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The widespread adoption of generative agents (GAs) is reshaping the healthcare 
landscape. Nonetheless, broad utilization is impeded by restricted access to 
high-quality, interoperable clinical documentation from electronic health records 
(EHRs) due to persistent legal, ethical, and technical barriers. Synthetic health 
data generation (SHDG), leveraging pre-trained large language models (LLMs) 
instantiated as GAs, could offer a practical solution by creating synthetic patient 
information that mimics genuine EHRs. The use of LLMs, however, is not without 
issues; significant concerns remain regarding privacy, potential bias propagation, the 
risk of generating inaccurate or misleading content, and the lack of transparency 
in how these models make decisions. We therefore propose a privacy-, linguistic-, 
and information-preserving SHDG protocol that employs multiple context-aware, 
role-specific GAs. Guided by targeted prompting and authentic EHRs—serving as 
structural and linguistic templates—role-specific GAs can, in principle, operate 
collaboratively through multi-turn interactions. We theorized that utilizing GAs in 
this fashion permits LLMs not only to produce synthetic EHRs that are accurate, 
consistent, and contextually appropriate, but also to expose the underlying decision-
making process. To test this hypothesis, we developed a no-code GA-driven SHDG 
workflow as a proof of concept, which was implemented within a predefined, 
multi-layered data science infrastructure (DSI) stack—an integrated ensemble of 
software and hardware designed to support rapid prototyping and deployment. 
The DSI stack streamlines implementation for healthcare professionals, improving 
accessibility, usability, and cybersecurity. To deploy and validate GA-assisted workflows, 
we implemented a fully automated SHDG evaluation framework—co-developed 
with GenAI technology—which holistically compares the informational and linguistic 
features of synthetic, anonymized, and real EHRs at both the document and 
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corpus levels. Our findings highlight that SHDG implemented through GAs offers 
a scalable, transparent, and reproducible methodology for unlocking the potential 
of clinical documentation to drive innovation, accelerate research, and advance 
the development of learning health systems. The source code, synthetic datasets, 
toolchains and prompts created for this study can be accessed at the GitHub 
repository: https://github.com/HR-DataLab-Healthcare/RESEARCH_SUPPORT/
tree/main/PROJECTS/Generative_Agent_based_Data-Synthesis.

KEYWORDS

healthcare, data synthesis, privacy, generative agents, linguistics, information theory, 
synthetic health data generation (SHDG), clinical natural language processing (NLP)

1 Introduction

While the use of GenAI in healthcare offers substantial promise 
and is expected to become an integral part of regular clinical practice, 
its widespread adoption is limited by several critical challenges (Sai 
et al., 2024). These include fragmented and often inaccessible data 
silos, significant variability in the quality of real-world data, and 
complex ethical and legal considerations. Efforts to address these 
barriers are underway, including the implementation of federated 
learning approaches, the establishment of robust data governance 
frameworks that incorporate standards such as HL7 FHIR and FAIR 
principles, and the development of evolving regulatory measures—
such as the European Union AI Act and the General Data Protection 
Regulation. Collectively, these initiatives aim to foster a landscape of 
responsible and ethical innovation in healthcare AI (Mons et al., 2017; 
Busch et al., 2024; Woisetschläger et al., 2024; Ibrahim et al., 2025; Liu 
et al., 2025). For readers seeking concrete real-world clinical practice 
use cases of GenAI in healthcare information systems, see Sai et al. 
(2024) and Reddy (2024).

Real-world data as recorded in EHRs consists primarily of free-
text narratives that often contain valuable clinical insights that are not 
captured by structured data formats (Negro-Calduch et  al., 2021; 
Seinen et al., 2024). However, the synthesis of meaningful health-
related text has received little attention in GenAI literature (Murtaza 
et al., 2023; Ibrahim et al., 2025; Loni et al., 2025; Rujas et al., 2025). 
This represents a missed opportunity, not only in terms of data 
synthesis methodology, but also because free-text narratives often 
contain hidden and nuanced clinical information that is essential for 
meaningful patient understanding, accelerated early diagnosis, and 
improved clinical decision making (Negro-Calduch et  al., 2021; 
Seinen et al., 2024; Schut et al., 2025). Moreover, while methods for 
synthesizing structured EHR data are well established, the generation 
of synthetic free text from real-world EHRs remains a comparatively 
underdeveloped area (Murtaza et al., 2023; Ibrahim et al., 2025; Rujas 
et al., 2025).

High quality synthetic health data generation (SHDG) that 
emulates real-world clinical documents is emerging as a vital strategy 
to enable safe, scalable, and privacy-preserving GenAI implementation 
in health and care settings (Smolyak et al., 2024; Loni et al., 2025). To 
be precise, SHDG is a privacy-enhancing technology that entails the 
generation of synthetic data based on real-world datasets. These 
synthetic datasets are designed to retain the essential statistical 
patterns and relationships of the original data, without containing any 
directly identifiable information. The goal is to enable analyses on 
synthetic data that produce results closely mirroring those obtained 

from the real data (Murtaza et al., 2023; Drechsler and Haensch, 2024; 
Ibrahim et al., 2025; Rujas et al., 2025). Ideally fully interoperable and 
machine-readable, synthetic datasets provide a foundation for the 
development, testing, and validation of innovative applications 
ranging from personalized healthcare models to solutions that 
alleviate administrative workload (Ibrahim et  al., 2025; Rujas 
et al., 2025).

The growing promise and pitfalls of SHDG is best understood in 
the context of major breakthroughs in natural language processing 
(NLP) and GenAI, spanning early statistical approaches to today’s 
transformer-based language models. Synthetic data generation gained 
momentum in the early 1990s exemplified by Rubin’s (Rubin, 1993) 
multiple imputation framework and Little’s efforts on statistical 
disclosure through data masking (Little, 1993). Since 2010 the 
adoption of machine learning and deep learning has expanded the 
applications of synthetic data, especially in healthcare (Eigenschink 
et al., 2023; Murtaza et al., 2023; Drechsler and Haensch, 2024; Goyal 
and Mahmoud, 2024; Pezoulas et al., 2024). Deep learning models can 
automatically extract and represent intricate patterns from large 
datasets, thereby facilitating more accurate and efficient processing of 
information. Early approaches used models called convolutional and 
recurrent neural networks, which allowed machines to automatically 
process unstructured datasets such as images and speech without the 
need for feature analysis. However, deep learning model development 
is labor-intensive and complex (LeCun et  al., 2015; Goodfellow 
et al., 2018).

The use of Generative Adversarial Networks (GANs) has led to 
significant advances in data synthesis and can be classified as both 
deep learning and GenAI approaches. GANs rely on adversarial 
training, in which two deep neural networks—the generator and the 
discriminator—compete with one another until the discriminator can 
no longer distinguish between real and synthetic data, reaching 
equilibrium (Goodfellow et al., 2018; Baowaly et al., 2019; Ibrahim 
et al., 2025). It is the most widely adopted AI technology in the fields 
of health and healthcare for generating synthetic data. GAN models 
were originally developed to produce realistic pictures—such as 
images from magnetic resonance imaging (MRI) or dermatoscopy—
as well as to create continuous data. Continuous data includes 
numerical values that can take on any value within a range, like blood 
pressure, glucose levels, or patient age. In addition, specialized GAN 
models have also been used to generate time-series data, such as 
signals from electrocardiograms (ECG) and electroencephalograms 
(EEG) (Ibrahim et al., 2025).

The advent of transformer-based architectures revolutionized 
NLP by significantly enhancing language understanding (Vaswani 
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et al., 2017). Groundbreaking pre-trained language models such as 
“bidirectional encoder representations from transformer” (BERT) laid 
the groundwork for this transition by introducing mechanisms for 
capturing nuanced contextual relationships within text. Building upon 
this foundation, domain-specific adaptations like BioBERT and 
Clinical-BERT, trained on biomedical literature and clinical notes, 
respectively, substantially increased the fidelity with which deep 
learning could represent the intricate semantics of medical language 
through vectorization and embeddings of text into numerical 
expressions (Alsentzer et al., 2019; Lee et al., 2020; Bommasani et al., 
2021; Ibrahim et al., 2025). Capturing clinically meaningful concepts 
through tokenization, vectorization, and text embedding, however, 
remains a formidable challenge. For example, clinical notes contain 
valuable contextual information but are characterized by a variety of 
nomenclatures, abbreviations, misspellings, and synonyms both 
within and across healthcare disciplines (Cannon and Lucci, 2010; 
Doan et al., 2014; Meystre et al., 2017; Negro-Calduch et al., 2021; 
Seinen et al., 2024; Schut et al., 2025).

The evolution of transformer-based architectures culminated in 
the development of Large Language Models (LLMs) that are not only 
capable of language understanding—like BERT—but are also capable 
of language generation—like OpenAI’s GPT3—, called foundational 
models (Bommasani et al., 2021). LLMs further amplified generative 
and NLP capabilities—made possible by scaling up model 
architectures, leveraging enhanced computational power, and training 
on extremely large datasets. The emergence of novel functionality is 
associated with the so-called “scaling effect”—a phenomenon that was 
initially unforeseen and, to this day, remains inadequately understood 
(Kaplan et al., 2020; Coveney and Succi, 2025). Recent comprehensive 
surveys underscore the complexity and ongoing debate surrounding 
the generality of scaling laws, highlighting both their impressive 
predictive successes and significant limitations—especially when 
LLMs are applied in situations quite different from the functionality 
they were originally trained for, or when they face new types of data 
they have not seen before (Li et al., 2023; Sengupta et al., 2025). One 
of the most striking emergent properties of LLMs is their ability to 
respond to prompting—where users provide specific instructions or 
examples in natural language to guide the model’s output. This 
phenomenon allows for highly flexible and tailored use of LLMs 
without the need for additional fine-tuning, thereby broadening their 
practical utility in clinical document generation and comprehension. 
For example, prompting allows for zero-shot and few-shot learning, 
wherein LLMs can generate appropriate responses to tasks or 
questions with either no examples (zero-shot) or just a handful of 
provided examples (few-shot), greatly enhancing their versatility to 
synthesize realistic clinical narratives (Brown et al., 2020).

The rapid development of efficient, fine-tunable Small Language 
Models (SLMs) and multimodal SLMs is rapidly transforming 
healthcare. Unlike their bigger LLM counterparts SLMs can operate 
on-premises servers supporting local deployment, which significantly 
reduces costs, carbon footprint, and privacy concerns. These 
advances—as well as techniques like quantization, which reduce 
model size and accelerate inference time—are making it feasible to 
bring powerful language understanding and generation capabilities 
directly to the point of care, enabling clinical decision support, 
documentation, and patient interaction without reliance on high-end 
cloud infrastructure (Schick and Schütze, 2021; Dibia et al., 2024; 
Garg et al., 2025; Kim et al., 2025; Xie et al., 2025).

However, as GenAI becomes increasingly integrated into clinical 
workflows, it faces unique challenges specific to the medical domain. 
One of the most persistent and technically demanding issues is the 
precise segmentation and representation of multi-word clinical 
terms—such as “low blood pressure” or “low back pain” as well as their 
common abbreviations like “LBP.” Language models, including both 
LLMs and SLMs, often struggle to consistently recognize and encode 
such terms as unified clinical concepts. Inconsistent tokenization or 
lack of domain-specific context can lead to fragmented or distorted 
semantic representations, which in turn may compromise the 
accuracy of clinical information extraction, decision support, or 
narrative synthesis. This underscores the ongoing need for the 
development of more sophisticated prompting strategies tailored for 
healthcare, and the integration of concept embeddings, clinical 
practice guidelines, and real-world sample data to improve the realism 
and utility of synthetic clinical data (Beam et al., 2020; Chung et al., 
2023; Han et al., 2023; Li et al., 2023).

2 GA-assisted SHDG workflows

To overcome the challenges of semantic fragmentation and 
context loss, recent research has shifted toward collaborative, multi-
agent workflows to jointly tackle the complexity of clinical narratives 
and multimodal data. This new class of GenAI—known as Agentic AI 
or Generative Agents (GAs)—features multiple autonomous agents, 
each specializing in a particular task or sensory domain such as vision, 
language, audio, or touch (Chan et al., 2023; Park et al., 2023). That is, 
each agent can preside over its own dedicated LLM, prompted to 
address the unique challenges of its modality and dedicated task. By 
collaborating iteratively and sharing insights across these different 
modalities, GAs are able to process and integrate information from 
multiple sources—text, images, speech—generating content that is 
coherent and contextually rich (Qiu et al., 2024; Gridach et al., 2025; 
Hettiarachchi, 2025; Piccialli et al., 2025; Schneider, 2025).

Unlike traditional GenAI, GAs can gather real-time data from 
various sources, use different tools, design custom workflows, and 
refine their strategies through feedback, making them highly flexible 
and context aware. This collaborative approach allows specialized 
agents to solve complex tasks—such as SHDG—within a single 
workflow (Qiu et  al., 2024). Some advanced workflows also 
incorporate language-agnostic concept models, which can further 
enhance the quality and performance of data synthesis (Daull et al., 
2023; Barrault et al., 2024; Xie et al., 2024; Jin et al., 2025).

Building on this flexible and context-aware foundation, role-
specific GAs are able to distribute cognitive workloads and leverage 
the strengths of multiple specialized agents within a single workflow 
(Xie et al., 2024; Jin et al., 2025). This not only allows for more effective 
problem solving but also enables the application of domain-specific 
expertise and enhances system robustness across a range of complex 
real-world tasks. For example, by leveraging advanced language 
models such as GPT-4, GAs can support workflows in scientific 
literature review writing (Abdurahman et  al., 2025), sentiment 
analysis (Vasireddy et  al., 2024), and the identification of mental 
health symptoms such as social anxiety from clinical interview data 
(Ohse et al., 2024). GAs also demonstrate promise in interpreting and 
structuring unstructured data from EHRs and clinical documentation 
(Yang et  al., 2025). In particular, GPT-4.1 can complement—and 
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sometimes rival—human expertise in global health education and 
data analysis (Thandla et al., 2024).

Low-code/no-code LLM platforms, such as Flowise,1 Langflow,2 
and AutoGen3 (Kumar, 2023), are transforming the way GA-assisted 
SHDG workflows could be developed (Jeong, 2025). These platforms 
use drag-and-drop interfaces and natural language prompts, making 
it much easier to create, modify, and optimize workflows that leverage 
LLMs without the requirement of in-depth coding expertise. As a 
result, healthcare professionals and other non-technical users can now 
play an active role in designing and improving intelligent systems 
relevant to their needs. Moreover, a recent development called “Vibe-
coding”—coined by Karpathy (2025)—illustrates this shift by enabling 
conversational co-development. Here, developers interact with GenAI 
tools—like GitHub Copilot—using plain language to iteratively refine 
and adjust code (Karpathy, 2025; Mayo, 2025).

In what follows, we present a protocolized GA-driven proof-of-
concept for SHDG use cases aimed at creating novel synthetic clinical 
documents that emulate genuine EHRs while safeguarding patient 
privacy, preserving linguistic integrity, and maintaining informational 
accuracy under conditions of limited access to authentic EHR datasets.

3 Materials and methods

The protocol described here aims to expand the responsible use 
and deployment of GenAI healthcare solutions to a broad spectrum 
of end-users—including those without specialized AI expertise—by 

1  https://github.com/FlowiseAI/Flowise

2  https://github.com/langflow-ai/langflow

3  https://www.microsoft.com/en-us/research/project/autogen/

providing clear, step-by-step guidance for designing workflows that 
leverage GAs for SHDG. To further support open-source adoption, 
reproducibility and practical application of our GA-assisted SHDG 
workflows we provide a GitHub repository.4

At the heart of our methodology is a modular data science 
infrastructure (DSI) Stack (Figure  1A), designed to organize and 
streamline the process of generating clinical data by breaking it down 
into a series of well-defined, interconnected workflows. It starts with 
ingesting and converting anonymized clinical notes from PDF to 
Markdown (FLOW01) (see text footnote 4), followed by 
pseudonymization to protect patient privacy (FLOW02) (see text 
footnote 4). Synthetic notes are then produced using LLMs, comparing 
standard prompting (FLOW03) (see text footnote 4) with a Generative 
Agent approach (FLOW03_AGENT_BASED). The pipeline ends with 
benchmarking (FLOW04) (see text footnote 4) using metrics for 
diversity, vocabulary similarity, semantic alignment, and classifier-
based machine discernibility—enabling the comparison of the 
informational and linguistic features of synthetic, anonymized, and 
real EHRs at both the document and corpus levels. Included is a 
hands-on guide for responsible deployment of GA-assisted SHDG-
workflows,5 implemented through open-source data science 
platforms—Hugging Face Spaces and Flowise—and powered by LLMs 
accessed via public cloud services such as Azure. This hybrid approach 
enables rapid prototyping and controlled sharing of workflows, while 
API key–secured inference endpoints ensure privacy compliance. The 

4  https://github.com/HR-DataLab-Healthcare/RESEARCH_SUPPORT/blob/

main/PROJECTS/Generative_Agent_based_Data-Synthesis/

5  https://github.com/HR-DataLab-Healthcare/RESEARCH_SUPPORT/tree/

main/PROJECTS/Generative_Agent_based_Data-Synthesis/AGENT-FLOWS

FIGURE 1

Data science infrastructure (DSI) stack. (A) Schematic of the DSI stack, structured as modular, interoperable layers founded on key IT principles: 
abstraction and modularization, separation of concerns, interoperability and standardization, scalability, and resilience. Each layer—[1] … [8]—fulfils a 
distinct function, from data storage and processing to analytics and deployment. It supports flexible, maintainable, and scalable data science pipelines. 
The DSI stack aligns with the Double Diamond design model (https://www.designcouncil.org.uk/our-resources/the-double-diamond/). Lower layers 
focus on “Doing the right things”—data gathering and integration—, while upper layers emphasize “Doing things right”—curation, iteration, deployment. 
(B) Visualization of the roles and involvement of data scientists versus data engineers across the DSI stack. While data scientists are predominantly 
active in the human-oriented, upper layers of feature engineering, model development, and deployment, data engineers are primarily engaged in the 
machine-oriented, foundational layers involving warehousing, compute, and toolchains. This panel highlights the complementary skill sets necessary 
for an effective and robust data science infrastructure.
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GitHub repository also provides lines of example source code 
(FLOW03) (see text footnote 4) that enables implementation of a 
privacy-first alternative to public cloud AI services called Ollama, 
allowing users to run and manage large language models locally while 
maintaining full data control and privacy compliance.

3.1 Data science infrastructure stack

Synthesizing and validating EHRs requires a well-defined data 
science infrastructure. This involves designing a robust data pipeline, 
a systematic sequence of processes that transforms raw data into high-
quality synthetic datasets and generates actionable insights (Meng, 
2021; Tuulos, 2022).

Building a pipeline requires the seamless integration of diverse 
hardware and software components within a pre-defined DSI stack. In 
this architecture, each layer—from data ingestion to deployment—
builds upon the previous one, creating a cohesive framework. This 
layered approach streamlines the transformation of real-world EHR 
samples and clinical practice guidelines into novel, synthesized 
datasets. By following this structured process, patient privacy and 
regulatory compliance are maintained, enabling the safe and effective 
use of synthetic data for research, analytics, and clinical decision 
support (Priebe et al., 2021; Tuulos, 2022; Hechler et al., 2023).

Our DSI stack—as depicted in Figure 1—is organized into eight 
layers: [1] Data Warehousing; [2] Compute Resources; [3] Toolchain; 
[4] Workflow Orchestration; [5] Software Architecture; [6] Model 
Development; [7] Feature Engineering; [8] Data Product Deployment. 
The dependency on IT-hardware progressively increases towards the 
bottom of the stack (Krishnakumar et al., 2023). Next, we describe 
each of the relevant layers from the bottom up, highlighting their 
importance and practical application. Note that layers [6] Model 
Development and [7] Feature Engineering were not applicable to our 
specific use case and will therefore not be discussed further. Moreover, 
our DSI stack aligns with the double diamond design model 
(Kochanowska et al., 2022): lower layers focus on “Doing the right 
things,” while upper layers emphasize “Doing things right.”

3.1.1 Pseudonymization
Integrating real-world sample data into the synthesization process 

enhances the diversity of synthetic data, thereby improving its 
linguistic quality and informational characteristics to better reflect 
real-world EHR narratives (Chung et al., 2023). Clinical narratives 
were collected from 13 patients undergoing treatment for low back 
pain at a single physiotherapy clinic within a primary care setting, 
spanning the duration of their therapeutic trajectories. All patients 
provided informed consent for the use of their EHRs to assist in the 
generation of synthetic data. All EHRs (N = 13) were manually 
anonymized by deleting patient names, addresses, social security 
numbers, contact details, and insurance details.

Pseudonymization served as an essential data pre-processing step 
prior to warehousing (Section 3.1.2). This involved replacing the 
names of referring physicians and treating physiotherapists with 
fictive names, thereby restoring the natural structure of the EHRs. This 
procedure ensured that sample datasets destined for warehousing 
were thoroughly de-identified in accordance with Dutch and broader 
European privacy and regulatory standards. To achieve this, 
we  developed a GenAI-based Named Entity Recognition (NER) 

workflow, customized for privacy categories, to systematically identify 
and replace personal identifiers in Markdown files derived from EHR 
sample PDF documents. Data entry fields for entities such as names, 
addresses, contact details, birth dates, “burgerservicenummers” 
(BSNs), insurance details, and financial data were detected and either 
removed or pseudonymized in compliance with privacy guidelines.

A Jupyter notebook executed custom Python code [GitHub 
Repository (see text footnote 4): FLOW01] to configure the Azure 
OpenAI API SDK; submit each document to Azure OpenAI’s 
GPT-4.1; and apply a tailored system prompt to both identify and 
pseudonymize specified entities while preserving the Markdown 
format. Processed files were stored with their original formatting 
intact for subsequent analysis.

3.1.2 Warehousing
Data warehousing serves as the foundational layer of the DSI 

stack, providing centralized aggregation and accessibility for static, 
unstructured datasets. It is crucial for storing both the generated 
synthetic data (output for developing and testing solutions) and the 
real-world sample data and clinical practice guidelines (as input 
knowledge bases for the synthesis process). Besides, the integration of 
anonymized real-world data from EHR systems, the inclusion of 
codebooks for labels and abbreviations, and clinical practice guidelines 
into data warehouses limits chance of hallucination but enhances the 
diversity, linguistic quality, and therefore the clinical relevance of 
synthetic data (Chung et al., 2023; Li et al., 2023).

Storing data in accessible formats such as markdown (MD), 
structured query language (SQL), comma-separated values (CSV), 
portable document format (PDF), JavaScript object notation (JSON), 
or images is integral to facilitating interoperability and data sharing 
within clinical environments. These widely used formats support the 
storage and exchange of both structured and unstructured data, 
making it easier for diverse health information systems to work 
together (Hart et al., 2016). For example, JSON is used in AI-workflows 
because it is both human-readable and machine-readable. It is 
particularly helpful in health care and other fields for quickly and 
efficiently transferring data between systems, applications, or devices.

3.1.3 Compute
The next DSI stack layer is compute, which refers to scalable data 

processing capacity or computational power. Its purpose is to manage 
and scale the performance of a predefined set of computational 
instructions—referred to as a computational workload or task. The 
type of data science use case dictates its compute requirements, 
including the need for CPUs, GPUs, TPUs, or internal memory.

To assist the targeted end-users—non-AI specialists—, we decided 
to employ a hybrid compute solution, combining standard desktop 
computers or laptops (local computing) with powerful external 
computing resources available over the internet (public cloud services 
like Azure, AWS, or Google Cloud). The latter is essential for utilizing 
state-of-the-art LLMs. These models require specialized high-
performance computing hardware and massive computational 
resources that far exceed the capabilities of standard desktops 
or laptops.

Public cloud enables scalable LLM deployment with on-demand 
access to high-end GPUs/TPUs, large memory, and parallel computing, 
surpassing local infrastructure limits. Since state-of-the-art LLMs are 
only accessible via cloud-based APIs (Table  1), cloud adoption is 
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essential for high-end performance. However, organizations with 
sufficient local computing power (e.g., EHR vendors, hospitals) may opt 
for on-premises GenAI model deployment.

3.1.4 Toolchain
The toolchain layer ensures the correct functioning of the desired 

workflow orchestration. Our protocol leverages rapid prototyping 
platforms to synthesize and validate EHRs using state-of-the-art 
GA-assisted SHDG workflows. These platforms offer an intuitive drag-
and-drop user interface, simplifying implementation by eliminating 
the need for data engineering expertise in LLM deployment. This 
makes GenAI-technology more accessible for non-AI specialists by 
facilitating browser-based access (Kumar, 2023; Jeong, 2025).

We implemented a Docker-based6 architecture to enable secure, 
reproducible workflows across on-premises and public cloud 
environments. By deploying containerized workflows via API key–
secured inference endpoints, we ensure scalable resource allocation, 
consistent performance, and robust access control (Abhishek and Rao, 
2021; Ait et  al., 2025). Inference endpoints offer a user-friendly 

6  https://github.com/docker/roadmap

interface for submitting inputs—such as prompts for synthetic EHR 
generation—and receiving outputs, allowing on-demand use of 
custom GA-assisted workflows without exposing users to underlying 
infrastructure or model complexity (Fu et al., 2025; Gupta, 2025).

Hugging Face Spaces7 offers a public cloud platform for rapidly 
building, sharing, and interacting with containerized GenAI 
applications through intuitive interfaces, automatically hosting 
workflows at a public URL. This supports Docker-based deployment 
of low-code/no-code tools such as Flowise, Langflow and AutoGen for 
developing multi-agent AI workflows (Kumar, 2023; Jeong, 2025). 
Flowise enables users to visually compose, configure, and deploy 
LLMs without programming expertise, while Langflow allows for 
direct code customization. AutoGen Studio facilitates rapid 
prototyping and orchestration of LLM-based multi-agent systems via 
a low-code Python framework. For example, an implementation guide 
titled “Learn how to deploy Flowise on Hugging Face” is available 
online.8

7  https://huggingface.co/spaces

8  https://docs.flowiseai.com/configuration/deployment/hugging-face

TABLE 1  Key evaluation criteria for selecting LLMs.

Consideration Explanation Importance for model selection

Model architecture The underlying design of the model (e.g., transformer-based, 

LSTM, etc.).

Influences model capabilities, efficiency, and suitability for specific NLP 

tasks.

Model size & parameters Number of parameters indicating model complexity and 

capacity

Larger models often perform better but require more computational 

resources; balance needed based on use case.

Inference speed & latency Time taken to generate outputs during use. Critical for real-time applications and user experience; faster models enable 

scalable deployment.

Performance metric scores Quantitative measures like accuracy, perplexity, BLEU, 

ROUGE on relevant benchmarks.

Helps objectively compare models’ language understanding and generation 

quality.

Context window size Maximum input length (tokens) the model can process at 

once.

Larger context windows allow handling longer documents or conversations 

without losing coherence.

Fine-tuning & customizability Ability to adapt the model to specific domains or tasks via 

additional training.

Enables tailoring model behavior to unique organizational needs and 

improves task-specific performance.

Pretraining data & knowledge 

cutoff

The scope and recency of data the model was trained on. Determines how current and relevant the model’s knowledge is.

Multimodal capabilities Support for inputs beyond text, such as images or video. Expands potential applications, enabling richer interactions and cross-

modal understanding.

Use case alignment Suitability of the model’s strengths to the specific application 

or domain.

Ensures optimal performance and ROI by matching model capabilities with 

business goals.

Safety, bias & ethical 

considerations

Mechanisms to reduce harmful, biased, or inappropriate 

outputs.

Ensures responsible AI use, compliance with regulations, and 

trustworthiness.

Licensing & accessibility Terms of use, availability (open source vs. proprietary), and 

cost implications.

Affects budget, deployment flexibility, and compliance with organizational 

policies.

Ecosystem & integration Availability of APIs, developer tools, and compatibility with 

existing systems.

Facilitates easier implementation, faster development cycles, and 

operational efficiency.

Enterprise readiness Support for scalability, data privacy, user data control, and 

cloud provider support.

Important for secure, compliant, and robust deployment in production 

environments.

Listed are essential considerations—including usability, ethical implications, and enterprise requirements—compiled together to assist non-AI specialists in selecting an LLM that aligns with 
their specific needs. The selected criteria are based on a synthesis of recent expert analyses and practitioner frameworks.
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The usefulness of Open-source LLMs like LLaMA, Qwen, DeepSeek, 
and Phi in clinical settings is hampered by the frequent production of 
unsupported facts, contradictions, and omissions—collectively known as 
hallucinations—which present a substantial safety risk. Evaluation of the 
MIMIC-IV dataset revealed that while these models can accurately 
capture up to 83% of admission reasons and key events, their performance 
dropped dramatically for critical follow-up recommendations, with 
comprehensive coverage as low as 29% (Das et al., 2025).

Considering both the above outlined limitations and the selection 
criteria presented in Table 1, we selected OpenAI’s GPT-4.1 (version:2025-
04-14) as our preferred LLM. GPT-4.1 offers a one million token context 
window, which allows for comprehensive analysis of extensive patient 
records, and demonstrates robust instruction-following and advanced 
reasoning abilities (OpenAI, 2025). The criteria listed in Table 1 reflect 
insights drawn from recent expert reviews and leading practitioner 
models (QuantSpark, 2023; Inoue, 2024; Ruczynski, 2024; Chojnacki, 
2025; Morris et al., 2025).

In addition, GPT-4.1 incorporates advanced domain adaptation, 
sophisticated fact-checking mechanisms, and alignment strategies to 
reduce hallucination rates and enhance faithful adherence to source texts. 
Here, “Advanced domain adaptation” refers to the ability of an LLM to 
adjust its understanding and generation of text to fit the specific language, 
conventions, and knowledge of a particular field or domain—such as 
medicine (Singhal et al., 2023). Moreover, GPT-4.1 appears to demonstrate 
advanced comprehension of medical and healthcare language, enabling 
more accurate interpretation of complex EHR narratives and improved 
detection of inconsistencies (Walturn, 2025).

3.1.5 Workflow orchestration
To synthesize Dutch clinical narratives related to low back pain in 

physiotherapy using genuine EHRs, we developed a GA-assisted, no-code 
workflow built on a rapid prototyping platform that allows end users to 
quickly construct and test GenAI solutions (Figure 2). This platform is 
organized into modular components—known as modules—each serving 
a specific purpose and designed to be easily rearranged or modified.

Central to our approach is a multi-agent architecture (Figure 3), 
comprising a supervisor agent and one or more worker agents, each 
guided by tailored prompts that correspond to their unique 
responsibilities. To make the process intuitive, we utilized a “What-IF” 
scenario: imagine a clinical team with a general practitioner, a specialist, 
and a medical scribe collaborating to create a realistic synthetic patient 
note. In this analogy, the supervisor agent acts like the lead clinician—
overseeing the entire process, distributing tasks, prioritizing activities, 
monitoring progress, and ensuring the workflow stays on track and 
determines when the task is finished—while the worker agents take on 
specialized roles such as drafting clinical content or formatting records, 
analogous to the scribe and specialist. Each agent receives role-specific 
guidance through prompt engineering (Chen et al., 2025a), ensuring 
adherence to clinical standards and the accurate, coherent assembly of 
narratives. This modular, role-based structure not only enables seamless 
coordination and iterative refinement among AI agents, but also produces 
synthetic EHRs with high clinical validity and practical value for 
healthcare workers.

3.1.5.1 Supervisor agent prompt
The supervisor agent was equipped with a “system prompt”—a 

foundational set of instructions that defines the LLM’s overarching 
persona, scope, and governance strategy. Specifically, this prompt 

directed the supervisor agent to represent an experienced 
physiotherapist overseeing the clinical perspective of a registered 
physiotherapist tasked with generating authentic Dutch EHRs for low 
back pain cases. The prompt specified how to generate clinical 
documentation according to the International Classification of 
Functioning, Disability and Health (ICF) framework domains (World 
Health Organization, 2001), and adherence to the Dutch Royal Society 
for Physiotherapy (KNGF) guideline on low back pain (Swart et al., 
2021). This ensured that every generated record aligned with current 
best practices in physiotherapy documentation.

The prompt further instructed the supervisor agent to restrict 
outputs solely to the requested EHR content, thereby enforcing 
compliance and preventing the inclusion of extraneous or sensitive 
information. Functionally, it mandated the supervisor agent to 
orchestrate the division of labor among worker agents, manage task 
handoff, establish execution priorities, consolidate contributions, and 
verify completion of all record elements in accordance with 
professional documentation standards.

3.1.5.2 Worker agent prompt
Under the coordination of the supervisor agent, each worker 

agent received individualized “worker prompts” tailored to its 
specialized domain within the workflow. These prompts offered 
detailed, task-specific instructions for generating a single EHR taking 
into account the clinical nuances of physiotherapy care for (sub)acute 
or chronic low back pain, as well as relevant and documentation 
standards (Driehuis et al., 2019; Swart et al., 2021). Most notably, the 
worker prompts required structured output, as listed in Table 2.

3.1.6 Software architecture and deployment
Data product deployment is the final layer of our DSI stack, where 

prototype workflows transform into web-accessible applications. This 
layer ensures that data products—such as LLM GPT-4.1 and Hugging 
Face Spaces—are securely and reliably made available through 
Inference Endpoints secured with API key authorization (as was 
discussed in the Toolchain Section 3.1.4). This also protects patient 
privacy and complies with data management and regulatory standards, 
including the GDPR9 and the EU AI Act10 (Haug, 2018; Hoofnagle 
et al., 2019; European Parliament and Council, 2024). Additionally, it 
manages resources and access controls to maintain data security and 
organization. By simplifying deployment through no-code/low-code 
platforms, discussed in the next section, with reusable components 
and clear specifications, this layer helps deliver trustworthy, easy-
to-use solutions that support clinical decision-making, research, 
and analytics.

3.2 No-code proof-of-concept

This section details a rapid-prototyping implementation to 
demonstrate the feasibility and effectiveness of generating 
synthetic EHRs using GA-assisted SHDG workflows (Figures 2, 3). 

9  https://eur-lex.europa.eu/eli/reg/2016/679/oj/eng

10  https://digital-strategy.ec.europa.eu/en/policies/

regulatory-framework-ai
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By combining modularity and no-code principles, our proof-of-
concept illustrates a practical, user-friendly approach for 
healthcare professionals to generate, validate, and experiment with 
synthetic health data. It supports iterative development, 
transparency, and ease of integration with other systems or data 
science workflows.

Here, we outline the specific tools and configurations used, 
illustrating how the DSI stack layers translate a specific data 
science use case into a functional workflow. The protocol 
presented here serves as a practical step-by-step guide for 
replicating our approach and showcases the capabilities of the 

proposed architecture in addressing the challenges of clinical 
text synthesis.

For demonstrative purposes, we utilized public Hugging Face 
Spaces infrastructure in combination with Flowise to facilitate 
deployment (see Section 3.1.4). This setup allows custom-made 
workflows to be shared publicly or privately, making them accessible 
via a web interface or API, and supports secure credential management 
for connecting to external LLMs and API services.

The workflow (Figure  2) to synthesize EHRs, required 
additional modules for document ingestion, embedding generation 
(using Azure API key credentials), agent memory management 

FIGURE 2

Visual representation of a no-code, multi-agent workflow for synthesizing EHRs. Data flows through connected tools and agents, enabling an iterative, 
structured generation process without manual coding. The here shown GA-assisted SHDG workflow begins with a Recursive Character Text Splitter 
that divides the uploaded PDF file containing anonymized EHR data into manageable chunks. These chunks are processed using Azure OpenAI 
Embeddings and stored in an In-Memory Vector Store. A Retriever Tool (RAG) then queries the stored embeddings to provide relevant context. The 
Azure ChatOpenAI component, configured with the GPT-4.0-mini model, interacts with stored agent memory (SQLite Agent Memory) and coordinates 
with two agents: the Supervisor—acting as a senior physiotherapist specialized in low back pain—who manages task instructions and workflow control, 
and directs the Tech Researcher—acting as a practicing physiotherapist (general or specialized—who executes prompts to generate synthetic Dutch-
language EHR notes). Note: The workflow—accessed via a web interface—maintains contextual memory across user queries for seamless, multi-turn 
interactions and stops automatically when the supervisor determines completion. This design enables rapid prototyping of SHDG solutions by 
healthcare researchers and practitioners without requiring advanced expertise in AI. For more information on the adopted technologies and their 
implementation, see the Toolchain Section (Section 3.1.4 of the DSI stack).
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FIGURE 3

Example of a single-turn input/output interaction when applying the multi-agent workflow for generating realistic, structured EHRs, as described in 
Figure 2. In this scenario, the End User—a practicing physiotherapist—uses a web-based interface to request the creation of 20 synthetic but realistic 
EHRs in Dutch. The request specifies detailed content and formatting requirements, including: a concise patient history summary, a clearly stated help-
seeking question, an ICF-based diagnosis, measurable treatment goals, and a treatment plan aligned with KNGF guidelines. All records must use 
professional Dutch clinical language with correct abbreviations. The Supervisor ensures these specifications are complete and unambiguous before 
the Tech Researcher produces a synthetic yet realistic Dutch-language EHR. Each record contains the requested summary, patient demographics, 
presenting complaint, ICF-based functional and contextual factors, SMART goals, an individualized treatment plan, and SOAP-formatted progress 
notes. For illustration purposes, only Patient Dossier 14 from the generated set is shown here. The Supervisor reviews this output, confirms it meets all 
requirements, and marks the task as finished. Color coding: Blue—End User; Pink—Supervisor Agent; Green—Tech Researcher (worker Agent).
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(using a SQLite database) and memory retrieval through a vector 
store. Table  3 provides a functional overview of the Flowise 
modules shown in Figure 3. To digest unstructured sample data 
(e.g., PDFs), we  applied a recursive character text splitter. 
Traditionally, parameters such as chunk size and chunk overlap are 
critical: smaller chunks (500–1,000 characters) improve granularity 
but may fragment context, while larger chunks (>1,500 characters) 
support coherence but risk exceeding model context windows. 
Moderate overlap (100–200 characters) helps maintain semantic 
continuity between segments. However, recent studies suggest that 
late chunking—where segmentation occurs after the model 
embedding step rather than before—can preserve global context 
more effectively and enhance downstream performance, 
particularly in retrieval-augmented tasks (Günther et al., 2024).

We employed GPT-4.1 LLMs—using Azure API key 
credentials—for supervised reasoning and text generation. A key 
model parameter for any LLM is temperature, which controls 
generative diversity: lower values (~0.2–0.4) yield deterministic, 
guideline-conform output, while higher values (~0.7–0.9) promote 
creative variability (Peeperkorn et al., 2024). For clinical synthesis, 
we  assumed that a temperature between 0.3–0.5 best balances 
realism and consistency; however, future experiments are required 
to empirically evaluate model performance at varying settings. The 
“agentflow” as implemented within the Flowise no-code framework 
can be downloaded as a JSON file from our GitHub Repository (see 
text footnote 1) (GA-assisted SHDG workflow).

The supervisor agent represents an experienced physiotherapist 
who ensures that documentation conforms to ICF domains, 
linguistic plausibility, and overall fidelity (Figure 3). The worker 
agent (Figure 3) embodies one of several physiotherapy profiles 
(e.g., generalist, manual therapist, exercise therapist, psychosomatic 
physiotherapist) and is tasked with generating synthetic clinical 
narratives. To reduce the risk of hallucination and ensure domain-
conformant output, we  implemented a retrieval-augmented 

generation (RAG) pipeline. This supported the contextual 
grounding of worker agent output using a vectorized memory store 
filled with real-world sample data, clinical practice guidelines, and 
documentation standards used by Dutch physiotherapists. This 
architecture allows agents to generate clinically realistic output 
grounded in both empirical input and normative context (Chung 
et al., 2023; Li et al., 2023).

3.3 SHDG automation through 
GenAI-assisted co-development

Here we describe how we automatized the entire synthetic EHR 
pipeline; using a novel engineering approach called: GenAI-assisted 
co-development. This technique fosters collaboration between 
human developers and GAs (Park et al., 2023) allowing human 
domain specialists to iteratively refine code through natural 
language prompts and AI-tools like GitHub Copilot, Perplexity, and 
Gemini. Copilot helps with coding by suggesting and writing code, 
Perplexity helps find answers by providing clear, sourced 
information, and Gemini acts as an all-around smart assistant that 
can respond to questions, summarize text, and assist with a variety 
of tasks. As such, GenAI-assisted co-development fundamentally 
redefines the paradigm of human-AI collaboration (Orru et al., 
2023; Ulfsnes et al., 2024; Casper et al., 2025; Mayo, 2025).

For instance, GAs like AlphaEvolve (DeepMind, 2025) exemplify 
the power of GenAI-assisted co-development by autonomously 
facilitating iterative code improvement. AlphaEvolve operates as an 
evolutionary coding agent that leverages the orchestration of multiple 
LLMs, enabling ongoing refinement of algorithmic solutions through 
a cycle of edits and evaluator feedback. This process mirrors the 
collaborative workflow described earlier (Section 3.2), whereby human 
expertise and GAs interleave in a continuous dialogue—using natural 
language guidance to steer, critique, and optimize computational 

TABLE 2  Targeted worker agent prompting.

Consideration Explanation

Anamnesis summary Craft a concise, professional account of the patient’s medical history, the impact of symptoms, coping mechanisms, and clinical context; 

ensure precise specification of symptom duration (acute, subacute, or chronic) and maintain professional standards of written Dutch.

Physical therapy diagnosis Deliver a comprehensive, multidimensional diagnostic formulation, detailing impairments, activity limitations, participation restrictions, 

relevant contextual (personal and environmental) factors, risk/prognostic indicators, and a reformulation of the patient’s explicit help seeking 

question—all mapped to ICF domains.

Treatment goals Articulate SMART (Specific, Measurable, Achievable, Relevant, Time-bound), patient-centered, and function-oriented short- and long-term 

goals, with reference to clinical metrics (e.g., NPRS, QLBDS) strictly as criteria, not as goals themselves. Target dates for each goal are 

specified according to best practice.

Treatment plan Compose an intervention strategy, incorporating manual therapy, exercise programs, educational components, psychosomatic physiotherapy 

and other modalities, substantiated by the KNGF guidelines and explicitly related to the established treatment goals.

SOEP progress notes Generate between three and eight detailed progress notes, each corresponding to an individual treatment session, structured in the SOEP 

(Subjective, Objective, Evaluation, Plan) format. These notes are intended to reflect realistic clinical variation, including both therapeutic 

progression and stagnation or need for adjustment.

Language and style All documentation must be rendered in idiomatic, professional Dutch with expanded abbreviations (e.g., MT, NPRS, LBP), and maintain a 

narrative and tone that emulates authentic Dutch physiotherapy records as demonstrated in the reference examples.

Referencing examples and 

output format

Worker Agents are instructed to use pseudonymized sample EHRs solely as a stylistic and structural reference, ensuring every generated 

dossier remains unique.

Detailed are the specific domains addressed by the worker agent, along with corresponding explanations, to guide the synthesis of clinically valid and contextually appropriate physiotherapy 
records for low back pain.
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problem-solving. In this way, AlphaEvolve and similar systems advance 
the core objective of our methodology: to solve complex scientific and 
computational challenges by seamlessly integrating human insight with 
autonomous generative capabilities (Novikov et al., 2025).

3.3.1 GA-assisted SHDG workflow validation
We started by confirming that our GA-assisted SHDG workflow 

(Section 3.2) was effective in generating meaningful synthetic EHRs. 
This preliminary validation step involved human specialists (authors 
MV, MS) assessing the synthetic EHR samples for realism, internal 
coherence, and adherence to professional clinical documentation 
standards. We  confirmed that the generated records were 
representative for deployment in downstream healthcare applications 
and research.

3.3.2 PDF-to-Markdown conversion
As a foundational step, we used Gemini 2.5 Flash as the core LLM 

in our GenAI-Assisted Software Development workflow to generate 
and refine Python code—contained in Jupyter notebooks—for 
automating PDF-to-Markdown conversion. Guided by natural 
language prompts written by human domain experts, Gemini 2.5 

Flash authored code that extracts text from PDFs (via Python packages 
such as OpenAI, PyMuPDF, and glob), interfaces with Azure OpenAI’s 
GPT-4.1 for Markdown formatting, and supports batch processing of 
files. This collaborative approach enabled efficient, maintainable code 
development, combining Gemini 2.5 Flash’s reasoning and coding 
abilities with GPT-4.1’s language understanding to deliver scalable and 
accurate document conversion. Note, Human supervision— following 
a human-in-the-loop approach, in which humans remain actively 
involved in reviewing, verifying, and refining AI outputs—was 
essential to ensure that the AI-generated code functioned correctly. 
The code used is available online via our GitHub Repository (see text 
footnote 1) (FLOW01).

3.3.3 Pseudonymization
We prompted Gemini 2.5 Flash to integrate a pseudonymization 

step using a second call. This involved a second call to the Azure 
OpenAI GPT-4.1 API with a tailored system prompt designed to 
identify and pseudonymize specified named entities while preserving 
the Markdown format. For details about the selected named entities, 
we refer to Section 3.1.1. The code used is available online via our 
GitHub Repository (see text footnote 1) (FLOW02).

TABLE 3  Workflow stages, modules, and operational details for no-code GA-assisted synthetic EHR processing.

Workflow stage Module Operational details

Ingestion and preprocessing 

parsing

A/B recursive character 

text splitter

Function: Splits a large text document into semantically meaningful “chunks” (e.g., 1,000 characters / 

200-character overlap) to meet processing constraints.

Input: Large text document (e.g., PDF file).

Output: Prepared data chunks for downstream processing within input size limits.

PDF File Function: Extracts text content from uploaded PDFs.

Input: Text splitter output; end-user uploads a PDF file (e.g., a real-world EHR).

Output: Structured text format suitable for processing (one document per page).

In-memoryvector store Function: Stores embeddings for fast semantic EHR searching and referencing in agent workflows.

Input: Embeddings (via Azure OpenAI) derived from document chunks (e.g., from PDF files).

Output: Embeddings stored for quick retrieval.

Retriever tool Function: Queries the vector store to retrieve relevant EHR content based on prompts or keywords.

Input: Query from workflow (e.g., “provide context”).

Output: Most contextually relevant EHR chunks for the next workflow step.

Embeddings Azure OpenAI 

embeddings

Function: Generates numerical vector representations of text chunks for similarity search and LLM 

processing.

Input: Name and credentials for the text embedder (e.g., text-embedding-3-large).

Output: Numerical embeddings of text chunks.

Agent memory management SQLite agent memory Function: Maintains multi-turn interaction memory for context continuity.

Input: Additional parameters (if any).

Output: Persistent memory of conversation history, prior actions, and current state.

Agent orchestration of multi-

turn interactions

Supervisor Function: Central controller — interprets tasks, routes them to workers or tools, ensures proper sequencing, 

and coordinates memory and moderation.

Input: LLM (e.g., GPT-4o-mini), agent memory, supervisor prompt/role (plus optional parameters).

Output: Coordinated orchestration between tools, agents, and workflow steps.

Worker Function: Executes reasoning, analysis, or synthesis tasks using retrieved context and domain knowledge.

Input: Tools (via supervisor), worker prompt/role (plus optional parameters).

Output: Structured answers, summaries, or insights per prompt.

User interaction and language 

model reasoning

Azure ChatOpenAI Function: Provides a conversational interface between user and workflow, leveraging memory and context for 

responses.

Input: Prompts from the user with parameters (e.g., credentials, temperature, mode name).

Output: User-facing responses and orchestrated agent actions.
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3.3.4 EHR-synthesis co-developed with GenAI 
technology

Subsequently, we  instructed Gemini 2.5 Flash to generate 
Python code that implements the synthetic data generation process. 
This process used the pseudonymized Markdown files as contextual 
examples for GPT-4.1, guided by the natural language prompts 
previously specified for the supervisor agent and worker agents (see 
Section 3.1.5). A comprehensive explanation of the code is 
provided, and it is publicly available as a downloadable Jupyter 
notebook from our GitHub Repository (see text footnote 1) 
(FLOW03).

3.3.5 Benchmark framework & analysis
Finally, Gemini 2.5 Flash was tasked with developing a 

programmatic approach to assess how closely synthetic data mirrors 
the informational and linguistic characteristics of pseudonymized 
real-world EHRs. This assessment strictly adheres to an evaluation 
framework comprising ten distinct metrics, as detailed in the next 
Section 3.4, to evaluate the indistinguishability of synthetic from real 
data. The code used is available online via our GitHub Repository (see 
text footnote 1) (FLOW04).

3.4 Quantitative assessment of synthetic 
data quality

To systematically assess the fidelity of GA-assisted SHDG, 
we  recognized that no single metric would suffice. Therefore, 
we  selected ten distinct metrics to jointly evaluate both the 
informational and linguistic qualities of clinical documents on both 
the individual document and corpus levels. These metrics, 
summarized in Tables 4, 5, were chosen to provide clear and 
quantifiable assessments that are informative for both AI specialists 
and clinical experts.

Our framework goes beyond surface-level resemblance—such as 
basic structure—by also examining deeper linguistic and semantic 
properties. Specifically, we  evaluate whether synthetic texts 
authentically mirror genuine EHRs in their phrasing, stylistic features, 
and conveyed meanings. To ensure this, we analyzed pooled corpora 
of pseudonymized real and synthetic data (Table  5), assessing 
similarities in word sequences, style, and intent.

Detailed implementation notes, equations and code for each 
metric are available in our public GitHub Repository (see text footnote 
1) (FLOW04).

3.4.1 Document level assessment
Three different metrics —the original clinical documents, their 

pseudonymized counterparts, and synthetic documents generated 
through the GA-assisted SHDG process—were used to provide insight 
into the structural fidelity of the generated documents, ensuring that 
basic textual characteristics were faithfully reproduced in the synthetic 
samples. Assessment of averaged word count, average unique word 
count, and average document length (measured in characters) 
provided a straightforward means for comparing the overall size and 
composition of documents between the original, pseudonymized, and 
synthetic datasets.

Table 4 provides an overview of structural and linguistic metrics 
used to evaluate the fidelity of GA-assisted SHDG at the document 
level. It specifically focuses on comparing the original, pseudonymized, 
and synthetic documents in terms of word count, vocabulary diversity, 
and document length. The table offers guidance for interpreting 
whether the observed scores indicate that synthetic documents 
adequately replicate the structure and linguistic richness of the real 
data or reveal potential discrepancies.

Collectively, the document-level metrics of Table  4 allow for 
direct comparison of volume and informational content across the 
three datasets. Consistent differences in document length, word 
count, or vocabulary diversity between synthetic and real documents 
can signal problems in the data generation process, such as systematic 
under- or over-generation. Early detection of such discrepancies 
enables targeted improvements, ensuring that synthetic data more 
accurately reflects the completeness and verbosity found in 
authentic datasets.

3.4.2 Corpus level assessment
The inherent heterogeneity in EHRs—stemming from both 

the variety in patients and the diversity in documentation by 
healthcare professionals—can greatly impact comparability 
between real and synthetic data. Furthermore, as the aim of 
synthetic data is often to generate more data than is originally 
available (thus overcoming limited data availability), metrics other 
than pairwise comparison of individual documents are needed to 

TABLE 4  Metrics used to evaluate surface-level similarities.

Metric Category Purpose Interpretation (desired 
score)

Interpretation (undesired 
score)

Average word count Structural fidelity Compares word count per 

document between datasets.

Similar average word counts 

between synthetic and real data.

Consistent divergence (higher/lower) in 

average word count, suggesting content over/

under-generation.

Average unique word count Linguistic Compares the diversity of 

vocabulary per document.

Similar average unique word counts, 

indicating comparable linguistic 

richness.

Significant differences, suggesting issues with 

vocabulary diversity.

Average document length 

(characters)

Structural fidelity Compares overall document 

size in characters.

Similar average document lengths 

between synthetic and real data.

Consistent divergence (higher/lower) in 

average document length, suggesting content 

over/under-generation.

Structural and linguistic metrics for evaluating similarities between original, pseudonymized, and synthetic documents, with interpretation guidelines for desirable and undesirable results.
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evaluate the linguistic and informational similarities between 
datasets. To assess the actual comparability between the real 
pseudonymized and the synthetic clinical text, we  pooled the 
individual documents into two corpora.

Table 5 provides a comprehensive set of metrics for assessing 
the fidelity of synthetic clinical text at the corpus level. Given the 
inherent variability in real-world electronic health records and the 
goal of creating synthetic datasets that closely resemble the 
originals, these metrics move beyond simple pairwise document 
comparisons to evaluate broader linguistic and informational 
features. The table outlines measures of textual diversity, 
vocabulary similarity, semantic alignment, and machine 
discernibility, each with its specific interpretation. Collectively, 
these metrics enable a holistic evaluation of how well the synthetic 
corpus replicates the complexity, nuance, and realism of the real 
clinical text, providing an in-depth view of corpus-level similarity 
across multiple dimensions.

3.5 Sample dataset description

The original dataset comprised N = 13 EHRs in PDF format, all 
relating to Dutch patients suffering from lower back pain. These real-
world documents featured a combination of structured and 
unstructured text, including clinical notes, reports, and other 
pertinent patient information. To characterize these EHRs in terms of 
linguistic quality and informational content, a custom Python script 
was developed through GenAI-assisted co-development (see Section 
3.3 for a detailed description).

For each file, various parameters were extracted and calculated, 
including storage size (in MB), textual content size (measured as total 
words, unique words after tokenization and lowercasing, and total 
characters as a measure of document length), and the primary 
language detected within the textual content. Structural elements 
such as the presence and count of tables, figures (images), and 
annotations were also identified. Additionally, Shannon entropy was 

TABLE 5  Metrics used to evaluate linguistic and information level similarities.

Metric Category Purpose Interpretation (desired 
score)

Interpretation 
(undesired score)

Shannon’s entropy 

(characters)

Textual diversity Quantifies richness and 

unpredictability at character 

level for the entire corpus.

Similar entropy values to real data. Much lower entropy (overly 

repetitive) or much higher entropy 

(excessively random/incoherent).

Shannon’s entropy (words) Textual diversity Quantifies richness and 

unpredictability at word level 

for the entire corpus.

Similar entropy values to real data, 

indicating comparable vocabulary 

diversity.

Much lower entropy (overly 

repetitive vocabulary) or much 

higher entropy (excessively 

random/incoherent word choice).

Jensen-Shannon 

divergence

Word distribution similarity Measures the statistical distance 

between word probability 

distributions of two corpora 

(range 0–1).

Low JSD (closer to 0), implying 

similar word frequency patterns 

and vocabulary overlap.

High JSD (closer to 1), indicating 

marked differences in vocabulary 

or word usage patterns.

Average Bigram Pointwise 

Mutual Information

(PMI)

Naturalness of word 

associations

Quantifies the average strength 

of association between adjacent 

words.

Comparable PMI, indicates 

synthetic text mimics natural 

bigram.

Significant differences, suggesting 

unnatural word pairings or 

phrasings.

BLEU score Lexical similarity / surface-

level overlap

Quantifies n-gram overlap 

between synthetic and reference 

texts (range 0–100).

Higher BLEU score (closer to 100), 

indicating greater literal overlap in 

n-grams.

Lower BLEU score (e.g., 4.6), 

indicating very low literal overlap; 

suggests synthetic text does not 

closely replicate exact phrasing, 

potentially acceptable if novelty is a 

goal.

BERTScore Semantic alignment Assesses semantic similarity 

using contextual embeddings 

(F1 typically 0–1).

High F1 score (closer to 1), 

indicating strong semantic 

alignment and meaning 

preservation.

Lower scores suggest synthetic data 

differs from the sample data. This 

indicates the newly generated data 

is not an exact replica of its origin

Classifier performance 

(AUC)/(AUPRC)

Inseparability Tests how easily a classifier can 

distinguish real 

(pseudonymized) from 

synthetic data.

Indicates the “realism” of 

synthetic data. (range 0–1).

AUC/AUPRC approaches 0.5, 

implying classifier cannot 

effectively differentiate (high 

mimicry).

Lower values are desirable for 

synthetic data quality.

AUC/AUPRC ≈ 1.0: Classifier 

easily separates classes; unrealistic 

synthetic data.

Good indication of “machine-

discernibility.”

Limitations:

Sensitive to dataset size

Depends on classifier choice

Metrics assessing overall similarity between real and synthetic clinical text corpora—including diversity, vocabulary, semantic alignment, and machine discernibility—emphasizing that desired 
scores reflect close corpus-level resemblance across these dimensions.
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computed at both the character and word level to quantify the 
average uncertainty or randomness in the text, thereby providing 
insight into its complexity and predictability. The canonical Jensen-
Shannon Divergence (JSD) was calculated to compare the word 
distribution of each document with the overall word distribution 
across the dataset, reflecting the distinctiveness of each document’s 
language use. Finally, the average pointwise mutual information 
(PMI) for word bigrams was determined to assess the strength of 
association between commonly co-occurring words. Note, the use 
of PMI was inspired by the mutual information approach used in the 
neurophysiology study by van der Willigen et  al. (2024), which 
measures the dependence between complex spectral-temporal 
sound representations. Both methods apply principles of 
information theory to quantify meaningful relationships related to 
NLP, though in distinct data domains (language vs. auditory 
processing) and at different scales (word pairs vs. neural coding of 
sound features).

4 Results

We start by reporting on a document-level assessment (Section 
4.1), examining whether the generated data are contextually and 
semantically consistent with real EHRs. This is followed by a corpus-
level assessment (Section 4.2) to assess whether our GA-assisted 
SHDG protocol adhered to established clinical data standards and 
preserved the statistical properties of the sample dataset (for details, 
see Section 3.5).

4.1 Document level assessment

The first 4 rows of Figure 4—Size (MB), Word Count, Unique 
Words, Document Length (Chars)—provide a structural element 
characterization of the original real-world, pseudonymized, and 
synthetic datasets, respectively. Each real-world EHR document—
provided in PDF format—was analyzed for both linguistic quality and 
informational content. Structural document components—such as 
tables and images—were also quantified; across the original EHRs, 
between two and four tables were identified per file, while no figures 
(images) were detected in any document.

When converting the original, real-world sample data from PDF 
to pseudonymised Markdown format, file sizes dropped noticeably. 
This is because PDF files retain a large amount of information—
including embedded fonts, images, and detailed layout instructions—
to ensure consistent appearance across devices. In contrast, Markdown 
files contain only the essential textual content and minimal formatting 
information, omitting media and complex layout data, which makes 
them much more compact (first row, Figure 4), However, during the 
pseudonymization phase, we added information to the documents 
(see Section 3.1.1). Consequently, the word count, and document 
length of the pseudonymized data increased somewhat (second row, 
Figure 4), reflecting the inclusion of additional descriptive tokens and 
labels in the file.

The overall structure of the synthetic data differed substantially 
from the pseudonymized data: on average, synthetic clinical notes 
were approximately 30% shorter in length (9,412 vs. 13,370). This 
reduction suggests that synthetic documents contained 

significantly less content per record, potentially omitting important 
clinical details or context. While real-world EHRs often include 
duplicate or redundant information (Nijor et al., 2022; Steinkamp 
et  al., 2022), we  observed that the synthetic data lacked such 
redundancy. This absence likely accounts for the notable decrease 
in word count and document length in the synthetic notes, even 
though the number of unique words remained similar between the 
two datasets.

At the per-document level, the mean bigram PMI was also 
slightly lower for synthetic documents (6.26) compared to 
pseudonymized documents (6.40); however, this difference was not 
statistically significant (Mann–Whitney U = 161.00, p = 0.2611). 
This suggests that although, on average, synthetic texts have 
somewhat weaker word pairings, individual documents do not 
consistently differ in bigram association strength, indicating that 
variability in bigram usage exists within both pseudonymized and 
synthetic documents.

4.2 Corpus level assessment

We compared our synthetic clinical text to the real-world, 
pseudonymized clinical notes at corpus level (Section 4.2) using 
informational and linguistic measures, including Shannon’s Entropy 
and average bigram PMI. The results are shown in Table 6.

The corpus-level Shannon entropy quantifies the diversity and 
unpredictability of character and word usage within a corpus. For 
character-level entropy, the pseudonymized corpus (4.8565) 
exhibited a higher value than the synthetic corpus (4.6936), 
indicating that texts in the pseudonymized set utilize a greater 
variety of characters or employ characters in a less predictable 
manner. This suggests that the process of synthetically generating 
text may introduce constraints or redundancies at the character 
level, resulting in reduced diversity.

Conversely, word-level corpus entropy was higher in the synthetic 
corpus (9.9799) compared to the pseudonymized corpus (9.3543). 
This reflects a broader or less predictable word usage in the synthetic 
data, potentially attributable to the generative process introducing 
new combinations of words or emphasizing novelty. Thus, while 
synthetic data appears to be less varied at the character level, it is more 
varied at the word level than the original pseudonymized corpus.

Beyond overall corpus-level entropy, per-document analysis 
further clarifies differences in diversity and distribution between the 
pseudonymized and synthetic corpora. Mean per-document 
Shannon entropy at the character level was higher for the 
pseudonymized documents (4.8449) than for synthetic ones 
(4.6846), and this difference was statistically significant (Mann–
Whitney U = 260.00, p < 0.001). This corroborates the corpus-level 
finding, indicating that, on an individual document basis, 
pseudonymized texts are consistently more diverse and less 
predictable regarding character usage than their 
synthetic counterparts.

Moreover, mean per-document Shannon entropy at the word level 
was significantly higher for synthetic documents (8.6939) than for 
pseudonymized ones (8.3075) (Mann–Whitney U = 0.00, p < 0.001). 
Thus, at the document level, synthetic texts exhibit greater 
unpredictability and a broader vocabulary than those found in the 
pseudonymized set, as was the case for corpus-level entropy.
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For Average Bigram PMI, which quantifies the strength of 
association between word pairs by measuring how much more 
likely two words are to occur together than would be expected by 

chance, we observed that the synthetic corpus exhibited weaker 
word pair associations compared to the pseudonymized corpus. 
Specifically, the corpus-average bigram PMI was lower in the 

FIGURE 4

Document level assessment using a holistic benchmark framework for quantitative evaluation of synthetic data quality (see Table 4). The figure 
presents a matrix of violin plots comparing the distributions of eight features—Size (MB), Word Count, Unique Words, Document Length (Chars), 
Character Entropy, Word Entropy, Average Pointwise Mutual Information (PMI), and Jensen-Shannon (JS) Distance—across three datasets: (A) real-
world PDF (N = 13), (B) pseudonymized markdown (N = 13), and (C) synthetic markdown (N = 20). Note, each feature is encoded by a unique color for 
visual clarity (see Legend upper right side of the figure). Violin plots combine aspects of box plots and kernel density plots to provide a nuanced 
visualization of distributional characteristics. Specifically, the width of each violin at a given value represents the estimated probability density of the 
data at that value, as calculated by a kernel density estimator. This allows for the depiction of multimodality, skewness, and overall distributional shape, 
beyond summary statistics such as mean or quartiles. In this matrix, each subplot includes both the violin plot and overlaid scatter points indicating 
individual data instances, thereby facilitating both distributional and sample-level comparison of features across the three datasets.
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synthetic data (5.98) than in the pseudonymized data (6.92). This 
indicates that bigrams in synthetic texts are less strongly associated, 
or less conventional, than those present in the real-world clinical 
narratives. This finding likely reflects the inherent repetitiveness 
and predictability of authentic EHRs, in which common 

phraseology and co-occurring terms are documented repeatedly, 
thereby increasing the frequency and association strength of certain 
word pairs. In contrast, synthetically generated texts may introduce 
more varied or less natural co-occurrences, leading to overall 
weaker bigram associations.

TABLE 6  Corpus level assessment: pseudonymized (Pseudo) versus synthetic (Synth) text corpora.

Metric interpretation Pseudo mean Synth mean Mann-whitney U (U-stat) p-value

Textual diversity metrics

Corpus shannon entropy (character)

Pseudo > Synth character diversity

4.8565 4.6936 — —

Corpus shannon entropy (word)

Synth > Pseudo word diversity

9.3543 9.9799 — —

Mean per-document shannon entropy (character)

Pseudo > Synth, significant difference

4.8449 4.6846 U = 260.00 p<0.001

Mean per-document shannon entropy (word)

Synth > Pseudo, significant difference

8.3075 8.6939 U = 0.00 p<0.001

Distributional differences

JSD (word dist. between corpora)

Moderate divergence

— 0.3770 — —

Mean Per-Doc JSD (word-level)

vs. combined corpus

Synth more divergent,

significant difference

0.2297 0.2618 U = 12.00 p<0.001

Linguistic associations

Corpus average bigram PMI (min freq=3)

Pseudo > Synth word pair associations

6.9187 5.9833 — —

Mean per-document bigram PMI

Not statistically significant

6.4007 6.2604 U = 161.00 P=0.2611

Document structure

Average document length (characters)

Pseudonymized docs much longer

13,370.15 9,412.25 — —

Surface & Semantic similarity

BLEU score (synthetic vs. pseudonymized)

Very low n-gram overlap,

low surface similarity

— 4.6179 — —

BERTScore (synthetic vs. pseudonymized)

Moderate similarity

— 0.6447 — —

Classification metrics

Precision

Semantic/textual discrimination

— 0.6556 — —

Recall pseudonymized—F1

Similarity measure

— 0.6499 — —

Classifier AUC (pseudo vs. synthetic)

Perfectly distinguishes

lower = better for synthetic

— 1.0000 — —

Classifier AUPRC (pseudo vs. synthetic)

Perfectly distinguishes (lower = better for synthetic)

— 1.0000 — —

Evaluation metrics used—see Table 5, for detailed description—are character and word diversity (Shannon entropy), distributional differences (JSD), linguistic associations (Average Bigram 
PMI), document length, surface and semantic similarity (BLEU and BERTScore), and the ability of machine learning classifiers to distinguish the two types of documents (AUC and AUPRC). 
Note, the Mann–Whitney U-test—reporting both statistic and p-value—is used to determine whether observed differences between the corpora are statistically significant. This non-
parametric test was chosen because it does not assume a normal distribution, making it suitable for text-derived metrics that often violate this assumption, and thereby provides a robust 
evaluation of whether differences reflect meaningful distinctions rather than random variation.
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In contrast to Shannon’s Entropy and average bigram PMI, metrics 
such as JSD, BLEU score, BERTScore, and classifier performance 
directly provide a comparative value as output (Table 6). While the 
synthetic data demonstrates several meaningful similarities to real 
data, there are also notable shortcomings.

The mean per-document Jensen-Shannon divergence (JSD) of 
word distributions relative to the combined corpus is higher in 
synthetic documents (0.2618) than in pseudonymized ones (0.2297), 
a statistically significant difference (Mann–Whitney U = 12.00, 
p < 0.001). This signifies that individual synthetic documents tend to 
diverge more from the aggregate corpus word distribution than 
pseudonymized documents, implying less conformity and potentially 
greater variation in how topics or vocabulary are expressed in 
synthetic data.

In surface-level text analysis, an n-gram refers to a sequence of n 
consecutive words—such as a bigram (two words) or a trigram (three 
words)—and comparing n-grams between documents helps reveal 
how closely their wording and phrasing align. Surface-level text 
similarity, as measured by the BLEU score (4.62 out of 100), was very 
low, indicating minimal n-gram overlap between synthetic and 
pseudonymized texts. This result bears out that the synthetic data are 
not merely replicating or closely paraphrasing real document phrases 
but are instead generating genuinely novel text content. While a low 
BLEU score might be viewed as a negative outcome in tasks requiring 
close mimicry, in the context of privacy-preserving data synthesis, it 
is encouraging. It demonstrates that the generative Agent workflow is 
not merely memorizing or reproducing existing expressions from the 
source corpus, but creating new, diverse language that reduces risks of 
information leakage.

Semantic similarity, as assessed by BERTScore, was moderate, 
with an F1 score of approximately 0.65 (precision: 0.64, recall: 0.66). 
Thus, although the synthetic data exhibits low surface-level overlap 
and increased lexical diversity compared to authentic EHR notes, it 
nonetheless preserves a substantial portion of the underlying clinical 
meaning and topical content. Such moderation in semantic overlap 
tells us that the sentences and phrases in the synthetic data are not 
directly copied or closely matched, word-for-word, with those in the 
original clinical records (authentic EHR notes). When we  look at 
common sequences of words (n-grams), there is very little overlap 
between the two sets—meaning the synthetic data displays different 
combinations of words and sentences, rather than repeating those 
found in the real notes. In our use case of synthesizing clinical 
narratives, very high F1, precision, and recall measures would indicate 
exact copies of original data, whereas our aim was to increase textual 
diversity by adding real-world samples and clinical practice guidelines 
as knowledge bases for reasoning.

A machine learning classifier trained to distinguish between 
synthetic and pseudonymized (real) documents attained perfect 
discrimination, with both AUC and AUPRC scores of 1.00. This result 
shows that there are clear, easily learnable feature differences between 
the two datasets—particularly those reflected in TF-IDF 
representations. Among these, document length emerged as a primary 
distinguishing characteristic. Consequently, while the synthetic 
dataset demonstrates advantages such as content novelty and 
satisfactory conceptual coverage, its inability to realistically replicate 
document length results in synthetic documents being consistently 
and trivially separable from real ones. This highlights the need for 
improved modeling of document-level properties to enhance the 

realism and utility of synthetic clinical text. It also provides a clear 
path forward: simply adjusting the length of synthetic documents to 
match that of authentic clinical notes, or by deleting redundant 
information from the authentic clinical notes, should eliminate the 
primary feature the classifier uses to tell them apart. In doing so, the 
synthetic texts would likely become much harder for automated 
classifiers to distinguish from real ones, substantially improving their 
realism and the utility of the synthetic dataset.

Our corpus-level assessment—drawing on both Figure  4 and 
Table 6—shows that clinical text derived through GA-assisted SHDG 
are more predictable at the character level but surpass pseudonymized 
notes in word-level diversity and unpredictability. This pattern likely 
stems from artifacts or variability introduced during text generation, 
with important implications for the realism and utility of synthetic 
data. Overall, our findings highlight that while synthetic EHRs 
successfully avoids direct replication and privacy risks by producing 
novel word combinations, they also exhibit weaker conventional 
phrase associations and greater divergence from word distributions 
observed in the real corpus in.

5 Discussion

Our present work addresses a persistent barrier in digital health 
GenAI: the lack of accessible, interoperable, and privacy-preserving 
datasets that capture the diversity of real-world healthcare 
documentation (Eigenschink et  al., 2023; Murtaza et  al., 2023; 
Hernandez et al., 2025; Ibrahim et al., 2025; Loni et al., 2025). Building 
on our stepwise strategy for constructing a learning health system 
(LHS) (van Velzen et al., 2023), we argue that a fully integrated LHS 
will remain unattainable until these data challenges—especially in 
nursing and allied health (Tischendorf et al., 2025)—are resolved.

Echoing “On the Dangers of Stochastic Parrots” (Bender et al., 
2021), we stress that healthcare must ask whether public cloud LLMs 
can be  used in ways that are truly FAIR—Findable, Accessible, 
Interoperable, and Reusable—while mitigating risks such as high 
environmental and financial costs, opaque or biased data, and 
amplification of inequities. This requires curating and documenting 
high-quality datasets, aligning development with research and 
stakeholder values, and exploring approaches beyond ever-
larger models.

A viable solution is the adoption of compact, fine-tunable SLMs. 
These small LLM alternatives can be  deployed directly within 
healthcare facilities. Running locally not only reduces reliance on 
external cloud services but also lowers operational costs, decreases 
energy demands, and enhances data privacy. SLMs are increasingly 
capable of powering point-of-care applications—from clinical decision 
support to patient communication—while ensuring sensitive 
information remains within institutional boundaries (Schick and 
Schütze, 2021; Dibia et al., 2024; Garg et al., 2025; Kim et al., 2025; Xie 
et al., 2025).

By establishing a no-code, protocol for creating GA-assisted 
SHDG workflows—enabled by rapid prototyping platforms and 
further enhanced through fully automated, GenAI-assisted 
co-development—it is achievable to significantly lower the technical 
threshold for GenAI engagement. Leveraging the DSI stack as a 
generic blueprint architecture (Figure  1A), our methodological 
approach illustrates how modular, no-code frameworks can 
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be  systematically employed to streamline and democratize the 
creation of intelligent healthcare workflows.

In particular, the use of GA-assisted workflows to support clinical 
reasoning for nurse specialists—demonstrated through the 
“Nandalyse”11 tool at the 2025 ASCENDIO conference—represents a 
major shift in healthcare technology development and adoption in the 
Netherlands (Kumar, 2023; Jeong, 2025; Tischendorf et al., 2025). 
These novel GenAI tools enable clinicians and other non-technical 
users to easily create and customize workflows using simple, modular, 
drag-and-drop interfaces, significantly lowering the barriers 
to participation.

A key aspect of our protocol for GA-assisted SHDG workflows is 
the explicit bridging of the gap between end users—such as clinicians, 
quality officers, and researchers—and the technical developers 
responsible for constructing and maintaining AI systems (as detailed 
in Figure  1B). In healthcare, this chiasm is often perpetuated by 
differences in language, priorities, and familiarity with digital tools. 
The explicit integration of human-in-the-loop (Alemohammad et al., 
2024) in no-code GA-assisted SHDG workflows not only supports 
iterative co-development (Li et al., 2023) but also ensures that the 
system remains transparent and grounded in real-world clinical needs 
and documentation standards (Chung et al., 2023).

Notably, our methodology fosters closer collaboration between 
users and developers by providing open-source GitHub repositories 
(see text footnote 4), which make design choices, workflow logic, and 
evaluation criteria more transparent and verifiable. However, realizing 
the full promise of these platforms will require continued investment 
in user education, ongoing refinement of documentation and support 
resources, and the cultivation of communities of practice around 
open-source synthetic data generation.

The successful adoption of privacy preserving GA-assisted SHDG 
workflows in clinical practice, healthcare professionals requires more 
than technical proficiency alone (Kumar, 2023; Chew and Ngiam, 
2025; Jeong, 2025); they must also possess a comprehensive 
understanding of key data privacy principles—such as 
pseudonymization and de-identification—to ensure patient 
confidentiality is maintained (Drechsler and Haensch, 2024; Rujas 
et al., 2025). Especially, clinicians should be aware of the inherent 
limitations of LLMs, including potential risks of bias, hallucination, 
and model drift, all of which may impact the fidelity and safety of 
synthetic health data (Alemohammad et al., 2024; Loni et al., 2025). 
Harnad (2025), notes that LLMs rely on stochastic patterns by 
capturing statistical regularities rather than achieving genuine 
semantic understanding, meaning that even fluent and coherent 
output may be  inaccurate, irrelevant or misleading. Shojaee et  al. 
(2025) further caution that the apparent reasoning proficiency of such 
models can deteriorate markedly as problem complexity increases—
an “illusion of thinking” with significant implications for clinical 
safety. Collectively, these observations reinforce the imperative for 
multidimensional evaluation frameworks that integrate both surface-
level measures (e.g., document length, lexical overlap) and deep-level 
metrics (e.g., semantic alignment, diversity) to rigorously assess the 

11  https://github.com/HR-DataLab-Healthcare/RESEARCH_SUPPORT/tree/

main/PROJECTS/Harnessing%20the%20Power%20of%20Gen-AI%20in%20

Research

fidelity and practical utility of synthetic narratives across diverse, 
high-stakes clinical contexts (Shannon, 1948; Post, 2018; Zhang 
et al., 2019).

Importantly, working with GenAI in Healthcare mandates a clear 
understanding of evaluation metrics (Eigenschink et  al., 2023; 
Abdurahman et al., 2025; Ibrahim et al., 2025). Because no single 
metric can holistically capture the quality of synthetic clinical text, a 
comprehensive assessment should integrate document- and corpus-
level metrics (for overview see Tables 4, 5, respectively): document 
length and average word count for surface features, entropy for textual 
diversity (Shannon, 1948), BLEU for lexical overlap (Post, 2018), and 
BERTScore for semantic alignment (Zhang et al., 2019). Together, 
these complementary metrics provide a nuanced perspective on both 
the linguistic and informative value of synthetic narratives. 
Importantly, high performance on one dimension (e.g., diversity as 
measured by entropy) does not necessarily translate to strong semantic 
faithfulness (as measured by BERTScore). This distinction is 
particularly relevant when evaluating synthetic data for diverse clinical 
contexts, such as physiotherapy documentation in high-risk or 
emotionally fraught scenarios (e.g., cardiac, oncology, or orthopedic 
surgery). Our results (Table 6) reinforce the necessity of using an 
ensemble of surface and deep metrics to robustly assess the utility and 
fidelity of synthetic clinical narratives, supporting their appropriate 
integration into research and practice.

Our work is not without limitations. We identified four main 
operational and technical challenges that must be  addressed to 
advance GA-assisted SHDG workflows. First, comparative 
evaluation of on-premises versus cloud-based AI models (Table 1) 
is needed to optimize trade-offs between data privacy, 
computational performance, and cost (Schick and Schütze, 2021; 
Garg et al., 2025; Xie et al., 2025). Parameter tuning—including the 
adjustment of prompt temperature and chunk size—must 
be empirically refined to balance realism and diversity in generated 
outputs (Peeperkorn et al., 2024). Second, while our GA prompts 
were intentionally crafted to encourage adherence to established 
clinical practice guidelines to generate clinically relevant outputs, 
we  acknowledge that real-world clinical practice often diverges 
from these standards. Notably, intentional non-adherence to 
guidelines has been observed in up to 65% of cases within EHRs, 
frequently attributable to specific patient factors such as 
contraindications, comorbidities, or individual preferences (Arts 
et al., 2016). Therefore, for GA-assisted SHDG workflows to remain 
practical and reflective of authentic clinical scenarios, addressing 
this variability is essential. Consequently, our prompt design may 
have inadvertently constrained the clinical diversity of the 
synthesized narratives—a limitation that may have been further 
amplified by the small sample size of our authentic clinical EHR 
documentation dataset (N = 13 PDF documents). Future SHDG 
workflows should explicitly address these limitations through 
testing various prompt engineering techniques to better capture the 
variability inherent in real-world clinical narratives, or alternatively, 
by increasing the size of or sample dataset to encompass a broader 
range of patient presentations, care contexts, and documentation 
styles and a wider range of intentional non-adherence to guidelines. 
Implementing these changes—refining prompt-engineering 
techniques and expanding the dataset—would improve the 
representativeness of the generated outputs and better align them 
with the complexities of actual clinical practice. Third, we identified 
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additional prompt engineering issues (Figure 3). These included the 
inadvertent introduction of gender bias—all synthetic patients 
turned out to be  female—and inconsistent handling of 
abbreviations—where sample and markdown files contained 
frequent abbreviations, but synthetic data did not. We also found 
another prompt engineering issue that resulted in a one-size-fits-all 
approach in the generated therapy plans and reduced therapy 
frequency variability. Document length discrepancies, often 
resulting from repetition in sample or markdown files, also require 
further exploration to ensure consistent structural fidelity across 
datasets. Recent research underscores that prompt engineering is 
not a value-neutral process and that different components of a 
prompt can vary significantly in their robustness and susceptibility 
to bias. Mei et al. (2025) provide a comprehensive survey of “context 
engineering” strategies for large language models, highlighting how 
the choice, structuring, and sequencing of contextual elements can 
systematically influence model outputs. Zheng et al. (2025) further 
demonstrate that individual prompt components—such as 
instructions, examples, or delimiters—exhibit heterogeneous 
adversarial robustness, meaning that some parts are more 
vulnerable to manipulation or unintended bias than others. Related 
work on priming effects shows that the initial context or examples 
provided to a model can strongly condition its subsequent 
responses, amplifying or dampening biases and shaping output 
diversity (Zhao et  al., 2021; Gallegos et  al., 2024). Huang et  al. 
(2025) demonstrate that targeted priming can exploit intrinsic 
weaknesses in large language models, revealing latent vulnerabilities 
that may not be apparent under standard prompting conditions. 
Meinke et al. (2024) further reveal that frontier-scale models are 
capable of sophisticated in-context behaviors, sometimes 
strategically adapting to earlier cues in ways that can subtly steer 
reasoning and decision-making. In addition, Gallegos et al. (2024) 
synthesize evidence that such biases can emerge not only from 
pre-training data but also from contextual framing and priming 
during inference. Together, these findings suggest that the gender 
bias, abbreviation inconsistencies, and homogenized therapy plans 
observed in our study may stem not only from prompt content but 
also from the structural composition, priming effects, and resilience 
of the prompts themselves. This reinforces the need for systematic 
evaluation and refinement of both prompt components and priming 
strategies to mitigate bias and improve variability in generated 
outputs. Fourth, the normalization of clinical text presents a 
significant methodological challenge, as variations in terminology—
for instance, describing the same condition as “sciatica” versus 
“lumbosacral radicular pain syndrome”—often reflect individual 
practitioner preferences as well as institutional conventions 
(Suominen et al., 2013; U.S.-National-Library-of-Medicine, 2024). 
This semantic variability can be  quantitatively monitored using 
mutual information-based evaluation metrics (see Section 3.4); in 
our study, we  applied the average bigram pointwise mutual 
information (PMI) metric. However, the robustness of this metric 
across more diverse datasets and practitioners from different 
clinical specialties remains to be fully validated. Thus, relying solely 
on either surface-level metrics or deep semantic measures is 
insufficient. Instead, a comprehensive evaluation of the faithfulness 
of SHDG demands the integration of both approaches (Eigenschink 
et al., 2023; Smolyak et al., 2024; Chen et al., 2025b; Ibrahim et al., 
2025; Scherr et al., 2025).

6 Conclusion

Based on our findings, we recommend prioritizing the continued 
development and refinement of GA-assisted SHDG-workflows, 
ensuring that these toolchains remain accessible, transparent, and 
customizable for a diverse range of clinical users and researchers 
through the provision of open-source GitHub repositories (see text 
footnote 4). Our recommendations align with ongoing efforts by the 
RUAS Healthcare DataLab to advance innovation in care through 
collaborative, technology-driven solutions that integrate open, 
adaptable tools into diverse healthcare contexts.12 In parallel, our 
talent program fosters and equips RUAS students with the skills and 
expertise required to become proficient data science professionals, 
thereby strengthening the capacity for data-driven innovation 
within the Dutch healthcare sector. To maximize impact, future 
initiatives should emphasize robust user education on essential data 
privacy concepts—such as pseudonymization and de-identification—
and foster a deeper understanding of both the capabilities and 
limitations of no-code GenAI technologies, particularly regarding 
risks like bias, hallucination, and model drift. Comprehensive 
evaluation frameworks should integrate both surface-level and deep 
semantic metrics to robustly assess the linguistic and clinical fidelity 
of synthetic narratives, while methodological improvements—
including enhanced prompt engineering to address issues of bias, 
guideline adherence, and structural consistency, as well as adherence 
to normalization standards—will be  essential in capturing the 
diversity inherent in real-world clinical documentation. 
Comparative assessments of on-premises versus cloud-based 
deployments, plus empirical tuning of generative parameters, are 
also advised to optimize privacy, cyber security, cost, and 
performance trade-offs for varied healthcare settings. Finally, 
building active communities of practice and cultivating 
collaborative, iterative engagement between end-users and 
developers will be critical to realizing truly FAIR (Mons et al., 2017), 
AI-ready LHS that can adapt to the complexities and dynamic 
requirements of modern clinical environments (Huerta et al., 2023; 
Verhulst et al., 2025).

Our protocolization of privacy-preserving, GA-assisted SHDG 
workflows underscores the critical importance of maintaining 
transparency by keeping humans actively involved in the 
process—a principle known as human-in-the-loop. Specifically, 
we standardized the use of a modular, no-code system in which 
every step—from designing AI prompts, to providing data inputs, 
to defining how outputs are applied—can be  easily inspected, 
understood, and refined without programming expertise. This 
approach enables users to trace how the LLM generates clinical 
narratives and to make step-by-step improvements over time. In 
parallel, the integration of an open-source GitHub repository (see 
text footnote 4), anchored by our modular DSI Stack (Figure 1A), 
supports the design and deployment of secure, reproducible, and 
scalable GA-assisted SHDG workflows across both on-premises 
and public cloud environments. By incorporating Docker-based 
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containerization and API key–secured inference endpoints via 
Hugging Face Spaces, we  ensure controlled access, consistent 
performance, and community-driven enhancement, while 
shielding users from underlying infrastructure complexity and 
maintaining full transparency for healthcare and 
research applications.
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