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Neural architecture search 
applying optimal stopping theory
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Neural architecture search (NAS) exploration requires tremendous amounts of 
computational power to properly explore. This makes exploration of modern NAS 
search spaces impractical for researchers due to the infrastructure investments 
required and the time needed to effectively design, train, validate, and evaluate 
each architecture within the search space. Based on the fact that early-stopping 
random search algorithms are competitive against leading NAS methods, this 
paper explores how much of the search space should be explored by applying 
various forms of the famous decision-making riddle within optimal stopping 
theory: the Secretary Problem (SP). A total of 672 unique architectures, each 
trained and evaluated against the MNIST and CIFAR-10 datasets over 20,000 
runs, producing 6,720 trained models confirm theoretically and empirically the 
need to randomly explore ~37% of the NAS search space until halting can occur 
for an acceptable discovered neural architecture. Additional extensions of the SP 
investigated include implementing a “good enough” and a “call back” feature; both 
further reduce exploration of the NAS search space to ~15 and 4%, respectively. 
Each of these investigations were further confirmed statistically upon NAS search 
space populations consisting of 100–3,500 neural architectures increasing in 
steps of 50, with each population size analyzed over 20,000 runs. The paper 
details how researchers should implement each of these variants, with caveats, 
to balance computational resource costs and the desire to conduct sufficient 
NAS practices in a reasonable timeframe.

KEYWORDS

neural architecture search, Markov decision processes, automated machine learning, 
optimal stopping theory, secretary problem, Markov time

1 Introduction

Neural architecture search (NAS), the process of automating architecture engineering 
(Elsken et al., 2019), results in state-of-the-art model performance as tied to its architecture 
design. It is typically executed over a vast search space with billions of design options to choose 
from and compare (Hu et al., 2020). The pioneering work by Stanley and Miikkulainen (2002), 
Zoph and Le (2016), and Baker et al. (2017) proposed algorithms that could design novel 
machine learning (ML) architectures, increase ML algorithm learning rates, and even 
outperform state-of-the-art models of the time. These deep learning successes proliferated 
NAS research into image classification (Huang et al., 2019; Chen et al., 2019); multi-objective 
genetic algorithm optimization (Lu et  al., 2018), adversarial ML (Gong et  al., 2019), 
autonomous driving (Cheng and Bender, 2019), natural language processing (NLP) (Ding 
et al., 2020), and activity prediction (Pellatt and Roggen, 2021), to name a few. NAS has proven 
itself, time and time again, as a viable method when the search for optimal model performance 
is dependent upon the model’s architecture building blocks and their configuration (Ying 
et al., 2019).

Unfortunately, the goals of researchers to discover novel neural architectures resulting in 
improved model performance are fundamentally at odds with the goals of engineers to take 
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said discovered models and productionize them for market 
deployment. For researchers, the desire to find ever greater model 
performance leads to an exponential growth of the learning parameter 
count and, consequently, the required processing power (Thompson 
et  al., 2020). Modern NAS search spaces now easily exceed 1020 
solutions (Smithson et  al., 2016). In February 2020, Microsoft 
introduced the largest NLP model with 17 billion learning parameters. 
In May 2020, OpenAI surpassed this record by releasing an NLP 
model with 175 billion learning parameters. Not to be outdone, in 
January 2021, Google introduced the current NLP model record with 
1.6 trillion learning parameters. On average, notable machine learning 
models created in 2023 through 2024 contain over 43 billion learning 
parameters and have training datasets surpassing 1.19 trillion objects 
(Epoch AI, 2025).

This data points to a concerning trend: effective exploration of 
modern NAS search spaces are increasingly inaccessible to most 
researchers due to prerequisite requirement of having access to 
expensive and powerful computational hardware if a search space is 
to be explored in a meaningful capacity with time as a constraint. For 
example, GPT-4, produced by OpenAI, costs an estimated $78 million 
to train, and Gemini Ultra, produced by Google, costs an estimated 
$191 million to train and required 50 billion peta-floating point 
operations per second (peta-FLOPS) of computational power (Maslej, 
2024). In fact, a 2024 analysis shows the costs of developing and 
training frontier AI models have continued to rise at the rate of 2.4x 
per year since 2016 with costs expected to eclipse a billion dollars by 
2027 Cottier et al. (2024). Adding insult to injury, even with robust 
hardware, novel neural architecture discovery may take months of 
computational time to complete (Zoph et al., 2018).

Due to the pressures researchers and engineers face to make use 
of current organizational infrastructure, limit their expenses toward 
new infrastructure, and compress their development timelines to 
delivery models for production and deployment, hidden NAS dark 
patterns have emerged. Practitioners increasingly rely on model 
designs rooted in familiar architectural paradigms, favoring limited 
test case development, established problem-solving precedents, and 
trending ML model traits—an approach that may constrain the 
exploration of novel neural architectures (Ren et  al., 2021). Thus, 
practitioners need an effective way to balance the rapid discovery of 
novel neural network (NN) architectures with their limited access to 
high performance computing infrastructure.

To address this, researchers have been attacking the optimization 
and implementation challenges presented by NAS through its four 
main aspects: search space, model construction, model training/
evaluation, and search strategy. Advances in simplifying the global 
search space into multiple modular search spaces have shown a 
significant reduction in the size of the search space (Zoph et al., 
2018). Paired with substantial efforts to improved search space 
quality (Radosavovic et al., 2019) and design (Tan and Le, 2019; Guo 
et  al., 2020), state-of-the-art model performance is achievable 
without using knowledge distillation or weight pruning techniques 
(Ci et  al., 2021). In the areas of model construction and model 
training/evaluation, the practices of NN architecture recycling (Ren 
et al., 2021; Sun et al., 2023), and incomplete training (Wu and Tsai, 
2024) embody the proverb “if it ain’t broke, do not fix it.” Both 
practices have helped to minimize the computational resources 
required by speeding up the processes to execute these functions. 
Using existing high-performing models as the starting point for 

further evolution and reducing complete model training through the 
implementation of shared model structures have also increased 
model formation speed, training, and performance prediction times 
(Ren et al., 2021).

The search strategy, claimed to be  the “most widely-studied” 
aspect of NAS, is the critical mechanism used to discover a high-
performing NN architecture within the search space and are typically 
categorized as black-box optimization techniques or one-shot 
techniques (White et al., 2023). Within the black-box optimization 
category, the heavy-weights are reinforcement learning, evolutionary/
genetic algorithms, and Bayesian optimization; whereas within the 
one-shot category, the chief methods are hypernetwork and 
supernetwork techniques. Each of these search strategies have shown, 
at the time of their publication, to achieve state-of-the-art performance 
(Elsken et al., 2019; Ren et al., 2021; White et al., 2023; Chitty-Venkata 
et al., 2023; Xie et al., 2023; Xiao et al., 2020; Liu et al., 2022a; Liu et al., 
2022b; Chauhan et  al., 2023). Additionally, multiple search space 
strategies have been created and extended to help minimize 
computational resource impacts (Chen et al., 2019; Xu et al., 2020), to 
include “hardware-aware” solutions addressing hardware latency and 
power constraints (Ci et al., 2021). The choice of which search strategy 
to implement is based on multiple factors such as computational 
infrastructure access which is a challenge for reinforcement learning 
and evolutionary/genetic algorithms (Chauhan et al., 2023), search 
algorithm flexibility which challenges Bayesian optimization 
techniques (Jaafra et al., 2018; Klein et al., 2016), and confidence the 
search space was effectively explored and the architecture found is 
indeed highly-performing compared to others within the search space 
which is a topic of current debate for one-shot techniques and the 
assumptions inherent to their approaches (Yu et al., 2020a; Ci et al., 
2021; Pham et al., 2018; Yu et al., 2020b; Pourchot et al., 2020; Zela 
et al., 2020; Zhang et al., 2020).

However, despite all these improvements, random search methods 
not only perform unexpectedly well in executing NAS (Yu et  al., 
2020a; Li and Talwalkar, 2020; Chen et al., 2018; Yang et al., 2020) but 
continue to be consistent with the performance of state-of-the-art 
NAS algorithms (Yang et  al., 2020; Yu et  al., 2019; Lindauer and 
Hutter, 2020) as well as a competitive baseline for hyperparameter 
optimization and early stopping algorithms against leading NAS 
methods (Li and Talwalkar, 2020). Research also shows random search 
performance can be  greatly increase by paring it with “highly 
engineered” search space development practices (White et al., 2023), 
NN architecture design and training methods (Li and Talwalkar, 
2020), performance estimation prediction processes (Abdelfattah 
et al., 2021; Yan et al., 2021), heuristically driven search techniques 
(Ottelander et al., 2021; White et al., 2021; Siems et al., 2020), and NN 
evolution strategies (Elsken et al., 2017).

Based on this stark reality, this paper presents a promising path 
forward by applying optimal stopping theory (OST) to 
NAS. Borrowing the solution to the notorious Secretary Problem (SP) 
and further extending it twice, this paper demonstrates these modified 
SP approaches to be an elegant solution to the aforementioned issues 
that NAS practitioners face. The paper empirically, with caveats, shows 
when the exploration and evaluation of a NAS effort should be halted 
revealing a “satisfactory” architecture to be used. Expensive subject 
matter expertise, computational resource usage, and ML model time-
to-market deployment can all be significantly reduced by applying 
OST when engaging in NAS techniques.
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This paper is not focused on improving NAS search strategies 
where the goal is to find the best performing NN architecture for a 
given: dataset, set of NN architecture parameters, class of NNs, or to 
conduct an “apples-to-apples” comparison to other non-random NAS 
search strategies (e.g., reinforcement learning-NAS, one-shot, zero-
cost, evolutionary NAS, once-for-all search, and the like) (Chen et al., 
2021; Wu et al., 2021; Chen et al., 2023; Guo et al., 2021). Instead, this 
paper focuses on the application of OST to NAS and shows how the 
solution to the SP, and its extensions, form a set guiding heuristics on 
when to halt a NAS effort that is agnostic to the design and size of 
search space and NN architectures within.

The main contributions of this paper can be summarized as follows:

	 1.	 Empirical proof that the solution to the SP is a viable NAS 
search strategy technique only requiring ~37% of the NAS 
search space to be randomly explored until halting may occur 
for an acceptable discovered NN architecture.

	 2.	 Extension of the SP solution through the implementation of a 
“good enough” (GEP) and “call back” (CBP) NAS evaluation 
feature improving the performance of the SP solution; thereby 
reducing the required coverage of the randomly explored NAS 
search space to ~15% and 4%, respectively.

	 3.	 Creation and validation of five equations to aid researchers in 
estimating computational resources requirements, scheduling 
timetables, bounding risks associated with poor NAS outcomes, 
and communicating cost-schedule-scope tradeoffs to 
senior management.

	 4.	 Release of datasets and source code (in a variety of 
programming languages) to execute the SP and its variants for 
NAS search space populations of 100 through 3,500, stepped at 
increments of 50.

Due to the nature of the SP, the findings of this paper may not hold 
if the rules of the SP are not adhered to or if paired with another 
non-random search strategy. However, the findings of this paper do 
confirm there is a high degree of confidence in discovering a high-
performing NN model relative to the performance of other NN 
models within the search space. Thus, practitioners should apply this 
paper’s findings and guiding heuristics with “smart” search space 
design practices aligned to the problem to be solved.

The reminder of the paper is organized as follows. Section 2 
introduces the OST through the SP and its specific applicability to 
NAS. Section 3 details the experimental setup and materials, followed 
by a detailed summary of the investigation into and analysis of 
applying OST via the SP, and its variants, to NAS, confirmed over 
multiple experiment iterations in section 4. Section 5 presents a 
discussion of the findings, potential benefits, caveats, considerations, 
and future directions to study. Finally, section 6 closes with a 
conclusion to encapsulate the useful discovery.

2 Optimal stopping theory and the 
secretary problem

In the discipline of mathematics, optimal stopping is the 
process of determining when it is best to terminate a task to 
maximize the desired results and expected rewards (Tsitsiklis and 

Roy, 1999). Knowing when to stop executing a task is immensely 
powerful as it allows an investigator to optimize the expenditure of 
limited resources and apply these resources to other high priorities. 
Due to this, OST has been applied to problems in a wide array of 
disciplines and sectors including financial derivative markets, 
lottery ticket purchasing strategies, gambling schemes, World War 
II military-industrial complex production plans, stock option 
valuations, dynamic programming solutions, human resource 
hiring methods, and even personal relationship match-making 
endeavors (Hill, 2009).

OST problems typically come in one of three flavors: decision 
theory, statistical sequential inference, and the statistical design of 
experiments. However, the control of random sequences and statistical 
decisions is invariably the objective to achieve to inform an interested 
party to cease the task at hand or halt sampling in a statistical inference 
problem (Weber, 1975). In stochastic processes, this ceasing or halting 
is known as the stopping time or the Markov time (τ), as an optimal 
stopping problem is a finite horizon Markov decision process (MDP). 
One famous decision-making riddle within finite horizon MDP 
problems is known as the SP.

The SP goes by many names: the fussy suitor problem, sultan’s 
dowry problem (Swanson, 2016), best choice problem, beauty 
contest problem, marriage problem (Porosinski, 1987), and game of 
Googol problem (Gnedin, 1994). The simplest form of the problem 
consists of the following characteristics as portrayed by Ferguson’s 
historical investigation into the solving of the classic brain teaser 
(Ferguson, 1989):

	 1.	 There is one secretarial position available.
	 2.	 The number n of applicants is known.
	 3.	 The applicants are interviewed sequentially in random order, 

each order being equally likely.
	 4.	 It is assumed that you can rank all of the applicants from best 

to worst without ties. The decision to accept or reject an 
applicant must be based only on the relative ranks of those 
applicants interviewed so far.

	 5.	 An applicant once rejected cannot later be recalled.
	 6.	 You are very particular and will be satisfied with nothing but 

the very best. (That is, your payoff is 1 if you choose the best of 
the n applicants and 0 otherwise.)

A hiring manager should adopt an interview strategy 
maximizing the chance of success in finding the best applicant by 
appropriately interviewing an “optimal” number of candidates. The 
probability of picking a candidate he would rate the best after 
interviewing r candidates out of pool of n candidates, P(r,n), can 
be presented as the following sum (Billingham, 2008; 
Freiberger, 2017):

	 1

1( , )
1

n

i r

rP r n
n i= +

=
−∑

	
(1)

To maximize the chances for success, the “optimal” number of 
candidates to interview before selecting the next best one relative to 
the previous should satisfy two obvious relations
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Substituting Equation 1 into these two inequalities and doing 
some simplifications results in

	 2 1

1 11
1 1

n n

i r i ri i= + = +

< <
− −∑ ∑

	
(3)

where the right-hand side part of inequality corresponds to satisfying 
the first inequality of Equation 2, and the left-hand side part – to the 
second inequality of Equation 2.

Both left-hand side sum and right-hand side sum in Equation 3, 
depend on r. For small r, both sums are greater than one so that the 
left-hand side part of inequality is violated. For large r – both sides are 
less than one resulting in violation of the right-hand side part of 

inequality. For given n, there is only one “optimal” r when both sides 
of inequality are satisfied. Figure  1 shows this best value as ropt/n 
against n (for the applicant pool size n of 3 through 40) featuring a 
quick convergence to some value.

This value can be derived analytically and corresponds to 
1/ 0.368optr n e−≈ ≈ . Hence, for the SP the best stopping or prime 

Markov time, referred to as the optimal policy (τπ) as defined by the 
problem’s stopping rule, converges to 0.368πτ ≈  without regard 
to the number of applicants n for large n (Figure 2). That is, the 
hiring manager should interview r and reject ~37% of the total 
applicants n and then select the next relatively best one for the 
position. The hiring manager starts to experience diminishing 
returns with each subsequent interview past this amount (Figure 2). 
This result has been developed, confirmed, extended, and 
generalized by many probabilists and statisticians, showing its 
versatile application to many probability optimization problems 
(Lindley, 1961; Dynkin, 1963; Chow et al., 1964; Gilbert and 
Mosteller, 1966).

With early-stopping random search algorithms being competitive 
against leading NAS methods, the application of a finite horizon MDP 
to govern the halting of a NAS endeavor is logical. While applying OST 
may not discover the highest-possible performing model within the NAS 
search space, it will significantly limit the need and time of computational 
resources. To confirm this theory, the original SP and two extensions 
were empirically investigated. This investigative process includes creating 
an NAS design space, training and evaluating each model independently 
to build a fully informed search space, applying the rules of the SP and 
its extensions to this search space, and finally analyzing the results. The 
design space was trained and evaluated against two datasets five times 
from which the SP and its extensions were played out 20,000 times 
against. To further confirm this paper’s findings, the size of the search 
space was modified with representative NN architectures totaling 
100–3,500 in steps of 50 played over 20,000 times each.

For the remainder of the paper the following variants of the SP 
will be referred to as

	•	 Classical secretary problem (CSP)—the original SP as described 
above with an optimal policy of 37% (τπ ≅ 0.37).

	•	 Modified secretary problem (GEP)—an extension of the CSP 
where a model performance threshold and/or objective is used 
to deem a found model “good enough” allowing for early NAS 
halting when compared to the CSP’s optimal policy.

	•	 Modern secretary problem (CBP)—an extension of the CSP and 
GEP where a model performance threshold and/or objective is 
used in conjunction with the capability to recall, or “call back,” 
any previously evaluated model.

3 Experiment materials and methods

To evaluate the effectiveness of the CSP and its variants as applied 
to NAS, a fully informed design and search space was built to ensure 
the experiment met computational and statistical power tractability 
requirements. The design space degrees of freedom for the NN 
building block components were limited to the values outlined in 
Table  1. The design space was further confined with restrictive 
combinations placed on the mixing of different input and hidden layer 
activation functions, optimizer algorithms/methods, and number of 

FIGURE 1

Optimal number of applicants to interview ropt (normalized by the 
applicant pool size n) vs. n.

FIGURE 2

Probability of hiring the best applicant vs. percentage of 
applicants interviewed and rejected (r) within applicant pool size 
(n) (for large n).
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nodes per fully connected hidden layer. The total number of unique 
NN model architectures within the NAS search space was 672.

To ensure a diverse, non-bias experiment was performed in 
evaluating the effectiveness of the SP variants, two different popular 
benchmark datasets were chosen: the Modified National Institute of 
Standards and Technology (MNIST) and the Canadian Institute for 
Advanced Research, 10 Classes (CIFAR-10). Both datasets are image 
collections; however, each dataset provides significant performance 
differences based on the NN building block components outlined in 
Table 1. This was done intentionally as the goal of the experiment was 
not to find the highest-possible performing NN architecture within 
the search space, but to baseline all the possible NN architectures 
within the search space and then test the effectiveness of applying the 
optimal policy of the CSP and its variants to the mechanics of NAS.

This experiment made use of the Department of Defense’s (DoD) 
High Performance Computing (HPC) Modernization Program and 
two separate local non-HPC systems. Of the four DoD HPCs, the 
individual unclassified HPC system utilized was known as Gaffney; a 
Hewlett Packard Enterprise Silicon Graphics, Incorporated 8,600 
scalable, high-density cluster compute system featuring liquid cooling, 
154 terabytes of memory, 5.5 petabytes of formatted parallel disk 
storage, and has a peak performance of 3,029 trillion floating-point 
operations per second (United States Department of the Navy, 2021). 
Source code for training, testing, and evaluating the NAS search space 
was developed and tested on a local non-HPC machine and then 
ported over to the Gaffney HPC system for training, testing, and 
storage at-scale.

Data analysis was performed on two separate local non-HPC 
systems. These two systems executed the vast majority of: algorithm 
validation, experiment source code development, experiment 

verification, experimental data management and compression, 
programming language translation, and data visualization. In total, 
6,720 individual NN model performance data points and structures 
were each captured at the post training phase. These 6,720 NN models 
were trained and tested against 130,000 images resulting in 
436,800,000 data pipeline flows and 489,989,427,200,000 parameter 
adjustments. This resulted in each of the 6,720 NN models receiving 
a performance score for image classification accuracy. The 
performance score, five per a unique NN architecture per a dataset, 
were averaged to create two sets of “master” performance scores. Thus, 
672 average performance scores per unique NN architecture were 
created for each of the two datasets.

Table 2 highlights and compares relevant performance measures 
and statistical features of each “master” performance score against 
each dataset. The image classification performance scores for each NN 
architecture contained within the NAS search spaces, tied to each 
dataset, varied greatly. This met the goals of this paper to ensure the 
application of the SP, and its variants were independent of NN 
architecture and dataset selection.

With the two “master” performance score datasets built, each 
containing 672 NAS search space networks scores per experimental 
dataset, the two datasets were sorted from the highest performing 
architecture to the lowest performing architecture. Once sorted, each 
search space network entry was assigned a static key. This static key 
served as the identifier and performance rank Ri [where i is the position 
of the NN within the performance rank list and R1 = min (R1,…, Rn) for 
{i|i ∈ n∶ i ∈ (1, n)}] for each search space network as enumerated 
within each “master” performance score dataset. With a fully informed 
search space built, trained, and evaluated, these datasets were ready for 
the next step: investigating the application of OST to NAS.

TABLE 1  Experimental design-space parameters.

ANN class Parameter Range Steps Sequence

Feedforward 

multilayer 

perceptron (MLP)

Number of fully-

connected layers
1–4 4 (1, 2, 3, 4)

Nodes per fully-

connected layer
64–1,024 6

(64, 128, 256, 512, 

768, 1,024)

Activation function1
Rectified Linear Unit (ReLU), Exponential Linear Unit (ELU), Hyperbolic Tangent 

(TanH), or Logistic (Sigmoid)
4 N/A

Optimizer algorithm/

method

Root Mean Square Propagation (RMSprop), Adaptive Moment Estimation (Adam), 

Stochastic Gradient Descent (SGD), Adaptive Gradient Algorithm (AdaGrad), 

Adaptive Delta (AdaDelta)2, Adaptive Maximum (AdaMax)3, or Nesterov and Adam 

(Nadam)

7 N/A

Batch size Dataset Dependent4 1 N/A

Training epochs 10,0005 1 N/A

Output layer 

activation function
Softmax6 1 N/A

Dropout frequency 80% Retain, 20% Dropout 1 N/A

1The output layer uses the Softmax (described in table footnote 6) activation function for all networks within the search space.
2The abbreviation of AdaDelta is not spelled out; however, its creator refers to a ∆xt function which gives the AdaDelta method (Zeiler, 2012).
3The abbreviation for AdaMax is not spelled out; however, its creators refer to a max() function which gives the AdaMax method (Kingma and Ba, 2015).
4For both MNIST and CIFAR-10, the number of training and testing images is 60,000 and 10,000, respectively.
5The training and scoring of each model uses an extensible program-code-template to halt training when five epochs have passed with no improvement (Keras Application Programming 
Interface Callback Object EarlyStopping Class with Patience argument set to five).
6The abbreviation for Softmax is not spelled out; however, the “soft” part of the term describes a function which is continuous and differentiable. This function provides a “softer” version of the 
ArgMax function, which is the opposite of the ArgMin function. The ArgMin function minimizes the distance between an input point and its reconstruction using a measure which gives the 
size of a vector, known as the norm. It is also known as “softargmax” (Goodfellow et al., 2016).
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4 Application and analysis of SP 
variants

To investigate the results of applying the CSP’s optimal policy to 
NAS using the created search spaces, the two “master” performance 
datasets static identification keys were shuffled, selected at random, and 
relatively ranked by their performance against previous selections until 
the CSP’s optimal policy (τπ ≅ 0.37) was achieved. This cycle was 
carried out 20,000 times to ensure the resulting analysis conducted had 
statistical significance and to build confidence in the data generated. 
The analysis of the modified (i.e., GEP or “good enough”) and modern 
(i.e., CBP or “call back”) SP variants also used the aforementioned 
shuffle, random selection, and relative rank process. The resultant 
analysis of each SP variant is detailed in the following subsections.

4.1 CSP application analysis

In testing the application of CSP’s optimal policy for NAS against 
the traditional rules of the SP over 20,000 cycles, it was found that the 
selection of the best performing NN model (R1), independent of 
dataset evaluated against, was selected 278% more often than the 
second best performing NN model (R2). With negligible selection 
difference between the datasets, the best performing NN model was 
selected: ~603% more than the third best performing NN model (R3), 
~1,225% more than the fourth best performing NN model (R4), and 
~2,335% more than the fifth best performing NN model (R5). The 
top 1% of performers (R1-7) contribute to almost 63% of the total 
population’s cumulative distribution function (CDF). After the top 1% 
of performers, each additional NN model’s contribution to the total 
CDF averages 0.05% (R8-672). More interestingly, the selection 
difference between NN models performing within the top 5% (R1-34) 
of the total population, regardless of dataset, produced almost 
identical selection results. When executing the rules of the CSP, each 
dataset (MNIST and CIFAR-10) produced almost identical results.

Through dynamic programming, real-time experimental 
measures were collected on the algorithm’s optimized decision 
making. This allowed the collection of four additional algorithm 
execution datasets: best of remaining (BOR), best of the rejected set 
(BORS), selected value (SV), and last in list (LIL). The BOR dataset 
refers to the highest-performing NN model left within the 
non-interviewed population after halting at a chosen Markov time, τ. 
The BORS dataset refers to the highest-performing NN model 

dismissed after being interviewed within the chosen τ. The SV dataset 
refers to the NN model rank selected at the end of executing a SP 
variant at the chosen τ. The LIL refers to the NN model rank which 
would be “interviewed” last as virtue of random selection.

With these measures, executing the CSP over 20,000 runs revealed 
the following: the best performing NN model (R1) was rejected 37.17% 
of the time; the LIL NN model was selected 37.23% of the time with an 
average rank consistent of normal distribution data behaviors 
(Rn/2 = R336); 62.83% of time the best performing NN model (R1) still 
remained in BOR dataset; and 62.87% of time a lower performing NN 
model was selected over a better BOR model due to being found first 
and being comparatively better than the highest ranked model 
contained within BORS. On average, the BOR dataset rank was 1.58 
with a standard deviation of 0.95. The BORS dataset rank had a mean 
of 2.69 with a standard deviation of 2.13. While both the BOR and 
BORS datasets had a minimum rank of R1, their maximum rank was R11 
and R21, respectively. Meaning over 20,000 runs, if the NN model of R1 
was not rejected, the average rank of the NN model selected was 2.03 
with the lowest NN model being selected having a rank of R18. In fact, it 
was found that if the NN model of R1 was not rejected, the lowest NN 
model rank selected had an upper bound of (rank no worse than)

	
CSP
UR n≤ 	 (4)

To further validate the CSP solution as applied to NAS, the 
percentage of NN models “interviewed” was tested over the total 
population spectrum in 1 % Markov time increments, τ0.1–1.0, where 
{τ ∈ ℝ∶ τ ∈ (0, 1)}. At each 1 % increment, the CSP was executed over 
20,000 cycles with this new Markov time and analyzed. As expected, 
the top performing NN model (R1) was selected at the same rate 
predicted in the previously discussed solution to the CSP, i.e., ~37%. In 
comparing the selection frequencies for the top performing NN models 
over differing Markov times, it becomes apparent that the top 1 % (R1-7) 
performing NN models of the total population quickly dominate the 
selection frequency as the Markov time increases. To illustrate this, 
Figure 3 shows a surface plot of selection frequency vs. NN model 
performance rank vs. Markov time as a percentage of total population 
for the top 5 % performing NN models within the total population.

The goal of the CSP’s optimal policy is to maximize the success of 
selecting the highest ranked candidate (R1). NAS researchers applying 
the CSP’s rules and optimal policy will successfully discover the 
highest-performing (R1) NN model 37% of the time (τπ ≅ 0.37).

TABLE 2  NAS search space networks performance and statistical features by dataset.

Dataset Maximum performance Minimum performance Average performance SD

MNIST 98.69%1 8.92%2 97.84%3 0.65%4

CIFAR-10 56.31%5 10.00%6 40.44% 12.40%

1The best performing neural network architecture against this dataset consisted of 4 layers, 768 neurons per layer, using the ELU activation function, and the RMSPROP optimizer.
2The worst performing neural network architecture against this dataset consisted of 3 layers, 1,024 neurons per layer, using the RELU activation function, and the ADAGRAD optimizer.
3This statistical value was computed after discarding 12 outlier performance data points (1.79% of the total data collected). If this discarded data is included, the average performance becomes 
96.27%.
4This statistical value was computed after discarding 12 outlier performance data points (1.79% of the total data collected). If this discarded data is included, the standard deviation becomes 
11.67%.
5The best performing neural network architecture against this dataset consisted of 2 layers, 512 neurons per layer, using the ELU activation function, and the ADAMAX optimizer.
6The worst performing neural network architecture against this dataset consisted of 4 layers, 1,024 neurons per layer, using the SIGMOID activation function, and the SGD optimizer.
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4.2 GEP application analysis

The first variant of the CSP brings into question what does a 
“good enough” candidate look like. This is especially important as 
the MNIST and CIFAR-10 datasets produced scores of 
“top-performing” NN models within single digit percentages of 
each other. While conducting NAS, a researcher may be able to halt 
the search early due to finding a “top performing” NN model that 
is “good enough” to satisfy the problem at hand. By taking this 
modified approach (GEP), the optimal policy of τπ ≅ 0.37 for the 

CSP can be  further reduced. Figure  4 shows this for a “good 
enough” NN model within ranks Rs (s) where s = 1, 2, 5, 10 and 
where {s ∈ ℤ∶ s ∈ [1, s]} and Rs ⊆ n. As s within Rs increases, more 
applicants within n are included resulting in a decrease in 
applicants to interview. That is, if a hiring manager or NAS 
researcher loosens their selection criteria to not only be interested 
in finding the best candidate/neural architecture, the percent of the 
required search space to interrogate falls off dramatically.

Illustrating this dramatic increase in probability of successfully 
finding a candidate/neural architecture, Figure 5 shows the inverse 
relationship between the increase in s for Rs and the decreasing 
Markov time needed. Similar to Figure 3, the top performing NN 
models of the total population (n) quickly dominate the probability of 
success when selecting an NN model within Rs as s increases. By 
running this modified version of the SP with a total population of 100, 
two generalized equations can be  realized. Approximation of the 
optimal policy (τπ) for a chosen NN model’s rank (Ri) can 
be represented as

	

( ) ( )
( )

( )
n

n
i i

i i

n nnR n nR
n R R

ln
ln 441 ln

100
ρ−

π

 
− τ = − − + 

 
  	

(5)

However, for larger values of n in Equation 5, the resulting 
approximation begins to deviate from experimental data collected. 
The inclusion of an error correcting value, ρ , where ρ ≥ 2 as a 
conservative measure ensures the resulting optimal policy 
approximation calculated for a given NN model’s rank is greater than 
needed staving off inadequate search space exploration.

To estimate the probability of success in discovering a NN model 
of Rank i within a chosen Rank s ( )swithin ,iP R R n , the following 
relationship can be used:

	
( ) ( ) = + 

 
s

1 1within , ln 1.04
2i sP R R n R

e 	
(6)

While Equations 5 and 6 were generalized to allow for use upon 
different total populations of n, there is some variability when using 
both as they are only rudimentary conjectures. The variability in 
Equation 5 is highlighted in Figure  6. Equation 5 approximates 
Figure 6’s optimal policy average line reasonably well (within +/− 3% 
absolute, +/− 1% on average) for all NN model ranks when the total 
population n is 100.

The variability in Equation 6 is depicted in Figure 7. Equation 6 
approximates Figure 7’s probability of success in discovering a NN 
model of Rank i within Rank s ( )i swithin ,P R R n  average line well 
(within single digit percentage error) for NN model ranks less than 
R39 when the total population (n) is 100. However, for larger values of 
n, Figure 3 the resulting approximation begins to deviate past ranks 
above Rn*0.04 to the tune of double-digit percentage error. Thus, the use 
of Equation 6 to approximate the probability of success in discovering 
a NN model of Rank i within Rank s average should be limited to cases 
where s ≤ 16 (R16).

If a researcher is to implement the “good enough” variant of SP 
(GEP), it is recommended that they at least explore and reject 15% of 
the NAS search space ( πτ ≥ 0.15 ). This provides the researcher 

FIGURE 3

Three-dimensional surface plot demonstrating top NN model 
performance dominating selection frequency over increasing Markov 
time.

FIGURE 4

Probability of selecting a better candidate (Ri) within rank s (Rs) and 
associated optimal policy (τπ).
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a ~ 80% chance of success in discovering a NN model within 10R  or 
better. Table 3 shows this along with all successive ranks and their 
respective probabilities of discovery success inclusive of each other for 
two differing populations (n = 100 and 672). The variability of the 
results shown in Table 3 can be accounted for in the requirement to 
round to the nearest integer value when rejecting at various Markov 
times due to the difference in the theoretical optimal policy and the 
application of the theoretical optimal policy. For example, if the 
theoretical optimal policy calls for the rejection of 36.8% 
( πτ = 0.368) of the population, the application of this theoretical 
optimal policy may not be feasible as it may be impractical to reject 

0.8% of a population unit. Thus, rounding to the nearest percentage 
integer value may be required ({ }πτ τ τ= ∈ ∈ (i.e., 0.37 where : 0,1 ).

If the researcher does not believe 80% is a high enough probability 
of success in discovering a NN model within 10R , Table  4 
communicates the requirements to achieve the additional percentage 
probability of success increases. These effects need to be carefully 
balanced as the total population n grows. While the resulting 
percentage of the total population to explore (r/n) per percentage 
probability increase decreases overall, the ordinal amount of NN 
models to build, train, test, and evaluate increases. Thus, if there is an 
overhead resource cost per a unit of population to “interview” (r); the 
expenditure of these resources must be taken into account as this cost 
function could become a constraining factor when deciding how 
much of the search space to explore.

4.3 CBP application analysis

The second variant of the SP includes the ability to “call back” 
a previously interviewed candidate at some Markov time 
determined by the hiring manager. For example, instead of 
executing the CSP with its optimal policy ( πτ ≅ 0.37 ) and then 
selecting the next best relative candidate before halting: 
interviewing the minimum number of applicants to establish an 
informed relative ranking baseline (n > 20), ranking the 
interviewed candidates against the performance threshold and/
or objective metric, deciding to continue interviewing or halting 
all interviews and calling back the highest ranked candidate 
interviewed for hire. A modern application of the CSP to NAS 
would likely be executed closely to the modified version of the 
CSP, GEP, where the researcher has a set a “good enough” 
performance metric to ensure the balance between the efficient 
use of limited computational resources, sufficiency in NAS search 
space exploration, and discovery of a “good enough” 
neural architecture.

FIGURE 5

The three-dimensional surface plot demonstrating rapid increase of 
hiring a better candidate (Ri) within rank s (Rs) and resulting inverse 
relationship as s increases to Markov time decreasing.

FIGURE 6

Experimental results verses equation approximation for optimal 
policy (τπ) of rank i (Ri) as function of Markov time.

FIGURE 7

Experimental results verses equation approximation for probability of 
success selecting rank i (Ri) within rank s (Rs) where {i|i ∈ n: i ∈ [1, s]} 
and {s ∈ ℤ: s ∈ [1, n]}.
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Realistically, a researcher would have the ability to save each 
evaluated NN model to call upon in the future; thus, modifying the 
rules of the CSP to an extent where the best “candidate” interviewed 
can always be “hired” no matter of the Markov time. While typically 
the limiting computational resource is processing time and power, if 
storage is the limiting computational resource, then a simple operating 
procedure of saving the best relative NN model found thus far in 
memory would suffice.

This “best found” NN model in memory is analogous to the “call 
back” feature previously described. As better relative NN models are 
found within the NAS search space, they would replace the NN model 
occupying the “call back” spot. Logically, as storage is an inexpensive 
computational resource and the data generated to construct a 
complete blueprint of a NN model is likely orders of magnitude less 
than the data used to train each NN model, more than one “call back” 
position would exist. This allows the researcher to save multiple NN 
models and explore which NN building block components, like those 
listed in Table 1, are driving the best performance. This could further 
help the researcher limit the NAS search space by eliminating certain 
NN building block components from the NAS design space.

Figure 8 visualizes these results over the 20,000 cycles of the 
experiment. Independent of Markov time used, the best NN model 
rank for possible “call back” selection was 1R . As expected, the 
upper bound on the highest (worse) NN model rank for possible 
“call back” decreases as Markov time increases. The average NN 
model rank available for “call back” also followed this trend. This 
average NN model rank available for “call back” is computed 
as follows:

	
1CBP

iR τ −= 	
(7)

While Equation 7 offers a rudimentary approximation for the 
average NN model rank available for “call back,” an upper bound 
approximation is appropriate for more risk adverse researchers. 
Due to the mechanics of implementing a “call back” feature, if the 
best-performing NN model (R1) was not within the rejected 
population subset (r/n) at a given Markov time, the lowest 
performing NN model rank selected had an upper bound 
defined as

TABLE 3  Probability of discovering a NN model within rank 10 or better (R1–10).

Neural network 
model rank1

Total population of 100 Total population of 672

Markov time as 
percent of population 

for rank’s optimal 
policy2

Probability of success 
discovering best ranks 

within rank3

Markov time as 
percent of population 

for rank’s optimal 
policy2

Probability of success 
discovering best ranks 

within rank3

1 37% 0.3732 37% 0.3703

2 31% 0.5214 29% 0.5172

3 23% 0.6057 27% 0.5983

4 21% 0.6637 23% 0.6507

5 18% 0.7055 20% 0.6922

6 17% 0.7373 19% 0.7250

7 17% 0.7638 16% 0.7476

8 15% 0.7848 16% 0.7695

9 15% 0.8015 16% 0.7863

10 14% 0.8167 15% 0.7990

1Neural network model ranked by performance; best performing first.
2Variability in the Markov Time as Percent of Population for Rank’s Optimal Policy between differing total populations is due to rounding to the nearest integer value (whole, non-fractional 
number). This occurs due to the nature of the Secretary Problem: the optimal policy for a given Rank may not match the reality of decision making. Such as the optimal policy for selecting 
Rank 1 is to reject 36.8% of the total population; however, it is not possible to reject 0.8% and interview 0.2% of an applicant, thus integer value rounding must occur.
3Similar to table footnote 2, variability is due to rounding to the nearest integer value when the PDF of the modified version Secretary Problem evaluated at each Markov Time variant for each 
ordinal Rank in ascending order followed by computing the CDF at each Markov Time variant halting at the optimal policy discovered.

TABLE 4  The NN model rank bound and Markov time as percentage of population required to achieve various probabilities of success.

Probability of success 
discovering

Total population of 100 Total population of 672

Markov time as 
percent of 

population for rank’s 
optimal policy

Neural network 
model rank bound/as 

percent of total 
population

Markov time as 
percent of 

population for rank’s 
optimal policy

Neural network 
model rank bound/as 

percent of total 
population

0.85 11% 13/13% 11% 16/2.3%

0.90 9% 20/20% 7% 28/4.16%

0.95 5% 36/36% 5% 59/8.77%

0.99 2% 72/72% 1% 273/40.62%
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FIGURE 10

Resource cost requirements per NN model rank i (Ri) by Markov time.

	
1( )CBP

iUR e nτ −= 	
(8)

Figure 9 shows dependencies represented by Equations 7 and 8 
overlaid with experimental data collected. Although these two 
approximation equations deviate from the experimental data 
plotted at each end of Figure 9’s x-axis, they both provide useful 
preliminary decision points to researchers who require guarantees, 
justifications, or confidence metrics to manage communicating 
progress and performance estimates in NAS search 
space exploration.

The “call back” feature becomes even more powerful when a 
resource cost is applied to the computational hours required to 
build, train, test and evaluate each NN model within the NAS 
search space; these are known as NAS execution activities (NEAs). 
For the current experiment, the average time to perform these 
NEAs per NN model per dataset per cycle was 17 min 8 s. Thus, 
there is an inherent overhead resource cost associated with 
executing the CSP and its variants. In this particular experiment, 
a “baseline” overhead cost is associated with each Markov time as 
percent of total population n: seven networks per a single percent 
Markov time increment results in 1.998 h of computational cost. 
This resource “penalty” transforms the problem into a balancing 
act where the goal is to find the highest-performing NN model and 
halt the NAS function as quickly as possible to minimize 
computational resource cost. Figure 10 shows how this transformed 
problem plays out over the entire Markov time spectrum (τ −0.1 1.0 
where ({ }τ τ∈ ∈ : 0,1 ). At low Markov times ( )τ ≤ 0.04  the 
average BORS rank is higher (worse) than the average selected 
rank; this quickly reverses as τ > 0.04.

Additionally, the required resource cost to execute the CBP 
vice taking the BORS at each Markov time is more expensive. The 
“baseline” overhead cost should be seen as a “sunk” cost; that is, a 
cost required to perform NAS using this method would be levied 

on the researcher no matter which SP variant is chosen. 
Furthermore, a researcher should not discount the additional 
“sunk” cost required to perform NAS setup, integrated development 
environment configuration, automated software development 
pipeline orchestration, source code debugging episodes, and results 
verification and validation activities; these are known as NAS 
infrastructure support activities (NISAs). NISAs are likely to take 
more time to complete than executing the NAS effort itself if a 

FIGURE 9

Experimental results vs equation approximation to predict the upper 
bound and average rank i (Ri) selected if rank 1 (R1) is contained 
within the non-rejected population subset (BOR) at various Markov 
times.

FIGURE 8

Upper and lower bounds with average NN model rank i (Ri) available 
with the “call back” feature (CBP) implemented along with standard 
deviation (σ) of Ri overlaid.
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single NAS cycle is executed. In this experiment, NISAs took an 
additional 25 min 42 s per NN model to conclude. This brings the 
original time per NN model to execute for a single experimental 
cycle from 17 min 8 s to 42 min 50 s, representing a 149.99% 
increase in resource cost.

However, NISAs tend to be a fixed cost as compared to the 
variable cost of NEAs. If multiple NAS cycles are to be executed or 
the total population is extremely large, the cost of NEAs will 
undoubtedly be much larger than the cost of NISAs due to cost 
sharing. As this experiment performed five NAS cycles per dataset, 
the total experiment NISA cost was 575 h 40 min 12 s. The total 
experiment NEA cost was 1,918 h 54 min. In terms of cost per NN 
model per dataset per cycle: NEA cost remains at 17 min 8 s, NISA 
cost drops to 2 min 34 s. Therefore, it is imperative for researchers 
to make use of non-manual, automated tools and routines to 
minimize human-input errors, downtime of NAS phase handoff 
sequences between tool chains, and flexible NISAs to support reuse 
for future NAS endeavors.

For the implementation of CBP, it is recommended a researcher 
endeavor to save the parameters required to rebuild each NN 
model discovered. If computational resources do not allow for this, 
saving the highest performing NN model at each state space search 
step is sufficient. Additionally, it is recommended that the 
researcher explore a CBP minimum of 4% ( πτ ≥ 0.04 ) of the NAS 
search space where n > 20. At this Markov time, the average rank 
of the rejected NN model (BORS) drops below the average rank of 
the NN model selected (SV) using the CSP rules. Thus, a NN 
model within the rejected Markov time population will, on average, 
be a better rank than not utilizing a “call back” feature. This fact, 
tied with a carefully crafted resource cost function, will aid the 
researcher in making the best use of computational resources with 
satisfactory NAS search space exploration coverage.

5 Discussion and future work

The application of OST to NAS is a viable solution for researchers 
to pursue; if and only if the researcher has ensured the NAS 
methodology fits the constraints and assumptions of the SP rules set 
up. Key constraints and assumptions include applicants are selected at 
random to be interviewed, each applicant can be ranked relative to 
each other as they are interviewed, and the total number of applicants 
n is known and is greater than or equal to 20. Each of these can 
be overcome with proper NAS setup.

For instance, if the selection and evaluation of each NN model 
is not done at random, much of the benefit gained from executing 
the CSP’s optimal policy is negated. This issue is mitigated by 
either: enumerating each NN model within the search space and 
then selecting at random from this enumerated list to be built, 
trained, tested and evaluated, or the code used to build each NN 
model can select the NN building block components from a 
determined set at random and then check the resulting 
combination of the selected NN building block components are of 
a unique configuration.

Knowing the total number of applicants n is an essential 
element to the CSP’s optimal policy. The simplest way to calculate 
the total number of neural network models within the NAS 
search space is to build determined sets of neural network 

building block components and then apply the Rule of Product 
in combinatorics. If this NAS design space is determined to 
be intractable, the researcher may be able to further bound this 
NAS design space by performing a sensitivity analysis on the 
neural network building block components. This allows the 
researcher to remove neural network building block component 
options that do not significantly contribute to model 
performance. However, caution must be  exercised when 
conducting this maneuver as it opens up the resulting NAS 
selection to bias.

The researcher can also choose to apply the solution to the SP 
and its variants to the time domain aspect of their NAS effort. 
That is, if the NAS design space is determined to be intractable, 
the researcher should devote ~37%, ~15%, or ~4% of the NAS 
effort’s schedule to executing the chosen SP variant’s solution. The 
researcher should also take care to list all the variables of the NAS 
endeavor that are dynamic outside of the neural network building 
block components. These dynamic variables may include items 
such as artificial neural network structure (class), training 
parameters (dropout frequency, dataset characteristics (such as 
resolution size, color channel options, and the like for images), 
batch size, epochs, etc.), and number of cycles the endeavor will 
be repeated, if any. All these dynamic variables, if not accounted 
for and controlled, will have an effect on the results of the NAS 
endeavor. If the total number of applicants n is below 20, a new 
approach will need to be pursued.

The CSP’s optimal policy is also dependent on the hiring 
manager’s ability to rank each applicant relative to each other. While 
this is a simple endeavor for a researcher as each NN model can 
be assigned a performance score based on its ability to succeed at the 
desired task (such as image classification), the infrastructure support 
to automate a “pipeline” for this is not a simple undertaking. To ensure 
NAS configuration control and efficient use of resources, a seamless 
process from selecting the neural network model to be built; collecting 
and cleaning data; building, training, testing, and evaluating NN 
models; analysis of resulting performance scores; and data recording 
functions will need to be automated to the fullest possible extent. This 
will likely involve multiple code bases, programming languages, 
analysis applications, computational architectures, and data storage 
formats. These are items of concern for any software intensive project; 
a researcher will need to understand and identify the limitations, 
unique behaviors, and special scenarios that may arise not only within 
the NAS endeavor, but as well as within the tools being used to execute 
the NAS endeavor. Examples include accounting for latent bugs, 
deprecated library dependencies, and numerical data limitations 
between programming languages used; like those of numerical 
precision, rounding, and cutoff.

Lastly and most importantly, the decisions made during the 
design phase of the NAS search space are critical. Due to the nature of 
the SP, there is no guarantee in discovering a high-performing NN 
model within a NAS search space for the problem it is to be applied 
to. There is a high degree of confidence in discovering a high-
performing NN model within the search space relative to the other 
NN models contained within the search space. Thus, researchers 
should pair this paper’s findings with “smart” NAS search space design 
practices aligned to the problem to be solved.

Table  5 succinctly summarizes the above key constraints and 
assumptions of applying OST to the SP and its variants for use within NAS 
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endeavors. Table 5 also conveys recommendations and considerations to 
researchers, by SP variant, for values to use in determining NAS search 
space coverage in terms of Markov time as a percentage of total population 
and potential computational resource savings.

In the course of this experiment, many interesting artifacts 
were uncovered and would benefit from further investigation. 
These fall into three categories: equation refinement, hardware 
optimization, and integration with state-of-the-art NAS search 
and evaluation techniques. Equations 4–8 aid researchers in 
helping to estimate the central questions before executing a SP 
influenced NAS endeavor. Equation 4 provides researchers with 
an estimate of the upper bound (rank no worse than) of a NN 
model’s performance rank if the best performing NN model (R1) 
was not rejected when executing the CSP. Equation 5 provides 
researchers with an estimate of the required amount of search 
space to explore for a given rank when executing the GEP variant. 
Similarly, Equation 6 provides researchers with a probability 
estimate of how likely the discovery a rank of interest is within a 
rank range. Equations 7 and 8 give researchers the ability to 

estimate the average rank and the worse rank that could 
be selected as tied to the amount of search space explored when 
executing the CBP variant. The importance of these equations to 
researchers who must justify the expenditure of resources and 
schedule timelines to conduct NAS efforts and then defend such 
justifications with data while communicating confidence levels to 
leadership, cannot be understated.

While Equations 4–8 offer researchers a starting point to help 
estimate central questions before executing a SP influenced NAS 
endeavor, it is clear these equations need to be further refined and 
generalized for different values of n to increase their accuracy. 
Thus far, the equations have only been briefly tested against search 
space sizes of 100–3,500 stepped at increments of 50 and held to 
be a guiding heuristic when executing the SP and its variants. In 
support of this, datasets containing unique, non-repeating 
random numbers simulating the performance of each NN model 
for these population sizes were generated along with the results of 
executing the SP against each of these populations and made 
publicly available.

TABLE 5  Key constraints, assumptions, recommendations, and considerations for all SP variants.

Key constraints and assumptions for all secretary problem variants

A The total number of neural network models within the NAS search space is known

B The total number of neural network models within the NAS search space is at least 20 (n ≥ 20)

C
Neural network models are selected at random to be interrogated and ranked; Every neural network model within the NAS search space has an 

equal chance at being selected

D Each neural network model interrogated is relatively ranked from best to worst against only previously interrogated neural network models

E Every neural network model within the NAS search space can be uniquely ranked; No ties exist

Recommendations and considerations by secretary problem variant

Secretary problem 
variant

Recommend optimal 
policy minimum ( τπ  or 

r/n)

Computational resource 
savings (times better)

Considerations

CSP 0.368 2.7x

Interrogating 36.8% of the NAS search space returns 

the highest probability of success in discovering the 

best performing neural network model;

Interrogating 36.8% of the NAS search space may not 

be possible for certain total population values of n;

Rounding up to the nearest population unit integer 

may be required

GEP 0.15 6.7x

Interrogating 15% of the NAS search space gives an 

80% probability of success in discovering a neural 

network model of Rank 10 or better;

As the probability of success in discovering a neural 

network model of the best Rank with a certain Rank 

range grows, the required exploration of the NAS 

search space shrinks resulting in a Rank increase of 

the best Rank discovered

CBP 0.04 25x

Interrogating at least 4% of the NAS search space 

returns a better Rank on average with the “call back” 

feature as compared to the average Rank selected 

using the CSP rules;

Interrogating at least 10% of the NAS search space 

returns a better Rank on average than the GEP 

optimal policy of 15%
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Another area for future investigation was uncovered when 
formulating Equation 4. Dynamic programming was used during 
the initial stages of the experiment to ensure the results of the CSP 
could be verified and validated. During this painstaking process of 
implementing a test-driven software development paradigm in 
Visual Basic for Applications, the halting of the CSP at various 
Markov times results in two sets of data: a rejected set of NN models 
and a not-yet rejected set of NN models. The rejected dataset was 
searched to reveal the best (highest performing) rank rejected and 
reveal the best rank remaining within the not-yet rejected dataset. 
Additionally, the rejected dataset was searched to ascertain if the 
best NN model of R1 was contained within. Thus, if the NN model 
of R1 was not within the rejected dataset, the minimum (highest 
performing) rank within this dataset was subtracted from the 
minimum (highest performing) rank contained within the not-yet 
rejected dataset; this revealed how many ranks and positions in 
memory could possibly be needed to find a better rank. Over the 
20,000 experimental cycles, Equation 4 held as an upper bound on 
potential positions within memory needed for better ranks to 
occupy. Extending this from the CSP to the GEP and CBP variants 
may offer valuable design insights when developing computational 
hardware to implement an optimal stopping algorithm upon which 
must contend with size, weight, power, and cooling constraints for 
random search algorithms.

The final area for future investigation is the applying the 
findings of this paper to other state-of-the-art, random and 
non-random, NAS search strategies and evaluation techniques to 
ascertain the possible benefits and limitations of integration. 
While the solution to the SP and its variants are finite MDP 
problems and dependent on random selection, it is not clear if a 
“smartly” designed NAS search space making use of micro search 
cell-based structures (like that of DARTS; Liu et  al., 2019) is 
paired with a one-shot (Bender et al., 2018), once-for-all (Cai 
et al., 2019), knowledge distillation (Gou et al., 20121), or other 
NAS search strategies with this paper’s findings overlaid on top 
to act as a halting policy would be beneficial. The initial suspicion 
is that the findings of this paper may only be useful as an optimal 
policy for random NAS search strategies with robustly designed 
NAS search spaces. However, empirical evidence is needed.

6 Conclusion

The Secretary Problem has potential to help inform researchers 
when conducting NAS in a manner consistent with the key constraints 
and assumptions of the famous decision-making riddle. The 
application of the SP and its variants are both feasible to implement 
and viable to execute. To do so, however, requires a careful 
understanding of the SP’s limitations, NAS search space design 
decisions, and the experimental infrastructure support required to 
be successful in executing this endeavor.

Results show a researcher would have a high-probability of 
success in finding the best performing (highest-rank) NN model 
relative to the performance of other NN models within a NAS search 
space if they applied the CSP unaltered and explore a minimum of 
37% of the NAS search space. However, these results will only 
materialize if the initial constraints and assumptions of the problems 
are adhered to.

If the modified or modern version of the SP is executed, 
significant increases in the probability of successfully finding a 
relative overall top-ranked NN model will be realized coupled with 
a drop in required search space exploration to 15 and 4%, 
respectively. Additionally, the resource cost to explore the NAS 
search space can be limited resulting in 6.7 and 25 times decrease in 
computational costs, respectively.

The authors plan on applying the findings of this paper to 
investigate other state-of-the-art, random and non-random, NAS 
search strategies, evaluation techniques, and datasets to ascertain the 
possible benefits and limitations in the future.
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