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Common bean production in Tanzania is threatened by diseases such as bean rust 
and bean anthracnose, with early detection critical for effective management. This 
study presents a Vision Transformer (ViT)-based deep learning model enhanced 
with adversarial training to improve disease detection robustness under real-
world farm conditions. A dataset of 100,000 annotated images augmented with 
geometric, color, and FGSM-based perturbations, simulating field variability. FGSM 
was selected for its computational efficiency in low-resource settings. The model, 
fine-tuned using transfer learning and validated through cross-validation, achieved 
an accuracy of 99.4%. Results highlight the effectiveness of integrating adversarial 
robustness to enhance model reliability for mobile-based plant disease detection 
in resource-constrained environments.
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1 Introduction

Agriculture is vital to Tanzania’s economy, contributing significantly to export revenues 
and accounting for approximately USD 13.13 billion of the country’s Gross Domestic Product 
(GDP) in 2023 (Economics, Trading, 2022; Statista, 2023). The Agricultural Census of 
2019/2020 revealed that around 7.8 million households (65.3%) are involved in agricultural 
activities, and out of those, around 5.1 million are exclusively engaged in crop farming only 
(National Bureau of Statistics, 2019). This highlights the importance of agriculture as the 
primary occupation for most households in Tanzania (Tryphone and Nchimbi-Msolla, 2010).

The common bean (Phaseolus vulgaris) is a crucial crop in Tanzania’s smallholder farming 
system, serving as both a cash and food crop, and is considered the principal source of dietary 
protein for more than 75% of rural households (Hillocks et al., 2006; WordBank, 2017). The 
common bean is also a predominant legume crop, accounting for approximately 78% of 
cultivated land (Binagwa, 2016). However, common bean farming in Tanzania faces substantial 
challenges, particularly in managing pests and diseases (Binagwa, 2019; Wolter, 2009). Farmers 
incur high costs in combating diseases, often without adequate technical support, which leads 
to ineffective disease control, pollution, and adverse outcomes (Peshin and Dhawan, 2009; 
Watkins, 2022).

Bean rust and bean anthracnose are among the major diseases that pose significant threats 
to common bean production for most smallholder farmers in Tanzania (Peshin, 2014). Bean 
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rust is a fungal disease that can severely reduce seed and pod quality, 
leading to yield losses of up to 100% if not properly managed, 
particularly in temperatures between 17°C and 25°C with high 
humidity (Greenlife, 2023; Schwartz et al., 2005). Bean anthracnose, 
on the other hand, is a seed-borne fungal disease attacking leaves, 
stems, and pods, often leading to early plant death, especially during 
cold seasons. Bean anthracnose can cause yield losses ranging from 27 
to 86%, depending on weather conditions and management practices 
(Girma et  al., 2022; Buruchara et  al., 2010; Masunga et  al., 2020; 
Kadege et al., 2022). Traditional methods, such as crop scouting and 
visual inspections, are still widely used but have limited capacity for 
early detection and timely response (Rajabu et  al., 2022; Slimani 
et al., 2023).

To address these limitations, recent advances in deep learning and 
computer vision have shown promise. These technologies enable 
automatic identification, classification, and quantification of plant 
diseases through image analysis, facilitating earlier and more effective 
disease management (Mohanty et al., 2016; Ferentinos, 2018; Loyani, 
Loyani et al., 2021). Despite their promise, many models are trained 
on images from controlled environments, limiting their accuracy in 
real-world conditions (Alzubaidi et al., 2023). This underscores the 
need for more diverse, field-acquired datasets to ensure reliable 
performance in practical settings (Barbedo, 2018).

Beyond dataset limitations, model robustness is also compromised 
by inherent architectural vulnerabilities in commonly used neural 
networks. These structural weaknesses have been exploited in crop 
disease models through adversarial attacks, as reported by Luo and Li 
(2021). This vulnerability stems from the architectural design of 
specific neural networks, such as Convolutional Neural Networks 
(CNNs), Long Short-Term Memory (LSTM) networks, and Rectified 
Linear Units (ReLU) units, which exhibit linear behavior to facilitate 
optimization during training (Szegedy et al., 2014). However, this 
linearity makes these networks vulnerable to adversarial perturbations 
intentionally designed to exploit this property (Chen and Liu, 2023). 
When subjected to such perturbations, the performance of these 
models in accurately classifying plant diseases can be significantly 
compromised, leading to misclassifications and reduced reliability in 
real-world applications (Silva and Najafirad, 2020).

Convolutional Neural Networks (CNNs) have long been the 
foundation of image classification tasks in agricultural applications, 
particularly in the detection of plant diseases. However, Vision 
Transformers (ViTs) have recently emerged as a powerful alternative 
due to their self-attention mechanism, which captures long-range 
dependencies and subtle patterns in images more effectively 
than CNNs.

To enhance the performance and robustness of Vision 
Transformers (ViTs) under noisy, artifact-laden, or adversarial 
conditions, researchers have adopted adversarial training techniques. 
This technique exposes models to intentionally modified inputs 
(called adversarial examples) during training. One of the strongest 
methods in this category is Projected Gradient Descent (PGD), which 
iteratively adjusts an image to mislead the model while keeping the 
changes imperceptible to humans. Similarly, AutoAttack is a 
composite, automated benchmark that combines multiple adversarial 
strategies to evaluate a model’s worst-case robustness. While both 
PGD and AutoAttack provide strong theoretical guarantees, they are 
computationally expensive and often unsuitable for real-time 
deployment in low-resource agricultural settings (Ali et al., 2024).

In contrast, the Fast Gradient Sign Method (FGSM) provides a 
more lightweight adversarial training approach by modifying the 
input image in a single step (Chang et al., 2018). Although FGSM may 
be considered weaker than PGD and AutoAttack, studies such as 
Waghela et al. (2024) have demonstrated that it provides a practical 
trade-off between robustness and efficiency. Whereas adversarial 
training in ViTs has been investigated in medical imaging and natural 
image classification, its application in real-world, field-based plant 
disease detection remains poorly understood (Naseer et al., 2021).

This study aims to develop a robust plant disease detection model 
by combining Vision Transformers with FGSM-based adversarial 
training, tailored for real-world, low-resource agricultural settings. 
Specifically, this study combines transfer learning using ViT with the 
FGSM to reduce model vulnerability and enhance detection accuracy. 
By examining both computational feasibility and adversarial 
robustness, this research contributes to the growing body of work on 
deep learning in agriculture, providing practical insights for future 
applications in resource-constrained farm contexts.

2 Materials and methods

2.1 Conceptual framework

Figure 1 provides an overview of the proposed method from the 
data collection to validation and delivery of an optimized model. The 
dataset was collected from farms and then preprocessed; subsequently, 
it was divided into training and testing sets. The models were then 
trained on the training set of the dataset, continuously optimized, and 
then validated using the testing set to obtain an optimized model.

2.2 Datasets

A thorough dataset was gathered from bean farms in Tanzania’s 
Southern Highlands, specifically in the Njombe, Iringa, and Mbeya 
regions, which were chosen for their high bean output and disease 
frequency, in order to build a robust model for common bean disease 
detection (Agro, Techno Strategies, 2018). Using mobile phone 
cameras under natural field conditions, a total of 59,072 images were 
gathered over 3 months and published at Zenodo.1 The collection 
comprised healthy leaves as well as those displaying symptoms of 
anthracnose and rust.

Trained agricultural extension agents with knowledge of plant 
pathology annotated the images. To identify and classify symptoms at 
the site, they utilized national diagnostic guidelines from TOSCI 
(Tanzania Official Seed Certification Institute) manuals and the 
CIMMYT disease guide. Local agricultural researchers cross-verified 
the annotation process to lower mislabeling risks, mainly between 
visually similar diseases. Through achieving a consensus among 
annotators, uncertain cases were settled and marked for additional 
examination. An additional class containing unrelated images, 
sourced from the internet and including noise or artifacts, was added 
to enhance robustness. This class helped the model learn to identify 

1 https://zenodo.org/api/records/8286126/files-archive
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and appropriately reject inputs that do not correspond to any of the 
target disease categories. The dataset then consisted of four classes: 
Healthy, Rust, Anthra, and Images containing noise or artifacts.

2.3 Data preprocessing

Before training the model, the dataset underwent a preprocessing 
process to ensure consistency and compatibility with the model’s input 
requirements. The images were resized to a uniform dimension of 
512×512 pixels, which strikes a balance between preserving important 
details and maintaining computational efficiency during training. To 
normalize the pixel values and center the data distribution, each image 
was divided by 255, scaling the pixel intensities to a range of 0 to 1. 
This normalization step helps the model converge more quickly 
during training and reduces the impact of illumination variations 
(Ioffe and Szegedy, 2015).

To address the challenges of variability and noise in real-world 
bean leaf imagery, a unified data preprocessing and augmentation 
pipeline was implemented, as illustrated in Figure 2. The augmentation 
process was carried out using the Albumentations library, known for 
its flexibility and efficiency in computer vision tasks. A modular 
augmentation suite, including geometric, photometric, and adversarial 
transformations, was constructed.

To simulate real-world distortions commonly found in farm-
acquired images, the augmentation pipeline included transformations 
such as color jittering, random cropping, Gaussian blur, perspective 
transformation, elastic deformation, zooming, rotation, and 
horizontal/vertical flips. To improve robustness against adversarial 
perturbations, FGSM-based noise was introduced at the input level 
using custom PyTorch routines. This entire augmentation logic was 
developed within a reproducible, version-controlled environment to 
ensure consistency and transparency.

Image annotation was performed manually using LabelImg, a 
widely adopted tool for bounding box labeling with deep learning-
compatible formats. All transformations and annotations were logged, 
and the dataset was split into training, validation, and test sets with 
careful attention to class balance and diversity. These augmentation 

techniques produced a comprehensive dataset that reflects the 
variability of real-world field conditions, enhancing the model’s ability 
to generalize. Figure 3 illustrates examples from the dataset, while 
Table  1 presents the distribution of the dataset before and after 
augmentation. To ensure robustness and reduce overfitting, both 
5-fold cross-validation and an 80/20 hold-out test split were applied.

2.3.1 Adversarial noise injection
The Fast Gradient Sign Method (FGSM) is an efficient technique 

for generating adversarial examples by introducing subtle, structured 
perturbations to input data in a way that intentionally misleads a 
model. Initially proposed by Goodfellow (2015) FGSM is based on the 
insight that deep learning models, particularly those using ReLU 

FIGURE 1

The conceptual framework.

FIGURE 2

Unified implementation pipeline.
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activations, are often too linear in high-dimensional spaces, making 
them susceptible to small perturbations that can lead 
to misclassification.

According to Goodfellow et  al. (2020) the FGSM algorithm 
computes adversarial examples by adjusting the input image x in the 
direction of the gradient of the loss function J(θ, x, y).

( )x _adv x _ x J ,x,ysignε ∇ = + θ 
Where:

 • x_adv is the adversarial image,
 • ε is a small scalar that controls the size of the perturbation,
 • ∇_x J(θ, x, y) is the gradient of the loss to the input,
 • sign(·) indicates the sign function,
 • θ represents the model parameters,
 • y is the actual label.

FGSM perturbs the image in the direction that increases the 
model’s loss, producing a visually similar image that can deceive 
the classifier if it has not been trained to be  robust (Tramèr 
et al., 2018).

In the context of agricultural disease detection using images 
captured in uncontrolled environments, such as farm fields, these 
perturbations simulate real-world image degradations caused by 
environmental noise, motion blur, low-light conditions, unintended 
hand motion, or poor camera quality. By training the model with 
FGSM-augmented images, the model learns to resist these small 

adversarial changes, thus enhancing its reliability and robustness 
during deployment in practical, resource-constrained settings.

To enhance the model’s resilience against adversarial inputs and 
ensure robust performance under real-world variations, the FGSM 
was implemented. This forced the model to focus on the essential 
discriminative features rather than overfitting to minute details that 
may be corrupted by noise. As demonstrated by Xu et  al. (2019), 
FGSM enhances model robustness by exposing it to realistic 
adversarial scenarios.

2.3.2 Perspective transformation
The real-world deployment of leaf disease detection models often 

involves mobile device cameras held at various angles. To prepare the 
model for this variability, perspective transformation was applied to 
simulate image captures from different viewpoints. As discussed by 
Ahmad et al. (2023), such transformations mimic real camera tilts and 
slants, thereby training the model to generalize better under 
non-frontal, off-axis imaging conditions. This helps ensure consistent 
and accurate performance when used in the field, especially by 
farmers with limited photography experience.

2.3.3 Color jitter
Outdoor image capture is subject to unpredictable lighting 

conditions such as bright sunlight, shadows, or cloudy skies. To 
simulate real-world conditions and enhance the model’s adaptability, 
color jitter was applied to randomly adjust the image’s brightness, 
contrast, saturation, and hue. This technique, recommended by 
Howard et al. (2017), diversifies the lighting spectrum encountered 
during training, allowing the model to maintain accuracy regardless 
of the environmental lighting conditions during image acquisition. 
This is particularly important in resource-constrained agricultural 
environments where lighting control is not feasible.

2.3.4 Rotation and flips
To increase the model’s robustness to the orientation of leaves in 

captured images, random horizontal and vertical flips, as well as 90°, 
180°, and 270° rotations, were applied (Shorten and Khoshgoftaar, 
2019). It has been shown that such transformations are effective in 

FIGURE 3

Sample of the common bean leaf images from the dataset.

TABLE 1 Dataset distribution before and after augmentation.

Class Initial images Augmented images

Images including noise 

or artifacts

17,531 25,000

Rust 22,198 25,000

Anthracnose 20,000 25,000

Healthy 24,973 25,000

Total 84,072 100,000
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preventing the model from becoming orientation-sensitive. This 
augmentation ensures that disease symptoms can be  accurately 
detected, regardless of how the leaf is positioned during capture, a vital 
consideration when relying on non-expert users, such as farmers or 
extension officers.

2.3.5 Random zooming
To simulate the varying distances at which users may take 

photos of leaves, random zoom transformations were introduced. 
This technique exposes the model to different scales of the same 
object, improving its ability to detect disease features across zoom 
levels. According to the work of Cubuk et al. (2019), scale-aware 
models are crucial for field-based applications, particularly when 
users unintentionally vary the distance between the camera and 
the leaf.

2.3.6 Gaussian blur
To account for the common issue of motion blur or camera focus 

imperfections, especially in handheld mobile photography, Gaussian 
blur was applied to a subset of the images. This technique subtly blurs 
the image, simulating the effects of camera shake or low-light focusing 
errors. Lim et al. (2019) suggest that incorporating blur in training 
data increases the model’s tolerance to low-fidelity inputs without 
degrading performance. Figure 4 shows sample dataset images of 
original images and images with a Gaussian blur.

2.3.7 Random cropping
Field images may contain only parts of leaves due to improper 

framing, occlusion, or zooming. Random cropping was applied to 
simulate partial visibility and train the model to detect disease 
symptoms even when the entire leaf is not visible. Rebuffi et al. (2021) 
highlighted this approach as beneficial for learning local features and 
improving detection accuracy in unpredictable field conditions.

2.3.8 Elastic transformation
Leaves naturally vary in shape due to genetic, environmental, and 

maturity differences. To simulate such realistic morphological 
diversity, elastic transformations were applied. This technique 

introduces small spatial deformations that mimic stretching or 
warping, helping the model generalize to non-uniform leaf shapes. 
Snyder et al. (2015) demonstrated the effectiveness of this method in 
improving resilience to biological variation.

2.4 The ViT model

The Vision Transformer (ViT) is a state-of-the-art deep learning 
model that achieves remarkable performance in various computer 
vision tasks, including image classification, object detection, and 
semantic segmentation (Dosovitskiy et al., 2021). The ViT architecture 
is based on the self-attention mechanism, which allows the model to 
capture global dependencies and learn effective representations from 
image data (Zhai et al., 2022). Figure 5, inspired by Dosovitskiy et al. 
(2021), illustrates the architecture of a ViT model adapted for 
classifying common bean leaf diseases.

The input to the model is a common bean leaf image, consisting 
of 512×512 pixel images, which is first divided into a sequence of 
16×16 patches. This patching process enables the model to capture the 
local features and spatial relationships of the leaf image, resulting in a 
total of 1,024 non-overlapping patches per image. Before being fed 
into the Transformer Encoder, image patches undergo a linear 
projection to map them to a 768-dimensional embedding space, and 
a learnable positional embedding is added to preserve the spatial 
structure of the input, thereby enabling more expressive 
representations. The patches were passed through 12 Transformer 
encoder layers, each comprising a multi-head self-attention 
mechanism with 12 heads, followed by a feed-forward layer with a 
hidden dimension of 3,072 units. The Multi-Head Attention block, 
with multiple attention heads, helps capture diverse features and 
relationships between patches, thereby enhancing the model’s focus 
on relevant parts for disease classification.

The final output passes through a classification head, a Multi-
Layer Perceptron (MLP), which maps the learned representations to 
specific disease classes, such as Anthracnose, Healthy, or Rust. The 
model uses supervised learning to associate representations with 
disease labels, optimizing to minimize classification errors. The Vision 

FIGURE 4

Examples of original images and images with Gaussian blur mimicking a low phone camera, typical of mobile phones used by farmers in the field.
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Transformer (ViT) architecture effectively captures local and global 
features, making it well-suited for plant disease classification, 
particularly for common bean leaves. Training on diverse datasets, the 
model generalizes well to unseen samples, improving disease detection 
accuracy in real-world scenarios. Additionally, adversarial training 
enhances the ViT model’s robustness and generalization.

2.5 Model training

The dataset passed through various stages during model training, 
as illustrated in Figure 6. The dataset was enhanced using a variety of 
augmentation techniques. The methods included the incorporation of 
the Fast Gradient Sign Method (FGSM) and random transformations 
such as rotations, flips, and perspective transformations. FGSM was 
employed as the adversarial training method due to its computational 
simplicity and ability to simulate real-world perturbations such as 
image blur or lighting changes (Waghela et al., 2024). Unlike PGD or 
AutoAttack, which require multiple backward passes, FGSM is 
suitable for rapid augmentation and compatible with on-device 
learning. A comparative experiment was conducted using PGD (3 
iterations, ε = 0.03), which demonstrated slightly improved robustness 
but required three times more training time and greater memory 
usage, making FGSM a more practical option for low-resource settings 
(Saleem et al., 2025). Other augmentation methods applied were color 
jittering, random cropping, and Gaussian blur. Label smoothing was 
employed as a regularization technique to prevent the model from 
becoming overconfident in its predictions (Müller et al., 2019). To 
mitigate the impact of noisy labels and outliers in the dataset, a 
weighted loss function was utilized to assign different weights to 
samples based on their reliability (Wang et al., 2020). The weights were 
calculated by adding adversarial noise, which was injected by using 
FGSM during training with epsilon set to 0.05.

The model used was ViT-Base (ViT-B/16), which has 12 layers, 12 
attention heads, and 768 hidden dimensions. To adapt ViT for the 

specific task of common bean disease detection, the model was fine-
tuned through transfer learning. The model was initialized with 
pre-trained weights from the ImageNet dataset, providing a solid 
foundation for feature extraction. The model was trained for six 
epochs, given computational restrictions and early convergence trends 
seen in pilot runs. The powerful feature transfer most likely caused 
this performance plateau by limiting additional accuracy gains outside 
of the early epochs. During training, the learning rate was dynamically 
adjusted using the 1-cycle learning policy, with a default peak learning 
rate of around 0.003 and early stopping with a patience of 10 epochs 
if the validation loss did not improve. The optimizer used was AdamW 
with β₁ = 0.9, β₂ = 0.999, and a weight decay of 0.01. A batch size of 64 
was used from the available GPU memory. Hyperparameter tuning 
was performed using a grid search strategy on learning rate (0.001–
0.005), patch size (16, 32), and dropout rate (0.1–0.3), selecting the 
best configuration based on validation F1-score. These were done to 
prevent overfitting and ensure the model’s convergence. Cross-
validation was employed to evaluate the model’s performance and 
ensure its robustness across various subsets of the data.

Performance metrics were averaged across folds to ensure 
consistent evaluation across different subsets. The model’s 
performance was evaluated using various metrics, including loss, 
accuracy, error rate, precision, recall, and F1 score. Table 2 summarizes 
the hyperparameters and value(s) used for training the ViT model.

2.6 Experimental setup

The study used the Tesla V100 GPU, which features NVIDIA 
Volta Architecture with 7 TFLOPS of double-precision Performance 
and 14 TFLOPS of Single-Precision Performance. It has 5,120 CUDA 
Cores and 640 Tensor Cores, 32GB of high-bandwidth memory 
(HBM2) VRAM, and a PCIe 3.0 ×16 Interface for fast data transfer. 
The training was completed in approximately 6 h for six epochs, with 
a batch size of 64. The peak GPU memory usage averaged 27 GB, and 

FIGURE 5

Vision Transformer (ViT) architecture (Dosovitskiy et al., 2021).
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the inference speed was recorded at 43 ms per image, supporting real-
time deployment in field conditions.

3 Results

3.1 Results

The adversarially trained Vision Transformer (ViT) model 
demonstrated superior performance on the test set compared to the 
adversarially trained CNN and non-adversarially trained ViT model. 
Precision, recall, and F1 scores were computed using micro-averaging. 
Due to the model’s strong performance across balanced classes and 
minimal classification errors, these metrics converged to the same 
value. The robustness was evaluated using adversarial accuracy under 
varying FGSM perturbations (ε = 0.01 to 0.05). As ε increased, 
accuracy decreased moderately, but the FGSM-trained model 
consistently outperformed the baseline. Applying FGSM perturbations 
at the input layer resulted in a + 1.2% improvement in test accuracy 
compared to perturbing intermediate encoder layers. Table 3 presents 
a detailed comparison of the results for the adversarially trained ViT 

model with the adversarially trained CNN and non-adversarially 
trained Vision Transformer (ViT) models. Table  4 presents the 
per-class evaluation metrics of the adversarial-trained ViT model. 

FIGURE 6

The conceptual framework for the training workflow.

TABLE 2 ViT model training hyperparameters.

Parameter(s) Value(s)

Epoch 6

Optimizer Adam

Learning rate 0.003

Evaluation metric Accuracy, Precision, Recall, 

F-measure

Loss Categorical cross-entropy

TABLE 3 Performance metrics of the ViT model on the test set.

Metric Adversarial 
trained 
model

Adversarial 
CNN-trained 

model

Non-
adversarial 

trained 
model

Accuracy 0.9940 0.9765 0.9740

Loss 0.0105 0.0504 0.0709

Error rate 0.0061 0.0235 0.0260

Precision 

score

0.9940 0.9752 0.9740

Recall 0.9940 0.9750 0.9740

F1 score 0.9940 0.9751 0.9740

TABLE 4 Per-class evaluation metrics.

Class Precision Recall F1-
score

Support

Anthra 0.9940 0.9880 0.9910 5000.0000

Rust 0.9940 0.9980 0.9960 5000.0000

Healthy 0.9900 0.9940 0.9920 5000.0000

Other 0.9980 0.9960 0.9970 5000.0000

Accuracy 0.9940 0.9940 0.9940 5000.0000

Macro avg 0.9940 0.9940 0.9940 5000.0000

Weighted 

avg

0.9940 0.9940 0.9940 20000.0000
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Figure 7 illustrates the confusion matrix, while Figure 8 illustrates an 
example of predictions made by the two models (adversarial ViT and 
non-adversarial ViT). Figure 9 shows the validation accuracy and loss 
curves of the adversarially trained ViT model. The accuracy trend 
increases, reaching a peak of 99.1%, while the validation loss gradually 
decreases, with slight fluctuations. This pattern indicates stable 
training and good generalization, suggesting that the model effectively 
learned relevant features without overfitting. Notably, after step 500, 
the validation accuracy remains high while the loss continues to 
decrease, confirming the convergence and robustness of the training 
process under adversarial conditions. Figure 10 shows the Precision 
score and F1 score curves of the adversarially trained ViT model. The 
precision steadily increases from approximately 0.955 to over 0.99 as 
training progresses. This trend suggests that the model is becoming 
increasingly accurate in correctly identifying positive disease cases 
while minimizing false positives. The F1 score, which balances 
precision and recall, also improves consistently, reaching a value of 
around 0.985. The slight fluctuations observed around step 400 may 
reflect the model adjusting to complex samples; however, the overall 
improvement suggests effective learning and better generalization.

3.2 Comparative results with other related 
works

The model efficiency results from other related studies were 
compared to those obtained in this work. The results of this study 
moderately align with those of earlier works, suggesting both 
convergence and divergence in findings (Table 5).

4 Discussion

The study developed two Vision Transformer (ViT) models, one 
trained with FGSM adversarial augmentation and the other without, 
to detect common bean rust and anthracnose diseases. The 
adversarially trained ViT significantly outperformed its 
non-adversarial counterpart across all primary evaluation metrics, 

including accuracy, precision, recall, F1-score, and loss reduction, 
affirming the hypothesis that adversarial robustness enhances model 
performance under real-world noise.

To evaluate the added value of the proposed adversarially trained 
ViT model, a comparative analysis was conducted against a CNN 
baseline trained under the same FGSM-based adversarial training 
regime. CNNs have traditionally demonstrated strong performance in 
plant disease tasks due to their ability to extract local features; 
however, they also exhibit inferior generalization under FSGM 
perturbations. The ViT model achieved higher accuracy and F1-score 
compared to the CNN model, indicating its enhanced ability to 
capture long-range dependencies and complex patterns in leaf 
textures. This validates that adversarially trained ViTs outperform 
even robust CNN architectures in challenging agriculture 
environments. These findings underscore the importance of 
incorporating transformer-based architectures in agricultural image 
analysis tasks, where data variability and environmental noise are 
prevalent. This comparison also addresses the concern regarding the 
absence of baseline models, demonstrating that the proposed ViT not 
only improves performance but also outperforms comparable CNNs 
under identical adversarial conditions. The ViT model’s attention 
maps offered insights into its decision-making, enhancing its 
interpretability and trustworthiness. This makes it a valuable tool for 
farmers, providing reliable disease detection even with limited 
imaging equipment. Figure  11 illustrates attention maps, which 
visualize the parts of the image that the model focused on.

To evaluate the generalizability of the proposed model beyond the 
curated dataset, an additional test was conducted using an 
independent set of real-world common bean leaf images collected 
directly from farms under natural conditions. This test set included 
leaves with varying lighting conditions, mixed infections, signs of 
abiotic stress, and pest damage conditions that commonly occur in the 
field but are underrepresented in controlled datasets. Trained 
agricultural extension agents used TOSCI and CIMMYT guidelines 
to assign labels to images showing mixed infections and stress 
symptoms. Each image was categorized based on field diagnosis 
records and observable symptom overlap. In cases where multiple 
diseases co-occurred or stress symptoms were present, the dominant 
visible symptom guided the labeling process. Where ambiguity arose, 
expert consensus and verification by local agricultural researchers 
ensured consistency in annotations. Although the model was not 
explicitly trained to detect multiple diseases within a single image, its 
predictions on such cases were independently examined during 
evaluation. The model exhibited high predictive accuracy across these 
challenging cases, demonstrating robustness in uncontrolled field 
conditions. Figures 9, 10 illustrate a gradual increase in accuracy and 
F1-score, accompanied by a slow decrease in loss over the training 
epochs, indicating improved learning, generalization, and limited 
overfitting, as shown by the descending validation loss.

These findings are consistent with Goodfellow (2015), who initially 
proposed the FGSM as a way to generate adversarial examples that force 
models to learn more invariant and robust features. Studies like You et al. 
(2023), demonstrated improved generalization in plant disease classifiers 
using adversarial perturbations. In agricultural contexts, where input 
images are often noisy and inconsistent, this robustness becomes not just 
beneficial but essential. Unlike Singh et al. (2022), who reported an 
accuracy of 91.74% using EfficientNetB6 on clean datasets, the proposed 
model achieved an accuracy of 99.4% on noisy, field-collected data. This 

FIGURE 7

Confusion matrix for adversarial trained ViT model.
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FIGURE 8

Prediction of adversarial versus non-adversarial models.

FIGURE 9

Performance (validation accuracy & validation loss) of the adversarial trained ViT model.
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TABLE 5 Comparative results with other related works.

Crop diseases Dataset Model architectures Classification task Reference Accuracy

Common bean leaf 

diseases

1,766 collected images 

of bean leaves

GoogleNet Multi-class (4 classes) Walle et al. (2024) 96%

Bean leaf diseases 1,295 collected images 

of bean leaves

Densenet121 Multi-classification (3 classes) Abed et al. (2021) 98.31%

Bean leaf diseases iBean EfficientNetB6 Multi-classification (2 classes) Singh et al. (2022) 91.74%

Several common bean 

diseases

PlantVillage ViT Multi-classification Borhani et al. (2022) 97%

Bean rust and 

anthracnose

84,072 collected 

images augmented to 

100,000 images of 

common bean leaves

ViT Multi-classification (4 classes) Proposed method 99.40%

highlights the superiority of adversarial training under realistic 
deployment conditions. These results align with Gomez et al. (2024), 
who emphasized the importance of robust augmentation techniques for 
object detection tasks in complex farm environments.

Compared to prior ViT-based models, such as those used in 
Borhani et  al. (2022), the proposed model introduces FGSM 
augmentation as a key enhancement. Expanding the comparison to 
Kumar (2024), who utilized a lightweight DeiT-Tiny transformer on 
clean data, our full-scale ViT (86 M parameters) was trained and 
tested on unstructured, noisy images, demonstrating robustness 
despite the higher computational cost. Nevertheless, since FGSM is a 
single-step perturbation method, it might not fully capture the range 
of adversarial noise that exists in the real world. To further increase 

robustness, future research should investigate more powerful multi-
step techniques, such as PGD or diverse augmentation.

Inevitable trade-offs were observed in this approach. While 
adversarial training enhances robustness, it can increase training time 
and introduce a risk of overfitting to adversarial patterns rather than 
natural variance. Additionally, this ViT model, although high-
performing, requires more memory and compute resources than 
CNN-based architectures. The ability to scale is limited by this 
constraint, particularly in low-resource environments where devices 
may not be  able to support such models without significant 
optimization. Nevertheless, the model exhibits potential for mobile 
deployment, with benchmarked inference speed of less than 300 ms 
on a Snapdragon 865 device.

Geographic constraints are one of the study’s limitations; the 
dataset used reflects Tanzanian field conditions and may not apply to 
other regions or crop types. Significant differences in leaf morphology, 
disease symptom expression, and environmental noise across different 
ecosystems could affect classification accuracy. Furthermore, the 
broader impacts of deploying AI disease detection tools for 
smallholder farmers necessitate that systems consider digital literacy, 
user trust, and equitable access. Participatory design, involving local 
farmers, extension officers, and policymakers, will be  essential to 
ensure the responsible deployment. Future iterations of this project 
should address ethical issues, particularly those related to algorithmic 
transparency and data privacy. To reduce the risk of misdiagnosis and 
enhance stakeholder trust, model calibration methods, confidence 
scoring, and explainable AI modules should be employed.

5 Conclusion and future work

This study developed a Vision Transformer (ViT) model enhanced 
with Fast Gradient Sign Method (FGSM) adversarial training for the 
early detection of common bean rust and anthracnose under field 
conditions in Tanzania. The proposed model demonstrated high 
classification accuracy, precision, recall, and F1-score, outperforming 
both the adversarially trained CNN and the non-adversarial ViT 
model. These results highlight the importance of incorporating 
adversarial robustness into vision-based plant disease classifiers, 
particularly in noisy, real-world settings. To ensure the reliability of 
the findings, a 5-fold cross-validation was performed, and 

FIGURE 10

Performance (Precision score &F1 score) of the adversarial trained 
ViT model.
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classification results were reported as mean ± standard deviation. The 
test analyzed the accuracy scores of each fold to statistically support 
the performance difference between the adversarial and 
non-adversarial ViT models. Additionally, the results confirmed the 
robustness of the proposed strategy by showing that the performance 
increase from FGSM training was statistically significant (p < 0.05).

Despite these promising results, the study has certain 
limitations, including the exclusion of comparative analysis with 
alternative transformer variants, which limits the assessment of the 
ViT model’s broader effectiveness. Future work should focus on 
expanding the comparative framework to include other deep 
learning models, such as EfficientNet, DenseNet, and hybrid 
CNN-Transformer architectures, under similar adversarial training 
schemes. Furthermore, interpretability can be  enhanced by 
integrating techniques such as Grad-CAM to illustrate model 
decision-making pathways. Expanding the dataset to capture a 
more diverse range of bean cultivars, disease stages, and regional 
variations will enhance the generalizability of the findings. Finally, 
deploying the model in lightweight mobile or edge-based platforms 
and validating its usability with farmers and agricultural experts 
will be essential for real-world application.
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Attention maps.
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