, and BIM 
techniques, or combining multiple datasets to increase the 

FIGURE 15

Intermediate feature representation of potato leaf disease.
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number of samples, for reducing the bias and improving 
model robustness.

 • Expanding the number of classes to include a wider range of 
diseases affecting both leaves, stems and roots, and employing 
multi-label classification approaches to identify multiple 
diseases simultaneously.

 • Combining other ML techniques for classification, and semi-
supervised learning methods to leverage unlabelled data, 
either imported or self-collected, for model enhancement.

 • Exploring various attention mechanisms like self-attention, 
multi-head attention, soft and hard attention and cross-attention 
can help recognizing the approach to improve leaf disease 
detection performance by concentrating on related features and 
precise patterns.

 • Training the proposed model across various other datasets (say, 
medical images) can help to evaluate its effectiveness 
and robustness.
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