:' frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY
Ramesh Chandra Poonia,
Christ University, India

REVIEWED BY

Srikanth Thudumu,

Institute of Applied Artificial Intelligence and
Robotics (IAAIR), United States

Palanivel Rajan S,

Velammal College of Engineering and
Technology, India

*CORRESPONDENCE
Oleg Yakimenko
oayakime@nps.edu

RECEIVED 07 June 2025
ACCEPTED 01 August 2025
PUBLISHED 23 September 2025

CITATION

Sheehan M and Yakimenko O (2025) Neural
architecture search applying optimal stopping
theory.

Front. Artif. Intell. 8:1643088.

doi: 10.3389/frai.2025.1643088

COPYRIGHT

© 2025 Sheehan and Yakimenko. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Artificial Intelligence

TYPE Original Research
PUBLISHED 23 September 2025
pol 10.3389/frai.2025.1643088

Neural architecture search
applying optimal stopping theory

Matthew Sheehan™ and Oleg Yakimenko*

Department of Systems Engineering, Naval Postgraduate School, Monterey, CA, United States

Neural architecture search (NAS) exploration requires tremendous amounts of
computational power to properly explore. This makes exploration of modern NAS
search spaces impractical for researchers due to the infrastructure investments
required and the time needed to effectively design, train, validate, and evaluate
each architecture within the search space. Based on the fact that early-stopping
random search algorithms are competitive against leading NAS methods, this
paper explores how much of the search space should be explored by applying
various forms of the famous decision-making riddle within optimal stopping
theory: the Secretary Problem (SP). A total of 672 unique architectures, each
trained and evaluated against the MNIST and CIFAR-10 datasets over 20,000
runs, producing 6,720 trained models confirm theoretically and empirically the
need to randomly explore ~37% of the NAS search space until halting can occur
for an acceptable discovered neural architecture. Additional extensions of the SP
investigated include implementing a “good enough” and a “call back” feature; both
further reduce exploration of the NAS search space to ~15 and 4%, respectively.
Each of these investigations were further confirmed statistically upon NAS search
space populations consisting of 100-3,500 neural architectures increasing in
steps of 50, with each population size analyzed over 20,000 runs. The paper
details how researchers should implement each of these variants, with caveats,
to balance computational resource costs and the desire to conduct sufficient
NAS practices in a reasonable timeframe.

KEYWORDS

neural architecture search, Markov decision processes, automated machine learning,
optimal stopping theory, secretary problem, Markov time

1 Introduction

Neural architecture search (NAS), the process of automating architecture engineering
(Elsken et al., 2019), results in state-of-the-art model performance as tied to its architecture
design. It is typically executed over a vast search space with billions of design options to choose
from and compare (Hu et al., 2020). The pioneering work by Stanley and Miikkulainen (2002),
Zoph and Le (2016), and Baker et al. (2017) proposed algorithms that could design novel
machine learning (ML) architectures, increase ML algorithm learning rates, and even
outperform state-of-the-art models of the time. These deep learning successes proliferated
NAS research into image classification (Huang et al., 2019; Chen et al., 2019); multi-objective
genetic algorithm optimization (Lu et al., 2018), adversarial ML (Gong et al., 2019),
autonomous driving (Cheng and Bender, 2019), natural language processing (NLP) (Ding
etal., 2020), and activity prediction (Pellatt and Roggen, 2021), to name a few. NAS has proven
itself, time and time again, as a viable method when the search for optimal model performance
is dependent upon the model’s architecture building blocks and their configuration (Ying
etal., 2019).

Unfortunately, the goals of researchers to discover novel neural architectures resulting in
improved model performance are fundamentally at odds with the goals of engineers to take

01 frontiersin.org

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1643088&domain=pdf&date_stamp=2025-09-23
https://www.frontiersin.org/articles/10.3389/frai.2025.1643088/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1643088/full
https://orcid.org/0000-0001-8038-4777
mailto:oayakime@nps.edu
https://doi.org/10.3389/frai.2025.1643088
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1643088

Sheehan and Yakimenko

said discovered models and productionize them for market
deployment. For researchers, the desire to find ever greater model
performance leads to an exponential growth of the learning parameter
count and, consequently, the required processing power (Thompson
et al., 2020). Modern NAS search spaces now easily exceed 10%
solutions (Smithson et al,, 2016). In February 2020, Microsoft
introduced the largest NLP model with 17 billion learning parameters.
In May 2020, OpenAl surpassed this record by releasing an NLP
model with 175 billion learning parameters. Not to be outdone, in
January 2021, Google introduced the current NLP model record with
1.6 trillion learning parameters. On average, notable machine learning
models created in 2023 through 2024 contain over 43 billion learning
parameters and have training datasets surpassing 1.19 trillion objects
(Epoch Al 2025).

This data points to a concerning trend: effective exploration of
modern NAS search spaces are increasingly inaccessible to most
researchers due to prerequisite requirement of having access to
expensive and powerful computational hardware if a search space is
to be explored in a meaningful capacity with time as a constraint. For
example, GPT-4, produced by OpenAl, costs an estimated $78 million
to train, and Gemini Ultra, produced by Google, costs an estimated
$191 million to train and required 50 billion peta-floating point
operations per second (peta-FLOPS) of computational power (Maslej,
2024). In fact, a 2024 analysis shows the costs of developing and
training frontier AI models have continued to rise at the rate of 2.4x
per year since 2016 with costs expected to eclipse a billion dollars by
2027 Cottier et al. (2024). Adding insult to injury, even with robust
hardware, novel neural architecture discovery may take months of
computational time to complete (Zoph et al., 2018).

Due to the pressures researchers and engineers face to make use
of current organizational infrastructure, limit their expenses toward
new infrastructure, and compress their development timelines to
delivery models for production and deployment, hidden NAS dark
patterns have emerged. Practitioners increasingly rely on model
designs rooted in familiar architectural paradigms, favoring limited
test case development, established problem-solving precedents, and
trending ML model traits—an approach that may constrain the
exploration of novel neural architectures (Ren et al., 2021). Thus,
practitioners need an effective way to balance the rapid discovery of
novel neural network (NN) architectures with their limited access to
high performance computing infrastructure.

To address this, researchers have been attacking the optimization
and implementation challenges presented by NAS through its four
main aspects: search space, model construction, model training/
evaluation, and search strategy. Advances in simplifying the global
search space into multiple modular search spaces have shown a
significant reduction in the size of the search space (Zoph et al,
2018). Paired with substantial efforts to improved search space
quality (Radosavovic et al., 2019) and design (Tan and Le, 2019; Guo
et al., 2020), state-of-the-art model performance is achievable
without using knowledge distillation or weight pruning techniques
(Ci et al., 2021). In the areas of model construction and model
training/evaluation, the practices of NN architecture recycling (Ren
etal, 2021; Sun et al.,, 2023), and incomplete training (Wu and Tsai,
2024) embody the proverb “if it ain’t broke, do not fix it” Both
practices have helped to minimize the computational resources
required by speeding up the processes to execute these functions.
Using existing high-performing models as the starting point for

Frontiers in Artificial Intelligence

10.3389/frai.2025.1643088

further evolution and reducing complete model training through the
implementation of shared model structures have also increased
model formation speed, training, and performance prediction times
(Ren et al., 2021).

The search strategy, claimed to be the “most widely-studied”
aspect of NAS, is the critical mechanism used to discover a high-
performing NN architecture within the search space and are typically
categorized as black-box optimization techniques or one-shot
techniques (White et al., 2023). Within the black-box optimization
category, the heavy-weights are reinforcement learning, evolutionary/
genetic algorithms, and Bayesian optimization; whereas within the
one-shot category, the chief methods are hypernetwork and
supernetwork techniques. Each of these search strategies have shown,
at the time of their publication, to achieve state-of-the-art performance
(Elsken et al., 2019; Ren et al., 2021; White et al., 2023; Chitty-Venkata
etal., 2023; Xie et al., 2023; Xiao et al., 2020; Liu et al., 2022a; Liu et al.,
2022b; Chauhan et al,, 2023). Additionally, multiple search space
strategies have been created and extended to help minimize
computational resource impacts (Chen et al., 2019; Xu et al., 2020), to
include “hardware-aware” solutions addressing hardware latency and
power constraints (Ci et al., 2021). The choice of which search strategy
to implement is based on multiple factors such as computational
infrastructure access which is a challenge for reinforcement learning
and evolutionary/genetic algorithms (Chauhan et al., 2023), search
algorithm flexibility which challenges Bayesian optimization
techniques (Jaafra et al., 2018; Klein et al., 2016), and confidence the
search space was effectively explored and the architecture found is
indeed highly-performing compared to others within the search space
which is a topic of current debate for one-shot techniques and the
assumptions inherent to their approaches (Yu et al., 2020a; Ci et al.,
2021; Pham et al., 2018; Yu et al., 2020b; Pourchot et al., 2020; Zela
etal,, 2020; Zhang et al., 2020).

However, despite all these improvements, random search methods
not only perform unexpectedly well in executing NAS (Yu et al,
2020a; Li and Talwalkar, 2020; Chen et al., 2018; Yang et al., 2020) but
continue to be consistent with the performance of state-of-the-art
NAS algorithms (Yang et al., 2020; Yu et al., 2019; Lindauer and
Hutter, 2020) as well as a competitive baseline for hyperparameter
optimization and early stopping algorithms against leading NAS
methods (Li and Talwalkar, 2020). Research also shows random search
performance can be greatly increase by paring it with “highly
engineered” search space development practices (White et al., 2023),
NN architecture design and training methods (Li and Talwalkar,
2020), performance estimation prediction processes (Abdelfattah
et al,, 2021; Yan et al,, 2021), heuristically driven search techniques
(Ottelander et al., 2021; White et al., 2021; Siems et al., 2020), and NN
evolution strategies (Elsken et al., 2017).

Based on this stark reality, this paper presents a promising path
forward by applying optimal stopping theory (OST) to
NAS. Borrowing the solution to the notorious Secretary Problem (SP)
and further extending it twice, this paper demonstrates these modified
SP approaches to be an elegant solution to the aforementioned issues
that NAS practitioners face. The paper empirically, with caveats, shows
when the exploration and evaluation of a NAS effort should be halted
revealing a “satisfactory” architecture to be used. Expensive subject
matter expertise, computational resource usage, and ML model time-
to-market deployment can all be significantly reduced by applying
OST when engaging in NAS techniques.

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

This paper is not focused on improving NAS search strategies
where the goal is to find the best performing NN architecture for a
given: dataset, set of NN architecture parameters, class of NNs, or to
conduct an “apples-to-apples” comparison to other non-random NAS
search strategies (e.g., reinforcement learning-NAS, one-shot, zero-
cost, evolutionary NAS, once-for-all search, and the like) (Chen et al.,
2021; Wu et al., 2021; Chen et al., 2023; Guo et al., 2021). Instead, this
paper focuses on the application of OST to NAS and shows how the
solution to the SP, and its extensions, form a set guiding heuristics on
when to halt a NAS effort that is agnostic to the design and size of
search space and NN architectures within.

The main contributions of this paper can be summarized as follows:

1. Empirical proof that the solution to the SP is a viable NAS
search strategy technique only requiring ~37% of the NAS
search space to be randomly explored until halting may occur
for an acceptable discovered NN architecture.

2. Extension of the SP solution through the implementation of a
“good enough” (GEP) and “call back” (CBP) NAS evaluation
feature improving the performance of the SP solution; thereby
reducing the required coverage of the randomly explored NAS
search space to ~15% and 4%, respectively.

3. Creation and validation of five equations to aid researchers in
estimating computational resources requirements, scheduling
timetables, bounding risks associated with poor NAS outcomes,
and communicating cost-schedule-scope tradeoffs to
senior management.

4. Release of datasets and source code (in a variety of
programming languages) to execute the SP and its variants for
NAS search space populations of 100 through 3,500, stepped at
increments of 50.

Due to the nature of the SP, the findings of this paper may not hold
if the rules of the SP are not adhered to or if paired with another
non-random search strategy. However, the findings of this paper do
confirm there is a high degree of confidence in discovering a high-
performing NN model relative to the performance of other NN
models within the search space. Thus, practitioners should apply this
paper’s findings and guiding heuristics with “smart” search space
design practices aligned to the problem to be solved.

The reminder of the paper is organized as follows. Section 2
introduces the OST through the SP and its specific applicability to
NAS. Section 3 details the experimental setup and materials, followed
by a detailed summary of the investigation into and analysis of
applying OST via the SP, and its variants, to NAS, confirmed over
multiple experiment iterations in section 4. Section 5 presents a
discussion of the findings, potential benefits, caveats, considerations,
and future directions to study. Finally, section 6 closes with a
conclusion to encapsulate the useful discovery.

2 Optimal stopping theory and the
secretary problem

In the discipline of mathematics, optimal stopping is the
process of determining when it is best to terminate a task to
maximize the desired results and expected rewards (Tsitsiklis and

Frontiers in Artificial Intelligence

10.3389/frai.2025.1643088

Roy, 1999). Knowing when to stop executing a task is immensely
powerful as it allows an investigator to optimize the expenditure of
limited resources and apply these resources to other high priorities.
Due to this, OST has been applied to problems in a wide array of
disciplines and sectors including financial derivative markets,
lottery ticket purchasing strategies, gambling schemes, World War
II military-industrial complex production plans, stock option
valuations, dynamic programming solutions, human resource
hiring methods, and even personal relationship match-making
endeavors (Hill, 2009).

OST problems typically come in one of three flavors: decision
theory, statistical sequential inference, and the statistical design of
experiments. However, the control of random sequences and statistical
decisions is invariably the objective to achieve to inform an interested
party to cease the task at hand or halt sampling in a statistical inference
problem (Weber, 1975). In stochastic processes, this ceasing or halting
is known as the stopping time or the Markov time (7), as an optimal
stopping problem is a finite horizon Markov decision process (MDP).
One famous decision-making riddle within finite horizon MDP
problems is known as the SP.

The SP goes by many names: the fussy suitor problem, sultan’s
dowry problem (Swanson, 2016), best choice problem, beauty
contest problem, marriage problem (Porosinski, 1987), and game of
Googol problem (Gnedin, 1994). The simplest form of the problem
consists of the following characteristics as portrayed by Ferguson’s
historical investigation into the solving of the classic brain teaser
(Ferguson, 1989):

1. There is one secretarial position available.

2. The number 7 of applicants is known.

3. The applicants are interviewed sequentially in random order,
each order being equally likely.

4. Tt is assumed that you can rank all of the applicants from best
to worst without ties. The decision to accept or reject an
applicant must be based only on the relative ranks of those
applicants interviewed so far.

5. An applicant once rejected cannot later be recalled.

6. You are very particular and will be satisfied with nothing but
the very best. (That is, your payoff is 1 if you choose the best of
the n applicants and 0 otherwise.)

A hiring manager should adopt an interview strategy
maximizing the chance of success in finding the best applicant by
appropriately interviewing an “optimal” number of candidates. The
probability of picking a candidate he would rate the best after
interviewing r candidates out of pool of n candidates, P(r,n), can

be presented as the following sum (Billingham, 2008;
Freiberger, 2017):
Permy=" 3 L M
’ N l_l

To maximize the chances for success, the “optimal” number of
candidates to interview before selecting the next best one relative to
the previous should satisfy two obvious relations

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

0.55 T T " T T T .

05

0.45

04

/n

opt

~ 035

0.3

0.25

0.2

FIGURE 1
Optimal number of applicants to interview r,,, (hormalized by the
applicant pool size n) vs. n.

A

&
A
&
£
s
4
s
i
s
i

0.00 § . . . ‘ A\x_
0 20 40 60 8 100

Percent of n

FIGURE 2

Probability of hiring the best applicant vs. percentage of
applicants interviewed and rejected (r) within applicant pool size
(n) (for large n).

P(r—1,n) < P(r,n)

P(r+1,n) < P(r,n) @

Substituting Equation 1 into these two inequalities and doing
some simplifications results in

2| b
_Z.—1<1<Z.—1 (3)

i=r+1 L=

where the right-hand side part of inequality corresponds to satisfying
the first inequality of Equation 2, and the left-hand side part - to the
second inequality of Equation 2.

Both left-hand side sum and right-hand side sum in Equation 3,
depend on r. For small r, both sums are greater than one so that the
left-hand side part of inequality is violated. For large r - both sides are
less than one resulting in violation of the right-hand side part of

Frontiers in Artificial Intelligence

10.3389/frai.2025.1643088

inequality. For given n, there is only one “optimal” r when both sides
of inequality are satisfied. Figure 1 shows this best value as r,,/n
against n (for the applicant pool size # of 3 through 40) featuring a
quick convergence to some value.

This value can be derived analytically and corresponds to
T I MR e ~0368, Hence, for the SP the best stopping or prime
Markov time, referred to as the optimal policy (t,) as defined by the
problem’s stopping rule, converges to 7, = 0.368 without regard
to the number of applicants #n for large n (Figure 2). That is, the
hiring manager should interview r and reject ~37% of the total
applicants n and then select the next relatively best one for the
position. The hiring manager starts to experience diminishing
returns with each subsequent interview past this amount (Figure 2).
This result has been developed, confirmed, extended, and
generalized by many probabilists and statisticians, showing its
versatile application to many probability optimization problems
(Lindley, 1961; Dynkin, 1963; Chow et al., 1964; Gilbert and
Mosteller, 1966).

With early-stopping random search algorithms being competitive
against leading NAS methods, the application of a finite horizon MDP
to govern the halting of a NAS endeavor is logical. While applying OST
may not discover the highest-possible performing model within the NAS
search space, it will significantly limit the need and time of computational
resources. To confirm this theory, the original SP and two extensions
were empirically investigated. This investigative process includes creating
an NAS design space, training and evaluating each model independently
to build a fully informed search space, applying the rules of the SP and
its extensions to this search space, and finally analyzing the results. The
design space was trained and evaluated against two datasets five times
from which the SP and its extensions were played out 20,000 times
against. To further confirm this paper’s findings, the size of the search
space was modified with representative NN architectures totaling
100-3,500 in steps of 50 played over 20,000 times each.

For the remainder of the paper the following variants of the SP
will be referred to as

o Classical secretary problem (CSP)—the original SP as described
above with an optimal policy of 37% (, = 0.37).

» Modified secretary problem (GEP)—an extension of the CSP
where a model performance threshold and/or objective is used
to deem a found model “good enough” allowing for early NAS
halting when compared to the CSP’s optimal policy.

o Modern secretary problem (CBP)—an extension of the CSP and
GEP where a model performance threshold and/or objective is
used in conjunction with the capability to recall, or “call back,”
any previously evaluated model.

3 Experiment materials and methods

To evaluate the effectiveness of the CSP and its variants as applied
to NAS, a fully informed design and search space was built to ensure
the experiment met computational and statistical power tractability
requirements. The design space degrees of freedom for the NN
building block components were limited to the values outlined in
Table 1. The design space was further confined with restrictive
combinations placed on the mixing of different input and hidden layer
activation functions, optimizer algorithms/methods, and number of

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko 10.3389/frai.2025.1643088

TABLE 1 Experimental design-space parameters.

ANN class Parameter Range Steps Sequence
Number of fully-
1-4 4 (1,2,3,4)
connected layers
Nodes per fully- (64, 128, 256, 512,
64-1,024 6
connected layer 768, 1,024)
Rectified Linear Unit (ReLU), Exponential Linear Unit (ELU), Hyperbolic Tangent
Activation function’ 4 N/A
(TanH), or Logistic (Sigmoid)
Feedforward Root Mean Square Propagation (RMSprop), Adaptive Moment Estimation (Adam),
multilayer Optimizer algorithm/ Stochastic Gradient Descent (SGD), Adaptive Gradient Algorithm (AdaGrad), ; N/A
perceptron (MLP) method Adaptive Delta (AdaDelta)?, Adaptive Maximum (AdaMax)’, or Nesterov and Adam
(Nadam)
Batch size Dataset Dependent* 1 N/A
Training epochs 10,000° 1 N/A
Output layer
Softmax® 1 N/A
activation function
Dropout frequency 80% Retain, 20% Dropout 1 N/A

"The output layer uses the Softmax (described in table footnote 6) activation function for all networks within the search space.

*The abbreviation of AdaDelta is not spelled out; however, its creator refers to a Ax, function which gives the AdaDelta method (Zeiler, 2012).

*The abbreviation for AdaMax is not spelled out; however, its creators refer to a max() function which gives the AdaMax method (Kingma and Ba, 2015).
“For both MNIST and CIFAR-10, the number of training and testing images is 60,000 and 10,000, respectively.
*The training and scoring of each model uses an extensible program-code-template to halt training when five epochs have passed with no improvement (Keras Application Programming

Interface Callback Object EarlyStopping Class with Patience argument set to five).

“The abbreviation for Softmax is not spelled out; however, the “soft” part of the term describes a function which is continuous and differentiable. This function provides a “softer” version of the
ArgMax function, which is the opposite of the ArgMin function. The ArgMin function minimizes the distance between an input point and its reconstruction using a measure which gives the

size of a vector, known as the norm. It is also known as “softargmax” (Goodfellow et al., 2016).

nodes per fully connected hidden layer. The total number of unique
NN model architectures within the NAS search space was 672.

To ensure a diverse, non-bias experiment was performed in
evaluating the effectiveness of the SP variants, two different popular
benchmark datasets were chosen: the Modified National Institute of
Standards and Technology (MNIST) and the Canadian Institute for
Advanced Research, 10 Classes (CIFAR-10). Both datasets are image
collections; however, each dataset provides significant performance
differences based on the NN building block components outlined in
Table 1. This was done intentionally as the goal of the experiment was
not to find the highest-possible performing NN architecture within
the search space, but to baseline all the possible NN architectures
within the search space and then test the effectiveness of applying the
optimal policy of the CSP and its variants to the mechanics of NAS.

This experiment made use of the Department of Defense’s (DoD)
High Performance Computing (HPC) Modernization Program and
two separate local non-HPC systems. Of the four DoD HPCs, the
individual unclassified HPC system utilized was known as Gaffney; a
Hewlett Packard Enterprise Silicon Graphics, Incorporated 8,600
scalable, high-density cluster compute system featuring liquid cooling,
154 terabytes of memory, 5.5 petabytes of formatted parallel disk
storage, and has a peak performance of 3,029 trillion floating-point
operations per second (United States Department of the Navy, 2021).
Source code for training, testing, and evaluating the NAS search space
was developed and tested on a local non-HPC machine and then
ported over to the Gaffney HPC system for training, testing, and
storage at-scale.

Data analysis was performed on two separate local non-HPC
systems. These two systems executed the vast majority of: algorithm
validation, experiment source code development, experiment

Frontiers in Artificial Intelligence

verification, experimental data management and compression,
programming language translation, and data visualization. In total,
6,720 individual NN model performance data points and structures
were each captured at the post training phase. These 6,720 NN models
were trained and tested against 130,000 images resulting in
436,800,000 data pipeline flows and 489,989,427,200,000 parameter
adjustments. This resulted in each of the 6,720 NN models receiving
a performance score for image classification accuracy. The
performance score, five per a unique NN architecture per a dataset,
were averaged to create two sets of “master” performance scores. Thus,
672 average performance scores per unique NN architecture were
created for each of the two datasets.

Table 2 highlights and compares relevant performance measures
and statistical features of each “master” performance score against
each dataset. The image classification performance scores for each NN
architecture contained within the NAS search spaces, tied to each
dataset, varied greatly. This met the goals of this paper to ensure the
application of the SP, and its variants were independent of NN
architecture and dataset selection.

With the two “master” performance score datasets built, each
containing 672 NAS search space networks scores per experimental
dataset, the two datasets were sorted from the highest performing
architecture to the lowest performing architecture. Once sorted, each
search space network entry was assigned a static key. This static key
served as the identifier and performance rank R; [where i is the position
of the NN within the performance rank list and R, = min (R,,..., R,) for
{ili € n: i € (1, n)}] for each search space network as enumerated
within each “master” performance score dataset. With a fully informed
search space built, trained, and evaluated, these datasets were ready for
the next step: investigating the application of OST to NAS.

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

10.3389/frai.2025.1643088

TABLE 2 NAS search space networks performance and statistical features by dataset.

Dataset Maximum performance = Minimum performance Average performance
MNIST 98.69%" 8.92%? 97.84%" 0.65%*
CIFAR-10 56.31%° 10.00%" 40.44% 12.40%

"The best performing neural network architecture against this dataset consisted of 4 layers, 768 neurons per layer, using the ELU activation function, and the RMSPROP optimizer.
*The worst performing neural network architecture against this dataset consisted of 3 layers, 1,024 neurons per layer, using the RELU activation function, and the ADAGRAD optimizer.
*This statistical value was computed after discarding 12 outlier performance data points (1.79% of the total data collected). If this discarded data is included, the average performance becomes

96.27%.

“This statistical value was computed after discarding 12 outlier performance data points (1.79% of the total data collected). If this discarded data is included, the standard deviation becomes

11.67%.

“The best performing neural network architecture against this dataset consisted of 2 layers, 512 neurons per layer, using the ELU activation function, and the ADAMAX optimizer.
“The worst performing neural network architecture against this dataset consisted of 4 layers, 1,024 neurons per layer, using the SIGMOID activation function, and the SGD optimizer.

4 Application and analysis of SP
variants

To investigate the results of applying the CSP’s optimal policy to
NAS using the created search spaces, the two “master” performance
datasets static identification keys were shuffled, selected at random, and
relatively ranked by their performance against previous selections until
the CSP’s optimal policy (7, = 0.37) was achieved. This cycle was
carried out 20,000 times to ensure the resulting analysis conducted had
statistical significance and to build confidence in the data generated.
The analysis of the modified (i.e., GEP or “good enough”) and modern
(i.e., CBP or “call back”) SP variants also used the aforementioned
shuffle, random selection, and relative rank process. The resultant
analysis of each SP variant is detailed in the following subsections.

4.1 CSP application analysis

In testing the application of CSP’s optimal policy for NAS against
the traditional rules of the SP over 20,000 cycles, it was found that the
selection of the best performing NN model (R,), independent of
dataset evaluated against, was selected 278% more often than the
second best performing NN model (R,). With negligible selection
difference between the datasets, the best performing NN model was
selected: ~603% more than the third best performing NN model (R;),
~1,225% more than the fourth best performing NN model (R,), and
~2,335% more than the fifth best performing NN model (Rs). The
top 1% of performers (R, ;) contribute to almost 63% of the total
population’s cumulative distribution function (CDF). After the top 1%
of performers, each additional NN model’s contribution to the total
CDF averages 0.05% (Rgs7,). More interestingly, the selection
difference between NN models performing within the top 5% (R, 3,)
of the total population, regardless of dataset, produced almost
identical selection results. When executing the rules of the CSP, each
dataset (MNIST and CIFAR-10) produced almost identical results.

Through dynamic programming, real-time experimental
measures were collected on the algorithm’s optimized decision
making. This allowed the collection of four additional algorithm
execution datasets: best of remaining (BOR), best of the rejected set
(BORS), selected value (SV), and last in list (LIL). The BOR dataset
refers to the highest-performing NN model left within the
non-interviewed population after halting at a chosen Markov time, 7.
The BORS dataset refers to the highest-performing NN model

Frontiers in Artificial Intelligence

dismissed after being interviewed within the chosen 7. The SV dataset
refers to the NN model rank selected at the end of executing a SP
variant at the chosen 7. The LIL refers to the NN model rank which
would be “interviewed” last as virtue of random selection.

With these measures, executing the CSP over 20,000 runs revealed
the following: the best performing NN model (R,) was rejected 37.17%
of the time; the LIL NN model was selected 37.23% of the time with an
average rank consistent of normal distribution data behaviors
(Roj2 = Ryz); 62.83% of time the best performing NN model (R,) still
remained in BOR dataset; and 62.87% of time a lower performing NN
model was selected over a better BOR model due to being found first
and being comparatively better than the highest ranked model
contained within BORS. On average, the BOR dataset rank was 1.58
with a standard deviation of 0.95. The BORS dataset rank had a mean
of 2.69 with a standard deviation of 2.13. While both the BOR and
BORS datasets had a minimum rank of R, their maximum rank was R;;
and R,,, respectively. Meaning over 20,000 runs, if the NN model of R,
was not rejected, the average rank of the NN model selected was 2.03
with the lowest NN model being selected having a rank of Ry,. In fact, it
was found that if the NN model of R, was not rejected, the lowest NN
model rank selected had an upper bound of (rank no worse than)

RS <~In)

To further validate the CSP solution as applied to NAS, the
percentage of NN models “interviewed” was tested over the total
population spectrum in 1 % Markov time increments, 7, o, where
{reR: r€(0,1)}. Ateach 1 % increment, the CSP was executed over
20,000 cycles with this new Markov time and analyzed. As expected,
the top performing NN model (R;) was selected at the same rate
predicted in the previously discussed solution to the CSP, i.e., ~37%. In
comparing the selection frequencies for the top performing NN models
over differing Markov times, it becomes apparent that the top 1 % (R, ;)
performing NN models of the total population quickly dominate the
selection frequency as the Markov time increases. To illustrate this,
Figure 3 shows a surface plot of selection frequency vs. NN model
performance rank vs. Markov time as a percentage of total population
for the top 5 % performing NN models within the total population.

The goal of the CSP’s optimal policy is to maximize the success of
selecting the highest ranked candidate (R,). NAS researchers applying
the CSP’s rules and optimal policy will successfully discover the
highest-performing (R,) NN model 37% of the time (z, 2 0.37).

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

FIGURE 3

Three-dimensional surface plot demonstrating top NN model
performance dominating selection frequency over increasing Markov
time.

© 09 /E
T T g e,
T a =' 0.8 .,N i N“
g :D‘f g { "
O g507 —-;‘"*-:;sm"' ‘»..“::‘.‘
5 '§ $ () 000
5 SZosf f o ey
xm i ’ [- ‘\“
S us] T s,
3 E Soalt o™ s
L 2= 14 aid 3 dakh,
2B ol o et ot
FEC I A
EE L FN et
EE;E; 0.2¢ 0 4t
SxE
T Zo1m
& 0.0 : - : -
0 10 20 30 40 50

Percent of Applicants Interviewed ()
within Applicant Pool Size (n)

A: R, = 10; Prime Markov Time / Optimal Policy (z,) = 0.15;
P(R, within Ry, 100) = 0.817
B: R, = 5; T, = 0.20; P(R, within Rs, 100) = 0.706
C: R,=2; 7, =0.29; P(R, within R,, 100) = 0.532
D: R = 1; 1, =0.37; P(R, within R,, 100) = 0.378
FIGURE 4

Probability of selecting a better candidate (R)) within rank s (R,) and
associated optimal policy (z,).

4.2 GEP application analysis

The first variant of the CSP brings into question what does a
“good enough” candidate look like. This is especially important as
the MNIST and CIFAR-10 datasets produced scores of
“top-performing” NN models within single digit percentages of
each other. While conducting NAS, a researcher may be able to halt
the search early due to finding a “top performing” NN model that
is “good enough” to satisfy the problem at hand. By taking this
modified approach (GEP), the optimal policy of 7, = 0.37 for the

Frontiers in Artificial Intelligence

10.3389/frai.2025.1643088

CSP can be further reduced. Figure 4 shows this for a “good
enough” NN model within ranks R, (s) where s =1, 2, 5, 10 and
where {s € Z: s € [1, s]} and R, C n. As s within R, increases, more
applicants within » are included resulting in a decrease in
applicants to interview. That is, if a hiring manager or NAS
researcher loosens their selection criteria to not only be interested
in finding the best candidate/neural architecture, the percent of the
required search space to interrogate falls off dramatically.

Ilustrating this dramatic increase in probability of successfully
finding a candidate/neural architecture, Figure 5 shows the inverse
relationship between the increase in s for R, and the decreasing
Markov time needed. Similar to Figure 3, the top performing NN
models of the total population (1) quickly dominate the probability of
success when selecting an NN model within R as s increases. By
running this modified version of the SP with a total population of 100,
two generalized equations can be realized. Approximation of the
optimal policy (z,) for a chosen NN models rank (R;) can
be represented as

In(n)
1 In(n)VnR; ¥ _ﬁ_m L P

However, for larger values of n in Equation 5, the resulting
approximation begins to deviate from experimental data collected.
The inclusion of an error correcting value, p, where p>2 as a
conservative measure ensures the resulting optimal policy
approximation calculated for a given NN model’s rank is greater than
needed staving off inadequate search space exploration.

To estimate the probability of success in discovering a NN model
of Rank i within a chosen Rank s P (Ri within Rs»”) , the following
relationship can be used:

P(R; within Ry,n) :l[%ln(Rs)-t-l.M) (6)
e

While Equations 5 and 6 were generalized to allow for use upon
different total populations of #, there is some variability when using
both as they are only rudimentary conjectures. The variability in
Equation 5 is highlighted in Figure 6. Equation 5 approximates
Figure 6’s optimal policy average line reasonably well (within +/— 3%
absolute, +/— 1% on average) for all NN model ranks when the total
population # is 100.

The variability in Equation 6 is depicted in Figure 7. Equation 6
approximates Figure 7’s probability of success in discovering a NN
model of Rank i within Rank s P(Ri within Rs,n) average line well
(within single digit percentage error) for NN model ranks less than
Ry, when the total population (n) is 100. However, for larger values of
n, Figure 3 the resulting approximation begins to deviate past ranks
above R, 4 to the tune of double-digit percentage error. Thus, the use
of Equation 6 to approximate the probability of success in discovering
a NN model of Rank i within Rank s average should be limited to cases
where s <16 (Ryq).

If a researcher is to implement the “good enough” variant of SP
(GEP), it is recommended that they at least explore and reject 15% of
the NAS search space (7, >0.15). This provides the researcher

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

10.3389/frai.2025.1643088

2
2 3
: EEJ
‘ %2 1.0 S oS
SR 525
08 3 S =
22 [RS
XX s X
, X 06 ==
‘ EER
X 25>
| ‘ 87‘! 0.4 (2 o 8
LU X SES
02 2% §
00 87 Z
(=3] =
g o 15 =
% gk 4570 o
Ry 5 60 25
"k or, & 975)
Mode; . 72l N, % 9o el
With;, pelform twO"[(
mRalIk¢ ce
)
FIGURE 5

The three-dimensional surface plot demonstrating rapid increase of
hiring a better candidate (R) within rank s (R,) and resulting inverse
relationship as s increases to Markov time decreasing.

40
35k,

—
(=]

Ch
LN A]

w

0 D

TR

00

1 2 4 8 16 32 64

Rank of Neural Network
Model Performance (R))

--------------- Optimal Policy Upper Bound

-------- Optimal Policy Lower Bound

— .. — Optimal Policy Average

Optimal Policy Approximation

Model of Performance Rank i [t,(R;)]
S i
[

S

Optimal Policy (t,) for Neural Network

FIGURE 6
Experimental results verses equation approximation for optimal
policy (z,) of rank i (R) as function of Markov time.

a ~ 80% chance of success in discovering a NN model within Ry, or
better. Table 3 shows this along with all successive ranks and their
respective probabilities of discovery success inclusive of each other for
two differing populations (1 = 100 and 672). The variability of the
results shown in Table 3 can be accounted for in the requirement to
round to the nearest integer value when rejecting at various Markov
times due to the difference in the theoretical optimal policy and the
application of the theoretical optimal policy. For example, if the
theoretical optimal policy calls for the rejection of 36.8%
(r; =0.368) of the population, the application of this theoretical
optimal policy may not be feasible as it may be impractical to reject

Frontiers in Artificial Intelligence

—
(=]

b
o

e
%

o
9

e
o

e
[

(R;) within Rank s (R,) among an
o
IS

Applicant Pool (n) [P(R, within R, n)]

Probability of Selecting a Better Candidate

e
w

4 8 16 32 64
Rank of Neural Network
Model Performance (R;)
— .. — P(R; within R, n) Average
P(R, within R, n) Approximation

—
N

FIGURE 7

Experimental results verses equation approximation for probability of
success selecting rank i (R) within rank s (R,) where {ili € n: i € [1, s}
and{seZ:sell nl.

0.8% of a population unit. Thus, rounding to the nearest percentage
integer value may be required (i.e., 7, =0.37 where {r eR:7e (0,1]}).

If the researcher does not believe 80% is a high enough probability
of success in discovering a NN model within Ry, Table 4
communicates the requirements to achieve the additional percentage
probability of success increases. These effects need to be carefully
balanced as the total population #n grows. While the resulting
percentage of the total population to explore (7/n) per percentage
probability increase decreases overall, the ordinal amount of NN
models to build, train, test, and evaluate increases. Thus, if there is an
overhead resource cost per a unit of population to “interview” (r); the
expenditure of these resources must be taken into account as this cost
function could become a constraining factor when deciding how
much of the search space to explore.

4.3 CBP application analysis

The second variant of the SP includes the ability to “call back”
a previously interviewed candidate at some Markov time
determined by the hiring manager. For example, instead of
executing the CSP with its optimal policy (r, =20.37) and then
selecting the next best relative candidate before halting:
interviewing the minimum number of applicants to establish an
informed relative ranking baseline (n>20), ranking the
interviewed candidates against the performance threshold and/
or objective metric, deciding to continue interviewing or halting
all interviews and calling back the highest ranked candidate
interviewed for hire. A modern application of the CSP to NAS
would likely be executed closely to the modified version of the
CSP, GEP, where the researcher has a set a “good enough”
performance metric to ensure the balance between the efficient
use of limited computational resources, sufficiency in NAS search
space exploration, and discovery of a “good enough”
neural architecture.

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

TABLE 3 Probability of discovering a NN model within rank 10 or better (R;_,).

Neural network
model rank®

Total population of 100

Markov time as
percent of population

Probability of success
discovering best ranks

10.3389/frai.2025.1643088

Total population of 672

Markov time as
percent of population

Probability of success
discovering best ranks

for rank’s optimal within rank? for rank’s optimal within rank®
policy? policy?
1 37% 03732 37% 03703
2 31% 05214 29% 05172
3 23% 0.6057 27% 0.5983
4 21% 0.6637 23% 0.6507
5 18% 0.7055 20% 0.6922
6 17% 0.7373 19% 0.7250
7 17% 0.7638 16% 0.7476
8 15% 0.7848 16% 0.7695
9 15% 0.8015 16% 0.7863
10 14% 0.8167 15% 0.7990

'Neural network model ranked by performance; best performing first.
2Variability in the Markov Time as Percent of Population for Rank’s Optimal Policy between differing total populations is due to rounding to the nearest integer value (whole, non-fractional

number). This occurs due to the nature of the Secretary Problem: the optimal policy for a given Rank may not match the reality of decision making. Such as the optimal policy for selecting
Rank 1 is to reject 36.8% of the total population; however, it is not possible to reject 0.8% and interview 0.2% of an applicant, thus integer value rounding must occur.

*Similar to table footnote 2, variability is due to rounding to the nearest integer value when the PDF of the modified version Secretary Problem evaluated at each Markov Time variant for each
ordinal Rank in ascending order followed by computing the CDF at each Markov Time variant halting at the optimal policy discovered.

TABLE 4 The NN model rank bound and Markov time as percentage of population required to achieve various probabilities of success.

Probability of success

discoverin .
9 Markov time as

percent of
population for rank’s

Total population of 100

Neural network
model rank bound/as
percent of total

Total population of 672

Neural network
model rank bound/as
percent of total

Markov time as
percent of
population for rank’s

optimal policy population optimal policy population
0.85 11% 13/13% 11% 16/2.3%
0.90 9% 20/20% 7% 28/4.16%
0.95 5% 36/36% 5% 59/8.77%
0.99 2% 72/72% 1% 273/40.62%

Realistically, a researcher would have the ability to save each
evaluated NN model to call upon in the future; thus, modifying the
rules of the CSP to an extent where the best “candidate” interviewed
can always be “hired” no matter of the Markov time. While typically
the limiting computational resource is processing time and power, if
storage is the limiting computational resource, then a simple operating
procedure of saving the best relative NN model found thus far in
memory would suffice.

This “best found” NN model in memory is analogous to the “call
back” feature previously described. As better relative NN models are
found within the NAS search space, they would replace the NN model
occupying the “call back” spot. Logically, as storage is an inexpensive
computational resource and the data generated to construct a
complete blueprint of a NN model is likely orders of magnitude less
than the data used to train each NN model, more than one “call back”
position would exist. This allows the researcher to save multiple NN
models and explore which NN building block components, like those
listed in Table 1, are driving the best performance. This could further
help the researcher limit the NAS search space by eliminating certain
NN building block components from the NAS design space.

Frontiers in Artificial Intelligence

Figure 8 visualizes these results over the 20,000 cycles of the
experiment. Independent of Markov time used, the best NN model
rank for possible “call back” selection was R;. As expected, the
upper bound on the highest (worse) NN model rank for possible
“call back” decreases as Markov time increases. The average NN
model rank available for “call back” also followed this trend. This
average NN model rank available for “call back” is computed
as follows:

—CBP

-1 (7)

While Equation 7 offers a rudimentary approximation for the
average NN model rank available for “call back,” an upper bound
approximation is appropriate for more risk adverse researchers.
Due to the mechanics of implementing a “call back” feature, if the
best-performing NN model (R,) was not within the rejected
population subset (r/n) at a given Markov time, the lowest
performing NN model rank selected had an upper bound
defined as

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

10.3389/frai.2025.1643088

1024
512f
256+
128

g2

Rank of Neural Network
Model Performance (R,)
Standard Deviation (o)

—
— N A 00 O

0.25

0.5 : : . + 100
0 20 40 60 80 100

Percent Markov Time (7)
A: Upper Bound on “Call Back” R; Available
B: Average “Call Back” R; Available
C: Lower Bound on “Call Back™ R; Available
D: o of R, Available

FIGURE 8

Upper and lower bounds with average NN model rank i (R)) available
with the “call back” feature (CBP) implemented along with standard
deviation () of R; overlaid.

R =(er)'\n ®

Figure 9 shows dependencies represented by Equations 7 and 8
overlaid with experimental data collected. Although these two
approximation equations deviate from the experimental data
plotted at each end of Figure 9’s x-axis, they both provide useful
preliminary decision points to researchers who require guarantees,
justifications, or confidence metrics to manage communicating
progress and performance estimates in NAS search
space exploration.

The “call back” feature becomes even more powerful when a
resource cost is applied to the computational hours required to
build, train, test and evaluate each NN model within the NAS
search space; these are known as NAS execution activities (NEAs).
For the current experiment, the average time to perform these
NEAs per NN model per dataset per cycle was 17 min 8 s. Thus,
there is an inherent overhead resource cost associated with
executing the CSP and its variants. In this particular experiment,
a “baseline” overhead cost is associated with each Markov time as
percent of total population n: seven networks per a single percent
Markov time increment results in 1.998 h of computational cost.
This resource “penalty” transforms the problem into a balancing
act where the goal is to find the highest-performing NN model and
halt the NAS function as quickly as possible to minimize
computational resource cost. Figure 10 shows how this transformed
problem plays out over the entire Markov time spectrum (7 ;-1 o
where {z’ eR:ze (0,1]}). At low Markov times (r < 0.04) the
average BORS rank is higher (worse) than the average selected
rank; this quickly reverses as 7 >0.04.

Additionally, the required resource cost to execute the CBP
vice taking the BORS at each Markov time is more expensive. The
“baseline” overhead cost should be seen as a “sunk” cost; that is, a

cost required to perform NAS using this method would be levied

Frontiers in Artificial Intelligence

1024
512
256
128

5 R

Model Performance (R;)
>

Rank of Neural Network

LS

1 2 4 8 16 32 64 128
Percent Markov Time (7)

R, Upper Bound Results

R; Upper Bound Approximation

----- R, Lower Bound Results

——— R, Lower Bound Approximation

FIGURE 9

Experimental results vs equation approximation to predict the upper
bound and average rank i (R) selected if rank 1 (R;) is contained
within the non-rejected population subset (BOR) at various Markov

times.

300
’g 256
2 250 128
E £
£ 200 64 23
— Q
2 32 25
g 150 EE
S 16 3¢
7 &
2 100 8 &=
o =3
8 4 §8
2 50 -
2 2
= .

0 S 1

1 2 4 8 16 32 64

Percent Markov Time (7)
A: Average Best of Rejected Set (BORS) R;
B: Average Selected R,
C: Average Selected Cost
D: Baseline Cost
E: Average BORS Cost

FIGURE 10
Resource cost requirements per NN model rank i (R)) by Markov time.

on the researcher no matter which SP variant is chosen.
Furthermore, a researcher should not discount the additional
“sunk” cost required to perform NAS setup, integrated development
environment configuration, automated software development
pipeline orchestration, source code debugging episodes, and results
verification and validation activities; these are known as NAS
infrastructure support activities (NISAs). NISAs are likely to take
more time to complete than executing the NAS effort itself if a

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

single NAS cycle is executed. In this experiment, NISAs took an
additional 25 min 42 s per NN model to conclude. This brings the
original time per NN model to execute for a single experimental
cycle from 17 min 8 s to 42 min 50 s, representing a 149.99%
increase in resource cost.

However, NISAs tend to be a fixed cost as compared to the
variable cost of NEAs. If multiple NAS cycles are to be executed or
the total population is extremely large, the cost of NEAs will
undoubtedly be much larger than the cost of NISAs due to cost
sharing. As this experiment performed five NAS cycles per dataset,
the total experiment NISA cost was 575 h 40 min 12 s. The total
experiment NEA cost was 1,918 h 54 min. In terms of cost per NN
model per dataset per cycle: NEA cost remains at 17 min 8 s, NISA
cost drops to 2 min 34 s. Therefore, it is imperative for researchers
to make use of non-manual, automated tools and routines to
minimize human-input errors, downtime of NAS phase handoff
sequences between tool chains, and flexible NISAs to support reuse
for future NAS endeavors.

For the implementation of CBP, it is recommended a researcher
endeavor to save the parameters required to rebuild each NN
model discovered. If computational resources do not allow for this,
saving the highest performing NN model at each state space search
step is sufficient. Additionally, it is recommended that the
researcher explore a CBP minimum of 4% (7, >0.04) of the NAS
search space where n > 20. At this Markov time, the average rank
of the rejected NN model (BORS) drops below the average rank of
the NN model selected (SV) using the CSP rules. Thus, a NN
model within the rejected Markov time population will, on average,
be a better rank than not utilizing a “call back” feature. This fact,
tied with a carefully crafted resource cost function, will aid the
researcher in making the best use of computational resources with
satisfactory NAS search space exploration coverage.

5 Discussion and future work

The application of OST to NAS is a viable solution for researchers
to pursue; if and only if the researcher has ensured the NAS
methodology fits the constraints and assumptions of the SP rules set
up. Key constraints and assumptions include applicants are selected at
random to be interviewed, each applicant can be ranked relative to
each other as they are interviewed, and the total number of applicants
n is known and is greater than or equal to 20. Each of these can
be overcome with proper NAS setup.

For instance, if the selection and evaluation of each NN model
is not done at random, much of the benefit gained from executing
the CSP’s optimal policy is negated. This issue is mitigated by
either: enumerating each NN model within the search space and
then selecting at random from this enumerated list to be built,
trained, tested and evaluated, or the code used to build each NN
model can select the NN building block components from a
determined set at random and then check the resulting
combination of the selected NN building block components are of
a unique configuration.

Knowing the total number of applicants n is an essential
element to the CSP’s optimal policy. The simplest way to calculate
the total number of neural network models within the NAS
search space is to build determined sets of neural network

Frontiers in Artificial Intelligence

11

10.3389/frai.2025.1643088

building block components and then apply the Rule of Product
in combinatorics. If this NAS design space is determined to
be intractable, the researcher may be able to further bound this
NAS design space by performing a sensitivity analysis on the
neural network building block components. This allows the
researcher to remove neural network building block component
options that do not significantly contribute to model
performance. However, caution must be exercised when
conducting this maneuver as it opens up the resulting NAS
selection to bias.

The researcher can also choose to apply the solution to the SP
and its variants to the time domain aspect of their NAS effort.
That is, if the NAS design space is determined to be intractable,
the researcher should devote ~37%, ~15%, or ~4% of the NAS
effort’s schedule to executing the chosen SP variant’s solution. The
researcher should also take care to list all the variables of the NAS
endeavor that are dynamic outside of the neural network building
block components. These dynamic variables may include items
such as artificial neural network structure (class), training
parameters (dropout frequency, dataset characteristics (such as
resolution size, color channel options, and the like for images),
batch size, epochs, etc.), and number of cycles the endeavor will
be repeated, if any. All these dynamic variables, if not accounted
for and controlled, will have an effect on the results of the NAS
endeavor. If the total number of applicants n is below 20, a new
approach will need to be pursued.

The CSP’s optimal policy is also dependent on the hiring
manager’s ability to rank each applicant relative to each other. While
this is a simple endeavor for a researcher as each NN model can
be assigned a performance score based on its ability to succeed at the
desired task (such as image classification), the infrastructure support
to automate a “pipeline” for this is not a simple undertaking. To ensure
NAS configuration control and efficient use of resources, a seamless
process from selecting the neural network model to be built; collecting
and cleaning data; building, training, testing, and evaluating NN
models; analysis of resulting performance scores; and data recording
functions will need to be automated to the fullest possible extent. This
will likely involve multiple code bases, programming languages,
analysis applications, computational architectures, and data storage
formats. These are items of concern for any software intensive project;
a researcher will need to understand and identify the limitations,
unique behaviors, and special scenarios that may arise not only within
the NAS endeavor, but as well as within the tools being used to execute
the NAS endeavor. Examples include accounting for latent bugs,
deprecated library dependencies, and numerical data limitations
between programming languages used; like those of numerical
precision, rounding, and cutoff.

Lastly and most importantly, the decisions made during the
design phase of the NAS search space are critical. Due to the nature of
the SP, there is no guarantee in discovering a high-performing NN
model within a NAS search space for the problem it is to be applied
to. There is a high degree of confidence in discovering a high-
performing NN model within the search space relative to the other
NN models contained within the search space. Thus, researchers
should pair this paper’s findings with “smart” NAS search space design
practices aligned to the problem to be solved.

Table 5 succinctly summarizes the above key constraints and
assumptions of applying OST to the SP and its variants for use within NAS

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

endeavors. Table 5 also conveys recommendations and considerations to
researchers, by SP variant, for values to use in determining NAS search
space coverage in terms of Markov time as a percentage of total population
and potential computational resource savings.

In the course of this experiment, many interesting artifacts
were uncovered and would benefit from further investigation.
These fall into three categories: equation refinement, hardware
optimization, and integration with state-of-the-art NAS search
and evaluation techniques. Equations 4-8 aid researchers in
helping to estimate the central questions before executing a SP
influenced NAS endeavor. Equation 4 provides researchers with
an estimate of the upper bound (rank no worse than) of a NN
model’s performance rank if the best performing NN model (R;)
was not rejected when executing the CSP. Equation 5 provides
researchers with an estimate of the required amount of search
space to explore for a given rank when executing the GEP variant.
Similarly, Equation 6 provides researchers with a probability
estimate of how likely the discovery a rank of interest is within a
rank range. Equations 7 and 8 give researchers the ability to

10.3389/frai.2025.1643088

estimate the average rank and the worse rank that could
be selected as tied to the amount of search space explored when
executing the CBP variant. The importance of these equations to
researchers who must justify the expenditure of resources and
schedule timelines to conduct NAS efforts and then defend such
justifications with data while communicating confidence levels to
leadership, cannot be understated.

While Equations 4-8 offer researchers a starting point to help
estimate central questions before executing a SP influenced NAS
endeavor, it is clear these equations need to be further refined and
generalized for different values of # to increase their accuracy.
Thus far, the equations have only been briefly tested against search
space sizes of 100-3,500 stepped at increments of 50 and held to
be a guiding heuristic when executing the SP and its variants. In
support of this, datasets containing unique, non-repeating
random numbers simulating the performance of each NN model
for these population sizes were generated along with the results of
executing the SP against each of these populations and made
publicly available.

TABLE 5 Key constraints, assumptions, recommendations, and considerations for all SP variants.

Key constraints and assumptions for all secretary problem variants

A The total number of neural network models within the NAS search space is known
The total number of neural network models within the NAS search space is at least 20 (n > 20)
Neural network models are selected at random to be interrogated and ranked; Every neural network model within the NAS search space has an
¢ equal chance at being selected
D Each neural network model interrogated is relatively ranked from best to worst against only previously interrogated neural network models
Every neural network model within the NAS search space can be uniquely ranked; No ties exist

Recommendations and considerations by secretary problem variant

Recommend optimal
policy minimum (zz or
70)]

Secretary problem
variant

CSp 0.368

Computational resource
savings (times better)

Considerations

Interrogating 36.8% of the NAS search space returns
the highest probability of success in discovering the
best performing neural network model;

2.7x Interrogating 36.8% of the NAS search space may not
be possible for certain total population values of #;
Rounding up to the nearest population unit integer

may be required

GEP 0.15

Interrogating 15% of the NAS search space gives an
80% probability of success in discovering a neural
network model of Rank 10 or better;

As the probability of success in discovering a neural
o7 network model of the best Rank with a certain Rank
range grows, the required exploration of the NAS

search space shrinks resulting in a Rank increase of

the best Rank discovered

CBP 0.04

Interrogating at least 4% of the NAS search space
returns a better Rank on average with the “call back”
feature as compared to the average Rank selected
25% using the CSP rules;

Interrogating at least 10% of the NAS search space

returns a better Rank on average than the GEP

optimal policy of 15%

Frontiers in Artificial Intelligence

12

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

Another area for future investigation was uncovered when
formulating Equation 4. Dynamic programming was used during
the initial stages of the experiment to ensure the results of the CSP
could be verified and validated. During this painstaking process of
implementing a test-driven software development paradigm in
Visual Basic for Applications, the halting of the CSP at various
Markov times results in two sets of data: a rejected set of NN models
and a not-yet rejected set of NN models. The rejected dataset was
searched to reveal the best (highest performing) rank rejected and
reveal the best rank remaining within the not-yet rejected dataset.
Additionally, the rejected dataset was searched to ascertain if the
best NN model of R, was contained within. Thus, if the NN model
of R, was not within the rejected dataset, the minimum (highest
performing) rank within this dataset was subtracted from the
minimum (highest performing) rank contained within the not-yet
rejected dataset; this revealed how many ranks and positions in
memory could possibly be needed to find a better rank. Over the
20,000 experimental cycles, Equation 4 held as an upper bound on
potential positions within memory needed for better ranks to
occupy. Extending this from the CSP to the GEP and CBP variants
may offer valuable design insights when developing computational
hardware to implement an optimal stopping algorithm upon which
must contend with size, weight, power, and cooling constraints for
random search algorithms.

The final area for future investigation is the applying the
findings of this paper to other state-of-the-art, random and
non-random, NAS search strategies and evaluation techniques to
ascertain the possible benefits and limitations of integration.
While the solution to the SP and its variants are finite MDP
problems and dependent on random selection, it is not clear if a
“smartly” designed NAS search space making use of micro search
cell-based structures (like that of DARTS; Liu et al., 2019) is
paired with a one-shot (Bender et al., 2018), once-for-all (Cai
et al., 2019), knowledge distillation (Gou et al., 20121), or other
NAS search strategies with this paper’s findings overlaid on top
to act as a halting policy would be beneficial. The initial suspicion
is that the findings of this paper may only be useful as an optimal
policy for random NAS search strategies with robustly designed
NAS search spaces. However, empirical evidence is needed.

6 Conclusion

The Secretary Problem has potential to help inform researchers
when conducting NAS in a manner consistent with the key constraints
and assumptions of the famous decision-making riddle. The
application of the SP and its variants are both feasible to implement
and viable to execute. To do so, however, requires a careful
understanding of the SP’s limitations, NAS search space design
decisions, and the experimental infrastructure support required to
be successful in executing this endeavor.

Results show a researcher would have a high-probability of
success in finding the best performing (highest-rank) NN model
relative to the performance of other NN models within a NAS search
space if they applied the CSP unaltered and explore a minimum of
37% of the NAS search space. However, these results will only
materialize if the initial constraints and assumptions of the problems
are adhered to.

Frontiers in Artificial Intelligence

13

10.3389/frai.2025.1643088

If the modified or modern version of the SP is executed,
significant increases in the probability of successfully finding a
relative overall top-ranked NN model will be realized coupled with
a drop in required search space exploration to 15 and 4%,
respectively. Additionally, the resource cost to explore the NAS
search space can be limited resulting in 6.7 and 25 times decrease in
computational costs, respectively.

The authors plan on applying the findings of this paper to
investigate other state-of-the-art, random and non-random, NAS
search strategies, evaluation techniques, and datasets to ascertain the
possible benefits and limitations in the future.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found at: Modified National Institute of Standards and
Technology (MNIST) and the Canadian Institute for Advanced
Research, 10 Classes (CIFAR-10).

Author contributions

MS: Conceptualization, Investigation, Data curation, Writing —
original draft, Methodology. OY: Supervision, Writing — review &
editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

This research was improved by many discussions with and
moments of inspiration from Natalya Healey. Additional thanks to the
many reviewers, whose comments vastly improved the presentation
and structure of this paper.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Generative Al statement

The authors declare that no Gen Al was used in the creation of
this manuscript.

Any alternative text (alt text) provided alongside figures in this article
has been generated by Frontiers with the support of artificial intelligence
and reasonable efforts have been made to ensure accuracy, including
review by the authors wherever possible. If you identify any issues, please
contact us.

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Sheehan and Yakimenko

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated

References

Abdelfattah, M., Mehrotra, A., Dudziak, L., and Lane, N. (2021). Zero-cost proxies for
lightweight NAS. In Proceedings of the international conference on learning representations
(ICLR). Virtual event, Austria.

Baker, B., Gupta, O., Naik, N., and Raskar, R. (2017). Designing neural network
architectures using reinforcement learning. Toulon, France: In Proceedings of the
International Conference on Learning Representations (ICLR). 1-18.

Bender, G., Kindermans, P.-J, Zoph, B., Vasudevan, V., and Le, Q. (2018).
Understanding and simplifying one-shot architecture search. Stockholm, Sweden: In
Proceedings of the International Conference on Machine Learning (ICMR), Proceedings
of Machine Learning Research, 80:550-559.

Billingham, J. (2008). Kissing the frog: A Mathematician’s guide to mating. Plus
Magazine, University of Cambridge, Available online at: https://plus.maths.org/content/
kissing-frog-mathematicians-guide-mating-0

Cai, H.,, Gan, C., Wang, T., Zhang, Z., and Han, S. (2019). Once-for-all: train one
network and specialize it for efficient deployment. arXiv:1908.09791.

Chauhan, A., Bhattacharyya, S., and Vadivel, S. (2023). Dgnas: neural architecture
search using reinforcement learning. arXiv preprint arXiv:2301.06687.

Cheng, S., and Bender, G. (2019) AutoML: automating the design of machine learning
models for autonomous driving. Waymo, Inc. waymo.com/blog/2019/01/automl-
automating-design-of-machine

Chen, L., Collins, M., Zhu, Y., Papandreou, G., Zoph, B., Schroff, E, et al. (2018).
Searching for efficient multi-scale architectures for dense image prediction. In
Proceedings of the Annual Conference on Neural Information Processing Systems
(NeurIPS). Montréal, Canada.

Chen, X,, Xie, L., Wu, J., and Tian, Q. (2019). Progressive differentiable architecture
search: bridging the depth gap between search and evaluation: ICCV, 1294-1303.

Chen, Y,, Guo, Y., Chen, Q,, Li, M., Zeng, W,, Wang, Y, et al. (2021). “Contrastive
neural architecture search with neural architecture comparators” in CVPR, 9497-9506.

Chen, Z., Qiu, G,, Li, P, Zhu, L., Yang, X, and Sheng, B. (2023). MNGNAS: distilling
adaptive combination of multiple searched networks for one-shot neural architecture
search. IEEE Trans. Pattern Anal. Mach. Intell. 45, 13489-13508. doi:
10.1109/TPAMI.2023.3293885

Chitty-Venkata, K. T., Emani, M., Vishwanath, V., and Somani, A. K. (2023). Neural
architecture search benchmarks: insights and survey. IEEE Access 11, 25217-25236. doi:
10.1109/ACCESS.2023.3253818

Chow, Y. S., Moriguti, S., Robbins, H., and Samules, S. M. (1964). Optimal selection
based on relative rank. Isr. J. Math. 2, 81-90. doi: 10.1007/BF02759948

Ci, Y, Lin, C,, Sun, M., Chen, B., Zhang, H., and Ouyang, W. (2021) Evolving search
space for neural architecture search. In Proceedings of the International Conference on
Computer Vision (ICCV), pp.6659-6669. doi: 10.1109/ICCV48922.2021.00659

Cottier, B., Rahman, R., Fattorini, L., Maslej, N., and Owen, D. (2024). The rising costs
of training frontier Al models. arXiv preprint arXiv:2045.21015.

Ding, S., Chen, T., Zha, W., Gong, X., and Wang, Z. (2020). AutoSpeech: neural
architecture search for speaker recognition. In Proceedings of the Interspeech Conference
(ISCA), Shanghai, China. 916-920.

Dynkin, E. B. (1963). The optimum choice of the instant for stopping a Markov
process. Sov. Math. Dokl. 4, 627-629.

Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural architecture search: a survey.
JMLR 20, 1-21 arXiv: 1808.05377. doi: 10.1007/978-3-030-05318-5_11

Elsken, T., Metzen, J., and Hutter, F. (2017). Simple and efficient architecture search
for convolutional neural networks. arXiv preprint arXiv:1711.04528.

Epoch AL (2025). Parameter, compute and data trends in machine learning. Available
online at: epochai.org/data/epochdb/visualization

Ferguson, T. S. (1989). Who solved the secretary problem? Stat. Sci. 4, 282-296. doi:
10.1214/ss/1177012493

Freiberger, M. (2017). Strategic dating: The 37% rule. Plus Magazine, University of
Cambridge. Available online at: https://plus.maths.org/content/mathematical-dating

Gilbert, J., and Mosteller, F. (1966). Recognizing the maximum of a sequence. J. Am.
Stat. Assoc. 1, 35-73. doi: 10.2307/2283044

Gnedin, A. V. (1994). Solution to the game of googol. The annals of probability. 22,
1588-1595.

Frontiers in Artificial Intelligence

10.3389/frai.2025.1643088

organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Gong, X., Chang, S., Jiang, Y., and Wang, Z. (2019). Autogan: neural architecture
search for generative adversarial networks. In Proceedings of the International
Conference on Computer Vision (ICCV), 3224-3234.

Goodfellow, I, Bengio, Y., and Courville, A. (2016). Deep learning. Cambridge, MA,
USA: The MIT Press.

Gou,], Yu, B., Maybank, S. J., and Tao, D. (2012). Knowledge distillation: a survey.
Int. J. Comput. Vis. 129, 1789-1819. doi: 10.1007/s11263-021-01453-z

Guo, Y., Zheng, Y., Tan, M., Chen, Q,, Li, Z., Chen, J,, et al. (2021). Towards accurate
and compact architectures via neural architecture transformer. IEEE Trans. Pattern Anal.
Mach. Intell. 44, 6501-6516. doi: 10.1109/TPAMI.2021.3086914

Guo, Z., Zhang, X., Mu, H., Heng, W, Liu, Z., Wei, Y, et al. (2020). Single path one-shot
neural architecture search with uniform sampling. In Proceedings of the European
Conference on Computer Vision (ECCV), Glasgow, United Kingdom. 544-560.

Hill, T. P. (2009). Knowing when to stop. Am. Sci. 97,126-133. doi: 10.1511/2009.77.126

Huang, Y., Cheng, Y., Bapna, A., First, O., Chen, M. X,, Chen, D,, et al. (2019). GPipe:
efficient training of giant neural networks using pipeline parallelism. In Proceedings of the
Annual Conference on Neural Information Processing Systems (NeurIPS),
Vancouver, BC, Canada. 1-10.

Hu, Y., Liang, Y., Guo, Z., Wan, R, Zhang, X., Wei, Y,, et al. (2020). Angle-based search
space shrinking for neural architecture search. In Proceedings of the European Conference
on Computer Vision (ECCV), Glasgow, United Kingdom. 119-134.

Jaafra, Y., Laurent, J., Deruyver, A., and Saber, N. (2018). A review of meta-
reinforcement learning for deep neural networks architecture search. arXiv preprint
arXiv:1812.07995.

Kingma, D. P, and Ba, J. L. (2015). ADAM: a method for stochastic optimization:
ICLR, 1-15.

Klein, A., Falkner, S., Bartels, S., Henning, P.,, and Hutter, F. (2016). Fast Bayesian
optimization of machine learning hyperparameters on large datasets. arXiv preprint
arXiv:1605.07079.

Li, G., Mandal, K. S., Ogras, O. Y., and Marculescu, R. (2021). FLASH: fast neural
architecture search with hardware optimization. ACM Trans. Embed. Comput. Syst. 20,
1-26. doi: 10.1145/3476994

Li, L., Khodak, M., Balcan, M., and Talwalkar, A. (2021) Geometry-aware gradient
algorithms for neural architecture search. In Proceedings of the International
Conference on Learning Representations (ICLR)

Li, L., and Talwalkar, A. (2020). Random search and reproducibility for neural
architecture search. In Proceedings of the Uncertainty in Artificial Intelligence
Conference (UAI), Tel Aviv, Israel, Proceedings of Machine Learning Research.
115:1-17. 367-377.

Lindauer, M., and Hutter, F. (2020). Best practices for scientific research on neural
architecture search.]. Mach. Learn. Res. 21:1-18.

Lindley, D. V. (1961). Dynamic programming and decision theory. Appl. Stat. 10,
39-51. doi: 10.2307/2985407

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: differentiable architecture search.
arXiv: 1806.09055.

Liu, S., Zhang, H., and Jin, Y. (2022a). A survey on computationally efficient neural
architecture search. J. Autom. Intell. 1:100002. doi: 10.1016/j.jai.2022.100002

Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G., and Tan, K. (2022b). A survey on
evolutionary neural architecture search. arXiv preprint arXiv:2008.10937.

Lu, Z., Whalen, L., Boddeti, V., Dhebar, Y., Deb, K., Goodman, E., et al. (2018). NSGA-
NET: A multi-objective genetic algorithm for neural architecture search. In Proceedings
of the Genetic and Evolutionary Computation Conference (GECCO), Prague, Czech
Republic. 4750-4754.

Maslej, N. (2024). The AI Index 2024 annual report. Institute for Human-Centered
AL Stanford University, Palo Alto, CA, USA.

Ottelander, T., Dushatskiy, A., Virgolin, M., and Bosman, P. (2021) Local search is a
remarkably strong baseline for neural architecture search. In International Conference
on Evolutionary Multi-Criterion Optimization

Pellatt, L., and Roggen, D. (2021). Fast deep neural architecture search for wearable
activity recognition by early prediction of converged performance. In Proceedings of the
ACM International Symposium on Wearable Computers (ISWC). 1-6.

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1109/TPAMI.2023.3293885
https://doi.org/10.1109/ACCESS.2023.3253818
https://doi.org/10.1007/BF02759948
https://doi.org/10.1109/ICCV48922.2021.00659
https://doi.org/10.1007/978-3-030-05318-5_11
http://epochai.org/data/epochdb/visualization
https://doi.org/10.1214/ss/1177012493
https://plus.maths.org/content/mathematical-dating
https://doi.org/10.2307/2283044
https://doi.org/10.1007/s11263-021-01453-z
https://doi.org/10.1109/TPAMI.2021.3086914
https://doi.org/10.1511/2009.77.126
https://doi.org/10.1145/3476994
https://doi.org/10.2307/2985407
https://doi.org/10.1016/j.jai.2022.100002

Sheehan and Yakimenko

Pham, H., Guan, M., Zoph, B., Le, Q,, and Dean, J. (2018). Efficient neural architecture
search via parameters sharing. In Proceedings of the International Conference on
Machine Learning (ICML)

Porosinski, Z. (1987). The full-information best choice problem with a random
number of observations. Stoch. Process. Appl. 24, 293-307. doi:
10.1016/0304-4149(87)90020-2

Pourchot, A., Ducarouge, A., and Sigaud, O. (2020). To share or not to share: a
comprehensive appraisal of weight-sharing. arXiv preprint arXiv:2002.04289.

Radosavovic, L, Johnson, J., Xie, S., Lo, W. Y., and Dollar, P. (2019). On network design
spaces for visual recognition. In Proceedings of the International Conference on
Computer Vision (ICCV), Seoul, Korea. 1882-1890.

Ren, P, Xiao, Y., Chang, X, Huang, P.-Y, Li, Z, Chen, X,, et al. (2021). A
comprehensive survey of neural architecture search: challenges and solutions. ACM
Comput. Surv. 54, 1-34. doi: 10.1145/3447582

Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., and Hutter, E (2020). NAS-
Bench-301 and the case for surrogate benchmarks for neural architecture search. arXiv
preprint arXiv:2008.09777.

Smithson, S. C., Yang, G., Gross, W. J., and Meyer, B. H. (2016). Neural networks
designing neural networks: Multi-objective hyper-parameter optimization. In Proceedings
of the International Conference on Computer-Aided Design (ICCAD), Austin, TX,
USA. 1-8.

Stanley, K. O., and Miikkulainen, R. (2002). Evolving neural networks through
augmenting topologies. Evol. Comput. 10, 99-127. doi: 10.1162/106365602320169811

Sun, H., Guyon, L., Mohr, E, and Tabia, H. (2023). RRR-net: reusing, reducing, and
recycling a deep backbone network. arXiv: 2310.01157.

Swanson, A. (2016). When to stop dating and settle down, according to math. The
Washington Post. Available online at: www.washingtonpost.com/news/wonk/
wp/2016/02/16/when-to-stop-dating-and-settle-down-according-to-math/

Tan, M., and Le, Q. V. (2019). MixConv: mixed depthwise convolutional kernels. In
Proceedings of the British Machine Vision Conference (BMVC), Cardiff, United
Kingdom. 1-13.

Thompson, N. C., Greenewald, K., Lee, K., and Manso, G. F. (2020). The computational
limits of deep learning. arXiv: 2007.05558.

Tsitsiklis, J. N., and Roy, B. V. (1999). Optimal stopping of Markov processes: hilbert
space theory, approximation algorithms, and an application to pricing high-dimensional
financial derivatives. IEEE Trans. Automat. Control 44, 1840-1851. doi: 10.1109/9.793723

United States Department of the Navy (2021) HPE SGI 8600 (Gaffney) user guide.
Available online at: www.navydsrc.hpc.mil/docs/gaffneyUserGuide.html

Weber, R. (1975). The theory of optimal stopping. University of Cambridge. Available
online at: wwwstatslab.cam.ac.uk/~rrwl/publications/The%20theory%200f%20
optimal%20stopping%20(Part%20111%20essay).pdf

White, C., Nolen, S., and Savani, Y. (2021). Exploring the loss landscape in neural
architecture search. In Proceedings of the Uncertainty in Artificial Intelligence
Conference (UAI), Virtual event, Proceedings of Machine Learning Research. 161,
658-664.

Frontiers in Artificial Intelligence

15

10.3389/frai.2025.1643088

White, C., Safari, M., Sukthanker, R., Ru, B., Elsken, T., Zela, A., et al. (2023). Neural
architecture search: insights from 1000 papers. arXiv: 2301.08727.

Wu, J., Dai, X., Chen, D., Chen, Y,, Liu, M., Yu, Y,, et al. (2021). Stronger NAS with
weaker predictors. In Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS), Virtual event. 28904-28918.

Wu, M.-T,, and Tsai, C.-W. (2024). Training-free neural architecture search: a review.
ICT Express 10, 213-231. doi: 10.1016/j.icte.2023.11.001

Xiao, Y., Qiu, Y., and Li, X. (2020). A survey on one-shot neural architecture search.
IOP Conf. Ser. 750, 1-8. doi: 10.1088/1757-899X/750/1/012223

Xie, X., Song, X., Lv, Z., Yen, G., Ding, W,, and Sun, Y. (2023). Efficient evaluation
methods for neural architecture search: a survey. arXiv: 2301.05919.

Xu, Y., Xie, L., Zhang, X., Chen, X,, Qi, G.-J., Tian, Q, et al. (2020). PC-DARTS: partial
channel connections for memory-efficient architecture search. In Proceedings of the
International Conference on Learning Representations (ICLR), Addis Ababa,
Ethiopia, 1-13.

Yang, A., Esperanca, P, and Carlucci, E. (2020) NAS evaluation is frustratingly hard.

In Proceedings of the International Conference on Learning Representations (ICLR).
Addis Ababa, Ethiopia.

Yan, S., White, C., Savani, Y., and Hutter, E (2021) Nas-bench-x11 and the power of
learning curves. Proceedings of the Annual Conference on Neural Information
Processing Systems (NeurIPS). Virtual event.

Ying, C., Klein, A., Real, E., Christiansen, E., Murphy, K., and Hutter, E. (2019). NAS-
Bench-101: Towards reproducible neural architecture search. In Proceedings of the
Uncertainty in Artificial Intelligence Conference (UAI), Long Beach, CA, UAS,
Proceedings of Machine Learning Research, 97, 7105-7114.

Yu, K., Ranftl, R., and Salzmann, M. (2020a). How to train your super-net: an analysis
of training heuristics in weight-sharing NAS. arXiv preprint arXiv:2003.04276.

Yu, K., Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M. (2020b). Evaluating the
search phase of neural architecture search. In Proceedings of the International
Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia.

Yu, K, Sciuto, C., Jaggi, M., Musat, C., and Salzmann, M. (2019). Evaluating the search
phase of neural architecture search. arXiv: preprint 1902.08142v3.

Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate method.
arXiv:1212.5701v1.

Zela, A., Siems, J., and Hutter, F. (2020) NAS-Bench-1Shot1: benchmarking and
dissecting one-shot neural architecture search. In Proceedings of the International
Conference on Learning Representations (ICLR)

Zhang, Y., Lin, Z., Jiang, J., Zhang, Q., Wang, Y., Xue, H., et al. (2020). Deeper insights
into weight sharing in neural architecture search. arXiv preprint arXiv:2001.01431.

Zoph, B., and Le, Q. V. (2016). Neural architecture search with reinforcement learning.
arXiv: 1611.01578.

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). Learning transferable
architectures for scalable image recognition. In Proceedings of Computer Vision and
Pattern Recognition (CVPR), Salt Lake City, UT, USA. 8697-8710.

frontiersin.org

https://doi.org/10.3389/frai.2025.1643088
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1016/0304-4149(87)90020-2
https://doi.org/10.1145/3447582
https://doi.org/10.1162/106365602320169811
http://www.washingtonpost.com/news/wonk/wp/2016/02/16/when-to-stop-dating-and-settle-down-according-to-math/
http://www.washingtonpost.com/news/wonk/wp/2016/02/16/when-to-stop-dating-and-settle-down-according-to-math/
https://doi.org/10.1109/9.793723
http://www.navydsrc.hpc.mil/docs/gaffneyUserGuide.html
http://www.statslab.cam.ac.uk/~rrw1/publications/The theory of optimal stopping (Part III essay).pdf
http://www.statslab.cam.ac.uk/~rrw1/publications/The theory of optimal stopping (Part III essay).pdf
https://doi.org/10.1016/j.icte.2023.11.001
https://doi.org/10.1088/1757-899X/750/1/012223

	Neural architecture search applying optimal stopping theory
	1 Introduction
	2 Optimal stopping theory and the secretary problem
	3 Experiment materials and methods
	4 Application and analysis of SP variants
	4.1 CSP application analysis
	4.2 GEP application analysis
	4.3 CBP application analysis

	5 Discussion and future work
	6 Conclusion

	References

