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Deep learning, a subset of artificial intelligence, has made remarkable strides
in computer vision, particularly in addressing challenges related to medical
images. Deep transfer learning (DTL), one of the techniques of deep learning,
has emerged as a pivotal technique in medical image analysis, including studies
related to COVID-19 detection and classification. Our paper proposes an
alternative DTL framework for classifying COVID-19 x-ray images in this context.
Unlike prior studies, our approach integrates three distinct experimentation
processes using pre-trained models: AlexNet, EfficientNetB1, ResNetl8, and
VGG16. Furthermore, we explore the application of YOLOV4, traditionally used
in object detection tasks, to COVID-19 feature detection. Our methodology
involves three different experiments: manual hyperparameter selection, k-fold
retraining based on performance metrics, and the implementation of a genetic
algorithm for hyperparameter optimization. The first involves training the models
with manually selected hyperparameter sets (learning rate, batch size, and
epoch). The second approach employs k-fold cross-validation to retrain the
models based on the best-performing hyperparameter set. The third employed
a genetic algorithm (GA) to automatically determine optimal hyperparameter
values, selecting the model with the best performance on our dataset. We tested
a Kaggle dataset with more than 5,000 samples and found ResNetl18 to be the
best model based on genetic algorithm-based hyperparameter selection. We
also tested the proposed framework process on another separate public dataset
and simulated adversarial attacks to ensure its robustness and dependability. The
study outcomes had an accuracy of 99.57%, an F1-score of 99.50%, a precision of
99.44%, and an average AUC of 99.89 for each class. This study underscores the
effectiveness of our proposed model, positioning it as a cutting-edge solution in
COVID-19 x-ray image classification. Furthermore, the proposed study has the
potential to achieve automatic predictions through the use of input images in
a simulated web app. This would provide an essential supplement for imaging
diagnosis in remote areas with scarce medical resources and help in training
junior doctors to perform imaging diagnosis.
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1 Introduction

The virus, SARS-CoV-2, also known as COVID-19, emerged
in Wuhan, China, in late 2019 and caused unprecedented
challenges worldwide, leading to a global pandemic with millions
of affected and dead people despite uncounted efforts to restrain
its impact through various socio-political and financial measures
(Hageman, 2020; Elibol, 2021). In the first half of 2022, the
World Health Organization (WHO) reported over 6.2 million
deaths and 516 million diagnosed cases worldwide. Similar to
the category of Severe Acute Respiratory Syndrome (SARS)
and Middle East Respiratory Syndrome (MERS) (2), shortness
of breath, fever, coughing, pneumonia, and respiratory distress
are registered as its common symptoms. The virus’s dangerous
effects on communities and fast transmission among people
accentuated the imperative need for stringent measures. Almost
all governments worldwide have implemented safety protocols,
including social distancing, to control the spread of the pandemic.
Despite the application of the protocols, the scale of infections
and limitations at the hospital level underscored the mortality
risk associated with delayed detection and progressive respiratory
failure (Xu Z. et al.,, 2020). This issue increased the demand for
effective and practical medical research and diagnosis solutions
because precisely and quickly recognizing COVID-19 is a critical
step in controlling the widespread disease (Jin et al., 2020).
During the pandemic, Reverse Transcription Polymerase Chain
Reaction (RT-PCR), one of the most used gold standards for
COVID-19 diagnosis, faced challenges due to its time-consuming
nature and susceptibility to a high false-negative rate (Xiao
et al, 2020; Arevalo-Rodriguez et al, 2020). To overcome
similar challenges, computed tomography (CT) and X-ray image
analysis have shown promise in detecting lung diseases such as
pneumonia, tuberculosis, and COVID-19 (Ismael and Sengiir,
2021). However, the need for more specialized human resources,
especially in poorer regions, hinders the widespread adoption
of these imaging technologies. The scientific community has
turned to computer-aided intelligent decision-making systems to
automate the necessary processes to overcome this challenge.
From these perspectives, advanced artificial intelligence (AI)
techniques, particularly deep learning, have emerged as paramount
tools for addressing the shortcomings of traditional diagnostic
methods. This study contributes to the previously stated research
efforts in the literature for COVID-19 virus detection and
classification by using deep transfer learning techniques (DTL)
with possible integration of heuristic algorithms like genetic
algorithms to accurately classify COVID-19 from chest X-ray
pictures. This research aspires to overcome the limitations of
time-consuming issues of hyperparameter setting and resource-
intensive utilization of traditional image detection models and
experiments by employing different training processes. The
advantage of the transfer learning approach is that it offers a
flexible and scalable general solution for COVID-19 detection in
healthcare systems.

Based on our review of related studies, several studies have
used deep learning models such as EfficientNet, AlexNet, VGG16,
ResNet18, and others to diagnose lung disease from chest CT or
X-ray images (Marefat et al., 2023; Sultana et al., 2023). However,
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studies have yet to use another training process for DTL using k-
folds or fine-tuning the pre-trained network hyperparameters using
heuristic methods like genetic algorithms (GA) and specifically
compare the performance of these models for COVID-19 data
classification in detail. Therefore, this is one of the knowledge gaps
this study bridges.

This study is the first to compare in more detail the
performance of these pre-trained models based on all performance
evaluation metrics for COVID-19 data classification using a
benchmark chest X-ray image dataset. It presents a comprehensive
and in-depth performance comparison of these models with some
modifications and optimisations of hyperparameters applied to
improve their performances.

The paper is organized as follows: The subsequent section
(section two) examines prior and recent research in the literature
related to deep learning implementation and other hybrid methods
for COVID-19 detection and classification. Section three describes
the proposed framework with the newly implemented methodology
using the transfer learning technique, including the descriptions
of the pre-trained models used in this research. The illustrations
of experimental processes are depicted in section four, and the
evaluated results are discussed in section five, followed by a detailed
comparison with relevant related works, including the limitation of
this study in section six. The last section concludes the paper with
some suggestions for future study.

1.1 Contributions

The significant contributions of this study can be outlined as
follows:

e Unlike other studies, this research achieved a more detailed
comparison of the performance of several pre-trained models
based on various evaluation metrics for COVID-19 data
classification using publicly available chest X-ray images from
the Kaggle database.

e This study developed and improved distinct pre-trained
deep learning models on COVID-19-related X-ray image
classification using the transfer learning strategy integrated
with the k-fold process.

e It also performs the hyperparameter tuning using the genetic
algorithm to facilitate the near-optimal hyperparameter value
determination, leading to the best model performances.

e Based on all the possible evaluation metrics (training,
validation, and testing accuracy, Fl-score, precision, recall,
AUG, inference execution time), instead of only accuracy like
performed in other works, the best model (the ResNet-based)
of this study and the remaining models are compared with
recent state of the art models.

e The proposed study has the potential to achieve automatic
predictions through the use of input images in a simulated
web app; therefore, it can serve as an essential supplement
for imaging diagnosis in remote areas with scarce medical
resources and help in training junior doctors to perform
imaging diagnosis.
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1.2 Contributions

The significant contributions of this study are as follows:

e Hybrid multi-phase evaluation framework: the study
proposes a three-tiered experimental design that integrates
manual tuning, k-fold cross-validation, and genetic algorithm
(GA)-based hyperparameter optimization, applied across four
established architectures. This systematic approach provides a
deeper and replicable analysis of the impact of various tuning
strategies on model performance, addressing a gap that has not
been comprehensively explored in prior studies.

e Cross-dataset robustness and deployment simulation:
beyond using publicly available Kaggle data, we evaluate
models on an external dataset and under simulated adversarial
conditions to assess robustness. Furthermore, we design a
proof-of-concept web-based diagnostic aid, demonstrating
potential utility in remote or resource-constrained
healthcare environments.

e Comprehensive evaluation across metrics: unlike many
previous works that rely solely on accuracy, we report
training, validation, and testing performance across multiple
metrics (F1-score, precision, recall, AUC, and inference time),
enabling a more holistic and fair comparison with recent

state-of-the-art models.

1.3 Scope and outline

This study focuses on applying the deep transfer learning
method to develop models capable of detecting or classifying X-ray
scans as COVID-19 or normal cases.

2 Related studies

According to the literature review, different AI and machine
learning techniques have solved various healthcare-related
problems. Deep learning, a subdomain of machine learning,
has been used as an approach adopted by many researchers to
categorize the coronavirus in X-rays and CT images. This section
provides a comprehensive overview of recent existing studies that
have used pre-trained models (and possibly with machine learning
algorithms) for diagnosing lung diseases, especially COVID-19,
from chest X-ray images.

Jangam et al. (2022) presented a new stacked ensemble that
detects COVID-19 from individuals either from their CT scans or
X-rays. Their stacked model was developed using four different
and heterogenous models, the VGG19, Rest101, DenseNet169, and
WideRestNet502. They designed a new weighted average model
using the best-performing selected models based on each model’s
performance. Their model outputs uniformly good performance on
five different datasets. An alternative deep-learning approach for
detecting COVID-19 was introduced in the study by Chakraborty
etal. (2022). Like Aggarwal et al. (2022) work, their model classifies
images into three classes. Despite using a larger dataset of 10,040
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samples with some imbalance issues, the authors handled sample
size issues with data augmentation and image resizing techniques.
Notably, pre-trained models like AlexNet, VGG, ResNet, and
DenseNet were used for performance comparison even though
their work methodology needed to specify the fine-tuning process
for these networks. The research’s strength was performing image
segmentation to focus on the relevant image area, improving
training quality and model results. Their experiments consisted
of 200 training epochs, 10% validation, and 20% testing with a
batch size of 50 and considered the confusion matrix, accuracy, F1-
score, precision, recall, and the ROC curve for evaluation metrics.
The proposed model reached 96.43% detection accuracy and
93.68% sensitivity. However, even with augmentation, the dataset
is assumed insufficient, and more information on hyperparameter
comparison and network fine-tuning details could be mentioned.
Yadlapalli et al. (2022) investigated the classification of CT scans
to diagnose COVID-19 patients. Their method has adopted K-
means clustering for image segmentation, separating the Area of
interest from the background, as a new technique in the field.
The segmented images were provided into the pre-trained VGG16
network, and a three-layer CNN was also created from scratch.
While image segmentation made learning more accessible for both
models, it also raised some overfitting by decreasing the number
of features in an image. Both models have been experimented on
a COVID-19-CT dataset containing 349 positive and 397 negative
scans. However, VGG16 outperformed other networks with the
highest results accuracy of 89%, an F1-Score of 88%, and an AUC of
0.94. Other metrics, such as precision, recall, and sensitivity, were
not specified.

Another work in the deep learning application field is that
Khan et al. (2022) achieved by comparing the performance of
three different pre-trained networks based on two strategies,
incorporating regularization techniques to improve COVID-19
detection. The 21,165 image size of the dataset used was collected
from Github and Kaggle and divided into four categories: normal,
lung opacity, viral pneumonia, and COVID-19. Furthermore,
admitting the inequality in the dataset, data augmentation
techniques such as rotation and horizontal and vertical flipping
were used to manage the issue partially, estimating that more
data would be an additional influential solution. The images
were rescaled and resized as part of the preprocessing steps.
EfficientNetBl surpassed other models in a comparison that
implicated fine-tuning hyperparameters like dropout percentage
and learning rate, with strategy II showing superior performance,
although precise details were not provided. The top-performing
model achieved an accuracy of 96.13%, evaluated using metrics
including the confusion matrix, accuracy, Fl-score, precision,
and recall.

Different from other studies, a comparative study involving
eight fine-tuned pre-trained architectures for the classification
of X-ray images into various disease types was accomplished
by Aggarwal et al. (2022). Two datasets were used: one set
was composed of normal and COVID-19 with 709 samples,
and the other comprised only pneumonia, subdivided into
bacterial and viral subtypes. Due to their small sizes, the
datasets were divided into 80% for training and 20% for testing
during the experimentations. Some data augmentation techniques
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were implemented to increase sample size and enhance model
generalization. Contrast Limited Adaptive Histogram Equalization
(CLAHE), image scaling, and resizing were all part of their
preprocessing steps. DenseNet121 exhibited the highest accuracy
(97%) for the first dataset, while MobileNetV2 achieved the best
accuracy (81%) for the second dataset according to the evaluation
metrics such as confusion matrix, accuracy, Fl-score, precision,
and recall. However, despite data augmentation, the article
highlighted limitations, particularly the need for more samples.
The study revealed weaknesses in Fl-score results for bacterial
and viral pneumonia, suggesting misclassifications, mainly into
the COVID-19 category. The article needed more discussion on
the fine-tuning architecture of networks and experimentation with
hyperparameters, highlighting potential areas for improvement in
comparative research.

With total images comprised of 1,125 images, 125 for COVID-
19, 500 for pneumonia and 500 for No-Findings input, a deep
learning model called DarkCovidNet was developed by Ozturk et al.
(2020) for COVID-19 detection. The study succeeded with 98.08%
and 87.02% for binary and three classes.

A new combined model approach consisting of different phases
was proposed by Ozcan (2021) for COVID-19 detection in X-
ray images using in-depth features. The research methodology
comprises two main variants. The first one is single layer-based
(SLB), and the other is future fusion-based (FFB) with a feature
extraction mechanism. The FFB3 accomplished 99.52 % accuracy,
better than the DarkNet accuracy (98.02 %). Another learning
model was used by Hemdan et al. (2020) to analyze individuals’
X-rays and presented a COVIDX-Net model containing seven
neural networks. Wang et al. (2020) developed the COVID-
Net model for COVID19 detection. Their presented deep model
obtained 92.4% accuracy in many classes classification such as
normal, non-COVID pneumonia. Medical experts have found
that COVID-19 shares symptoms with pneumonia, including
difficulties in breathing and chest heaviness. This similarity poses
a challenge in distinguishing COVID-19 from other chest diseases.
As an improved method different from single-class COVID-19
detection studies in the literature, Rehman et al. (2021) suggested
a framework capable of detecting 15 types of chest diseases,
including COVID-19, using chest X-ray modality. Their suggested
framework performed the classification task in two ways. The first
way uses a deep learning-based CNN architecture with a soft-max
classifier, while the other extracts deep features from the CNN’s
fully connected layer using a transfer learning strategy (Ozturk
et al., 2023; Terzi and Azginoglu, 2023). Their approach enhances
COVID-19 detection accuracy and increases prediction rates for
different chest disorders. Approximated to other state-of-the-
art models for diagnosing COVID-19 and other chest disorders,
the experimental results prove that the proposed framework
performed appreciatively. Mathematical models and optimization
strategies, like hybrid methods combining deep learning with
heuristic approaches, have been proven to play a crucial role in
helping researchers provide a methodical framework to investigate
complex biological systems and healthcare data. Within the same
perspective, the study achieved by Saced et al. (2022) introduced
a novel mathematical framework called Complex Fuzzy Hypersoft
(CFHS) set for diagnosing and treating medical conditions. The
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CFHS set was designed to integrate the concepts of Complex
Fuzzy (CF) and Hypersoft set, addressing uncertainty, ambivalence,
and mediocrity in data through the incorporation of amplitude
term (A-term) and phase term (P-term) of complex numbers
simultaneously. The framework extends membership function
values to the unit circle on an Argand plane, assuming the periodic
character of data with the additional P-term. It divides various
properties into sub-valued sets, allowing for a more comprehensive
understanding. The framework extends membership function
values to the unit circle on an Argand plane, considering the
periodic character of data with the additional P-term. It divides
various properties into sub-valued sets, allowing for a more
comprehensive comprehension. As The CFHS framework set
and its mapping and inverse mapping (INM) are designed to
address various problems, their study ascertained the proposed
concept by demonstrating a link between COVID-19 symptoms
and medications. Thus, a distinct COVID-19 category was
determined utilizing fuzzy intervals and CFHS mapping for disease
identification and optimal medication selection. Furthermore, a
generalized mathematical CFHS-mapping framework has been
proposed to extract patient health information and forecast
recovery time from COVID-19, and the overall outcomes of their
work implementation prove to be effective for medical applications,
especially in COVID-19 diagnosis, treatment, and optimize general
health system functioning. Mask detection was another target
domain of interest in CNN model implementation. However,
considering other essential challenges related to this field, more
advanced artificial intelligence techniques, such as cooperative
agents, can be helpful. Thus, Allioui et al. (2022) developed a
novel multi-agent-based deep reinforcement learning (DRL) to
underrate the long-term manual mask extraction and to enhance
medical image segmentation frameworks. An altered version of
the Deep Q-Network was engaged in their study to stimulate
the mask detector to select masks from the image analyzed. The
DRL has experimented on COVID-19 CT images to extract visual
features from infected areas, enabling accurate clinical diagnosis
and demonstrating its performance. This approach optimizes
pathogenic diagnostic tests and saves time. Their testing phases
utilized CT images from various cases (normal, pneumonia, viral,
and COVID-19), and experimental validation achieved a precision
of 97.12%, sensitivity of 79.97%, and specificity of 99.48%. The
results indicate the significance of using DRL to extract CT masks
for accurate COVID-19 diagnosis.

Assuming that, despite vast global research proposed on the
COVID-19 pandemic, developing reliable and fast prediction
mechanisms that precisely distinguish this infectious disease from
other respiratory conditions remains a significant challenge, and
the widely utilized clinical RT-PCR test encounters limitations,
particularly in areas with limited testing facilities, due to its
slow response time. Recent efforts emphasized using digital chest
X-ray and CT scan images, utilizing deep transfer learning
and ensemble methods with base classifiers. Although enhanced
accuracy, ensembles often need improvement with computational
intensity and slow prediction times. Misra et al. (2023) introduced a
parallel ensemble transfer learning-based Framework for COVID-
19 named PETLFC for multi-class classification to address the
challenge. Their study used three pre-trained models named
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VGG16, ResNet18, and DenseNet121 as backbone by fine-tuning
them for a parallelized bagging-based ensemble for COVID-19 case
prediction. The data parallel model is implemented on the PARAM
SHAVAK HPC system on a dataset composed of 21,165 chest X-
ray images (10,192 normal, 1,345 pneumonia, 3,616 COVID-19,
and 6,012 lung opacity). Their presented PETLFC approach proves
outstanding performance in accuracy and efficiency compared to
state-of-the-art sequential ensemble approaches.

In order to solve challenges caused by the severe impact of the
COVID-19 pandemic, such as a shortage of resources, including
limited test kits, Ayalew et al. (2022) presented a paper introducing
a novel detection and classification approach named DCCNet,
utilizing chest X-ray images for rapid COVID-19 diagnosis. Their
suggested method merges a CNN with a histogram of oriented
gradients (HOG) to assist in diagnosing COVID-19 for experts.
The study assesses the diagnostic performance of the hybrid CNN
model and the HOG-based method using chest X-ray images from
the University of Gondar and online databases. They summarized
that the evaluation results show impressive accuracy: DCCNet
achieved 99.9% training and 98.3% test accuracy, and the HOG
method reached 100% training and 98.5% test accuracy. The
hybrid model outperforms existing models with 99.97% and 99.67%
training and testing accuracy, surpassing state-of-the-art models by
6.7%, highlighting DCCNet’s effectiveness in enhancing COVID-
19 detection and classification in medical imaging. As country-
related research, Indumathi et al. (2022) published a paper that
introduced machine learning (ML) algorithms for forecasting the
current status of COVID-19 in the Virudhunagar district (India),
categorizing affected regions into danger, moderate, and safe zones.
By using the available COVID-19 dataset from March to July 2020.
they reported that their deep learning algorithm achieved 98.06%
accuracy, outperforming the C5.0 algorithm with an accuracy
of 95.92%. Though details of the evaluation metrics have been
specified, they conveyed that their proposed system enables health
departments to swiftly predict danger zones and take prompt
preventive actions against infections in different areas. In a similar
vision of integrating machine learning algorithms with CNN for
COVID-19 classification problems, another study conducted by
Salau (2021) suggested a practical method for classifying chest
X-ray images as Normal or COVID-19 infected. They obtained
images using open-source software and transmitted them through
CNN layers (Max pooling, ReLU, dense). Later, SVM was used
to classify images into predefined classes (COVID-19 or Normal),
leveraging knowledge from the learning model. Their findings
reveal encouraging results for all models, mainly augmentation,
image cropping, and segmentation, which achieved efficient results
with a training accuracy of 99.8% and a test accuracy of 99.1%.
Assuming that despite different studies showing clinical decisions
for COVID-19 on diagnosis and few studies have focused on
clinical decisions for COVID-19, Deriba et al. (2023) presented
research intended to detect a coronavirus patient path based on the
virus’ biological traits and offered an adequate mechanism for the
efficient decision support system that assists doctors in predicting a
COVID-19 patient. Their model was trained and tested using data
from 311 patients (69% male, 31% female) collected from three
Ethiopian Hospitals between November 2021 and March 2022,
with patients aged between 21 and 67, then used three Machine
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Learning (ML) algorithms, namely Nave Bayes (NB), Artificial
Neural Network (ANN), and Support Vector Machine (SVM)
for experimentation. According to evaluation metrics, the ANN
achieved 97% for recall, 96% for precision, and 98.3% for F1-score,
demonstrating that ANN performed better than the NB classifier
by 8.3% on average and better than SVM by 4.75%. Wubineh et al.
(2023) presented a paper suggesting an expert system to analyze the
disease effectively diagnosing COVID-19 based on its symptoms to
assist individuals in taking preventive actions in case of a deficiency
of experts’ availability. The study aspired to identify valuable
patterns for COVID-19 detection from recorded data in the Kaggle
dataset. Using a PART rule-based algorithm on 1,048,575 pieces
of data, the model attained a 92.47% accuracy in a 10-fold cross-
validation test. The authors deduced that the algorithm shows
assurance, and the expert system aids disease diagnosis, offering
recommendations aligned with identified symptoms. In work by
Frimpong et al. (2022), an innovative Internet of Things (IoT)
system was presented for early COVID-19 detection at a low
cost. The study enforced an experimental approach, designing
a low-cost hardware system for students with a Wi-Fi-enabled
microcontroller, a temperature detector, and a heart rate sensor.
The approach efficiently detected and differentiated normal and
abnormal temperature and regular and irregular heartbeat and
continually depicted the student’s status in a mobile application.
Agreeing testing demonstrated that the forged IoT-enabled system
was dependable, responsive, and cost-effective.

Like the system presented by Frimpong et al. (2022), it is
likewise essential sometimes to explore alternative approaches
to help prevent the spread of the deadly virus like COVID-19.
Facemasks and hand washing are among the crucial measures
against the spread of viruses. While Disease Control institutions
recommend wearing face masks to help slow and prevent the
spread of COVID-19, experts also recommend washing reusable
cloth face masks. Thus, in the same perspective, Yadessa and
Salau (2021) discussed the importance of frequent hand washing
in preventing infectious diseases like COVID-19, especially in
developing countries where cost-effective solutions are crucial.
With the interest in incorporating embedded processors for
more convenient and efficient solutions worldwide to provide
effective systems for hand washing, they utilized an Arduino-based
microcontroller and ultrasonic distance sensors to create a touch-
free hand washing system. Their proposed design ensures that
users can wash their hands without physical contact, enhancing
hygiene. The authors conducted simulations using Proteus software
and experiment tests to ensure particular specifications are met for
effective touch-free hand washing utilization. During the COVID-
19 pandemic, wearing face masks was another prevention approach
to limit rapid transmission. However, in a particular case in
Ethiopia, there needed to be more proof of the proportion of
face mask-wearing among taxi drivers and associated factors in
the country. So, as a solution, a study is presented by Natnael
et al. (2021) to reveal the proportion of facemask-wearing among
taxi drivers in Dessie City and Kombolcha Town in Ethiopia.
Furthermore, numerous other studies on COVID-19 detection
exist in the literature (Anunay et al., 2020; Saygili, 2021; Pereira
et al., 2020; Khan et al., 2020; Ahuja et al., 2021; Al-antari et al,,
2021; Turkoglu, 2021; Ozcan, 2020; Ardakani et al., 2020; Goreke
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etal., 2021; Song et al., 2021; Wang S. et al., 2021; Zheng et al., 2020;
Xu X. et al., 2020; Barstugan et al., 2020; Chen et al., 2020).

Table I presents a quick summary of the papers discussed
in this review. Most previously reviewed literature consistently
highlights the primary limitations of COVID-19 detection research
studies, including the small dataset sizes and the continuous need
to develop more accurate and reliable models using available
methods and data. Different comparative studies used one, two,
or more pre-trained models with transfer learning techniques.
One thing that all of them agreed on is the need for more in-
depth comparison studies that consider all possible evaluation
metrics, network training hyperparameters, the model fine-tuning
process, and how they might be best suited for the task
at hand.

Many studies have examined respiratory diseases in general,
but few have specifically focused on effectively and accurately
identifying COVID-19 cases from X-ray or CT scans. Our research
fills a significant knowledge gap by addressing the gaps that
have not been covered in previous studies. This study proposes
conducting a comprehensive analysis by training multiple models
using various alternative methods due to the abundance of
available data. Additionally, it employs widely recognized heuristic
optimization methods, such as genetic algorithms, to identify
the optimal values for hyperparameters, thereby enhancing the
training process. These methodologies have demonstrated potential
for improving model performance and attaining more resilient
outcomes. Our study focuses on analyzing the distinct features of
COVID-19 in x-ray images and utilizing these methods to enhance
the development of models and training processes for accurately
detecting COVID-19 cases.

The primary objective of this study is to enhance the
classification accuracy and robustness of COVID-19 detection
from chest X-ray images by systematically evaluating multiple
deep transfer learning models under diverse training strategies.
Specifically, we implement and compare three methodological
paradigms: manual hyperparameter tuning, k-fold cross-validation,
and genetic algorithm-based optimization, across established
convolutional neural networks (CNNs) including VGG16, AlexNet,
EfficientNetB1, and ResNet18. This multi-phase hybrid approach
allows us to explore how different tuning methodologies impact
diagnostic performance and generalizability.

In addition, we propose a novel application of the YOLOv4
object detection framework—traditionally used for real-time object
localization—to the task of COVID-19 feature identification and
classification in chest radiographs. Unlike existing studies that rely
solely on classification networks, our work leverages YOLOv4’s
spatial attention capabilities to detect radiologically relevant
patterns such as ground-glass opacities and bilateral consolidations.
This dual-use of YOLOv4 for both region localization and
diagnostic inference contributes a novel perspective to the
literature by experimenting its applicability to COVID-19 X-ray
classification systems.

Furthermore, we evaluate model robustness under adversarial
scenarios and validate performance on an external dataset, thereby
supporting the potential translational value of our proposed
framework, particularly for use in resource-constrained or remote
clinical settings.
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3 Developed methodology

Most of the current research focuses mainly on enhancing
(CNN)
these studies examine various crucial domains to enhance

convolutional neural network models. Typically,
performance, efficiency, and resilience. They achieve this by
employing a diverse range of models and techniques, including
regularization, attention mechanisms, ensemble methods, and
others. However, rather than using feature extraction or fine
tuning, this study utilized the transfer learning technique by
combining both strategies and implementing various training
procedures with contemporary pre-trained models. One of the
trainings entailed utilizing a genetic algorithm to optimize the
hyperparameters of the training process. In addition, we utilized
the adversarial process to assess the top model’s ability to withstand
potential attacks.

Figure 1 illustrates the four stages of the proposed framework
for detecting and classifying COVID-19 images. The first step
involves gathering dependable real-world data and performing
manual preprocessing tasks, such as resizing and converting
images to the necessary format for the pre-trained models being
utilized. In stage two, the dataset is subjected to filtering, cleaning,
selection, and splitting. This process prepares the dataset for
the next step by creating separate training, evaluating, and
testing datasets. During the third step, the freezing process
of the layers modifies and readies the models using pre-
trained models, except for the classifier layer, which will only
be trained.

In the fourth
implemented, including conventional training, k-fold cross-

stage, various training procedures are
validation, and hyperparameter optimization. We conduct this
optimization to evaluate the efficacy of heuristic methods on
the performance of pre-trained models. We achieve this by
incorporating conventional genetic algorithms (GA) to optimize
hyperparameters such as learning rate, batch size, and epoch. This
enables us to train the models using both training and validation
data and subsequently evaluate their performance using testing
data. In order to construct the suggested framework, we adhere to

the subsequent procedures:

1. Dataset collection from public sources like Kaggle.

2. The preparation and processing of the dataset includes resizing,
splitting, and transformation. The preprocessing is based on the
model architecture.

3. Preparation of the pre-trained model: freezing and
hyperparameter tuning.

4. Conducting distinct learning procedures: training and

evaluating the models using the optimal hyperparameter values.

Assess the performance of the model by analyzing the evaluation

metrics, which include accuracy, loss, F1 score, precision, recall,

AUC, and the confusion matrix.

Additionally, in order to assess the resilience of the chosen
model, the most appropriate hyperparameters obtained are tested
using a separate dataset. This is followed by testing the model
against adversarial attacks. The study also explores the application
of an object detector network, such as YOLOV4, for classifying
COVID-19 x-ray images through a novel experimentation process.
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TABLE 1 Summary of the related studies.

References

Study achieved

Used models§ fine-tuning

Dataset

10.3389/frai.2025.1646743

Additional

Evaluation
metrics

technique

preprocessing

Jangam et al. (2022) Stacked ensemble that detects VGGI19, Rest101, DenseNet169, and Five different None Accuracy: 98%
COVID-19 using CT scans or WideRestNet502 dataset
X-rays -No fine-tuning specified
Alqudah et al. Al method that recognizes No details provided Details not Not specified Not provided
(2020) Covid-19 cases provided
Apostolopoulos Transfer learning technique No details provided Details not Not specified Acc: 96.78%, Sens:
etal. (2020) using X-ray scans to provided 98.78%, Spec:
determine 96.46%
COVID-19-infected scans
Ozturk et al. (2020) Not specified Not specified Not specified Acc: 98.08%, f1:
96.5%
Annavarapu et al. Deep learning-based ResNet50 Not specified Not specified Acc: 95%
(2021) technique for efficient
COVID-19 chest X-ray
classification.
Ozcan (2021) ResNet50 Not specified Not specified Acc: 95%
Chakraborty et al. COVID-19 detection with AlexNet, VGG, ResNet, and DenseNet 10,040 samples Image segmentation | Acc: 96.43% Sens:
(2022) performance comparison 93.68%
Fine-tuning Not discussed
Yadlapalli et al. Classification of CT scans to K-means and VGG16 COVID-19 CT Acc: 89 % F1: 88%
(2022) diagnose COVID-19 patients scans:349 positive AUC : 94%
and 397 negative

Khan et al. (2022)

Improve COVID-19 detection
by Compare Three models

EfficientNetB1 fine-tuning: dropout
percentage, learning rate

GitHub, Kaggle
(21,165 image) Data
aug. ( rotation,
flipping)

Not specified

Acc: 96.13%

Aggarwal et al.
(2022)

Comparison of eight
fine-tuned network

DenseNet121 and MobileNetV2

Two datasets

Data augmentation
(CLAHE), image
scaling and resizing

DenseNet Acc: 97%
MobileEt Acc: 81%

Rehman et al.
(2021)

Detecting 15 types of chest
diseases, including
COVID-19, using chest X-ray
modality

Two ways classification 1- Deep CNN+
soft-max 2- CNN + fully connected layer

Not specified

Not specified

Not specified

Saeed et al. (2022)

mathematical framework
called Complex Fuzzy
Hypersoft (CFHS) set for
diagnosing and treating
medical conditions

Not specified

Not specified

Not specified

Not specified

Allioui et al. (2022)

Long-term mask extraction
for medical image
segmentation

Novel multi-agent-based deep
reinforcement learning (DRL) + Deep
Q-Network

Not specified

CT images cases
(normal,
pneumonia, viral,
and COVID-19)

P:97.12%, Sens:
9.97%, Speci: 84%
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Misra et al. (2023) Parallel ensemble transfer VGG16, ResNet18, and DenseNet121 Data-parallel Not specified Not specified
learning-based framework for implemented on
COVID-19 (PETLFC) name PARAM SHAVAK
for multi-class classification. HPC 21,165 chest
X-ray images
Ayalew et al. (2022) DCCNet rapid COVID-19 CNN and histogram of oriented Not specified Not specified DCCNet acc: 98%
diagnosis using X-ray images gradients (HOG) University of Gondar HOC acc: 98.5%
and online databases Hybrid:99.67%
Indumathi et al. ML algorithms for forecasting Deep C5 COVID-19 dataset Not specified Acc: 98.06%
(2022) current status of COVID-19 from March to July
2020
Salau (2021) Early diagnosis of COVID-19 Developed discrete wavelet transform Not specified Not specified Acc:98.2 %
from SARS-CoV-2 (DWT) + SVM
Salau (2021) Classification of chest X-ray CNN + SVM Data from Data augmentation, Acc: 99.1%
images as Normal or open-source image cropping,
COVID-19 infected and segmentation
(Continued)
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TABLE 1 (Continued)

References

Study achieved

Used models& fine-tuning

10.3389/frai.2025.1646743

Additional Evaluation

metrics

Dataset

technique

preprocessing

(2023) Expert database
System analyzing
disease diagnosing
COVID-19 based

on its symptoms

Deriba et al. (2023) Decision support system for ML models: Nave Bayes (NB), Artificial 311 patients (69% Not specified ANN R: 97 %, P:
Detecting coronavirus patient Neural Network (ANN), and Support male, 31% female) 98.3 % F1:98.3 %
path based on virus’ biological | Vector Machine (SVM) collected from three
traits Ethiopian Hospitals

Wubineh et al. PART rule-based algorithm 1,048,575 pieces of data from Kaggle Not specified Not specified Acc: 92.47%

Step 1: Data Collection
Preprocessing step

Step 2: Data preprocessing
and partitioning

Step 3: Pre-trained model

Step 4: Running process for
detection and classification

preparation

COVID sample

Training set I

1- Model loading l

Training

Validation set

i

2- Freezing specific layers

L‘

Validation

3- Redefining of the ]
classification layer

F ~II

Normal Sample

FIGURE 1
Flow chart diagram of the proposed framework.

Normal COVID

Performance Evaluation based
on evaluation metrics

3.1 Dataset

We have merged two openly available datasets from the
Kaggle database into a unified and substantial dataset, referred
to as dataset-1, for the purpose of carrying out the experimental
procedure outlined in this study. The first set, the COVID-19
Radiography Dataset (Chowdhury et al., 2020; Rahman et al,
2021), consisted of 21,178 lung X-ray scans distributed across three
distinct categories: COVID-19, lung opacity, and viral pneumonia.
The second dataset, COVID-19 X-ray 54, comprises 2,133 images
classified into three groups: COVID-19, pneumonia, and normal.
We have omitted images related to other categories of classes as our
research focuses solely on the COVID-19 disease. Table 2 presents
the distribution of the data across all classes from both of the
mentioned datasets. The distributions follow after the removal of
irrelevant classes. We considered Dataset-1 to be the initial dataset
that guides the entire study process. The representative images from
each class are also shown in Supplementary Figure 1 (Normal) and
Supplementary Figure 2 (COVID).
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Furthermore, to demonstrate the robustness and dependability
of the proposed framework process, we conducted additional
testing on a publicly accessible dataset (Kumar, 2022). Shastri et al.
(2022); Kumar et al. (2022) also used this dataset in their research
to analyze digital images of chest X-rays for COVID-19 disease
detection. Table 2 also highlights pertinent information about this
dataset, referred to as dataset 2.

3.2 Data preprocessing and partitioning

When preparing data for model training, several essential steps
are involved. This article outlines four required stages implemented
in preprocessing the obtained dataset. The initial step involved
resizing all acquired images to dimensions of (224 x 224 x
1) as required for models developed in the Pytorch framework,
which signifies high width and channel. The selection of 224
pixels aligns with the pre-trained networks utilized in this study,
originally trained on the ImageNet dataset with a size of 224 x
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TABLE 2 Samples partition of the dataset.

Dataset Data labels Training Validation Testing
set set set
Normal 1,851 231 231
Dataset-1 COVID 1,851 231 231
Total 3,702 462 462
Normal 1,402 200 200
Dataset-2 COVID 1,226 200 200
Total 2,628 400 400

224. Furthermore, considering the images are X-ray scans and have
been converted to grayscale, reducing the number of channels to
one is needed.

Following the image resizing process, all images within
their respective class-based folders were renamed, facilitating
streamlined tracking control later. In the deep learning general
process, it is established that models undergo training on one set
of data, validation on another, and testing on entirely new data.
Therefore, data partitioning proves instrumental in ensuring the
seamless progression of the deep learning model training process.
Moreover, the distribution table in the preceding section revealed a
certain degree of imbalance in the data. As discussed in the relevant
literature section, previous studies employed data augmentation
techniques to generate additional samples for classes with fewer
instances to address this imbalance issue. The data augmentation
process has not been applied in this study as they might result in
inferior training and testing outcomes to the dataset as attempted
in prior research, such as those detailed by Ayan and Unver (2019)
and Abdullah et al. (2020). However, some transformations were
applied to the images in our study, contributing to enhanced model
performance and indicating that the networks can exhibit better
performance without data augmentation.

The transformation process was achieved in code using
PyTorch, as it provides various predefined transformation
functions tailored for each model to facilitate data preprocessing.
These functions execute essential preprocessing steps on
the data, encompassing tasks such as rescaling pixel values
and normalization using mean and standard deviation. Both
transformations were the principal ones implemented in this study.

3.3 Description of the proposed work

The study uses pre-trained models to process and implement
deep transfer learning (DTL) information through distinct
processes, as emphasized in this section. The study also investigates
a novel approach that leverages the benefits of YOLOv4 using the
same COVID-19 dataset. As discussed in the previous section,
this study adopts an alternative method of deep learning, in line
with existing research on transfer learning (Bozinovski, 2020). It
involves using models that have already been trained on very large
datasets to build a new architecture that can be tweaked and used to
solve problems with a different dataset for a different task. It entails
reusing a trained model rather than building and training a new one
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from scratch. The model training process becomes more adaptable
and streamlined by utilizing the weights obtained from training
on a large dataset, thereby reducing the amount of data needed
for subsequent studies. Complex image classification tasks often
employ transfer learning techniques, utilizing pre-trained models
and existing labeled datasets (Sarkar, 2018; Ozturk et al., 2023;
Tagyiirek, 2023; Terzi et al., 2022).

Transfer learning offers numerous advantages, making it the
preferred option for this study. Here are some of the reasons for
this preference:

e Data efficiency: Trans enables deep learning models to
leverage knowledge from pre-trained models on large datasets,
mitigating the need for extensive labeled data in real-world
scenarios, where acquiring such datasets can be costly and
time-intensive. As in this study, acquiring reliable COVID-
related data was more challenging than expected.

e Fast training: TL accelerates model training, reducing the
computational expense and time required for training from
scratch. This approach involves fine-tuning a model for a
specific task, significantly saving computational resources.

o Feature extraction: By using pre-trained models as feature
extractors. The lower layers of deep neural networks capture
low-level features like edges, textures, or phonemes, which
can be expected across different tasks. Using these features,
the model can focus on learning task-specific features in the
higher layers.

e Domain and task adaptation: TL is beneficial when the
source domain (the domain on which the pre-trained model
was trained) is related to the target domain (the domain
of the specific task). As the domain of this study can be
considered the target with limited labeled data, the knowledge
from the source domain can still be beneficial for improving
performance on the target task, here the classification of
COVID-19 scans. The TL process implemented here enables
models to adapt to new tasks without starting from scratch,
making it easier to incorporate new information and update
models efficiently.

3.4 Transfer learning strategies

There are two most popular strategies used when implementing
deep transfer learning:

e Feature extraction or freezing: Unlike fine-tuning, this
approach freezes the pre-trained model as a fixed feature
extractor (weight does not change during training). The
strategy involves conserving the pre-trained layers without
the model’s fully connected layers, and replacing them with
a new classifier layer based on the required target task. This
strategy does not update the weights during training. Figure 2a
illustrates the approach. This approach is useful when the new
dataset is small and similar to the original dataset used to train
the pre-trained model.

e fine-tuning: is illustrated in Figure 2b. This strategy involves
taking a pre-trained model on a source task as a starting point
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Idea: use outputs of one or more layers of a network trained on a different task as
generic feature detectors. Train a new shallow model on these features

Assumes that Dg¢ Dy
Shatow classier (e SVM)

= features

TRANSFER

Data and labels (e.g. ImageNet) Target data and labels

a) Transfer learning with pre-trained model as feature extractor

FIGURE 2

General transfer learning strategies. (a) Transfer learning with pre-trained model as feature extractor. (b) Transfer learning fine tuning.

Freeze or fine-tune?

e Frozen: not up:

e Fine-tuned: updated d

Which to do depends on target task

e Freeze: target task labels are scarce, and we -

and fine tuning data labels

[ b) Transfer learning fine tuning ]

and adapting it to a target task. Therefore, this strategy allows
for the modification or retraining of the final layers of the pre-
trained model to align with the unique features of the new task.
Generally, deep neural networks are known to contain highly
configurable architectures with many hyper-parameters. So,
when the trained model is fine-tuned, the initial layers grab
generic attributes, and the later layers concentrate on specific
tasks. When the new dataset closely resembles the original
dataset that trained the pre-trained model, this approach
becomes practical.

However, this study employed the transfer learning approach,
which encompasses both freezing (for feature extraction) and fine-
tuning via hyperparameters, in contrast to the majority of studies
that only utilize either freezing or parameter tuning. Prior research
has demonstrated that the optimal approach for refining a pre-
trained model for lung X-ray scans involves keeping the first two
blocks of layers fixed and subsequently training the remaining
blocks (Raghu et al., 2019). Unlike the aforementioned approaches,
this study chose to maintain all the pre-trained model layers fixed
and frozen, except for the classifiers. We have adopted the option to
extract essential features from the COVID scans and subsequently
reconfigure a new classifier layer for the classification procedure.
Our method utilizes all frozen layers as feature extractors and the
redesigned final layer for classification, rather than just selecting
two layers.

3.5 Pre-trained models

Numerous CNN-based architectures have proven to be effective
for medical image analysis operations. Thus, in the first part
of our transfer learning practice, ResNetl8, VGG16, AlexNet,
and EfficientNet were used as pre-trained models to build four
different models. Then, in the second part, we experienced another
classification model with the advantage of version 4 of the
YOLOv4 model, one of the known models commonly used for
object detection.

o Residual neural network (ResNet18): This network is most
prevalent in CNN architecture. Developed in 2015, it offers
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additional practical training with a more effortless gradient
flow (He et al., 2016). As a network with skip connections
(often referred to as "residual connections) that perform
identity mappings merged with the layer outcomes by
addition, this enables deep learning models with tens or
hundreds of layers to train efficiently and approach adequate
accuracy when moving deeper.

e AlexNet: The model was presented in 2012 as the first CNN
architecture to run on GPU and participated in the ImageNet
Large Scale Visual Recognition Challenge. Its architecture
comprises five convolutional layers, three max-pooling layers,
two normalization layers, two fully connected layers, and one
softmax layer. Each convolutional layer consists of CNN filters
and a nonlinear activation function, ReLU. The pooling layers
are used to perform max pooling. The input size is fixed
due to fully connected layers, and the model has 60 million
parameters (Krizhevsky et al., 2012). AlexNet was the first
deep learning model to achieve high accuracy on the ImageNet
dataset.

e Visual geometry group (VGG16): This CNN architecture
was published in 2014 after winning the ILSVR (Imagenet)
competition; it is a trained model with many hyperparameters.
The model comprises many convolutional layers, 3x3 filters
with a default stride of 1, followed by a 2 x 2 max pool layer.
This architecture is ended with two fully connected layers. The
model consists of 16 layers in total (referred to in its name),
including the dropout and max-pooling layers (Simonyan and
Zisserman, 2015).

o EfficientNet: As described by its authors in their articles (Tan
and Le, 2019), the EfficientNet architecture is a deep model
with a scaling method that uniformly scales all dimensions
of depth/width/resolution using a compound coefficient. The
scaling process of the model scales the network width, depth,
and resolution based on a set of specified scaling coefficients.
These parameters are uniformly scaled using a principle based
on constant coefficients determined by a small grid search on
the original model.

Salau and Jain (2019) concluded in their survey paper that

the distinctive characteristics that can be derived from images
include homogeneity, entropy, contrast, mean, and energy. In this
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FIGURE 3

Newly redesigned classifier for pre-trained models. (a) Model's original las layers. (b) Newly redesigned classifier layer.
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study, we have employed the aforementioned pre-trained models to
extract potential feature extractors from the COVID-19 x-ray scans.
Nevertheless, they exhibit variations from the feature extraction
methods discussed in Salau and Jain (2019). In addition, as depicted
in Figure 3, we fitted all of our pre-trained architectures with an
identical classifier in order to ensure an equitable assessment of
performance. Subsequently, we proceeded to train the networks
using the preprocessed training dataset and subsequently assessed
their performance on the testing dataset. In addition, we performed
supplementary testing on a distinct dataset, which was also utilized
in the study proposed by Shastri et al. (2022); Kumar et al. (2022)
to verify the performance outcomes. In addition, we enhanced
this study by incorporating a testing procedure that incorporates
adversarial samples, showcasing the robustness of the DTL-based
optimal model against adversarial attacks. The subsequent section
provides a comprehensive account of the experimental findings.

3.6 YOLOV4 based transfer learning

YOLOV4 is one of the most advanced models in the You
Only Look Once (YOLO) family, originally developed for real-
time object detection tasks. Since the release of YOLOvV4 by Alexey
et al. (2020), the model has garnered attention for its enhanced
detection speed and improved localization accuracy. Unlike many
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recent convolutional neural network (CNN) architectures that
require extensive hardware resources for training (e.g., multiple
GPUs and large mini-batches), YOLOv4 was designed to achieve
state-of-the-art performance while remaining trainable on a
single GPU with moderate batch sizes. This feature makes
it particularly appealing for clinical and resource-constrained
deployment scenarios.

In this study, YOLOvV4 is repurposed beyond conventional
object detection: we leverage its pre-trained weights and
architectural strengths within a transfer learning framework
for COVID-19 classification from chest X-ray images. The model’s
architecture—integrating CSPDarkNet53 as a backbone, along
with Spatial Pyramid Pooling (SPP) and PANet path aggregation—
allows it to efficiently extract multi-scale features that are crucial
for identifying radiological signs such as ground-glass opacities
and consolidations.

In this context, YOLOV4 is not simply used to detect real-world
objects; rather, it is employed to extract meaningful spatial features
that characterize COVID-19-specific manifestations in medical
images. These features are then used within a hybrid pipeline to
classify test samples, thereby contributing an interpretable, fast,
and low-resource diagnostic alternative. This usage illustrates
a novel direction in applying object detection networks for
diagnostic classification in medical imaging. Thus, the reasons why
YOLOvV4 has been considered for experimenting in COVID-19
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TABLE 3 Computational requirements.

Coding language ‘ Python

e GPUs: Tesla T4 (selected)
e CPUs:2xvCPU
e RAM: 32 GB

Google Colab Pro specifications

classification grounded in both theoretical and empirical
as follows:

e Real-time efficiency: YOLOV4 is specifically designed for real-
time object detection with high inference speed and low
computational cost.

e Superior localization performance: Unlike earlier versions
(YOLOV3) and some alternatives (e.g., SSD, Faster R-CNN),
YOLOv4 integrates CSPDarkNet53 and Spatial Pyramid
Pooling (SPP), which enhance multi-scale feature extraction
- a critical aspect for capturing varying radiographic
manifestations of COVID-19.

e Robustness to small object detection: YOLOv4’s architecture
demonstrates superior sensitivity to small regions of interest,
which is essential in chest X-rays where lesion sizes may be
subtle or localized.

e Ease of integration: YOLOv4 is compatible with transfer
learning pipelines and can be easily integrated with post-
classification workflows, enabling hybrid experimentation
without disrupting the classification ipeline.

4 Experimental process and
evaluation of the results

4.1 Experimental conditions

The experimental processes were conducted after the data
were entirely preprocessed, and all the selected models were
implemented, as discussed in the previous section and highlighted
in the proposed framework flowchart diagram Figure 1. A well-
prepared and sophisticated computing infrastructure is required
to achieve the experimentations successfully. All the training
processes have been performed using the pro version of the Google
colab environment. The details of the computation specification are
shown in Table 3. The Google Colab was preferred as it offers a
more sophisticated and reliable runtime and is supported with GPU
for long training processes.

Numerous factors can dynamically influence the networK’s
learning process, including hyperparameters such as the activation
function, optimization function, batch size, learning rate, and
epochs. In our study, we conducted experiments using assorted
values for learning rate and considered fixed values for batch sizes
and the number of epochs. The utilized values are shown in Table 4.
The experiment processes were conducted in three different ways.
The first was to train each model using the different selected
learning rate values and compare the results. The second way is
to perform the training using the K-fold scenario to ensure the
performance of the models. The third was to try the training by
integrating a simple genetic algorithm to experiment with different
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TABLE 4 Default hyperparameters used for the first training process.

Experiment parameters ‘ Values

Learning rate 0.001, 0.0001, 0.0002

Epoch 40
Batch size 32
K-fold 5

values for the three hyperparameters. Adam optimizer is employed
as the optimization function for the networks with epoch and
batch size set to 40 and 32, respectively, for the first and second
experimental operations.

4.2 K-fold-based experimentation

K-fold cross-validation is another approach operated in the
literature to evaluate the performance of machine learning deep
learning models. As authors in Mahlich et al. (2025) defined, “the
K-fold Cross-validation is a statistical method of evaluating and
comparing learning algorithms by dividing data into two segments:
one used to train the model and the other used to validate it.” The k-
fold splits the dataset into k parts/fold of approximately equal size.
During each epoch of the learning process, the data is distinctly
split into k-parts, each for training and validation. The k-1 folds
are used for training, while the remaining part is used for testing.
This process is repeated k times, and then the model’s performance
is estimated as the average across all the test sets. This process
is generally beneficial when the dataset is small, and we want
to maximize the available data. The results from implementing
this technique are also discussed later to demonstrate the good
generalization performance of the used models.

4.3 Genetic algorithm-based
hyperparameter tuning experimentation

A genetic algorithm (GA) is a computational optimization
algorithm inspired by the principle of natural genetics based on the
selection process. It is commonly operated to find the optimal or
near-optimal solution to a problem by mimicking the process of
evolution by iteratively evolving a population of potential solutions.
GA has been an efficient technique for optimizing numerous
machine-learning problems, as it has been used in the paper
presented by Li et al. (2022) to optimize convolutional neural
network hyperparameters (to select trainable layers) for image
classification. So, it can also be used in deep transfer learning
to fine-tune a model’s hyperparameters because they are not
learned during the training process but are set before training
begins. As mentioned in the previous descriptions, the developed
method in this study utilizes deep transfer learning for COVID-
19 X-ray classification, leveraging pre-trained models to expedite
training while ensuring high performance even with limited labeled
data. Moreover, the study also integrates a genetic algorithm to
facilitate hyperparameter tuning, optimizing model parameters
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to enhance classification accuracy. In this study, we employed a
Genetic Algorithm-based approach to optimize the identification
of hyperparameter sets suitable for transfer learning models. The
hyperparameters under consideration include learning rate, batch
size, and the number of epochs.

In contrast to manual hyperparameter tuning, this
methodology accelerates the training process and ensures
efficient utilization of computational resources, thereby producing
robust classification outcomes for COVID-19 detection from
X-ray images. However, the standard genetic algorithm
implemented during the deep transfer learning process of this
study, specifically for fine-tuning hyperparameters, is summarized

in the following steps::

1. Preparation: The dataset is prepared, and the pre-trained model
is loaded.

2. Initialization and definition of parameters’ boundaries: The
hyperparameters to be optimized, including learning rate, batch
size, and epochs, are defined along with their respective lower
and upper boundaries.

3. Definition of the fitness evaluation function: For each
individual, representing a combination of hyperparameters, the
model is trained, and the F1 score on the validation/test set
is calculated as the fitness value. The objective of the fitness
function is to maximize the F1 score, thereby reflecting the
model’s overall performance.

4. Initialization of the algorithm parameter values: Key
parameters such as maximum iterations, population size,
and mutation and crossover probabilities are established (as
required by the library package).

5. Definition of the genetic algorithm process function: This
function is designed to execute the training process based on the
hyperparameter set generated by the algorithm.

6. Execution of the process: The training process is carried out.

7. Evaluation and selection of the optimal model with
hyperparameter set: The best model, along with its
corresponding hyperparameter set, is evaluated and selected.

8. Saving of the final model for future use: The conclusive model
is preserved for subsequent applications.

4.4 GA workflow and implementation
details

The GA process was implemented using the geneticalgorithm
library from Python. The library provides flexibility for
managing the main flow of the GA process (selection,
crossover, and mutation operations) in each iteration. It
iteratively ~tests new hyperparameter combinations and
updates the best results. The fitness function is adapted
to train the model with the given hyperparameters and
This

approach facilitates an understanding of how the generated

computes the F1 score on the validation/test set.

hyperparameter sets influence the perfomance of the
leaning models. This method enabled a more efficient and
automated search for the best hyperparameter combinations
in the search space, significantly improving the models

overall performance.
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TABLE 5 GA search space and encoding.

Hyperparameter Type Range/admissible
(encoding) set
Learning rate n Real (log,, 7 € [107°, 1073]
[=5,-3])
Batch size b Integer (mapped) {16 — 32}
Epochs E Integer [10, 40]

LR is optimized in log10 space; batch size and epochs are treated as integers (rounded to the
nearest admissible value).

TABLE 6 Performance evaluation metrics.

Metrics ‘ Equation formula

Precision (P) TP/(TP + FP)

Recall (R) TP/(TP +FN)
Accuracy (TP + TN)/(TP + TN + FP + FN)
Fl1-score 2 [P-R/(P+R)]

Here, TP, True Positive; FP, False Positive; TN, True Negative; FN, False Negative.

4.5 Detail process of genetic
algorithm—based hyperparameter tuning

To systematically explore hyperparameters under a constrained
compute budget, we employ a single-objective Genetic Algorithm
(GA) to while
regularizing training time. Let 6 = (1, b, E) denote the learning

maximize cross-validated discrimination
rate, batch size, and number of training epochs, respectively. The
GA searches over a bounded space (Table 5) and evaluates each
candidate by K-fold cross-validation on the training split.

4.5.1 Search space and rationale

Learning rates are optimized on a log scale to cover
several orders of magnitude efficiently, consistent with best
practices for deep CNN fine-tuning. Batch sizes are restricted
to powers of two commonly supported by commodity GPUs,
and epoch bounds reflect overfitting risk observed in preliminary
pilots. These ranges were chosen to (i) encompass values
widely reported as effective for Models-like backbones in
medical imaging, and (ii) respect our deployment-motivated
compute constraints.

4.5.2 GA configuration and budget

We adopt a population size of 10 and a maximum of
10 generations under our compute budget, with elitism ratio
0.1, uniform crossover probability 0.5, and mutation probability
0.15 (Gaussian perturbation in log-LR; neighbor moves for
integers). Premature convergence is mitigated via (i) diversity
preservation by re-seeding up to 10% of the population every
5 generations, and (ii) a stagnation stop if the best fitness
improves by < 107 over generations. To ensure reproducibility,
we fix the GA and data-split seeds and report the selected
parameter set.
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4.6 Performance metrics

The experimented models for the presented framework are
evaluated based on the commonly used metrics in the literature for
assessing classification performance. Then, a comparison of results
between the proposed models and recent results from the literature
is discussed in Section.

In classification problems, the following terms are used to
define the metrics:

e True positive (TP): The number of instances correctly
predicted as belonging to the positive class.

e False positive (FP): The number of instances incorrectly
predicted as belonging to the positive class (actually negative).

e True negative (TN): The number of instances correctly
predicted as belonging to the negative class.

e False negative (FN): The number of instances incorrectly
predicted as belonging to the negative class (actually positive).

These definitions are essential for understanding the evaluation
metrics presented in Table 6.

5 Results evaluation and discussion

This section highlights the results obtained from all the
experimental processes carried out as explained previously and
also presents an evaluation of the performance comparisons
of the models. This performance comparison is based on the
evaluation metrics [accuracy, precision, recall, Fl-score score,
and the Area Under the Curve (AUC)] acquired from the
testing process. In addition to these metrics, the models are
also relatively compared alternatively according to the results
achieved during training, validation, and testing by considering
their accuracy and loss. Generally, the best model is the
model having the highest accuracy, Fl-score, and AUC with
the lowest loss in testing (Odeh et al., 2022), proving that the

TABLE 7 Models’ performance results from transfer learning.

10.3389/frai.2025.1646743

model has no underfitting or overfitting issue for the intended
task, which is the classification in this study. Furthermore, an
additional comparison is also discussed to compare the models
based on the execution time spent by each model for the
evaluation steps to achieve the best accuracy. This section is
subdivided into three subsections. The first discusses the results
of the applied transfer learning for each model trained with
three different sets of hyperparameters. The second subsection
discusses the results achieved by the same models based on
the k-fold training process to confirm the results of the best
model pointed out in the later subsection. The thirst concerns
genetic-based computation.

5.1 Transfer learning-based results

As mentioned in the experimental section, a set of different
hyperparameter sets has been manually chosen after conducting
several tries. Eventually, three sets have been selected as near-
to-optimal values to help models achieve optimal accuracy
with low loss. These hyperparameters are presented in the
“hyperparameters” column of Table7 for each model, such as
learning rate(Lr), batch size (b.size), and epoch (ep).

The results of “RestNet18” and AlexNet models are provided
in Tables 7a, b respectively, which shows they achieved better
performance with the same hyperparameters set. The table
highlights each hyperparameter set’s training, validation, and
testing outcomes. These results demonstrate that decreasing the
learning rate with fixed epochs and batch size can yield better
results, as it can be viewed with a slight increase in training,
validation and testing accuracies and a decrease in losses. The
highest Fl-score, precision, recall and average AUC have been
achieved with the (Ir:0.0001, bs:32, ep:40) parameter set for
each of both models. Figures4a-c, 5a-c shows the graphical
evolution of the training and validation accuracies and losses for
both models and the confusion matrix yielded from the testing

Hyperparam. Training acc  Valid acc Testacc F1 score AUC Exec time(s)
Lr/b.size/ep
(a) 0.001/32/40 99.20 97.4 99.55 99.35 99.13 | 99.57 99.57 3561
ResNet18 0.0001/32/40 99.20 98.90 99.55 99.35 99.13 | 99.57 99.57 3.224
0.0002/32/40 99.5 98.80 99.78 99.67 99.56 | 99.78 99.80 3.205
(b) 0.001/32/40 98.8 98.3 98.70 98.71 98.73 | 98.70 99.71 2.636
AlexNet 0.0001/32/40 99.3 98.20 98.92 98.92 98.93 | 98.92 98.93 2.794
0.0002/32/40 99.3 982 98.70 98.70 99.13 | 98.26 98.70 2.820
(© 0.001/32/40 99.3 98.8 98.70 98.06 97.40 | 98.06 98.06 5.065
VGG16 0.0001/32/40 99.5 97.8 97.80 98.00 97.80 | 97.80 97.87 4817
0.0002/32/40 99.4 97.8 98.92 98.91 98.93 | 98.92 98.93 4.597
(d) 0.001/32/40 99.3 98.8 98.7 97.19 97.26 | 97.19 97.25 2.636
EficientNet 0.0001/32/40 99.5 97.8 97.40 97.37 97.42 | 97.40 | 97.402.794
B1 0.0002/32/40 99.4 97.8 98.48 98.46 98.40 98.92 98.50 2.820

Lr, learning rate; b.size, batch size; ep, epoch; acc, accuracy.
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FIGURE 4

ResNet18 plotting results (a) accuracies, (b) losses, and (c) confusion matrix of the testing.
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FIGURE 5

AlexNet plotting results (a) accuracies, (b) losses, and (c) confusion matrix of the testing.

process. On the other hand, sharing similar hyperparameters set
(1r:0.0001, bs:32, ep:40) with their better results, the experimental
outcomes for VGG16 and EfficientNetB1 as presented in Tables 7c,
d, their accuracies, losses and confusion matrices are shown in
Figures 6, 7 restively. Looking to result in Table 7c, the training
and validation accuracies and losses of the VGGI16 do not
present a big difference for both sets (Ir:0.0001, bs:32, ep:40)
and (Ir:0.0002, bs:32, ep:40), however, exhibited a remarkable
difference for testing and remaining metrics (F1-score, precision,
recall, and AUC) with satisfactory results with (1r:0.0002, bs:32,
ep:40) set.

Furthermore, from the point of view concerning the
execution time expended by each model to complete the
testing process, the analysis of these times in the corresponding
tables confirms it is slightly decreasing relative to the decrease
of the learning rate, which also proves that a pre-trained
model can be trained with a low rate for better performance

Frontiersin Artificial Intelligence

in short time. More detailed information, including the results
of the training process, accuracies and loesses are presented in
Table 8.

5.2 K-fold based models performance and
confusion matrix

As the second learning process achieved in this study,
the k-fold process has been performed to ensure the models’
generalization. The previous results have been obtained based on
the manual traditional data splitting technique (train, validation,
and test dataset) to train all the models. However, to perform
the k-fold operation, the train and validation datasets (from
the previous process) are joined together and passed to the k-
fold algorithm, which splits the provided dataset in train and
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EfficientNetB1 plotting results (a) accuracies (b) losses and (c) confusion matrix of the testing.

valid at each fold to perform the training and validation. At
the same time, the testing is achieved using the test dataset.
The model performance results at each fold are presented in
Tables 9a—d, respectively. The last row of each model’s row
highlights the average results (from the overall folds) for each
evaluation metric.

The k-fold (5-fold) results of the RestNetl8 and AlexNet
models are presented in Table 9a. Their average results for each
metric are almost the same as pointed out in the previous
process. The ResNet averaged 99.57 for test accuracy and 99.57
for Fl-score, precision, recall and AUC, respectively. However,
AlexNet registered an improvement by averaging an accuracy of
99.35 from 98.92 in the previous process. It averaged 99.57 for
Fl-score and 99.35 for precision and recall compared to 98.92
for these metrics results scored previously. This improvement
demonstrates the K-fold process’s efficiency in improving the
models’ performance.

Frontiersin Artificial Intelligence

Figure 8 illustrates the average performance outcomes for all
models, assessed using various metrics across all five folds.

On the other hand, Tables 9¢, d highlight the 5-fold result for
VGG16 and EfficientNetbl models as both have been trained with
the same parameter sets (0.0002, 32,40) for five-folds, considering
that this hyperparameter set provided the best results for both
models in the previous process. These results again confirm the
slight improvement of both models. The VGG model improved
from 98.92 to 99.13 for test average accuracy and decreased in
testing loss from 0.069 to 0.045. Furthermore, it has maintained
the same view improvement for Fl-score, precision and recall.
However, unlike other models, the efficientNetl needed to register
sufficient improvement, probably due to the structure of the
model or the use of hyperparameters that did not impact the
model’s performance. More detailed information, including the
results of the training process, accuracies and loesses are presented
in Table 8.
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5.3 GA-based model performance results

As the third experimental process explored in this study, genetic
algorithms have been used to determine different hyperparameters
for training and testing the model’s performance. This process
was carried out to try automatic hyperparamet settings instead of
manual settings, as achieved in the first process. The performance
evaluation results based on the evaluation metrics are highlighted
in Table 10. This Table presents the training, validation and
testing results (accuracy and loss), followed by the Fl-score,
precision, recall and AUC for each model according to each
defined value for hyperparameters such as learning rate, batch
size and epoch. The integrated GA running process has been
performed for ten iterations, and only the top parameter sets
that have provided better results for the models are shown in
Table 10. However, the analysis of these results also reveals that
ResNet18 has outperformed the other models with different sets
of hyperparameters (Ir:0.0003,bs:24, ep:17) and (Ir:0.0005,bs:17,
ep:18) where the model reaches almost 100% accuracy for training,
99.57% for validation and testing and Fl-score of 99.57. The
AlextNet and VGG16 models also have training accuracies of
more than 99.5%, while the validation, testing and Fl-score is
near 99%. These experience outcomes demonstrate that pre-
trained models could be trained and validated with low learning
rates and epochs to achieve remarkable results. The graphical
presentation of this comparative results is shown in Figure 9.
The performance of all the models evaluated above has been
compared in detail using metrics such as accuracy, precision, recall,
and F1 score. The results of these comparisons are presented in
Table 11.

5.4 Robustness of experimented models
gainst adversarial attack

This section focuses on the developed vulnerability to
adversarial attacks, which can cause models to misclassify an
adversarial sample with high confidence. Researchers have
found that making small changes to normal samples can
create adversarial examples that trick DNN-based models
into giving wrong predictions. Despite numerous studies
discussing possible adversarial attacks on classification models,
none have discussed and tested these attacks on classifier
COVID-19 models with adversarial examples. Researchers have
employed various techniques, including the dense adversarial
method, random label assignment, and metaheuristics, to
generate adversarial samples. Khan et al. created a novel
algorithm based on metaheuristics, drawing inspiration from the
behavior of a beetle, which can deceive CNNs in classification
tasks by disrupting a single pixel in an input image. Szegedy
et al. developed adversarial training, which is known to be
the better way for DNN models to be protected against
perturbation. Thus, to ensure and enhance the robustness of
the ResNetl8-based model, weve implemented adversarial
training and testing. Initially conceived for the classification
task, the Fast Gradient Sign Method (FGSM) (Goodfellow
et al, 2014) and Projected Gradient Descent (PGD) (Madry

frontiersin.org


https://doi.org/10.3389/frai.2025.1646743
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Moustapha et al. 10.3389/frai.2025.1646743

TABLE 9 K-5-based results of models.

K-fold Training  Training Valid Valid

steps Elelel loss acc loss
K-1 98.86 0.077 98.35 0.057 99.57 0.028 99.57 99.57 99.57 99.7
K-2 99.8 0.008 99.62 0.012 99.35 0.038 99.35 99.36 99.35 99.2
K-3 99.75 0.009 99.96 0.002 99.78 0.007 99.78 99.78 99.78 99.78
(a) ResNet18
K-4 99.88 0.005 99.92 0.002 99.57 0.011 99.57 99.57 99.57 99.57
K-5 99.89 0.004 99.95 0.001 99.57 0.010 99.57 99.57 99.57 99.57
Averages 99.64 0.020 99.56 0.014 99.57 0.019 99.57 99.57 99.57 99.57
K-1 99.22 0.021 96.72 0.058 98.82 0.060 98.92 98.94 98.92 98.7
K-2 99.86 0.005 99.82 0.005 98.48 0.097 98.48 98.49 98.48 97.8
K-3 99.92 0.003 99.97 0.001 98.78 0.060 99.78 98.78 98.78 99.78
(a) AlexNet
K-4 99.91 0.003 99.92 0.002 99.13 0.044 99.57 99.14 99.13 99.10
K-5 99.95 0.002 99.95 0.001 99.35 0.058 99.57 99.36 99.35 99.30
Average 99.77 0.006 99.29 0.033 99.35 0.019 99.57 99.35 99.35 99.35
K-1 99.47 0.014 97.61 0.018 99.35 0.039 99.35 99.36 99.35 98.7
K-2 99.9 0.004 99.9 0.083 98.27 0.118 98.27 98.28 98.27 97.8
K-3 99.93 0.002 99.93 0.007 98.48 0.053 98.48 98.53 98.53 98.48
(a) VGG16
K-4 99.95 0.002 99.99 0.004 98.7 0.047 98.7 98.7 98.7 98.9
K-5 99.96 0.001 99.8 0.001 99.13 0.088 99.14 99.14 99.1 99.02
Averages 99.84 0.024 99.97 0.027 99.13 0.069 98.79 99.14 99.13 99.13
K-1 95.52 0.019 93.66 0.163 98.05 0.07 96.97 96.98 96.97 98.7
K-2 98.63 0.039 98.09 0.053 96.97 0.088 96.97 97.1 96.97 97.8
K-3 98.55 0.04 99.88 0.006 98.27 0.048 98.27 98.27 98.27 99.78
(a) EfficientNetB1
K-4 98.9 0.031 99.93 0.004 98.7 0.037 98.7 98.72 98.7 98.7
K-5 99.14 0.025 99.99 0.001 98.27 0.065 98.27 98.28 98.27 98.4
Averages 98.15 0.006 98.31 0.045 98.27 0.061 97.84 98.28 98.27 98.27
100.0 ‘
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FIGURE 8
Models' Performances Based on the k1-5 average on each metric.
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TABLE 10 GA-based models’ performance results.

10.3389/frai.2025.1646743

Hyperparam. Training Training Valid F1-score P
Lr/b.size/ep Elele loss acc
(a) 0.0003/24/17 100 0.0001 99.35 0.037 99.35 0.038 99.35 99.36 99.35 99.89
ResNet18 0.0005/17/18 99.93 0.0019 99.57 0.0622 99.57 0.0722 99.57 99.55 99.60 99.87
(b) 0.0001/30/31 99.95 0.0013 99.35 0.0888 99.37 0.0768 99.35 99.36 99.35, 99.88
AlexNet 0.0008/18/34 99.62 0.0118 98.92 0.0765 98.92 0.0664 98.92 98.92 98.92 98.89
0.0005/30/31 99.89 0.0044 98.7 0.1404 98.7 0.1304 98.7 98.7 98.7 98.80
(c) 0.0005/25/20 99.89 0.0035 98.7 0.1073 98.7 0.120 98.7 98.72 98.7 98.92
VGGl16 0.0001/17/13 99.04 0.0282 98.48 0.0671 98.48 0.0574 98.48 98.49 98.48 98.90
0.0002/18/28 100 0.0002 98.92 0.0811 98.92 0.0714 98.92 98.92 98.92 98.99
(d) 0.0005/18/20 98.92 0.0312 98.7 0.055 98.7 0.036 98.7 98.7 98.7 98.79
EficientNetB1 0.0004/16/34 98.4 0.0452 98.48 0.06 98.48 0.0590 98.48 98.49 98.48 98.59
0.0003/19/20 99.58 0.0131 98.92 0.0624 98.92 0.0432 98.92 98.94 98.92 98.99
Lr, learning rate; b.size, batch size; ep, epoch; acc, accuracy.
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FIGURE 9
Comparative performance per models (per GA-based hyperparameter set).

et al, 2017) are two well-known and popular adversarial
sample generator methods. Thus, the paper adopted FGSM to
generate adversarial images to retrain the models. Equation 1
expresses the FGSM-based attack’s application, which generates
perturbed images by adjusting (perturbing) the original input
sample image x by the amount of epsilon along the gradient
direction. The process of generating adversarial images

based on the FGSM on the dataset used in this study is
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shown in Figure 10. The used epsilon value is 0.2 to create
the perturbation.

Xady = x + €.5ign(VxL(h(X), y)) 1

Table 12 shows the results of the model accuracies after
adding the generated adversarial examples to the initial dataset for
retraining, thus to prove the robustness of the best model.
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TABLE 11 Performance summary of all models under different experimental strategies.

Model Experiment Accuracy (%) Fl-score (%) Precision (%) Recall (%) AUC (%)
EfficientNetB1 | Manual hyperparameter 98.48 98.46 98.40 98.92 98.50
VGGl6 Manual hyperparameter 97.80 98.00 97.80 97.80 97.87
AlexNet Manual hyperparameter 98.92 98.92 98.93 98.92 98.93
ResNet18 Manual hyperparameter 99.78 99.67 99.56 99.78 99.80
EfficientNetB1 | K-fold average 99.13 98.79 99.14 99.13 99.13
VGG16 K-fold average 99.35 99.57 99.35 99.35 99.35
AlexNet K-fold average 99.57 99.57 99.57 99.57 99.57
ResNet18 K-fold average 98.27 97.84 98.28 98.27 98.27
EfficientNetB1 GA-based Hyperpar.(0.0003/19/20) 98.92 98.92 98.92 98.92 98.89
VGG16 GA-based Hyperpar.(0.0002/18/28) 98.92 98.92 98.92 98.92 98.99
AlexNet GA-based Hyperpar.(0.0001/30/31) 99.37 99.35 99.36 99.35 99.88
ResNet18 GA-based Hyperpar.(0.0005/17/18) 99.57 99.44 99.55 99.60 99.87
YOLOv4 Normal TL process 90.58 94.5 90 0.928 94.60

Bold values indicate the best-performing results across all metrics.

(@) Original Covid sample ) Adversarial Covid Image with perturbation

FIGURE 10
Adversarial COVID-19 sample generated using FGSM method. (a) Original Covid sample. (b) Adversarial COVID image with perturbation.

TABLE 12 ResNet18 model performance on both datasets and with adversarial samples included.

Training process  Training Training Valid Valid Testacc Testloss Fl-score P
acc loss acc loss
(a) Dataset-2 results 99.93 0.0019 99.57 0.0622 99.57 0.0722 99.57 99.57 | 99.57 | 99.87
(b) Dataset-1 results 99.50 0.0911 99.30 02303 99.35 0.063 99.36 99.37 | 99.36 | 99.89
() Dataset-2 results 99.20 02131 98.90 0.1703 99.20 0.078 99.26 99.37 | 99.36 | 99.88
6 Discussion, comparison, clinical e Based on the investigation of our study results, we found
I 4 g y
application and limitation that models based on ResNetl8, AlexNet, and VGGI6
exhibited the highest test accuracies, exceeding 99%, with
6.1 Discussion and comparison scores of 99.57%, 99.35%, and 99.13%, respectively. In
numerous studies, these models have demonstrated superior
This section provides a comprehensive analysis and performance in the classification of COVID-19 and normal
comparison of the current study with related state-of-the-art classes. For example, works such as Jangam et al. (2022),
research. Aggarwal et al. (2022), and Misra et al. (2023), which
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also conducted comparative analyses, illustrate the superior
efficacy of these models. The results of the remaining
evaluation metrics, including F1-score, precision, and recall,
as presented in various tables in the preceding sections,
corroborate these findings.

Table 13 illustrates the superior performance of the optimal
model presented in this research relative to prior studies.
This comparative analysis encompasses a varied collection
of datasets and neural network architectures, alongside the
results attained by the most effective models from each
referenced study. By utilizing appropriate evaluation metrics,
we evaluated the performance of each of our models and
established that the majority exhibited outstanding results.
The EfficientNetB1 model exhibited the lowest performance,
achieving an accuracy of 98.27% during testing. Nonetheless,
this accuracy remains higher than the 96.13% reported
by Khan et al. (2022) in their investigation, which
compared the EfficientNetB1 pre-trained model against two
other models.

Furthermore, the VGG16 model surpassed the performance
of the VGG16 model proposed by Yadlapalli et al. (2022),
achieving an accuracy score of 89%. Additionally, it
outperformed the model presented by Ozturk et al. (2023),
which recorded an accuracy score of 98.8%.

Aggarwal et al. (2022) and Misra et al. (2023) have conducted
comprehensive research that encompasses the study by Odeh
et al. (2022) and additional comparative analyses, such as
that by Yang et al. (2021), demonstrating the efficacy of
DenseNet121 in the classification of X-ray images. In a
distinct investigation, Hasan et al. (2021) utilized DenseNet

TABLE 13 Comparison with previous state-of-the-art work.

10.3389/frai.2025.1646743

to accurately predict COVID-19 in CT images, achieving an
accuracy rate of 92%.

Moreover, a comparative study conducted by Shazia et al.
(2021) assessed DenseNetl121 in relation to several other
models, including VGG16, VGGI19, Inception-ResNet-V2,
and InceptionV3. The findings revealed that DenseNetl21
surpassed the performance of the other architectures with a
success rate of 99.48%.

Furthermore, as highlighted in the comparative table,
numerous studies, including those conducted by Odeh et al.
(2022), Chakraborty et al. (2022), Aggarwal et al. (2022), and
Ozcan (2021), have demonstrated the efficiency of models
such as InceptionV3, VGG16, and ResNet50, indicating
their suitability for medical image classification. The work
of Mukesh et al. (2023), which compared and analyzed
the crack detection performance of VGG16, InceptionV3,
and ResNet50, reached a similar conclusion. In their study,
Kamal and Ez-Zahraouy (2023) utilized VGG16, VGG19, and
ResNet50 architectures to classify medical images into distinct
categories. Additionally, Srinivas et al. (2024) presented a
model that integrated InceptionV3 and VGGI16, achieving
the highest accuracy of 98% when compared to other
deep learning models such as ResNet50, DenseNet121, and
MobileNet for COVID-19 prediction.

However, alternative models such as ResNet18, despite not
being frequently employed in other studies, have proven
to be the most effective choice in this research, yielding
satisfactory outcomes. It achieved a test accuracy of 99.57%
for Fl-score, precision, recall, and average AUC. These
metric-based results surpass those reported in recent studies,

Researches

Padma and Kumari (2020)

Dataset

COVID chest Xray

Proposed models

2D CNN

Optimal models’ performance

Training ACC: 99% Validation ACC: 98.3%

Nazish et al. (2021)

COVID-19 patients x-rays

Logistic Regression SVM

SVM(96%)

Jangam et al. (2022)

Five different datasets

VGGI109, Rest101, DenseNet169, and
WideRestNet502

Ensemble Training : 99.5 % Testing : 99.1 %

Yadlapalli et al. (2022)

COVID19-CT images

InceptionV3, ResNet50, VGG16, and
InceptionV3

VGG16: 89%

Chakraborty et al. (2022)

10,040 samples

AlexNet, VGG, ResNet18, and
DenseNet

Not specified but overall Accuracy:93.43 %

Sensitivity:93.68 % Specificity:99.%0 F1-Score:93.0

%

Chakraborty et al. (2022)

COVID-19 and Pneumonia
x-rays

ResNet18, AlexNet, DenseNet, and
VGGl6

DenseNet (96.43%)

Khan et al. (2022)

BIMCV- COVID19+

EfficientNetB1, NasNetMobile, and
MobileNetV2

EfficientNetB1 (96.3%)

Aggarwal et al. (2022)

Two datasets

MobileNetV2, Xception, ResNet50V2,
DenseNet121, inceptionResNetV2,
VGG19, NASNetMobile, and
Inceptionv3

Dataset 1: DenseNet121 (97%) taset 2:
MobileNetV2 (85%)

Odeh et al. (2022)

COVID-19 radiography
database

VGG16, ResNet50, InceptionV3, and
DenseNet121

ResNet50 Training ACC: 99.99% Validation ACC:

99.50% Testing ACC: 99.44%

Present work

Frontiersin Artificial Intelligence

COVID-19 radiography
dataset

RestNet18 AlexNet, VGG16 and
EfficientNetB1

21

ResNet18 Training acc: 99.64% Validation acc:
99.56% Testing acc: 99.57% F1 score: 99.57 %
Precision: 99.57 % Recall: 99.57 % ROC-AUC :

99.88 %
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including Odeh et al. (2022) and Aggarwal et al. (2022).
Various recent investigations, including those focusing on
COVID-19 detection by Al-Falluji et al. (2021), Khanal et al.
(2024), Kakarwal and Paithane (2022), and Liu et al. (2021),
have demonstrated the efficacy of ResNetl8 for medical
imaging tasks.

e This study underscores the importance of experimenting with
diverse use cases and selecting appropriate hyperparameters
to elucidate the quality of model performance. The research
conducted by Igbal et al. (2022) and Cejudo Grano de Oro
et al. (2022) further emphasizes the considerable influence
of manual hyperparameter selection on the performance
of deep learning models. While this study has successfully
integrated the genetic algorithm (GA) process for optimal
hyperparameter selection, thereby reducing the time-
consuming nature of manual hyperparameter determination,
it has achieved comparable results.

e Additionally, as previously indicated, the EfficientNetBl
network produced inferior results compared to its
counterparts, potentially due to its relatively shallow
architecture. InceptionV3 (48 layers), which is comparable
to ResNet50 (50 layers) and DenseNetl21 (121 layers),
exemplifies a network with a greater number of layers
achieving superior results. Nonetheless, ResNet18 (18 layers)
performs comparably to ResNet50, and our research indicates
that networks with fewer layers can also achieve satisfactory
performance when appropriately trained with the correct data
and optimized hyperparameters. This finding aligns with the
results reported by Farag et al. (2021).

e Furthermore, these observations validate the practicality of the
residual block technique over the inception module technique
introduced in Inception V3. Poorly selected hyperparameters
can occasionally result in overparameterization issues during
training, leading to diminished performance in networks
characterized by a greater number of layers.

Furthermore, the YOLOv4-based model employed in this
study achieved an accuracy of 86%, which is relatively low in
comparison to other reported results. This discrepancy may
be attributed to the learning paradigm utilized. Typically, the
learning process incorporates either fully supervised or weakly
supervised learning, as examined in previous research (Chen
et al., 2022; Wang H. et al, 2021; Ren and Cai, 2023). In
instances where the dataset is sufficiently large, fully labeled,
and free of noise, fully supervised learning is preferred.
Conversely, weakly supervised learning is more advantageous
when dealing with datasets that contain noise, as was the
case in our training process with YOLOv4. During object
detection, the YOLO algorithm endeavors to learn not only
the object itself but also its surrounding context. In this study,
the implementation of weakly supervised learning resulted in
the entire COVID-19 scan being labeled as a single object.
Consequently, the performance of the YOLOv4 model was
inferior to that of other models, as its approach aimed to
identify all potential objects within the images, leading to the
misclassification of COVID scans. Rather than utilizing the
entire image for this process, fully supervised learning would
represent a more effective strategy. This would involve the
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precise identification and labeling of the COVID-19 region
within the image, followed by retraining the model to achieve
superior performance compared to other models. Future
studies will explore this approach to enhance model efficacy.

6.2 Potential clinical applications

Developing an accurate deep transfer learning model for
medical image detection and classification is critical in general. As
we specifically explored COVID-19 related cases in our study, real-
world clinical settings should also benefit from the deployment
and implementation of the best model obtained. Furthermore,
highlighting and showcasing its potential to provide automatic
predictions using x-ray image samples can be particularly valuable,
especially in remote areas with limited medical resources.

In our study, we used Gradio to create an interactive interface
for our deep transfer learning-based classifier for COVID-19 X-
ray images. This interface, as shown in Figure 11, enabled us to
prototype and test the deployment process efficiently, allowing
domain experts such as medical junior doctors to interact with the
model and provide valuable feedback.

Gradio is an open-source Python package that streamlines
the development of user-friendly interfaces for machine learning
models. It provides a user-friendly web-based interface to
interact with ML models. It allows researchers to quickly
generate a visual interface for their models, making it accessible
to users, including those without a technical background,
to interact with and interpret model outputs, which is
especially valuable for clinical review. Gradio’s ease of use
and ability to share models via simple URLs significantly can
enhance our collaboration with medical professionals. This is
because Gradio enables real-time image classification using
the deployed model. This approach not only improved the
accessibility of our model but also ensured its robustness in
real-world scenarios.

However, once fully deployed in production, our prototype
can serve as a training aid tool for junior doctors, enhancing
their diagnostic skills by providing a reliable reference for medical
interpretation and helping them learn the patterns associated
with COVID-19 on X-rays. This could improve their diagnostic
confidence and accuracy, as they can compare their analyses with
the model’s predictions. We have launched a demo web application
on the Hugging Face Spaces platform for testing purposes. The page
of the application can be found at this link.

6.3 Limitations

As a limitation, Although the experimentations have been
accomplished using the pro version of the Google Collaboratory,
we were obliged to reduce the dataset size due to the long
execution time (sometimes over 6 hours, not supported by the
server). Moreover, the provided runtime GPU is limited per
day and a limited number of sessions. The other limitation
concerns the genetic algorithm parameters used. Due to the
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FIGURE 11
Visual interface of the Web application prototype for automatic detection.
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limited computation environment of the collab server, as
mentioned earlier, the GA parameters have been defined in a
small range to prevent ResourceExhausation error. The interval
range of hyperparameter values is already discussed in the
previous section.

Additionally, it is important to note that our study, while
concentrated on image-based diagnosis in the context of COVID-
19, does not include clinical information such as symptoms,
signs, or laboratory tests. A comprehensive COVID-19 diagnosis
often requires additional clinical data to inform treatment
decisions accurately.

In future research, we will consider these dimensions and aim
to integrate additional data sources, including clinical and imaging
data. This approach may involve multimodal learning techniques
to improve the diagnostic accuracy and applicability of new models
as a more comprehensive diagnostic tool.

6.4 Academic and clinical value of the
study beyond the pandemic

As previously mentioned in the literature review section, a
multitude of studies pertaining to COVID-19 have been examined.
Consequently, although the urgency for COVID-19 diagnosis
commenced in 2019 and may have diminished following its peak
period (2020-2022), during which it acquired significant academic
and clinical attention, ongoing research remains pertinent. Recent
research articles on COVID-19 have demonstrated significant
impacts on analogous challenges. For example, Kathamuthu et al.
(2023) utilized convolutional neural networks (CNN) to analyze
chest computed tomography images for COVID-19 screening
purposes. Agnihotri and Kohli (2023) conducted a study on
the challenges, opportunities, and advancements in COVID-19
classification utilizing deep learning. Misra et al. (2023) introduced
a parallel ensemble transfer learning framework for COVID-19.
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Additionally, Ali et al. (2024) developed a method for detecting
COVID-19 pneumonia severity using deep learning algorithms and
transfer learning.

These studies show the continued importance of COVID-
19 detection and classification. Therefore, we believe that the
framework we developed remains valuable for detecting respiratory
and viral illnesses in general. This flexibility could future-proof the
model for similar health challenges.

7 Conclusion and future
recommendation

Transfer learning is a successful technique in the literature used
to develop deep learning models for tasks related to the computer
vision field. It provides the flexibility to build a new and robust
model using other models already pre-trained on data related to the
new domain rather than creating a new model from scratch. This
research developed and improved distinct networks on the lung
X-ray dataset to classify patients’ scans as COVID-19 infected or
normal and compare their performance to promote their utilization
in medical diagnosis tasks. This study differs from previous works
regarding different experimental process scenarios adopted to
showcase the performance of each model, the modifications made
to the models, various hyperparameter-based transfer learning
processes, k-fold-based and the heuristic optimisation techniques
such as GA-based hyperparameters tuning used to fine-tune the
model’s hyperparameters. To the best of our knowledge, these
different experimentation scenarios have proven to assist in getting
the best hyperparameters set for the best models with state-of-the-
art results. Thus, as already revealed in the discussion section, the
ResNet18 achieved the best test accuracy of 99.57% and 99.57 for
Fl-score, precision, recall and AUC average, which is better than
the results accomplished in most recent works, including Odeh
et al. (2022); Aggarwal et al. (2022).
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In future work, we plan to extend the methodology
implemented in this study to other pre-trained networks, including
an exploration of some segmentation techniques (Zaitoun and
Agel, 2015), which could better improve the results. Furthermore,
instead of YOLOV4, experimenting with the latest versions, such as
YOLOVS5 or V8 and detection transformers like DETR Moustapha
et al. (2023), should be considered as it is among the rising topics
in the literature. ResNetl8 can classify individual images better
as COVID-19 or normal cases based on the results obtained and
compared with previously achieved results. Finally, The best model
of the study has the potential to achieve automatic predictions
through the use of input images in a simulated web app, which has
been deployed online as a prototype simulation; therefore, it can
serve as an essential supplement for imaging diagnosis in remote
areas with scarce medical resources and help in training junior
doctors to perform imaging diagnosis.
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