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Event-based cameras are sensors inspired by the human eye, offering advantages
such as high-speed robustness and low power consumption. Established deep
learning techniques have proven effective in processing event data, but there
remains a significant space of possibilities that could be further explored to
maximize the potential of such combinations. In this context, Chimera is a
Block-Based Neural Architecture Search (NAS) framework specifically designed
for Event-Based Object Detection, aiming to systematically adapt RGB-domain
processing methods to the event domain. The Chimera design space is
constructed from various macroblocks, including attention blocks, convolutions,
State Space Models, and MLP-mixer-based architectures, providing a valuable
trade-off between local and global processing capabilities, as well as varying
levels of complexity. Results on Prophesee’s GEN1 dataset demonstrated
state-of-the-art mean Average Precision (mAP) while reducing the number of
parameters by 1.6x and achieving a 2.1x speed-up. The project is available at:
https://github.com/silvada95/Chimera.

KEYWORDS

neural architecture search, event-based cameras, object detection, neuromorphic
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1 Introduction

Object detection is a critical task in computer vision that involves identifying objects
and determining their locations within an image. This capability is essential for various
real-world applications, including autonomous driving (Michaelis et al., 2019), robotics
(Xu et al, 2022), and surveillance (Jha et al., 2021). Traditionally, these applications
rely on data from RGB cameras, which provide a continuous stream of high-resolution
images (Liu et al., 2020). Recently, event-based cameras were introduced as a new sensing
paradigm, inspired by the human eye’s functioning (Lichtsteiner et al., 2008). Unlike
traditional cameras, pixels in event-based sensors generate outputs independently only
when changes occur in the scene, leading to a spatio-temporal stream of events in response
to brightness variations. Event-based sensors offer several advantages over RGB cameras,
such as microsecond-range latency, a High Dynamic Range (HDR) exceeding 120 dB,
power consumption in the milliwatt range, and potential memory savings by discarding
redundant information (Gallego et al., 2022).

Among the various techniques developed for object detection using RGB input,
deep learning algorithms, particularly the You-Only Look-Once (YOLO) family and
transformer-based detectors—have achieved significant success (Liu et al., 2020). Various
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FIGURE 1
Performance of Chimera for the prophesee’s GEN1 dataset.

YOLO versions were introduced, enhancing its speed and accuracy
while maintaining minimal trainable parameters (Terven et al,
2023). There is a notable correlation between the success of deep
learning methods in RGB applications and their performance in the
event-based domain, as seen with convolutional networks (Perot
et al,, 2020; Li et al., 2022a; Silva et al., 2025), and transformer-
based networks (Gehrig and Scaramuzza, 2023; Peng et al., 2024,
2023b; Zubic et al,, 2024). Many of these networks are designed
monolithically, meaning they consist of repeated layers of the
same blocks.

Additionally, in conventional computer vision, integrating
various architectural blocks into a single hybrid network has
shown significant benefits. Specifically, employing convolutions
in the trunk layers and transformers in later stages has proven
effective for balancing local and global contextual processing while
managing computational complexity across diverse feature sizes
(Hatamizadeh et al., 2023; Tu et al., 2022; Chen et al., 2022; Li
et al., 2022b). Some studies have also explored combinations such
as convolutional layers with MLP-Mixers (Li et al, 2023) and
State-Space Models with Transformers (Hatamizadeh and Kautz,
2024). Typically, the choice of these combinations is influenced
by researchers prior knowledge and experience. However, this
process can be automated through the use of Neural Architecture
Search (NAS) frameworks (Ren et al., 2021). In this context, Zero-
Shot NAS (ZS-NAS) emerges as a promising research avenue by
providing proxies that can evaluate the potential of different neural
network configurations without the need for extensive training (Li
et al., 2024).

The use of ZS-NAS makes the process more accessible and
feasible. Instead of requiring full training—which often leads to
high computational costs and sustainability concerns (Patterson
et al, 2021)—ZS-NAS utilizes proxy metrics for candidate
evaluation, offering improved scalability, speed, cost-efliciency,
and sustainability. Inspired by the good performance reported
for hybrid models in the frame-based literature, as well as the
possibilities of automatizing their design process leveraging ZS-
NAS, this work introduces a scalable, two-stage Neural Architecture
Search (NAS) framework named Chimera, specifically designed to
identify heterogeneous architectures for event-based applications
through the integration of well-known building blocks and proxies
adopted in the literature. This framework was benchmarked using
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the PeDRo dataset, analyzing various event encodings and model
configurations. The resulting architectures demonstrated strong
generalization capabilities, achieving state-of-the-art results on
Prophesee’s GEN1 dataset while being faster and requiring fewer
parameters than the top-performing model from the literature.
Figure 1 highlights the benefits of the models developed in this
work when compared to the literature.

2 Related works

2.1 Event-based object detection

Currently, there are various neural architectures available for
vision tasks. Existing event-based object detectors can be divided
into two primary categories based on their processing approach:
sparse models and dense models. Sparse models process input event
streams asynchronously and include techniques like Graph Neural
Networks (GNN) (Schaefer et al., 2022; Sun and Ji, 2023; Gehrig
and Scaramuzza, 2024) and Spiking Neural Networks (SNN)
(Kugele et al., 2021; Cordone et al., 2022; Su et al., 2023; Zhang et al.,
2023; Wang et al., 2023; Bulzomi et al., 2023; Fan et al., 2024; Wang
et al., 2024). In contrast, dense models convert event streams into
an intermediate format suitable for neural networks that process
image-like features. The most common and effective configurations
for dense neural networks are built using convolutional layers
(Perot et al., 2020; Li et al., 2022a; Peng et al., 2023a; Liu et al., 2023;
Silva et al., 2025), as well as self-attention blocks and their variants
(Gehrig and Scaramuzza, 2023; Peng et al., 2024, 2023b; Zubic
et al., 2023; Zubic et al., 2024). Additionally, several architectures
integrate Recurrent Neural Networks (RNNs) to enhance temporal
modeling (Perot et al., 2020; Gehrig and Scaramuzza, 2023; Li et al.,
2022a). Notably, State Space Models (SSM) (Zubic et al., 2024;
Yang et al., 2025), and Hierarchical Memory Networks (HMNet)
(Hamaguchi et al., 2023) are also implemented in this context.
Although significant progress has been done on sparse models,
there is still a gap in performance between them and the dense
approaches, which motivates adopting the latter in this work.

2.2 Hybrid neural networks

Combining diverse blocks into a hybrid architecture and
leveraging their complementary features can enhance performance
while achieving a balanced trade-off between computational
complexity and global/local modeling (Li et al, 2023; Gu
and Dao, 2023). For example, transformer-based models are
recognized for their state-of-the-art accuracy in vision applications
(Vaswani, 2017), but their high computational complexity can
make processing high-resolution images challenging. To mitigate
this issue, it is common practice to employ convolutional layers in
the initial stages for input downsampling, followed by transformer-
based blocks as the resolution decreases (Hassani et al., 2021). This
approach helps to maintain a balance between local and global
feature modeling throughout the network (Chen et al,, 2022; Tu
et al., 2022; Hatamizadeh et al., 2023; Li et al., 2022b).

Similarly, convolutional layers have been used with MLP-
Mixers to accommodate arbitrary input resolutions while reducing
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computational complexity (Li et al., 2023). In EfficientVMamba, an
integration of convolutional blocks with State Space Models (SSM)
was implemented, but unlike previous approaches, the SSM blocks
were positioned in the early stages of the network to maximize
global feature capture, with convolutional layers placed in the later
stages (Pei et al., 2024). Conversely, MambaVision (Hatamizadeh
and Kautz, 2024) employs convolutional layers at higher resolution
layers while incorporating a mixer block that alternates between
Mamba (Gu and Dao, 2023), an SSM block, and self-attention
(Vaswani, 2017). Other methodologies explore modifications of
convolutional blocks with self-attention (Srinivas et al., 2021), the
reverse (Chen et al.,, 2021a; Xu et al.,, 2021; Chen et al., 2021b;
Hatamizadeh et al., 2023), and even the creation of novel blocks
that combine both paradigms (Chen et al., 2021b; Tu et al.,, 2022;
Chen et al., 2022; Wu et al., 2021).

2.3 Zero-Shot NAS

Neural Architectural Search (NAS) was developed to automate
the process of finding the structure and design of neural networks
considering the given constraints to improve performance In
this work, the preference is given to the Zero-Shot NAS, which
eliminates the need for training neural networks and, therefore,
improves cost and time efficiency (Lin et al.,, 2021). Moreover,
it offers high scalability and can be optimized for specific
metrics using zero-shot proxies. The proxies are developed based
on theoretical and empirical analysis of deep neural networks,
incorporating factors such as topology, initialization, gradient
propagation, etc. Understanding how they impact the overall
performance enhances interpretability and predictions.

The implementation of Zero-Shot NAS requires identifying
a design space of candidates F and selection of proxy metrics.
As a result, the framework evaluates the candidate architectures,
ranks them according to the estimated proxy scores, and selects the
top architectures.

3 Methodology

In this work, we proposed a Neural Architecture Search (NAS)
algorithm designed to identify optimal hybrid neural networks,
with focus on event-based applications. The resulting architectures
interleave blocks from different paradigms—such as convolutions
and transformers—across various stages of the network. The overall
topology is inspired by Recurrent YOLOv8 (ReYOLOV8) (Silva
et al., 2025), featuring a recurrent backbone module for input
feature extraction, along with the multi-scale feature fusion and
detection heads from the original YOLOv8 model (Jocher et al.,
2023).

3.1 Event encodings

The input to the framework is assumed to be an event stream.
Each event within an event stream arises from changes in the
brightness and can be represented as a sequence e = (xk, Vk» tk> Pk)
for k = 1, 2, ..., N, where (x,y) denotes the pixel location, ¢
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indicates the timestamp and p reflects the polarity. A simple
method for transforming an event stream into a dense, grid-like
format to be suitable for later neural network processing involves
stacking the events in various configurations. The formats analyzed
in this work were Volume of Ternary Event Images (VTEI)
(Silva et al., 2025), which was associated with good performance
on ReYOLOVS, Stacked Histograms (SHIST), adopted on RVT
(Gehrig and Scaramuzza, 2023), and some subsequent works (Peng
et al., 2024, 2023b; Zubic et al., 2024), Mixed-Density Event Stacks
(Nam et al., 2022), which proposes a different way of creating
temporal bins and showed to be successful on depth estimation
application, and Temporal Active Focus (TAF) (Liu et al., 2023),
a First-In First-Out (FIFO)-based approach.

3.2 Chimera network organization

Figure 2 displays the fundamental architecture of Chimera’s
recurrent backbone, which consists of seven layers. It begins with
an Event Encoding block and a 3 x 3 downsampling convolutional
STEM layer. The subsequent four layers are called Chimera layers,
each having an identical structure but varying compositions.
These four layers comprise downsampling, processing, and a
memory cell. The downsampling components resemble the STEM
layer, while the memory cell is a fixed structure based on
Convolutional Long-Short Term Memory (ConvLSTM) blocks
(Shi et al., 2015). The ConvLSTM is modeled after a standard
LSTM (Hochreiter and Jiirgen, 1997) but adapted to process
spatial features, as done in Recurrent Vision Transformer (RVT)
(Gehrig and Scaramuzza, 2023) and ReYOLOVS (Silva et al., 2025).
This memory cell performs spatiotemporal modeling between the
current and previous feature maps. The processing block can utilize
any option available in Chimera’s component library, and the choice
of block for each Chimera Layer is made independently from the
others. The final layer of the recurrent backbone is a fixed Spatial
Pyramid Pooling Fast (SPPF) (He et al., 2015) block, stacked to
Chimera Layer 4 and is inherited from YOLOVS8 (Jocher et al.,
2023). Detection within the Chimera framework also utilizes the
multi-scale YOLOVS8 detection head, similarly to Silva et al. (2025).

3.3 Building blocks

The library supporting Chimera comprises various building
blocks. This section will provide a brief overview of each
component.

3.3.1 C2f block

The well-recognized capability of Convolutional Neural
Networks (CNNs) to extract features has significantly transformed
various computer vision tasks (Krizhevsky et al, 2012). For
example, YOLOVS, which serves as the foundation of the Chimera
framework, is composed of backbone, neck, and head blocks made
entirely of convolutions, like the downsampling convolutions and
the C2f blocks adopted for finer feature extraction (Jocher et al.,
2023). Hence, all those convolutions will be kept in Chimera, and
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FIGURE 2

Structure of the Chimera network.

the C2f blocks will be adopted as one of the possible choices for the
Chimera Layers. A block diagram of C2f can be seen in Figure 3A.

3.3.2 MaxViT block

Transformers are highly powerful in modeling global context
information due to the presence of self-attention operations
(Vaswani, 2017). However, this operation has quadratic complexity
concerning the input size, which incurs computational burdens.
In this context, (MaxViT)
(Tu et al, 2022), a variation of self-attention with reduced

Multi-axis Vision Transformer

computational complexity, was included in the Chimera
library. Remarking that this block was already successfully
adopted in the event domain (Gehrig and Scaramuzza, 2023)
is worthy. In the Chimera framework, this block is instantiated
only in terms of input and output channels. The remaining
parameters are the same as those used in RVT, including
the decision not to stack such blocks. Figure 3B depicts its

main operations.

3.3.3 Mamba block

Grounded in continuous-time linear systems, these models
have recently gained prominence for their efficiency in parallel
processing. Various models adhering to this principle have
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emerged, mainly differing in matrix representations. The Mamba
block, which is included in the library, has attracted significant
attention recently, both in the context of Large Language
Models (LLMs) (Gu and Dao, 2023) and in the vision domain
(Hatamizadeh and Kautz, 2024), including even applications on
the event-based domain (Yang et al, 2025). In the original
implementation, the Mamba block alternates between a State Space
Model (SSM) and Self-Attention mechanisms within the same
stage. However, it was decided to retain only the SSM block for
the Chimera framework, as MaxViT already incorporates Self-
Attention. This approach enables us to evaluate the effects of the
Mamba block in a standalone manner within a specific stage.
Details of its structure are presented in Figure 3C.

3.3.4 WaveMLP

Multilayer Perceptron (MLP)-Mixers model local and global
relationships through channel and token mixing (Tolstikhin et al.,
2021). Token mixing captures spatial information, while channel
mixing focuses on feature information. WaveMLP is an MLP-Mixer
that treats tokens as waves, incorporating amplitude and phase
information and introducing a Phase-Aware Token Mixing module
(PATM) (Tang et al, 2022). Due to its flexibility and reported
performance, WaveMLP was included in the Chimera library. A
simplified diagram can be seen in Figure 3D.
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3.3.5 YOLOv8 detection head and PANET

Like other algorithms in the YOLO family, YOLOvV8 comprises
structures responsible for feature extraction, multi-scale feature
fusion, and a detection head. As illustrated in Figure 2, the
last three feature maps from the backbone are forwarded to
the Detection Head, which, for simplicity in this discussion,
encompasses both the multi-scale feature fusion structure and the
detection heads. The multi-scale feature fusion in YOLOVS utilizes
a Path Aggregation Network (PANET) that fuses those features
from the backbone and transmits them to three detection heads.
Figure 4 displays both structures, with P5, P4, and P3 denoting
the last three feature maps from the backbone. The number of
channels of the PANET are fixed with respect to the choice of
output channels from the STEM layer.

3.4 Building Chimera-NAS fitness function

In this work, Zero-Shot NAS proxies were adopted as the core
mechanisms to search through the hybrid design space. Zero-
Shot NAS proxies are quantities that are calculated during the
networks’ initialization, which enable the estimation of the test-
set performance without undergoing training setups, turning the
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search process less resource demanding (Li et al., 2024). The fitness
score adopted in the ZS-NAS search process is built from a linear
combination of different proxies that are described in this section.

3.4.1 ZenScore

The expressive capacity of a network refers to its ability to
effectively capture complex relationships within the input data.
For vanilla CNNg, it can be associated with Gaussian complexity
according to the following equation:

#(f) = log Exg | Vx£(x|0)|F 1

where x is the input, 6 the network parameters, and f(.) is the
network backbone with the last feature before the Global Average
Pooling (GAP) operation. The formulation from Equation 1
considers a network without Batch Normalization layers. However,
this leads to problems such as overflow when applied to deep
networks. The Zen-score solved this problem by introducing Batch
Normalization layers and considering their variance into the score
computation (Lin et al., 2021). Furthermore, to avoid adopting the
backward propagation from Equation 1, they calculate the score
according to the finite differential:

A = Exe [lf(x) — f(x + a€)llF (2)
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TABLE 1 Design choices present on the Chimera library backbone.

#  Layer Search focus  Choices
1 STEM Output Channel Ch 16, 24, 32, 40, 48
Multiplier M; 1, 1.25,1.33, 1.50,
X 1.66, 1.75, 2.00
2-5 Chimera Layers 1-4
Block C2f, MaxViT,
Mamba,
‘WaveMLP
Repeats 1,2,3
(Except MaxViT)

where € is a random disturbance and « is an adjust parameter for
this noise. Then, the Zen-score is given by:

Zen(f) = log(A) + ) _ log(o7) (3)

1

where i refers to the index of the Batch Normalization layers, each
with its respective standard deviation o;. Originally, both x, 6, and €
were taken from a standard Gaussian Distribution (Lin et al., 2021).
Also, in Chimera, f(.) will consider the whole backbone block,
including the Spatial Pyramid Pooling-Fast (SPPF) block.

3.4.2 Minimum eigenvalue of correlation (MeCo)

The Minimum Eigenvalue of Correlation (MeCo) score was
developed by exploiting the similarities between multi-channel
CNN layers and over-parameterized NN layers and the relationship
between the generalization capacity of an NN and the minimum
eigenvalue of its Pearson correlation matrix (Jiang et al., 2023).
Based on that, for a L-layered network f#(X; 6), the MeCo proxy
is defined as:

L
MeCo: =Y Amin(P(f'(X: 0))) (4)

i=1

where A, is the minimum eigenvalue of the Pearson
correlation matrix P(f!(X; #)) of the i-th layer f/(X; #) randomly
initialized with parameters 6 and evaluated over the dataset X.

3.4.3 AZ-NAS proxies

In AZ-NAS (Lee and Ham, 2024), the authors proposed an
ensemble of different proxies to develop their NAS algorithm.
Firstly, they defined an expressivity index based on the Principal
Component (PC) Analysis. The reasoning is that the less correlated
the eigenvalues, the higher the capacity for network generalization.
By performing an eigenvalue decomposition to obtain those PCs,
the scores per layer are calculated as an entropy score that takes
those eigenvalues as probabilities. This can be calculated as:

c

AZEPT — Z —n(0) log a(i) (5)

i=1

where ¢ is the number of features of the I-th layer and A; the
eigenvalues for that layer obtained through PC analysis. They
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associate the expressiveness with the isotropy of the feature space,
checking whether there are dominant eigenvalues, which could
result in the problem of dimensional collapse. Then, the AZ-NAS
score for a whole architecture is given by:

L
AZEPT — ZAZIexpr (6)
i=1

They also proposed an auxiliary proxy to measure the
progressivity of a network, which measures the capability of
expanding the size of a network through the increase of its depth,
represented here as AZP™8 (Lee and Ham, 2024). This proxy can be
calculated as:

AZP¢ = min (AZF" — AZj_“F") (7)

which is the slightest difference in expressivity on the neighboring
blocks. The higher this value is, the more consistent the expressivity
increases from one layer to another. They also added a metric for
trainability, which is based on the observation that the spectral
norm of a Jacobian matrix for each layer being close to 1 is related
to good propagation of gradients through a network (Lee and Ham,
2024). This index is calculated as:

L

1 1

=2

A Ztmin —

where L is the number of layers and o7 is an approximation of the
spectral norm of the Jacobian matrix. Adopting o; and its reciprocal
is meant to punish values far from 1.

3.4.4 Model complexity

The complexity of a model, measured in terms of Multiply-
Accumulate Operations (MACs), has been found to correlate with
the model’s test accuracy. As a result, this metric has also been
incorporated into the analysis presented here (Li et al., 2024).

3.5 Chimera-NAS search algorithm

3.5.1 Algorithm

The design space F of the Chimera framework is characterized
by the backbone and the multi-scale feature fusion structures. As
shown in Table 1, the backbone design begins by selecting the
STEM layer output channels Ch, which is 3 x 3 convolution with
stride 2. Each subsequent Chimera Layer is assigned a channel
multiplier Mi, which determines its number of channels relative to
preceding layers, along with a designated processing unit “Block”.
A parameter “Repeats” is defined for all blocks except the MaxViT
block: for the C2f block, “Repeats” is the number of bottleneck
blocks inside its architecture; for the other blocks, it is the number
of block instances stacked. On the other hand, the multi-scale
feature fusion has a fixed structure (Figure 4), where only the
output channels of its C2f blocks are adjustable. In Table 2, for
each STEM output channel value Ch, a value ChO is chosen.
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TABLE 2 Relationship between the width parameter of the multi-scale
feature fusion block and the STEM's layer output channel.

STEM's layer Output Channel adopted across

Channel Ch the PANET, ChO
16 16

24 20,24

32 28,32

40 36,40

48 44,48

TABLE 3 Channel parameters of the different multi-scale feature fusion
blocks according to the parameter constraint of the model.

MAXparams <14M

MAXparams >14M

Chout
c2f 1 8Chq 8Chy
c2A 2 4Chy 4Chy
c2A 3 8Cho 8Cho
Cof 4 16Chq 12Chq

Table 3 then shows that the output channels Ch0 of each PANET
C2f block are determined by predefined multipliers based on the
size constraint MAXparams and the chosen Ch0. This change of
multipliers related to the maximum architecture size is meant to
prevent the detection head blocks from consuming most of the
available resources. All channel numbers are rounded to a multiple
of 8 for better resource utilization. This design space can generate
approximately 111 million unique architectures.

The search algorithm within the Chimera framework proceeds
in two distinct stages. In the first stage, architectures are generated
and selected using an Evolutionary Algorithm, which is preferred
due to its simplicity and effectiveness, as evidenced by prior results
in the ZS-NAS domain (Lin et al., 2021). The Fitness Score can be
computed using any of the metrics outlined in Section 3.4, or as a
combination of these metrics. The optimization problem that this
first stage aims to address, given a design space F, can be framed
as follows:

max F=W.ZS(f)
feF (9)
s.t. Params(f) < MAXparams-

In this formulation, ZS(f) € RN represents a vector
comprising a set of N ZS-NAS proxies calculated for the
architecture f, weighted by the vector W e RN*! The
term Params(f) denotes the number of parameters within the
architecture f, while MAXp,rams is an upper limit for model sizes.
The proxies’ mean value and standard deviation are utilized to
standardize them, allowing for representation on a unified scale.

During the second stage, the top five architectures identified
by the ZS-NAS process are trained for 100 epochs. Ultimately,
the architecture that achieves the highest mean Average Precision
(mAP) is chosen. This second step is essential for mitigating the
inherent inaccuracies associated with proxy-based methods and
fine-tuning the resulting architecture.
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1: ————————- First Stage: ZS-NAS —————
2: Input: Population size N, Search space S,
of iterations I, Maximum Number of Parameters per

Number

architecture Maxparams, Population P, Fitness score F

. Initialize: P« ¢

. for 1=1 to N do
Create individual I;
Profile I; in terms of the ZS-NAS proxies
Append I; to the population P

- end for

. for j=1 to I do

0: Select a
k=1,...,N
Apply Mutation to Iy,

- O 00 N O o b~ W

random individual I, from P, where

-
—

creating the individual

Tyt
12: if Params(Iyx) > Maxparams then
13: goto line 9
14: else
15: Append Ix.q to P
16: Calculate the fitness score F for P
17: Remove the individual with the lowest F
from P
18: end if
19: end for
20 ———————— Second Stage: Fine-Tuning ———————

21: Choose the five individuals Iy with the highest
fitness scores and perform training for 100 epochs
each

22: Output: The individual I with the highest mAP as
the architecture output

Algorithm 1. Chimera algorithm.

3.5.2 Chimera testbed

To evaluate the accuracy of the selected proxies in predicting
performance on the test set and to determine the optimal weight
vector for Equation 9, a testbed was established using a subset of
architectures from the Design Space. The PeDRo dataset (Boretti
et al,, 2023) was chosen for this task due to its small size, serving
as the basis for profiling the proxies and conducting the Chimera
search. This methodology was inspired by frame-based approaches,
which typically utilize smaller datasets such as CIFAR-10 or CIFAR-
100 before advancing to larger datasets like ImageNetlk (Liu
et al,, 2018). Each model was trained for 50 epochs, effectively
balancing runtime and convergence, and the test set's mean Average
Precision (mAP) was recorded. This analysis involved executing
1,250 randomly generated models, incorporating heterogeneous
and homogeneous compositions of all blocks from the library.
Each model was trained using the VTEI, MDES, TAF and
SHIST representations, each consisting of five temporal bins, to
evaluate the relationship between event encodings and different
architectures. The choice to use five temporal bins follows the
approach implemented in ReYOLOV8 (Silva et al., 2025), which
demonstrated strong performance. Comparable values are reported
in the literature; for example, RVT utilized six temporal bins
(Gehrig and Scaramuzza, 2023).
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Two correlation measures were employed to evaluate the
effectiveness of the proxies in approximating the mAP ground
truth. The first measure, Kendall’s Tau, compares models’ rankings
based on mAP with those determined by the proxies. The
second measure, Spearman’s correlation, assesses the degree of
monotonicity between the two variables: the proxies and the mAP
(Lietal., 2024). Additionally, the mean squared error of the top 10%
of mAPs relative to the mAPs sorted by each proxy was analyzed.

Regression Trees (Breiman et al, 2017) were utilized to
determine the optimal weights for Equation9, which were
subsequently applied in Algorithm 1, using the mAPs from the
testbed as the target values.

3.5.3 Training procedure

The same set of hyperparameters will be applied consistently
across both datasets for the testbed and the final performance
analysis, in line with the procedures outlined in ReYOLOVS (Silva
et al., 2025), Section 3.5.2, and Algorithm 1. The PeDRo dataset
(Boretti et al., 2023) was chosen to build the testbed and run stage
two of Algorithm 1 due to its small size, while Prophesee’s GEN1
(De Tournemire et al., 2020) was selected due to its relevance in the
event-based domain as well as because it is a dataset more complex
than PeDRo, which should be useful to validate the generalization
of the proposed method. All runs involving the PEDRo dataset,
as well as the executions of the Chimera-NAS algorithm, were
performed on a V100 GPU. In contrast, the runs for the GEN1
dataset and for some larger models in PeDRo were conducted on
an A100 GPU. Additional details can be found in Table 3.

This study’s training hyperparameters and procedures were
primarily adapted from ReYOLOWVS (Silva et al., 2025) and YOLOv8
(Jocher et al., 2023), with minor modifications to batch sizes
and learning rates. Table 3 summarizes the hyperparameters used
for all runs on PEDRo and GENI. LRO denotes the initial
learning rate, while LRf signifies the final learning rate by a linear
learning rate schedule. The models were optimized using Stochastic
Gradient Descent (SGD) with a momentum of 0.937. Simple grid
searches were adopted for the hyperparameters that differ from
the literature.

Regarding data augmentation, HFLIip refers to horizontal
flipping, while Zoom-Out was applied with ratios ranging from 1.2
to 1.0. A warmup period of 3 epochs was implemented, featuring
a learning rate bias of 0.1 and a warmup momentum of 0.8. The
loss functions maintained the same parameters from YOLOv8
(Jocher et al., 2023) alongside the confidence thresholds and non-
maximum suppression parameters. The data encoding process over
PeDRo was taken by adopting time-windows of 40 ms, while the
GEN1 utilized 50 ms for this same purpose, adopting the guidelines
from ReYOLOVS (Silva et al., 2025). Considering the variabilities
introduced by the Selective Scan operation (Gu and Dao, 2023), all
the models containing Mamba blocks were trained three times, and
the average result was taken as final.

4 Results

According to the procedures described in Section 3, the first
step involved was the training of all the models from the Chimera
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FIGURE 5
Analysis of testbed and data encodings for the test-set of the PeDRo
dataset. Among the combinations of architectures and event
encodings, SHIST and MDES consistently demonstrated superior
performance in more cases. However, when evaluating the range of
mAP values, a similar distribution was observed for VTEI, MDES, and
SHIST. Given the highest likelihood of achieving better results, SHIST
was selected as the event encoding for the Chimera framework.

testbed, as detailed in Sections 3.5.2 and 3.5.3. Next, we analyzed
the behavior of various event encodings across different networks.
To define the Fitness score used in the search described in Section
3.5.1, we examined the correlations and ordering errors between
the proxies introduced in Section 3.4 and the Chimera testbed,
selecting the most appropriate data encoding for this purpose.
An ablation study was then performed to assess the effectiveness
of the linear combination of these proxies in generating high-
quality architectures during the Chimera-NAS search, as well as
to evaluate the significance of different components within the
design space. Finally, we compared the results of our approach with
those reported in the literature and presented the computational
overhead of the entire process.

4.1 Analysis of the event encodings and
ZS-NAS proxies

The analysis presented in Figure5 compares various
architectures using different data encodings for the Chimera
testbed. The upper section of the figure illustrates that the choice of
data encoding and architecture should not be made in isolation, as
they are interconnected and significantly influence the outcomes.
No single encoding guarantees the best performance across all
scenarios. Although SHIST and MDES demonstrate superior
performance across a greater number of architectures, the lower
section of Figure 5 reveals that the distribution of mean Average
Precision (mAP) values for SHIST, MDES, and VTEI is quite

similar. A notable limitation of the analysis performed here is
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FIGURE 6

Correlations and Top-10% Mean Squared Errors of the proxies utilized in this work for the SHIST event encoding of the Chimera testbed. The proxies
W1 to W6 represent various configurations of the weight vector W from Equation 9. Considering the trade-off between correlation and the MSE, W1

TABLE 4 Analysis of different W vectors for Equation (9).

W vectors ZS-NAS proxies weights
) ZenScore MAC AZ-Expr MeCo

w1 0.00 0.40 0.00 0.60
w2 0.00 0.60 0.40 0.00
w3 0.65 035 0.00 0.00
W4 0.00 032 0.18 0.50
AT 0.60 0.22 0.00 0.18
w6 0.58 0.19 0.06 0.17

The weights were obtained by running Regression Trees over the testbed with different
combinations of them.

that the proxies used are data-independent, meaning they cannot
distinguish between real event data and random input tensors.
It seems that due to the fact of being denser, i.e., retaining more
events and not only the last information, as seen in Section 3.1,
makes them able to present a more stable performance across
different scenarios. As a result, the further analysis was focused
on SHIST.

To evaluate the efficiency of Zero-Shot proxies for the current
application, the testbed rankings were examined using Kendall’s
and Spearman’s correlations for SHIST. The findings are presented
in Figure 6. Typically, Neural Architecture Search (NAS) involves
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TABLE 5 Comparison of the output of the Algorithm 1, with respect to
the PeDRo’s dataset mAP, when Equation 9 is implemented adopting
different weights for MeCo and MACs, considering the baseline W1 from
Table 4, with values disturbed around a range of 0.05.

MAXpparams MeCo=0.55 MeCo=0.60 MeCo=0.65
MACs=0.45 MACs=0.40 MACs=0.35

3M 63.0 62.6 62.1

5M 64.8 65.1 65.7

10M 66.1 66.5 66.5

15M 67.4 67.3 67.5

Bold values indicate highest PeDRo mAP per parameter constraint.

primitives that share inherent similarities, such as convolutions
with varied branches or alternative operations. However, due to
this study’s diversity of design paradigms, the Mean Squared
Error (MSE) for the top 10% models sorted by each proxy was
incorporated into the analysis.

The upper section of the figure reveals that none of the proxies
achieve a high Kendall tau correlation, with ZenScore performing
the best at nearly 50%, followed by MACs, MeCo, and AZ*F".
However, when examining the mean squared error (MSE) of the
top 10% in the lower section of the same figure, AZ®*" exhibits the
lowest error, followed by MeCo and the number of MACs. Despite
having a higher correlation than MeCo and AZ**f", ZenScore incurs
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TABLE 6 Comparison of the mAPs for PeDRo and GEN1 when different parts of the design space are removed, considering a maximum number of
parameters of 10 M, the best of the top-5 models, a population of 100 individuals, and 1,000 iterations.

Design Space C2f Mamba WaveMLP MaxViT mAP PeDRo mAP GEN1
Full Design Space X X X X 66.5 50.4
No C2f X X X 62.2 432
No Mamba X X X 66.9 50.2
No WaveMLP X X X 66.9 49.9
No MaxViT X X X 67.0 50.0

Bold values indicate best mAP.

TABLE 7 Top-5 architectures resulting from the 1st stage of Algorithm 1.

itecture details 1
ZS-NAS ranking, MAXPARAMS =3M
mAP (PeDRo) 61.87 60.86 60.31 62.06 61.24
Chimera Layer 1 c2f c2f c2f c2f c2f
Chimera Layer 2 c2f c2f c2f c2f c2f
Chimera Layer 3 c2f c2f c2f c2f c2f
Chimera Layer 4 WaveMLP WaveMLP MaxViT ‘WaveMLP WaveMLP
ZS-NAS ranking, MAXPARAMS =5M
mAP (PeDRo) 65.73 63.39 64.54 63.29 64.99
Chimera Layer 1 c2f c2f c2f c2f c2f
Chimera Layer 2 c2f c2f c2f c2f c2f
Chimera Layer 3 c2f c2f c2f WaveMLP c2f
Chimera Layer 4 MaxViT MaxViT c2f c2f MaxViT
ZS-NAS ranking, MAXparams = 10M
mAP (PeDRo) 64.52 66.5 65.25 64.35 64.75
Chimera Layer 1 C2f c2f Cc2f C2f Cc2f
Chimera Layer 2 C2f c2f C2f C2f C2f
Chimera Layer 3 Mamba WaveMLP Mamba Mamba Mamba
Chimera Layer 4 C2f c2f C2f C2f C2f
ZS-NAS ranking, MAXPARAMS =15M
mAP (PeDRo) 65.44 67.36 66.44 67.5 65.92
Chimera Layer 1 c2f c2f c2f c2f c2f
Chimera Layer 2 c2f c2f c2f c2f c2f
Chimera Layer 3 c2f c2f c2f WaveMLP WaveMLP
Chimera Layer 4 MaxViT c2f MaxViT c2f c2f

Bold values indicate selected configuration.

an error 1.67 times greater than these alternatives. While ZenScore
effectively sorts diverse architectures across the entire testbed, it
struggles to identify the top performers. Consequently, there is a
complementary relationship between correlation and mean error
metrics. In this context, mean squared error becomes critical,
highlighting results with minimal errors for top choices.

Figure 6 also presents other proxies derived from linear
combinations of the analyzed proxies. The weights for these
combinations, detailed in Table4, were determined using
Regression Trees applied to various combinations of proxies to
predict the mAP. Due to their underperformance in correlation
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and MSE metrics, AZP™8 and AZ"*" were excluded from this step.
The figure indicates that all combinations involving the ZenScore—
specifically, W3, W5, and W6—demonstrate improvements in
Kendall and Spearman correlations, though they yield higher
MSE values than other alternatives. Among the remaining
combinations, W1 achieved the lowest error and correlations. In
contrast, W1 and W4 displayed similar error values, with a slight
advantage for W1 in correlation. Consequently, considering W1
as one of the most balanced solutions in correlation and MSE,
it was decided to adopt it as the Fitness Score for Equation 9
and Algorithm 1.
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4.2 Ablation studies

4.2.1 Influence of the weight multipliers

To evaluate the impact of the weight multipliers derived in the
previous section, we conducted an analysis using the weights listed
in Table 4. For the baseline configuration W1, perturbations of 0.05
were applied to both the MACs and MeCo scores to assess the
sensitivity of the search process to these values. Algorithm 1 was
then executed with the different weight settings shown in Table 5,
considering five parameter constraints ranging from 3 M to 15
M. The table presents the top-performing architectures from each
configuration, evaluated on the PeDRo dataset.

From this analysis, it is evident that, on average, there are only
minor differences among the various weight settings. However,
when the importance of MeCo is slightly increased relative to
the baseline W1, modest improvements can be observed. It
is unsurprising that the W1 value obtained via regression is
not necessarily optimal, as the Chimera testbed represents only
a small subset of the entire design space. Nonetheless, these
small perturbations suggest that the regression-derived solution is
reasonably close to an optimal region.

4.2.2 Influence of different blocks on the design
space

Table 6 presents a comparison of various Chimera Search runs,
each omitting a different component from the design space. For
every scenario, the procedure described in Section 3.5 was repeated,
removing one element at a time. Experiments were constrained
to a maximum of 10M parameters, covering a substantial portion
of the design space. The mAP values in Table 6 represent the
best-performing architecture after training the top five candidates
from the ZS-NAS process, using the training protocol detailed in
Section 3.5.3.

Analysis of the results reveals that the C2f blocks are the most
critical components in the library. When C2f blocks are included,
the difference between the lowest and highest mAP on the PeDRo
dataset is approximately 0.8%. In contrast, excluding C2f blocks
leads to a performance drop of 7.7%. This can be attributed to the
fact that the framework is built on ReYOLOVS, which is already
optimized for such blocks. Since no additional hyperparameter
search was performed, it is expected that the best models are biased
toward architectures containing C2f blocks.

Comparing the full design space with the reduced alternatives,
we observe that, for the PeDRo dataset, reducing the number
of blocks yields an improvement of 0.8%. However, for GEN1-a
larger and more complex dataset—retaining the full design space
results in a mAP that is 0.7% higher than the alternatives. This
suggests that, while a smaller design space may better overfit smaller
datasets, a comprehensive search across the entire design space is
preferable for achieving better generalization.

4.3 Search results
Table 7 presents the top five architectures identified during the
first stage of the Chimera search, as discussed in Section 4.3. It

also displays the mean Average Precision (mAP) scores for PeDRo
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TABLE 8 Detailed parameters from the backbones of the Chimera models.

Block Processing  Input Output Repeats
unit channel channel
Chimera-n0
STEM Conv2D 10 24 1
Chimera Layer 1 | C2f 24 40 3
Chimera Layer2 | C2f 40 56 3
Chimera Layer 3 | C2f 56 72 3
Chimera Layer 4 | WaveMLP 72 80 2
Chimera-n
STEM Conv2D 10 32 1
Chimera Layer 1 | C2f 32 56 3
Chimera Layer2 | C2f 56 104 3
Chimera Layer 3 | C2f 104 112 3
Chimera Layer 4 | MaxVit 112 144 1
Chimera-s
STEM Conv2D 10 40 1
Chimera Layer 1 | C2f 40 72 3
Chimera Layer2 | C2f 72 112 3
Chimera Layer 3 | WaveMLP 112 128 1
Chimera Layer 4 | C2f 128 216 2
Chimera-m
STEM Conv2D 10 48 1
Chimera Layer 1 | C2f 48 96 3
Chimera Layer2 | C2f 96 160 3
Chimera Layer 3 | WaveMLP 160 160 2
Chimera Layer 4 | C2f 160 160 1

obtained in the second stage. The architectures selected for output
are highlighted in bold.

Notably, there are variations among the top five architectures.
These discrepancies arise from the proxies inaccuracies in
predicting optimal performance, which underscores the necessity
for the second stage of the Chimera algorithm detailed in
Algorithm 1. Table 8 shows more details regarding the Chimera
models, such as the number of channels and repeats.

Building on the analysis from the previous sections,
Algorithm 1 was executed using the weight vector W obtained
from Section 4.1. Different architectures were obtained by running
the search in four different cases, where MAXparams Was set to 3
M, 5M, 10 M, and 15 M, designated as Chimera-n0, Chimera-n,
Chimera-s, and Chimera-m, respectively. For the first three cases,
a population size of 100 and 1,000 iterations was utilized, while for
the 15 M case, both numbers were doubled.

From the previous Tables, it can be seen that the search
mechanism favored configurations dominated by C2f blocks. This
preference aligns with the successful outcomes of ReYOLOV8
(Silva et al, 2025), especially considering that no additional
hyperparameter

optimization was performed. Additionally,

WaveMLPs and MaxViT were utilized exclusively in Chimera
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TABLE 9 Comparison of the Chimera models with other models in literature for the PeDRo dataset.

Scale Model Network Parameters mAP
Chimera-n0 Hybrid + RNN 2.5M 62.1
nz> (this work)
g ReYOLOV8n CNN + RNN 4.7M 63.9
Silva et al. (2025)
Chimera-n Hybrid + RNN 4.9M 65.7
(this work)
- ReYOLOVS8s CNN + RNN 8.4M 65.5
5 Silva et al. (2025)
- Chimera-s Hybrid + RNN 10.0M 66.5
(this work)
Chimera-m Hybrid + RNN 13.8M 67.5
v (this work)
E ReYOLOv8m CNN + RNN 18.1IM 69.1
Silva et al. (2025)
YOLOv8x CNN 68.2M 58.6
Boretti et al. (2023)
Bold values indicate highest mAP per scale.
TABLE 10 Comparison with the state-of-the-art for the Prophesee’s GEN1 dataset for different scales.
Scale Model Network Parameters GFLOPs Runtime mAP
Chimera-n0 (this work) Hybrid + RNN 25M 1.0 10.6 ms 474
N RVT-T Gehrig and Scaramuzza (2023) Transformer + RNN 44 M 0.9 9.4 ms 44.1
o ReYOLOVS8n Silva et al. (2025) CNN + RNN 4.7 M 1.2 9.2 ms 46.3
Chimera-n (this work) Hybrid + RNN 49M 2.3 10.9 ms 49.4
EMS-YOLO Su et al. (2023) SNN 62M - - 26.7
Spiking DenseNet Cordone et al. (2022) SNN 82M - - 18.9
Small ReYOLOVSs Silva et al. (2025) CNN + RNN 84M 23 10.4 ms 483
RVT-S Gehrig and Scaramuzza (2023) Transformer + RNN 9.9M 1.8 9.5 ms 46.5
Chimera-s (this work) Hybrid + RNN 10.0 M 3.5 11.4 ms 50.4
SFOD Fan et al. (2024) SNN 11.9M - - 32.1
Chimera-m (this work) Hybrid + RNN 13.8 M 6.2 17.8 ms 50.9
SpikeSSD-S Fan et al. (2025) SNN 13.9M - - 39.0
SMamba Yang et al. (2025) SSM + RNN 16.1 M 24 24.0 ms 50.4
ReYOLOV8m Silva et al. (2025) CNN + RNN 18.1 M 4.7 12.3 ms 49.5
S5-ViT-B Zubic et al. (2024) Transformer + SSM 182 M >3.1 9.4 ms 47.7
oM RVT-B Gehrig and Scaramuzza (2023) Transformer + RNN 18.5 M 35 10.2 ms 47.2
g SAST-CB Peng et al. (2024) Transformer + RNN 189 M 24 22.7 ms 48.2
SpikeSSD-L Fan et al. (2025) SNN 19.0 M - - 40.8
GET-T Peng et al. (2023b) Transformer + RNN 219M 3.6 16.8 ms 47.9
RED Perot et al. (2020) CNN + RNN 24.1M 6.0 16.7 ms 40.0
EAS-SNN Wang et al. (2024) SNN 253 M - - 375
ERGO-12 Zubic et al. (2023) Transformer 59.6 M 50.8 69.9 ms 50.4
ASTMNet Li et al. (2022a) CNN + RNN >100 M 20.3 35.6 ms 46.7
The GFLOPs are related to the backbones. Bold values indicate highest mAP per scale.
Frontiers in Artificial Intelligence 13 frontiersin.org



https://doi.org/10.3389/frai.2025.1644889
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Silva et al.

TABLE 11 Analysis of the runtimes involved in the Chimera framework.

Item Runtime

Stage 1 1.32h
(ZS-NAS)

Training - 100 epochs 3.48h
(v100 GPU)

Stage 2 17.4h
(Train top-5 from ZS-NAS)

Layers 3 and 4, which are richer in features despite having lower
resolutions. This allocation represents a more effective use of
these blocks, as they are generally more efficient for global context
information extraction than convolutions. However, they are not
the optimal choice for spatial feature extraction. In contrast, the
higher-resolution layers were populated solely by C2f blocks, which
are expected to be more efficient for extracting spatial information
at these resolutions than the alternatives.

4.4 Comparison with the state-of-the-art

Table 9 presents the results of the Chimera architectures on
the PeDRo dataset (Fan et al., 2025). When comparing the
Nano and Small Scales models, it is evident that the Chimera
models excel. Specifically, Chimera-n outperformed ReYOLOv8n
by 2.81% with only a negligible increase in the number of
parameters. Additionally, a +1.0 increase in mAP was observed
when comparing Chimera-s to ReYOLOvS8s. Notably, Chimera-
m achieved 97.6% of the mAP reported for ReYOLOv8m
while requiring 1.3 times fewer parameters. It is important to
mention that ReYOLOV8 was trained using VTEI encoding and
incorporated a data augmentation technique tailored for this
encoding, which appears particularly effective for this dataset (Silva
etal., 2025).

To evaluate the generalization capability of the Chimera
models, training was conducted on Prophesee’s GEN1 dataset,
with corresponding results detailed in Table 10. The runtimes are
based on a GTX 1080 Ti GPU, similar to the setup used in
ReYOLOVS (Silva et al., 2025). Across all model scales, the Chimera
models consistently outperformed their counterparts. Specifically,
Chimera-n demonstrated a 6.7% performance improvement
over ReYOLOv8n while maintaining a similar parameter count.
Meanwhile, Chimera-n0 showed a 2.3% improvement while
utilizing nearly half the model size of ReYOLOv8n. On bigger
scales, Chimera-s not only surpassed all the similarly scaled models
but also matched the performance of SMamba, the previous
state-of-the-art model, requiring 1.61 x fewer parameters and being
2.1 times faster. Finally, Chimera-m established a new testbed for
the GENI dataset, exceeding the previous best score by 1% while
also reducing the model size by 14.3% and achieving a 1.35x
speed-up.

4.5 Chimera-NAS runtime

Table 11 presents the runtime for the various steps involved
in Chimera-NAS. This analysis considered a population of 50
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individuals, 1,000 iterations, and a maximum parameter count
of 5 M per model. Stage 1 implements the ZS-NAS step from
Algorithm 1. This stage was conducted on an Ubuntu OS with 265
GB of RAM, an Intel Xeon Gold @2.10 GHz x 104 processor,
and a Quadro RTX 4000 GPU. Under this setup, Chimera-NAS
evaluated 1,050 models in 1.32 h, which is 2.64 times faster than
a complete training session of 100 epochs on the PEDRo dataset
using an NVIDIA V100 GPU, as shown in the table.

5 Conclusions

This work presents a two-stage NAS approach specifically
aimed at Event-Based Object Detection. Rather than merely
exploring variations of specific blocks, the architecture search
focused on combining blocks from various paradigms within
The
resulting framework, named Chimera, employs proxies to evaluate

the literature to construct more robust architectures.

architecture performance on test sets without requiring extensive
training, enabling the examination of over 1,000 structures within
a few hours.

For benchmarking and conducting the architecture search,
we utilized the PeDRo dataset. From this benchmarking, it was
possible to analyze the interdependence between the choice of
event encoding and the underlying architecture regarding final
performance, underscoring the importance of co-designing these
elements. Different Zero-Shot NAS proxies were analyzed in terms
of correlation and error relative to benchmark performance. Not
all proxies provided optimal outcomes in this multi-paradigm
scenario, necessitating the use of Regression Trees to identify the
best combinations of them for the search mechanism.

Subsequently, models with parameter scales ranging from 3 M
to 15 M were generated through this search. The final models not
only achieved competitive performance on the PeDRo dataset but
also demonstrated strong generalization to the larger and more
complex Prophesee’s GEN1 dataset. For the GEN1 dataset, one of
the models, designated Chimera-s, exhibited state-of-the-art mean
Average Precision (mAP) while reducing the number of parameters
by 1.6x and achieving a speed-up of 2.1 x. Additionally, Chimera-
m established a new benchmark for this dataset, surpassing the
previous best score by 1% while reducing the model size by 14.3%
and achieving a speed-up of 1.35x.

6 Future works

Future work will focus on expanding the exploration
of additional blocks and alternative types of memory cells,
including State Space Models. We also intend to utilize
larger datasets, particularly Prophesee’s 1 MegaPixel dataset
and eTraM. Additionally, we will investigate incorporating
hyperparameter optimization into the Chimera framework, which
could contribute to identifying more diverse architectures with
enhanced performance.
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