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Optimizing training of time series
diffusion models via similarity
score functions: application to
cyclic and acyclic motion with
IMU data

Heiko Oppel*, Andreas Spilz and Michael Munz

Al for Sensor Data Analytics Research Group, Ulm University of Applied Sciences, Ulm, Germany

Introduction: Denoising diffusion probabilistic models have shown the capability
to generate synthetic sensor signals. These models rely on a loss function that
measures the difference between the noise added during the forward process
and the noise predicted by the diffusion model, thereby enabling realistic data
generation. However, the stochastic nature of the process and the loss function
complicate the estimation of data quality.

Methods: To address this issue, we evaluated multiple similarity metrics and
adapted an existing metric to monitor both the training and data synthesis
processes. The adapted metric was further fine-tuned on the input data to align
with the requirements of a downstream classification task.

Results: By incorporating the adapted metric, we significantly reduced the
number of training epochs required without observing performance degradation
in the classification task.

Discussion: Our findings demonstrate that optimizing the training process using
similarity metrics not only conserves computational resources but also shortens
the training time for generative models, making them more efficient and practical
for real-world applications.

KEYWORDS

diffusion model, time series, similarity score functions, synthetization, human activity
recognition, sport climbing

1 Introduction

In machine learning classifier are used to identify pattern in samples to differentiate
between multiple categories. Often the data basis is either missing samples from specific
categories as it can be a time or cost consuming process or the data is of poor quality. In
such cases Denoising Diffusion Probabilistic Models (DDPMs) have emerged as powerful
generative tools to increase the sample space with meaningful representatives, for example
in domains such as computer vision (Azizi et al., 2023) or time series (Rasul et al., 2021).
Those samples are then used to achieve better results in the classification task. Therefore,
the synthesized data has to increase the variation of the dataset while also retaining the
main information from the activity.

The training of such a DDPM is based on the maximization of the log-likelihood,
so, that the generated sample distribution matches the one from the real data (Ho et al.,
2020). In order to achieve this, the loss function of the DDPM is defined as the mean
squared error between the noise, that was estimated by the U-NET (Ronneberger et al.,
2015) and the noise that was used in the forward process of the diffusion model. This
ultimately guarantees the generation of synthetic data in the forward process.Though, it
is not possible to estimate the quality of the generated data with this loss function or the
resemblance to the real sequence. In image generation, to assess the quality of the generated
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images one can rely on human raters as Best-Rowden and Jain
(2018) did. With time series data, this is not feasible. Among others,
some studies rely on a qualitative analysis by using decomposition
methods like t-SNE or analyzing the probability density functions
(Naiman et al.,, 2024) between real and generated signals. The
disadvantage of those approaches is their requirement for visual
confirmation. It is not possible to reduce the similarity information
to a single value. Another possibility is the usage of a discriminative
score (Yoon et al., 2019). For this, a neural network is trained
to differentiate between real and generated signals. Though, this
is a time consuming process and depending on the dataset the
network architecture has to be adapted. A study by Ramzan
et al. (2024) used a Generative Adversarial Network (GAN) to
generate synthetic sequences from the domain of finance. They
evaluated their synthetic sequences by using four different metrics:
Kullback-Leibler (KL) Divergence, Wasserstein Distance, Energy
Distance and the Maximum Mean Distance. Those are measures
between probability distributions. Unfortunately it is not clear
what distributions they compared. It is questionable to use those
metrics in the time domain on time series signals as a comparison
metric. They do not take into account the temporal progression
of the signals. Narteni et al. (2025) also relied on GANs to
generated synthetic sequences. Though, they investigated a rule-
based classifier as evaluation metric for the synthetic data. A
Logic Learning Machine was used to generate the set of rules
automatically once for the real and once for the augmented data.
Afterwards the similarity between the set of rules was compared.
The Context Fréchet Inception Distance (FID) (Jeha et al., 2022)
is another approach that relies on the usage of a neural network
model. In this case, the TS2Vec (Yue et al., 2022) model is used.
It is able to map each time step of a time series to a contextual
representation by learning a non-linear embedding function. Some
studies did also rely on similarity score functions to estimate the
similarity between real and generated signals. So did Liao et al.
(2023) by calculating the absolute error of the auto-correlation
estimator. Suh et al. (2024) applied a similar methodology, but
used the pair-wise column correlations among other evaluation
methods. Finally, some studies use an underlying classification or
regression task to objectively estimate the quality of the generated
signals (Yoon et al., 2019; Suh et al., 2024; Oppel and Munz, 2025).
They evaluate the separability of the classifier with and without the
addition of synthetic data.

To sum it up, in the literature, there exist several approaches
to evaluate the quality of the generated data, though, they were
either not used to monitor the training progress of a diffusion
model or are not suitable to do it. Therefore, we introduce a
similarity score novel to the domain of time series comparison
analysis, and also integrate it in the training and denoising process
of a time series diffusion model by estimating the models ability
to generate comparable signals. To achieve this we developed a
method called Class Optimization Global Alignment Kernel (C-
Opt GAK) to optimize the similarity score’s power of describing
the dataset. We do this by first calculating the power spectral
density (PSD) of the signals and then estimate the similarity
scores fit based on a preceding signal analysis. We compared the
optimization process against several other subjectives to show the
robustness of our approach and evaluated the metric itself against
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other established time series metrics. Those were the root mean
squared error (RMSE), the Pearson correlation coefficient and the
cosine similarity.

The second contribution of this work is the integration of
similarity metrics in the training and denoising process of a
generative diffusion model to control its process, speed up training
while improving or maintaining the data quality. To the best of
our knowledge, this is the first time that time series similarity
score functions are used for monitoring the training and denoising
progress of a diffusion model. So far, monitoring the training
progress was done by relying on the loss value alone.

This work has the following main contributions:

e We propose a similarity score function new to the domain of
evaluating synthetically generated time series signals and use
an optimization process to best fit it to the real data.

e Weintegrate similarity score functions in the training progress
of a DDPM to reduce the amount of training epochs
whilst maintaining or even improving the quality of the
generated sequences.

e We use the similarity score functions to reduce the amount of
denoising steps without decreasing the quality of the generated
signals for the underlying classification task.

This paper is structured as follows. At first, the methods section
introduces the utilized datasets including the processing stages
necessary to reproduce the results. We then provide information
about the similarity metrics and how to apply them to the
underlying task. The results section is divided into four parts.
At first, we examine the benefits of using similarity scores for
monitoring the training process of a diffusion model, then we
analyze the monitoring of the denoising process before highlighting
the classification results. The last part builds upon the findings and
evaluates the results obtained by applying the approach to an acyclic
movement dataset.

2 Methods

This is a follow-up study based on the work of Oppel and
Munz (2025). The processing of the data, the choice of the classes,
the DDPM model (IMUDiftusion) and classifier configuration are
explained in detail in this study. For more information, please refer
to the original publication.

2.1 The datasets

We tested the developed approach with two different datasets.
The first is about cyclic human movements from a human activity
recognition dataset, denoted as HAR dataset in the following.
The second is about tracking climbing movements with an
instrumented belay device, denoted as “climbing dataset” in the
following. Compared to the HAR dataset, the latter one does not
hold cyclic movements as each fall of a climber into the rope,
as well as each movement on the wall provides a timely limited
movement behavior of the belay device. If not otherwise stated,
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the evaluation and analysis is performed on the human activity
recognition dataset.

2.1.1 Human activity recognition dataset

For this study, we used a HAR dataset on the basis of Inertial
Measurement Units (IMUs) introduced by Bafios et al. (2012). The
original aim was to analyze the effect of IMU displacement. They
recorded 17 participants performing 33 activities from which we
chose four: Walking, Running, Jump Up and Cycling. As some
of the participants did not participate in all activities, we reduce
the pool of participants to those 12 which performed all activities.
For a better readability when addressing single participants, we
will further address them as PID x (participant with the id x, x €
1,...,16). Furthermore, we only used the IMU located on the right
thigh with the ideal placement setup. This guarantees comparable
movement pattern along the IMU axes.

2.1.2 Climbing dataset

The climbing dataset was initially recorded by Oppel and Munz
(2022). See the original publication for more details on the study
protocol. In total, over 150 climbing falls were recorded altogether
with over 60 ascents from different climbers including varying
climbing scenarios. or this paper, we reduced the dataset to 37
climbing falls and 19 ascents. This is leading to an intentionally
imbalanced dataset of 1:9. The ascents and falls were recorded using
the same belay device and electronic hardware. The climbing falls
can be further divided into five different configurations depending
on the amout of slack (loose rope), and the fall potential. Fall
potential means the height of the climber above the last anchor.
Both parameters influence the fall distance and the dynamics of
the fall. The five confiurations were: no slack, fall potential of 0 m,
0.25m and 0.5 m, and fall potiential of 0, with slack of 0.5 m and
1 m. The belay device was held firmly in the hands of the belayer
and the breaking mechanism of the belay device was deactivated
to guarantee a fall of at least two meter. For each of those falls
we used a sandbag as a substitute for the climber to not endanger
a human climber. To the sandbag, a timely synchronized IMU
was attached to extract the required label information of the fall
itself. The climbing ascent recordings can be further divided in six
categories including the clipping position of the climber (stretched
out or around the thorax), slack in the system (no slack or ~ 1.5m
of slack) and the type of belaying (active or passive).

In order to record this dataset, we integrated an IMU and three
bipolar Hall-Sensors into a belay device to record its the movement
behavior while climbing.

2.2 Signal processing
The two evaluated datasets require different pre-processing

steps which are addressed in this section as well as some common
processing steps across the two datasets.
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2.2.1 Pre-processing steps for the HAR dataset

The HAR activities were recorded with a sample rate of 50 Hz.
We further sequenced the data with a sliding window width of
160 time steps and an overlap of 40 time stemps. Those signals
are transformed into the frequency domain using a short time
fourier transform (STFT) using a window size of 22 and an overlap
of 20. Windowing has been done using the Hanning function.
The frequency domain signal is then used as input into the
diffusion model.

2.2.2 Pre-processing steps for the climbing
dataset

The climbing dataset was recorded with a sample rate of
220 Hz for each sensor type: accelerometer, gyrometer and Hall-
Sensor state. Using the data from the accelerometer and gyrometer,
we rotated the IMU from its local coordinate system to the
geocoordinate system using an AHRS algorithm (Madgwick et al.,
2011). Afterwards, the data was separated using the information
from the sandbag or climber to split it into three different
classes: Falling, Rope-Pull and Stillstanding. The two classes Rope-
Pull and Stillstanding were both extracted from the ascents and
hold different kinds of information. Rope-Pull includes only
sequences, where rope movement was registered in the belay
device. Additionally, we added 20 more samples before the initial
registration of rope movement to include the movement of
the belay device, as the belay device is typically being moved
before rope is handed out. This reduces the Stillstanding class to
moments where no movement was registered in the belay device
or movements due to active belaying in the moment before rope
was handed out. The start time of the fall sequences was chosen to
be identical to the sequences of the Rope-Pull class. In the next step
each sequence was set to 160 time steps and then transformed to the
frequency domain using STFT in the same way as the HAR dataset.
The signal was then normalized before beginning the training of
the DDPM.

2.2.3 Power spectral density

The main goal of synthesizing data is to add variation to the
dataset while retaining the main information from the activity.
Comparing sequences in the time domain may either suggest to use
sequences that are highly similar, hence, not increasing the variance
within the dataset or, even worse, it can lead to the assumption, that
sequences are fairly dissimilar while having the key information of
the activity, yet, deviate from the real sequences. To address this
issue, we estimate the signals’ power spectral density (PSD) using
Welch’s method (Welch, 1967). This method estimates the PSD by
first separating the signal into K windowed subsequences

Xk = WXy, with k=0,1,..K-1 (1)

where  represents the window function. For each subsequence, the
periodogram Py, m(w) is then calculated

M-1
1 >
P, oM(@) = 1 3 X jm) - 2N 2 )
m=0
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where M denotes the sequence length of each subsequence. Finally,
by taking the average over all periodograms we get the power
spectral density

R 1 K—-1
Sulw) = ; Py, (@) 3)

Using this approach removes the temporal dependency in the
course of the sequence. The idea behind this is to focus on the main
characteristics in the signal that represents the activity independent
of the location in time.

2.3 Similarity metrics

2.3.1 Class-optimized global alignment kernel

Global Alignment Kernel (GAK) k(x, y) is an approach to map
a sequence x onto another sequence y. As stated in Cuturi (2011),
it exponentiates the soft-minimum of all alignment distances and is
defined as

kxy)= > e Poim, )
meA(n,n)

whereas 7 being an alignment path, A(n, n) the set of all alignments
between the two sequences x and y of length n and D is the cost
of the alignment 7. An alignment path is a sequence of index pairs
which best map the sequences x and y onto each other. The cost D is
defined by Equation 5 and its exponentiation bounds each element
to [0, 1].

()
202

and ¢(x,y) = \/m (5)

Each operation in calculating the cost function is an element-

Dyy = d(x,y) —In (2 — exp (d(x, ), with d(x,y) =

wise operation. The scaling factor o is responsible for the scaling
of the distance function, and, hence, on the cost function D,
see Figure 1. In summary, by increasing o, the cost function
approaches its limit value 0 slower.

Finally, we normalize the global alignment kernel k(x,y)
according to Equation 6.

k(x, )

Vk(x,x) - k(y, y)

2.3.1.1 Estimation of the optimal o -value
The GAK is directly dependent on the scaling factor o €

D(x,y) = e R:9(x,y) €[0,1] (6)

R:o > 0.Itis a sensitive parameter responsible for the degree of
selectivity of the similarity between two sequences. A high degree
of selectivity means that small variations in the data are able to
change the value of the GAK significantly. The lower the value, the
higher the degree of selectivity. Cuturi (2011) suggest to calculate
the scaling factor based on the median distance between various
timesteps across the two time series and scale it. It is even possible
to use a multiple of the scaled median distance. We evaluated
their approach by calculating the GAK between sequences from
our training and validation set, which should have a high degree
of similarity. Though, it lead to an average o -value of 7.15 - 10~4 +
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4.87 - 107%, equivalent to a high degree of selectivity, and hence,
made it not usable for our concept. Therefore, we change the
approach of estimating the optimal scaling factor. As previously
mentioned, we assume a high similarity between sequences from
the training and validation set. So, we perform an optimization
by calculating the maximum of the average GAK value across all
sequence pairs under the condition, that the standard deviation
is in the range [0.09,0.12]. Due to the cyclic behavior of the
activities, we assume a high similarity between data in the training
and validation sets. Therefore we analyzed the similarity between
those sets in combination with the similarity score and finally
decided on the previous mentioned range. As this is a subjective
assessment, it requires knowledge about the underlying dataset.
The mathematical formulation is as follows:

Coax = max(¥(x, y)), )
subject to 6 € [0.09,0.12],
with 9 (x, y) and 6 being the average and standard deviation of the
GAK values. This adapted GAK metric will be further referenced
as the class optimized global alignment kernel as introduced in the
introduction (or short: C-Opt GAK).

A visual representation of the identification of the optimal o -
value is presented in Figure 2. It visualizes the similarity score over
a range of o -values. The dark blue range defines the area in which
the criteria according to Equation 7 is fulfilled. The red curves and
their slope describe the average and standard deviation of the most
similar sequences. Depending on the input sequences, the o -value
is able to change the interpretation of the GAK value, compare the
Figures 2a, b.

A summary of all calculated o-values of all participants is
presented in Figure 3 for 6y, = [0.09,0.12]. They range from
0.1 in case of the Walking class up to almost 1.0 for participants
performing the Cycling activity. Each class requires a specific
range of o-values to meet the criteria defined in Equation 7.
In addition to the o-values, Figure 3 visualizes the average and
standard deviations of the C-Opt GAK values between the training
and validation set. It is further separated by the individual classes.
The standard deviations 6 show little variations as they are strictly
limited by the condition. The dispersion on the mean values ¥ on
the other hand differ between the activities.

2.3.2 Impact and evaluation of different
optimization constraints

As previously mentioned, the range of the standard deviation
6y is a subjective procedure and depends on the dataset. We
compared our chosen range in the optimization process against two
other optimization constraints 6y and examined their impact on
the classification task and analyzed their plausibility against each
other. The three ranges are as follows:

e Gy, = [0.01,0.03]
e Gy, =[0.09,0.12]
e GOy, =[0.18,0.22]

They are exemplarily visualized in Figures 2a, b. The visual
analysis shows that the range directly impacts the interpretations of
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FIGURE 1
Comparison of different scaling factors o and their impact on the cost function D over the alignment distance. For lower scaling factors, the cost
function is more sensitive to smaller alignment distance changes.
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FIGURE 2

Visual representation of the o -value and its influence on the similarity score for a given train and validation set from the HAR dataset. Highlighted are
the different pre-defined ranges 6y, Vi = 1, 2, 3. They are represented by the colored areas in blue, cyan and pink. Those are the areas where the
objective constraint from Equation 7 are met and the dotted lines represent the optimal o -value according to Equation 7. It is exemplarily visualized
for for the Cycling activity performed by the participant ID 1 (a) and for the Walking activity performed by the participant ID 1 (b).
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(b)

the similarity between two signals. For a more detailed analysis on
their impact see Figure 4. There we compare two sequences (their
PSDs) against each other for each range separately. At first, we were
interested in the two sequences which are resembling each other the
most. So, we calculated the similarity scores between a randomly
pre-chosen real sequence and all available synthetic sequences.
Then we selected that synthetic sequence which returned the
highest similarity score. The results are visualized in Figure 4a. The
two ranges Gy, and Gy, ultimately lead to sequences which visually
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confirm a high similarity between them. Though, their score value
differs. As 6y, returns a plausible score value 0.9693, 6, returns
with 0.872 a lower value. The highest score value was calculated by
when the range 6y, was used. It lead to a value of 0.9925 which
indicates a high similarity between the two sequences. Though,
their similarity is clearly less pronounced.

In a second approach, we analyzed the two least similar
sequence according the similarity score and compared the impact
of the three standard deviation ranges against other. The exemplary
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FIGURE 3
Boxplot of the average and standard deviation of all similarity scores (left side of the graph) and of the scaling factors o (right side of the graph) of all
participants grouped by activity for 6y, = [0.09,0.12].

result is shown in Figure 4b. The score value of the least similar
sequence was identical for all ranges. Though, again, the value of the
C-Opt GAK score varied between 0.021 and 0.847 which exhibits
either a high similarity or no similarity at all. By visually analyzing
the sequences, it gets clear, that a high score value of 0.847 is not a
plausible value. The remaining two score values of 0.021 and 0.194
are both plausible, as the value depends on the application itself.

2.3.3 Comparison similarity metrics

We choose three time series similarity metrics to evaluate our
C-Opt GAK metric against—the Cosine similarity, the Pearson
Correlation Coefficient and the Root Mean Squared Error (RMSE).
Each metric is used to calculate the similarity scores in the time
domain in addition to analyzing the similarities of the signals power
spectral densities.

The Cosine similarity s. between two sequences x = (x1, ..., X,)
and y = (y1, ..., ¥) is calculated by taking the dot product between
two sequences and additionally norming it using their magnitudes

|1 and [[y|]:
Xy
s, y) = ————. ®)
RNTFTRITT
The second similarity metric is the Pearson Correlation
Coeficient sy:
sp(x,y) = n iy = Qi 2ii) WVli<i<n
Jou T — (o) - (07— (0
&)
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Finally, the RMSE is calculated as follows:

>oilxi — yi)?

n

sr(x,y) = (10)

Both Cosine similarity and Pearson Correlation Coeflicient are
in the range of [—1, 1], the score value calculated by the RMSE is in
the range of R.

2.3.4 Visual analysis of exemplary sequences
between the similarity metrics

Figure 5 visualizes an example sequence showing the
acceleration in x-direction from PID 2 of the Walking class once
in the time domain and once its power spectral density (red
curve in the figures). We have visually compared this sequence
with the most similar sequence from the validation set according
to all four metrics. To determine the most similar sequence,
we calculated the similarity scores individually across all sensor
axes and then averaged them. The calculation was done between
the power spectral densities of the sequences. The Cosine and
Correlation metric chose identical sequences, whereas the RMSE
and C-Opt GAK approaches chose different sequences. The
choice for identical sequences between the Cosine and Correlation
metric was observed across all classes. We have therefore decided
not to consider the Correlation metric further in our analysis.
One of the disadvantages of using RMSE as a similarity score
is the lack of interpretability of the score value itself. The only
assumption that can be made is the following: the lower the
score value, the higher the similarity between two sequences.
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Comparison between Real Train and nearest Synthetic Sequence
Example Sequence from PID 1 and Class Cycling

AY - Results from [0.01, 0.03] GY - Score: 0.9925

Comparison between Real Train and furthest Validation Sequence
Example Sequence from PID 1 and Class Cycling
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FIGURE 4

Exemplary comparison between two sequences from the HAR dataset. (a) Between a real training sequence and a synthetic sequence and (b)
between two real sequences, one from the training and one from the validation set. It can be further separated by the three optimization ranges
6y, Vi = 1,2, 3 of the standard deviation to estimate the scaling factor . They are color coded in the following way: (green) 63, = [0.01,0.03], (blue)
6, =10.09,0.12] and (red) 64, = [0.18,0.22]. The C-Opt GAK similarity score value is also given for each sequence comparison on average across all
channelin (a, b). In those subgraphs, only two of the six channel are visualized, namely the acceleration in y-direction (AY) and angular velocity in

y-direction (GY).
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Visually, both the sequences chosen by the RMSE as well as the
C-Opt GAK show high similarities toward the sequence from the
training set. Therefore, we also excluded the RMSE score in our
further analysis.

2.4 Denoising diffusion probabilistic model

The IMUDiffusion model is a diffusion model specifically
designed for synthesizing time series sequences based on multiaxial
IMUs. It was first introduced by Oppel and Munz (2025) which
showed the effectiveness of the generated sequences by improving
the underlying classification task of separating human motion
activities. The model description can be found in their paper. They
trained the diffusion model for 4,500 epochs, which will be the
reference for this study.

For the noise scheduler, a linear scheduler was applied. It was
adapted to the multi-sensor problem by choosing separate diffusion
rates per sensor.

2.4.1 Application to the climbing dataset

The scheduler beta values for the Accelerometer and Gyrometer
were identical to the ones when training the DDPM on the HAR
dataset, and the rope velocities beta value was set to S, = 9¢ — 4.

The DDPM was trained on each recording separately to
guarantee high similarities between the synthetically generated and
the real ones. A recording comprises of a single sequence in the
case of the fall sequences and multiple sequences for the Rope-
Pull and Stillstanding class. The number of samples in the ascent
recordings varied according to the amount of rope pull registrations
and comprised of up to 27 sequences.
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2.5 Classifier

Like the diffusion model, we rely on the same classifier
architecture introduced by Oppel and Munz (2025). This allows for
a comparability between the results to analyze the effectiveness of
the similarity score. The classifier is composed of a convolutional
neural network that convolves the input only along the time
dimension. We use two convolutional layers with a kernel of size
Ckernel = (1 x 5) and 2 filter each, followed by a Max-Pooling
layer to reduce the dimensionality along the time by two. After the
Max-Pooling layer an additional convolutional layer with 4 filter
and the same kernel size as the previous convolutional layer was
used. Finally, the last part of the network consists of three fully
connected layers with 128, 32 and 16 neurons respectively. Each
fully connected layer is followed by a ReLU activation layer and a
dropout layer with p = 0.3. The last layer of the network consists of
four neurons followed by a softmax layer. The same classifier model
was used for both datasets.

2.6 Experiments

The similarity metrics Cosine Similarity and the C-Opt GAK
are used to monitor the training and the denoising process of
the DDPM. Both metrics are used to compare the power spectral
densities of the sequences. Additionally, the Cosine similarity was
also used to compare sequences in the time domain.

In each experiment, we trained the DDPM and the classifier
using the Leave-one-subject-out Cross Validation (LOSOCV)
method. Each participant was once excluded from the training
and validation set and only used for testing. As we have 12
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Real Example Sequence (red curve) - Acceleration X-Direction - Class Walking - PID: 2
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Visual comparison between a sequence from the training and validation set. The sequence from the training set was randomly chosen and the
sequence from validation set was chosen based on the similarity metric. It is the sequence that resembles the training sequence the most according
to the respective similarity metric. The sequence from the training set is visualized in red. The respective sequence from the validation set is visualized
in a different color depending on the similarity metric that led to choosing the respective sequence (blue: Cosine, green: Correlation, yellow: RMSE,
black: C-Opt GAK). The top row visualizes the sequences in the time domain and the bottom row their respective power spectral density.

RMSE C-Opt GAK
A
&l &l il
0 1 2 3 0 1 2 3
Time [s] Time [s]

Frequency [Hz] Frequency [Hz]

participants in total, we trained 12 classifier models and evaluated
the results separately. The same methodology has been used to train
the DDPM. Though, the training of the DDPM was additionally
separated by the classes to guarantee a unique label for the synthetic
sequences. This results into a total of 48 DDPMs.

2.6.1 Monitoring the DDPM training

By monitoring the training progress of the DDPM using the
similarity score functions, we are able to estimate the quality of
the synthetic sequences at any desired epoch. To do this, we are
denoising a batch of 128 randomly normal distributed sequences in
the frequency domain for the full 3,000 denoising steps after the
specific epochs. Though, as this is a time consuming process, we
reduce the amount of monitored epochs to every 50", Now, the
termination criteria between the C-Opt GAK and Cosine metrics
vary. Using the Cosine metric for monitoring the training process,
we search for a local maxima of this metric between real training
sequences and the batch of synthetic sequences. Additionally, as
the score value can be volatile, we keep training for another 100
epochs including two monitoring steps, to ensure that an optimum
has been reached. The C-Opt GAK method allows us to be more
specific with the criteria for terminating the training process.
By optimizing the scaling factor o using the real training and
validation sets, we also estimate the range of the similarity score.
Therefore, we expect the similarity score between real training
sequences and synthetic sequences to be in the same range. In
practical terms, we require that at least 25% of the similarity
scores to be in the range. If both criteria were met, we stop the
training process.
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2.6.2 Monitoring the denoising process

The scheduler is responsible for controlling the denoising
process. Initially, we set the number of denoising steps to 3, 000.
With the help of the similarity scores, we are able to monitor
this process and estimate the quality of the synthetic sequences by
comparing them against the real training sequences. We used the
information of the similarity scores to stop the denoising process as
soon as the optimal quality of the synthetic sequences was reached.
Again, we allow two additional monitoring steps to guarantee that
the local optimum was reached. Therefore, if in two consecutive
steps the similarity score drop, we stop the denoising process.
Again, this is a very time consuming process if every denoising step
is monitored. Therefore, we monitored only every 30" step.

2.6.3 Training sets for the HAR classification task
In order to objectively evaluate the quality of the synthetic
sequences, we add those sequences to the training set for classifying
the four activities Walking, Running, Jump Up and Cycling.
Overall, we compare 9 training sets against each other that have
been used to train a neural network classifier with identical
architecture and initial weights. First of all, we have the two baseline
sets—namely the “Full-Set” and the “2 Sample Set.” The Full-Set
comprises 80% of the available data from 11 participants. The
remaining 20% from those participants are used for validating the
classifiers performance. Finally, the left-out participant was used for
testing. Therefore, the test set was always identical, independent
of the training sets. In case of the 2 Sample Set, the training data
comprises 2 randomly chosen samples out of the real samples per
participant, leading to a total of 22 real samples in the set. The same
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amount but different samples, were chosen for the validation set.
The final baseline set is the Full DDPM Set. It consists of synthetic
sequences which have been generated with the IMUDiffusion
model without the usage of similarity metrics to monitor the
training and synthetization process. Meaning, the IMUDiffusion
model has been trained for 4,500 epochs and the sequences have
been denoised for 3,000 steps. The same real sequences from the 2
Sample baseline set were used to train the diffusion models.

The results obtained by the classifier with the baseline sets
serve as a reference against the results obtained from training
the classifier with a different training set that contains synthetic
sequences which have been generated with the help of the similarity
metrics. Those two metrics were the C-Opt GAK and Cosine
similarity and were either applied to monitor the training of the
IMUDiftusion model or its denoising process. Depending on the
similarity metric, each have generated different synthetic samples
which have been separately used for training the classifier. An
additional control parameter is the application of the similarity
score either directly onto the time signals or onto their power
spectral densities. A summary of all variants are shown in
Table 1. In total, classification results from 9 different training
sets have been evaluated. For further simplifications, we use the
preceding abbreviation “OT” (Optimal Control Training) for the
training set which contains synthetic sequences that have been
generated with the IMUDiffusion model according to Section 2.6.1.
If additionally the denoising process has been monitored, the
abbreviation “OT-D” (Optimal Control Training with Denoising)
is applied.

2.6.4 Training sets for the climbing classification
task

The amount of recordings varies between the fall and ascent
classes. Therefore it was not possible to perform a Leave-One-
Recording-Out Cross-Validation. Therefore, we split the dataset
five times. The split was performed on the recordings. This
guaranteed that no handing out rope sequence of the same
recording/ascent was present in both the training and the
test set.

In a previous study by Oppel and Munz (2024) they
analyzed different time window sizes for predicting a climbers
fall into the rope and found a well balanced compromise in
a window size of 20 time steps. For the synthetisation process
we already reduced the sequences to a window size of 160
time steps. Those were then further processed by using a new
window size of 20 time steps with a slide of 10. After the
sequencing of the data, the accelerations and angular velocities
were standardized and the rope velocity was normalized as the data
distribution is not normal and due to outlier velocities in some
fall situations.

In order to analyse the impact of the similarity score on
the prediction of climbing events by using synthetic sequences
generated with a DDPM, we evaluated six datasets:

e Train-On-Real-Test-On-Real (TRTR): using all available

Sequences for training the classifier without the held out
test set.
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e TRTR with Downsampling: due to the class imbalance of the
dataset, we sampled the majority classes from the climbing
ascent down to match them with the amount of fall sequences.

e TRTR with Oversampling: we increased the sample space by
replicating the fall sequences until we reached a class balance.

e Last Step Train-On-Synthetic-Test-On-Real (TSTR): we used
the DDPM model after 4,500 epochs of training to synthesize
climbing sequences which were then used for training the
classifier without any real sequences in the training process.

e Best Step TSTR: we used the DDPM model at the epoch
where our similarity score estimated an optimal similarity
between the synthetic and real training sequences and used
those synthetic sequences alone to train the classifier.

3 Results

The results divided in three The
first two parts analyse the findings from integrating the

section is parts.
similarity scores in the training and synthetization process
of a diffusion model. In the last part, the results of using
synthetic classification model

sequences for training a

are discussed.

3.1 Monitoring the DDPM training process

We have integrated the similarity scores in the training process
of our IMUDiffusion model as some kind of early stopping
criteria (OT-variants). This allowed us to reduce the amount
of training epochs. Figure 6a visualizes the amount of training
epochs until the training process has been terminated by this
early stopping criteria. It is shown separately for each participant
and each activity that the participants performed. In this graph,
we only visualized the results that we obtained by using the C-
Opt GAK similarity score calculated between the PSDs of the
signals. A summary across all three methods is visualized in
Figure 6b. The results are further divided by the four activities.
In general, we can see a reduction in the amount of training
epochs independent of the similarity score function used. With
1,100 training epochs, the fastest termination of the training
occurred whilst monitoring the training process using the Cosine
similarity metric applied to the signals in the time domain. On
average, this method required the least amount of training epochs
until it stopped the training. With it, we were able to reduce
the amount of training epochs by 28.70%. By using the Cosine
similarity between the PSDs of the signals as metric reduced the
amount of training epochs by 21.62%. Finally, the C-Opt GAK
similarity metric allowed us to reduce the amount training epochs
the least with a reduction of 19.51%. A summary of the reduced
amount of training epochs per class and similarity metric is given
in Table 2.

3.1.1 Monitoring the DDPM training process of
the climbing data

The C-Opt GAK similarity score was used in the training
process of the DDPM to analyse the quality of the synthetic
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TABLE 1 Summary of the HAR training sets that were used to the train the classifier.

Training set Number of real Synthetic Number of Number of Similarity Similarity
name training samples sequences training denoising metric measured
added epochs steps between

2 Sample 22 None 4,500 3,000 None None
Full-set 2 25,000 None 4,500 3,000 None None

Full DDPM 22 15,360 4,500 3,000 None None

OT C-Opt GAK 22 15,360 Optimal control 3,000 C-Opt GAK PSD

OT-D C-Opt GAK 22 15,360 Optimal control Optimal control C-Opt GAK PSD

OT cosine PSD 22 15,360 Optimal control 3,000 Cosine PSD

OT-D cosine PSD 22 15,360 Optimal control Optimal control Cosine PSD

OT cosine time 22 15,360 Optimal control 3,000 Cosine Time

OT-D cosine time 22 15,360 Optimal control Optimal control Cosine Time

Included are several key factors that describe how the sets were constructed.
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FIGURE 6
swarm-plot represents one participant.

Number of training epochs until the similarity score induced an early stopping of the training process. (a) visualizes the participant and class
individual result from the HAR dataset when using the C-Opt GAK similarity metric for early stopping. The dashed black line represents the pre-set
amount of training epochs. (b) swarm-box-plot of the results of all evaluated similarity metrics, grouped by the classes. Each black dot in the
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TABLE 2 The average training epoch at which the similarity score reached a local optima and led to an early stopping of the training of the IMUDiffusion
model.

Similarity score Walking Running Jump up Cycling

Cosine (PSD) 3857.33 & 579.09 3315.67 £ 820.65 3219.83 % 740.06 3715.67 £ 615.20
Cosine (time) 3657.33 & 682.16 2924.00 = 860.35 3144.83 & 87141 3107.33 & 883.37
C-Opt GAK (PSD) 3507.33 & 664.84 3744.83 + 426.96 3861.50 & 659.58 3457.33 & 696.97

Without this early stopping criteria, the amount of training epochs was set to 4, 500.

data. It allowed an earlier stop of the training before the pre-set
amount of epochs have been reached. It was set to 4,500 which is
identical to the HAR dataset. On average, we were able to reduce
the amount of training epochs by 28% for the Falling class, 26%
for the Rope-Pull class and 25% for the Stillstanding class. The
amount of required training epochs per recording is visualized in
Figure 7. In the best case, it allowed us to abort the training almost
3,000 epochs earlier which translates to a reduced training time of
almost 66%.
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3.2 Monitoring the denoising process

In this section, we describe the results from using the
similarity score functions for monitoring the denoising process.
An exemplary result of a monitored denoising process over one
selected participant for all three metrics—C-Opt GAK, Cosine PSD
and Cosine Time—is visualized in Figure 8. At the first denoising
step (Denoising Time Step = 0), we start with a standard normal
distributed signal. Interestingly, the Cosine similarity between the
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pre-set amount of training epochs.
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PSDs of the gaussian white noise and real sequences showed some
kind of similarity, see Figure 8c. Even score values of around 0.4
were reached. The score value did still increase with the denoising
steps, though, in some cases only marginally from 0.4 to around 0.6.
This small increase of the score value could also be observed when
the Cosine similarity was calculated between signals in the time
domain, see Figure 8b. Though, this time, the score value started on
average at around 0.064 and did end with a similarity score value
of 0.484 on average at the last denoising step. This was at least
the case for the Cycling class. For the Jump Up class, the similarity
score did on average reach a value of around 0.290. Finally, the C-
Opt GAK metric was able to broaden the range, see Figure 8a. For
example, on average a score of around 0.0070 was reached at the
first denoising step with the Cycling class. It did increase on average
t0 0.917.
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Using the C-Opt GAK metric, highest score values were reached
around the 2,798 denoising step on average. When using the
Cosine PSD and Cosine Time metrics, highest scores were reached
around the 2,885 and 2,933 denoising step respectively.

3.3 Classification results

The results with the baseline sets have already been discussed
in detail in Oppel and Munz (2025). For comparison reasons,
they are still added to the evaluation and graph that visualizes the
classification results, see Figure 9. To be more specific, the graph
visualizes the macro F1-scores across all test subjects according to
the LOSOCV approach, and that individually for all 9 training sets
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FIGURE 8
This graph visualizes the similarity scores for specific denoising steps in the denoising process for a single participant (PID 2), separated by the four
activities Walking, Running, Jump Up and Cycling. (a) C-Opt GAK score value. (b) Cosine similarity score between the signals in the time domain. (c)
Cosine similarity score once between the signals PSDs.

used to train the classifier. The macro Fl-scores are visualized as
a swarm-box-plot, where each dot represents the score of one left
out participant and each box depicts a statistical analysis over all
those subject-individual results. Best results were achieved with the
OT C-Opt GAK set as with only two participants (PID 3 and 12)
a macro Fl-score of < 1.0 were reached. With the remaining sets
we achieved higher test scores for those two participants. Except
with the 2 Sample set, where the test score dropped even further.
Sequences from the Running and Walking activities were mixed
up with each which led to the deterioration of the score value. For
PID 3, sequences from the Cycling class were also mixed up with
sequences from the Jump Up class.

3.3.1 Impact of using the similarity scores for
early stopping in the denoising process of the
DDPM

This section analyses the results of using sequences for the
classification task that were generated using an early stopping
criteria within the denoising process according to Section 3.2.
Compared with the results obtained by using the two baseline sets
2 Samples and Full-Set for training the classifier, the early stopping
of the denoising process led to sequences that mostly improved the
classification task. By using the C-Opt GAK set, the macro F1-score
increased for all 12 participants when compared to the results of the
2 Sample set. Against the results obtained by using the Full-Set, the
macro Fl-score improved for 4 participants and decreased for the
participants 3 and 12. Using the Cosine metric either in the time
domain or by using the PSDs of the signals, the macro F1-scores
improved for 4 participants. In the same way did the score value
decrease with 4, respectively 3 participants.

Visually comparing the results obtained with the OT-D sets
against the OT sets when the same metric was used for early
stopping showed a decreasing performance for all sets evaluated,
see Figure 9. Using the C-Opt GAK metric for monitoring indeed
decreases the results for the participants 1 and 16. In percentages,
the scores decrease by 44.55% and 7.43% respectively. Though, it
also increases for the participants 3 and 12 by 28.22% and 0.73%
respectively. Analyzing the results that have been obtained using
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the Cosine metric, the additional early stopping of the denoising
process improved the results for a single participant when the
PSDs of the signals has been compared. It decreased for three
participants. In the time domain, the OT-D Cosine Time set
improved the results of the classifier for three participants and
decreased it for four articipants.

3.3.2 Impact of calculating the similarity score in
the time domain or between power spectral
densities

We have used the information of the Cosine similarity score for
stopping the training of a diffusion model and its denoising process
earlier than scheduled. The similarity itself was calculated between
signals in the time domain and their power spectral densities. In
this section, the classification results between those two approaches
are presented. When using the similarity score only for monitoring
the training process, the OT Cosine PSD set led to an improvement
of the macro F1-score for two participants compared to the results
obtained with the OT Cosine Time set. The scores improved once
by 10.1% and once by 15.3%. In contrast to that, the classification
results improved for four participants when trained with the OT-
Cosine Time set. In the best case, the macro F1-score increased by
36.6% for PID 1 and the least improvement was achieved for PID 4
with an improvement of around 1.3%. When using the similarity
score also in the denoising process, we achieved a higher macro
Fl-score for four participants with an increase of up to 42.7%,
whereas for three participants we achieved a lower score value with
areduction of <10%.

3.3.3 Impact of the standard deviation range to
estimate the scaling factor

In the following, we analyze the pre-defined optimization
constraint to find the optimal scaling factor o, namely the range
of standard deviation. For this, we compared the chosen interval to
two varying ranges: a lower and a higher range. We chose those
intervals as follows: 65, = [0.01,0.03] and 6y, = [0.18,0.22].
This results into different scaling factors and, ultimately, a different
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Denoising).

Participant individual macro Fl-scores calculated with the nine classification models represented as swarm-boxplot where each dot represents one
participant. Compared are the three results from the baseline models 2 Samples, Full-Set and Full DDPM Training against the results from the six
models that were trained with synthetic sequences. Those sequences were generated using the similarity metrics (OT, Optimal Control Training; D,

similarity value between two sequences. We used those values to
monitor the training of the DDPM as an early stopping criteria
and then generated synthetic sequences from those models. The
synthetic sequences were then used to train a classifier. The results
are visualized in Figure 10. The boxplots depict the macro F1-scores
for each participant individually. The optimization criteria &y,,
which was chosen based on a preliminary data analysis, lead to only
two score values of less than 1.0. The other two ranges lead to score
values of less than 1.0 in at least twice as many participants.

3.3.4 Evaluation of the classification task with the
climbing dataset

The results are summarized in Table 3. We compare two
different evaluation approaches. The first one calculates the
Geometric Mean for each climbing dataset between all three classes:
Falling, Rope Pull and Stillstanding. The second approach addresses
the models capability of differentiating between a fall and an ascend
in general by combining the Rope Pull and Stillstanding class. This
second approach is relevant if the model has to predict a fall in real
time. Therefore, it is not relevant whether the sequence from the
ascend belongs to a Rope-Pull or not.

The results obtained by using the TRTR model did reach an
average Geometric Mean of 0.420 and it was not able to clearly
separate fall sequences from ascending sequences. In one of the
five cross-validation steps, none of the fall sequences were correctly
classified. By balancing out the class imbalance of the training set,
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the metrics increased for both approaches. Both downsampling
the majority classes as well as oversampling the minority class
improved the classification results for both approaches. Using
synthetic sequences for training the classifier instead of only real
sequences improved the metrics in all evaluated areas as shown
in Table 3. Highest metric values were achieved by utilizing the
synthetic sequences obtained from the Last Step DDPM model.
Using the sequences from the Best Step model decreased the metrics
by 1.5% for the 3 class and by 0.1% for the 2 class evaluation
approach. The reduced score value for the 3 class evaluation results
from the prediction of the Rope Pull class as its sensitivity value
dropped from 85.55% to 80.64%.

4 Conclusion

To rely on an objective criteria to supervise the training of
a neural network classification model is a normal approach to
stop the optimization process at the most beneficial timestep.
In contrast, the supervision of time series DDPMs is not as
straightforward and mostly based on the knowledge of the user. An
objective criterion is missing in this field. We tried to fill this gap
by integrating existing and novel similarity score functions into the
training and denoising process of a time series DDPM. The novel
similarity score function is based on an existing alignment function
which we adapted to best fit the underlying dataset. Therefore, we
fit the similarity function to the training and validation sets by
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FIGURE 10
LOSOCV classification results using the macro F1-score as evaluation metric. Three swarm-boxplots are depicted; one for each optimization criteria
which was used to find an optimal scaling factor. Each dot represents one participant which was held out during the training of the classifier.

TABLE 3 Classification results from the different climbing datasets with the geometric mean as evaluation metric.

Evaluation TRTR and TRTR and Last step
metric downsampling oversampling TSTR

3 class 0.420 £ 0.210 0.858 = 0.029 0.857 £ 0.033 0.874 = 0.045 0.892 = 0.030
geometric mean

Fall vs. climbing 0.326 £ 0.163 0.927 + 0.027 0.895 + 0.039 0.930 = 0.052 0.931 + 0.031
geometric mean

The TSTR models were trained with 1,000 synthetic sequences.

adjusting the scaling factor o of the initial similarity score function
GAK. The idea is to find an optimal o to assert high similarities
between signals under the assumption that dissimilarities still exist
within the sequences. The adapted similarity score function is
called C-Opt GAK. The similarity metrics can then be used to
not only monitor the diffusion models performance, but also for
stopping the training and denoising as soon as an optimal similarity
between real and synthetic sequences was achieved. Generated
sequences then have been used to train a classifier with the task of
differentiating the four classes. It served as an objective criteria for
evaluating the effectiveness of using similarity scores to optimize
the training and synthetization process of diffusion models.

By using the C-Opt GAK metric for early stopping the training
of the diffusion model, we were able to reduce the amount training
epochs on average by 20%. Across all participants and classes, this
saved us 41, 148 epochs. This not only saved computation time, but
the classification results improved with six participants compared
to when the classifier was trained with synthetic sequences that
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were generated after training the diffusion model for the full 4, 500
epochs. For one participant, the macro Fl-score increased by up
to 43.9%. Independent of the similarity metric used for early
stopping, the macro Fl-score increased with more participants as
it decreased, showing the effectiveness of this approach.

Another approach is to integrate the similarity metrics in the
denoising process. This allows to stop the process as soon as
highest similarity between sequences was reached. Depending on
the similarity metric, the score value itself could be misleading.
The score values from the Cosine similarity between power spectral
densities showed similarity values between 0.2 and 0.4 when real
sequences have been compared against signals depicting random
gaussian noise. Nevertheless, the classification results improved
with five participants compared to the results obtained with the Full
DDPM set. In contrast to that, the results dropped for either two or
three participants depending on the similarity metric used.

In addition to the HAR dataset which contains cyclic
movements, we extended the analysis on another acyclic time
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series dataset out of the domain of sport climbing. We could
show that integrating our C-Opt GAK metric in the training
process of a generative diffusion model reduced the amount of
necessary training epochs significantly by over 25% for this dataset.
Though, it lead to a slight reduction of the 3 class classification
performance but maintained the same classification performance
on the 2 class problem.

5 Discussion and outlook

In this paper, we investigated the possibility of using similarity
score functions to monitor the training and denoising process of
a DDPM. The effectivity of those score functions was shown on
a real world human activity recognition dataset. We were able
to reduce the amount of training epochs as well as denoising
steps without missing out on the key characteristics that define
the human activity it represents. This could be verified by using
those generated sequences to train a classifier. For most LOSOCV
steps, the additional synthetic sequences which were generated
with the monitored DDPM improved the separability of the
classifier. Even though this was not the case with all participants.
With the help of the similarity score we were able to estimate
the quality of the synthetic sequences, which resulted in the
identification of sequences showing high dissimilarities. It would
be wise to integrate a selection process to identify the most
suitable sequences improving the classifiers performance even
further and reduce the required amount of synthetic sequences to
a minimum.

The monitoring of the denoising process including an early
stopping criterion is a non-intuitive approach. The diffusion
model was trained in combination with a pre-chosen scheduler,
which is in the generation process responsible for removing noise
successively. So, stopping the denoising process earlier is leading
to sequences containing more shares of high frequency noise
compared to sequences generated after the last denoising step. We
were still able to maintain the quality of the classifiers separability
compared to the classifiers trained with the baseline training
sets. Though, it might affect different time series signals from
other sensor types or other activities from the same sensor type
differently. So, it would be recommended to test this approach
for different types of sensors and activities. The advantage of
requiring less denoising steps in the synthetization process is
unambiguous. It reduces the time to generate the sequences.
Additionally, it would be interesting to test different methods
that reduce the amount of denoising steps for a DDPM against
this approach.

The range of the standard deviation for the calculation of
the o-value for the C-Opt GAK similarity score was chosen
based on subjective criteria based on a preliminary data analysis.
We compared it against two different optimization constraints to
consolidate the choice of our subjective one. Yet, this preliminary
analysis beforehand is a time consuming process and it would be
desirable to find an automated process to identify the optimal range.

The climbing dataset was used to extend the usage of the
similarity metrics in the training process of a generative diffusion
model to an acyclic time series dataset. Our findings are promising,
as we were able to reduce the required amount of training
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epochs significantly whilst also increasing the performance of an
underlying classification task against the baseline models. Still,
stopping the training process of a diffusion model too early can have
anegative impact on the quality of the generated data. This could be
seen in the performance drop of our classifier. Another explanation
for this drop might also lie in the randomness of the data generation
process. We used 1,000 randomly chosen synthetic sequences to
train each of the two TSTR models individually and as the C-
Opt GAK similarity score shows exemplarily in Figures 4a, b, the
diffusion model seems to have generated sequences which are fairly
dissimilar to the real sequences. As those are in part responsible on
the separability of the classifier, it would be interesting to elaborate
further on the relation between the similarity score, the quantity
and quality of the synthetic sequences and their impact on the
classification task.
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