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histopathology
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India

Introduction: Colorectal cancer (CRC) remains one of the leading causes of
cancer-related deaths globally. Early detection and precise diagnosis are crucial
in improving patient outcomes. Traditional histological evaluation through manual
inspection of stained tissue slides is time-consuming, prone to observer variability,
and susceptible to inconsistent diagnoses.

Methods: To address these challenges, we propose a hybrid deep learning
system combining Swin Transformer, EfficientNet, and ResUNet-A. This model
integrates self-attention, compound scaling, and residual learning to enhance
feature extraction, global context modeling, and spatial categorization. The
model was trained and evaluated using a histopathological dataset that included
serrated adenoma, polyps, adenocarcinoma, high-grade and low-grade
intraepithelial neoplasia, and normal tissues.

Results: Our hybrid model achieved impressive results, with 93% accuracy,
92% precision, 93% recall, and 93% Fl-score. It outperformed individual
architectures in both segmentation and classification tasks. Expert annotations
and segmentation masks closely matched, demonstrating the model’s reliability.
Discussion: The proposed hybrid design proves to be a robust tool for the
automated analysis of histopathological features in CRC, showing significant
promise for improving diagnostic accuracy and efficiency in clinical settings.

KEYWORDS

colorectal cancer (CRC) diagnosis, ResUNet-A, EfficientNet, Swin Transformer, self-
attention in transformers

1 Introduction

Colorectal cancer (CRC) is one of the most frequent cancers and a major cause of cancer-
related death globally, albeit it is not the most common cause of death in general
(Sirinukunwattana et al., 2021). Age, lifestyle changes, and genetic susceptibility are some of
the factors contributing to the increased prevalence of colorectal cancer (CRC), according to
WHO (World Health Organisation, 2025) and GLOBOCAN statistics (Sung et al., 2021).
Improving survival rates requires early discovery and precise diagnosis. Histological evaluation
of biopsy tissue has long been the gold standard. However, this procedure is subjective, time-
consuming, and vulnerable to fluctuation among observers (Tamang and Kim, 2021).
Therefore, the hardneed for automated, objective, and effective computational methods to
support pathologists in segmentation and classification tasks is growing (Ponzio et al., 2018).

Artificial intelligence (AI) advances in the last few years, especially Deep learning (DL),
have made a tremendous difference in medical image analysis by providing highly accurate,
automated disease detection, segmentation and classification methods. DL frameworks,
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particularly Convolutional Neural Networks (CNNs), have proven
incredibly useful in processing histopathological photos due to their
ability to automatically extract important elements from unprocessed
image data (Karthikeyan et al., 2024). Contrary to traditional machine
learning techniques, where feature extraction is typically done
manually, CNNs automatically learn hierarchical features in
histopathological images, enabling better generalized and more stable
pattern identification (Paladini et al., 2021).

Several DL architectures have been suggested as a way to deal with
classification issues in medical imaging (MI). Among the most
popular architectural designs in medical image segmentation, U-Net,
employs an encoder-decoder model for feature extraction, utilizing
skip connections to preserve spatial information (Sun et al., 2019).
While U-Net is effective at segmenting biological images, it struggles
with fine-grained discrimination of tissues due to its reliance on local
feature extraction (Raju et al., 2025a). ResNet, a popular deep network,
uses residual learning to address vanishing gradients, improving
feature extraction, segmentation, and classification. However,
standalone CNN models lack global context, important for
distinguishing similar colorectal cancer tissues. To overcome this,
hybrid deep learning frameworks combine different architectures to
leverage their strengths (Selvaraj et al., 2025).

Combining attention mechanisms and transformers has emerged
as a highly effective approach in medical imaging. Vision Transformers
(ViTs) have been particularly effective in MI (medical image)
processing since they can pick up long-range relationships (Ayana
et al., 2024). ViTs utilize self-attention mechanisms to understand
both local and global picture features, which results in more accurate
classification than CNNs based on local receptive fields (Zeid et al.,
2021). The Swin Transformer has garnered considerable attention for
its window-shifting mechanism, which enhances processing efficiency
while preserving spatial hierarchies (Zidan et al., 2023). Combining
transformers with CNN-based architectures allows DL models to
achieve better segmentation and classification performance, making
them highly efficient in processing histopathology images. Each of the
architectures is capable of boosting overall model performance
separately. ResUNet-A, being an extension of U-Net, combines
residual connections and attention mechanisms to enhance feature
propagation and emphasize significant histological features (Ahamed
et al., 2024). Residual learning improves gradient propagation,
enabling deeper network training and more precise segmentation by
focusing on significant tissue areas. EfficientNet, with its compound
scaling strategy, efficiently extracts complex histopathological features
by balancing depth, width, and resolution (Girepunje and Singh,
2024). The Swin Transformer, through self-attention and shifted
windowing, captures long-range dependencies and global context,
making it more effective for high-resolution histopathology images
(Dutta et al., 2024).

Our proposed model differs from conventional CNN-Transformer
hybrids, which typically combine only a single CNN backbone with a
Transformer, by integrating ResUNet-A, EfficientNet, and Swin
Transformer. We proposed a hybrid deep learning model that
combines residual learning, efficient feature extraction, and self-
attention. This integration enhances segmentation accuracy, optimizes
feature extraction, and improves global context modelling, thereby
reducing misclassification risks. Our model outperforms existing
approaches, such as U-Net, ResNet, and conventional ResUNet-A, by
leveraging the complementary strengths of these three architectures

Frontiers in Artificial Intelligence

10.3389/frai.2025.1647074

for colorectal histopathology images. The novelty of this study lies in
developing a unified hybrid framework for colorectal cancer
histopathological image analysis, which has not been explored in prior
CRC studies. The primary contributions include: (i) improved
segmentation precision and boundary delineation with ResUNet-A,
(ii) optimized feature extraction, stable tissue classification and
recognition of complex histopathological patterns using EfficientNet,
and (iii) enhanced global context and long-range dependency
modeling through the Swin Transformer’s self-attention. Collectively,
these higher
human oversight.

ensure diagnostic reliability with minimal

The manuscript is organized as follows: Section 2 reviews related
deep learning methods for cancer diagnosis and segmentation;
Section 3 outlines the background of ResUNet-A, EfficientNet, and
Swin Transformer; Section 4 presents the proposed hybrid model,
data augmentation, training, and evaluation; Section 5 discusses
experimental results, comparisons, and statistical validations; and

Section 6 concludes with key contributions and deployment prospects.

2 Literature review

See Table 1.

3 Background study
3.1 Residual U-Net

U-Net is a “U-shaped” Convolutional neural network
architecture used for segmentation. As shown in Figure 1. The
U-Net consists of two primary components: the encoder and the
decoder. The encoder extracts the high-resolution input image’s
features, and the decoder produces the final output, which also
upsamples intermediate features. There are pathways connecting
the symmetrical encoder and decoder (Ronneberger et al., 2015).
The vanishing gradient problem plagues neural network training.
Backpropagation is used to calculate the gradient, which is the
derivative of the loss function concerning the weights, to update the
weights. At the network’s earlier levels, the gradient becomes
incredibly small. When the gradient is vanishingly small, the
weights update proportionally to it and change only slightly. The
weights consequently become trapped and never update to their
ideal value. As such, it hinders the network’s ability to learn.

The Residual U-Net primarily addresses this problem by
incorporating residual blocks into the U-Net architecture (Alwan
et al., 2024). A collection of layers with a shortcut connection that
bypasses one or more levels is referred to as a residual block
(Equation 1) (Raza et al., 2023a). Provides the blocK’s output.

y=F(x{W;})+x (1)

 x = input to the residual block.
« y = output of the residual block.
o W; = weights of the i" layer in the residual unit.
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TABLE 1 Summary of classification and segmentation techniques across various fields utilizing deep learning methods.

Domain

Advantages

strengths

Limitations/
Gaps

Dataset

10.3389/frai.2025.1647074

Reported
Performance

ARM-Net (multiscale

Captures multi-scale

features; LGAM

Potential dataset

specificity; attention

Brain tumor

Remote sensing

residual cascade + multi-

mines spectral

increased model

Remote sensing

Dutta et al. Brain tumor CNN) + RM-Net with adds complexity;
selectively emphasizes datasets (not Not explicitly reported.
(2024) classification LGAM (lightweight simplified residual
discriminative traits; specified).
global attention) blocks may lose fine
lightweight attention.
detail.
1.51-3.47 x fewer Parameter reduction
Medical image parameters than may limit
ResGANet (ResNet-like General medical
Cheng et al. segmentation/ ResNet; strong representational Fewer params; exact
with modular group images; stacked
(2022) classification downstream capacity; requires scores not provided.
attention blocks) ResGANet.
backbone segmentation; efficient | validation across
attention. diverse modalities.
Model’s spatial
MARC-Net: multi-scale interrelationships; Domain-specific;

Combines residual

context); requires large

Fanetal. (2023) | land-use Not explicitly reported.
) head attention (parallel embeddings; robust complexity; limited images.
categorization
framework) multi-scale clinical relevance.
representation.
Medical image Residual units mitigate
Higher computational Multiple medical Qualitative
segmentation degradation; attention
Residual-Attention cost; potential datasets improvement; no single
Li et al. (2022) (coronary suppresses irrelevant
UNet++ overfitting if data are (angiography, numeric summary
angiography, background to focus
limited. nuclei, skin). stated.
nuclei, skin cancer) on targets.
2D only (misses 3D

models

and efficient scaling.

drop.

images.

Zhang et al. Brain tumor AResU-Net (Attention learning with attention 2D MRI brain
labeled data; compute Not explicitly reported.
(2020) segmentation (2D) Residual U-Net) for improved focus on tumor datasets.
overhead from
tumor regions.
attention.
Sensitive to class
Retinal fundus Ensemble CNN with Direct multi-label
imbalance; needs
Wang et al. multi-label EfficientNet feature prediction; strong Fundus photo
extensive data curation Not explicitly reported.
(2020) abnormality extractor + custom transfer learning via datasets.
and calibration for
detection classifier EfficientNet.
multi-label thresholds.
Attention reweights
Relies on pretraining;
Alhichri et al. Remote sensing CNN with deep attention | salient features; Remote sensing
domain shift may Not explicitly reported.
(2021) scene classification (EfficientNet-B3-Attn-2) leverages strong scenes.
reduce performance.
EfficientNet backbone.
Chameleon Swarm
Hand-crafted features
Algorithm (CSA) CSA tuning boosts Avg recognition
may not generalize; CT scans (normal/
Oyediran et al. Lung cancer optimized SVM; accuracy; reduced false accuracy 95.64%;
multi-stage benign/
(2024) detection (CT) preprocessing + FCM positives; efficient improved sensitivity &
preprocessing; limited malignant).
segmentation + LBP classical pipeline. specificity.
to CT modality.
features
Saliency-aware feature
Similar limitations as
Raza et al. Remote sensing Deep attention CNN maps; improved Remote sensing
potential redundancy Not explicitly reported.
(2023b) scene classification | (EfficientNet-B3-Attn-2) representation over scenes.
with related works.
plain CNN.
Strong performance PlantVillage’s lab-like PlantVillage:
EfficientNet (transfer Comparative study;
Atila et al. Plant leaf disease with transfer learning, images’ generalisation 55,448 original /
learning) vs. other DL exact best scores vary by
(2021) classification alarge curated dataset, | to field conditions may | 61,486 augmented

model.
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TABLE 1 (Continued)

Domain

Advantages

strengths

Limitations/
Gaps

Dataset

10.3389/frai.2025.1647074

Reported
Performance

CNN-Swin (parallel
CNN + Transformer with

Captures multi-scale/

Computation and

blur context handling

before classification.

segmentation.

Huang et al. Ship detection & global context; FGSC-23 military
self-attention); CNN memory cost; dataset is Not explicitly reported.
(2022) classification transformer improves ship dataset.
block to prevent military-ship specific.
discrimination.
overfitting
Global modeling via
Transformer modules
Breast tumor BTS-ST network: U-Net Swin; SIBs improve Breast tumor
Igbal and Sharif, are resource-intensive;
classification & with Swin Transformer; spatial correlation; datasets (not Not explicitly reported.
2023) patch tokenization may
segmentation SIBs and FCBs FCBs help small-tumor specified).
still lose detail.
segmentation.
Accuracy 93.4%—
Rice disease Hierarchical Swin- High accuracy in field = room for improvement; 93.4% accuracy (beats
Zhang et al. Field-captured rice
identification (field | Transformer with sliding | settings; strong global/ | performance may vary classical ML baseline
(2021) disease images.
images) window local feature fusion. with lighting and ~4.1%).
occlusion.
CNN + Swin Outperforms Multi-stage pipeline
Lung cancer cell Transformer; Mask ResNet-50; reduces complexity;
Chen et al. Microscopic lung Qualitatively superior;
detection R-CNN pre- compute vs. heavy dependence on
(2022) cell images. numbers not specified.
(microscopy) segmentation; Gaussian CNNeG; isolates cells accurate instance

YOLOvV3-MSF with

Multi-scale detection;

Relies on accurate

CVC-ColonDB

conv

compute vs. SOTA.

Colorectal cancer integrates polyp (1,000 HD images;
Murugesan et al. ResUNet-based anchors polyp segmentation/ Accuracy 96.04%; high
stage identification dimensions; strong 500 early
(2023) + K-Medoids; FC layer measurement; needs precision/recall/F1.
(colonoscopy) metrics vs. Faster- malignant / 500
for staging clinical validation.
RCNN. non-cancer).
MT-SCnet Excellent Dice/IoU;
Gastric precancer (Transformer): Multi- good global contextual | Requires hyperspectral | Two gastric MHSI | Outperforms SOTA in
Caoetal. (2024) | segmentation in Scale Token Division + fusion; reduced imaging hardware; datasets (GIN, accuracy, sensitivity,
MHSI SCFormer + deformable | semantic gaps; lower training complexity. IM). ToU, Dice.

FIGURE 1

Input

Structure of residual U-Net.
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o F (x,{W,}) = transformation function (e.g., a sequence of
convolutional, batch normalization, and activation layers)
applied to the input x.

The function of the residual block is usually a sequence of
convolutional layers. Since this topology has shortcut connections,
gradients can travel directly through the network’s layers. While
training deeper networks, convergence is faster and more stable.

3.2 EfficientNet

In deep learning, the EfficientNet architecture has revolutionized
the field, particularly for tasks such as image object recognition (Tan
and Le, 2019). EfficientNet-B0, one of its primary variants, has drawn
considerable interest due to its effective performance and efficient
resource usage in image classification. It is well known for its
compound scaling technique, which modifies the model’s complexity
and size to strike the ideal balance. This makes it suitable for AI
models with limited computing power, as it provides good accuracy.
The EfficientNet model was initialized in this investigation using noisy
student weights. This enhances the model’s functionality and task-
specific adaptability.

EfficientNet-B0 utilizes a network architecture for scalable
image classification. EfficientNetB0, the foundational model of the
EfficientNet family, uses a compound scaling mechanism that scales
the network’s depth, width, and resolution in equal proportions.
The model design enables both high-accuracy performance and
effective operation. The numerous components of the network
design, ranging from Module 1 through Module 584, Alruwaili and
Mohamed (2025) are referred to as modularity. Individual network
components, including pooling layers and convolutional or
activation layers, are represented by the modular method in
network architecture. EfficientNetB0’s systematic and hierarchical
organization, along with its modules 1-584, optimizes performance
and resource use.

Compound scaling, which proportionally alters the network’s
depth, width, and input resolution, is used to build EfficientNet-B2

10.3389/frai.2025.1647074

from the fundamental EfficientNet-B0 model. In a more detailed
analysis, B2 exhibits a greater model depth, more channels in the
convolutional block, and a higher input picture resolution
(260 x 260) compared to B0O. The improvements made to
EfficientNet-B2 enable it to encode finer-scale spatial patterns
more effectively (Tan and Le, 2021). Compared to BO,
EfficientNet-B2 contains about 9.1 million less parameters.
However, its somewhat higher accuracy makes it a good option for
tasks requiring finer information, such medical picture
classification and fine-grained categorization. B2’s layout design
and dimension scaling allow it to scale while preserving
computing performance.

EfficientNetB2 is a scalable convolutional neural network for
image categorization. As shown in Figure 2. The several numbered
modules, from Module 1 to 586, demonstrate a modular design
structure. Each module corresponds to a distinct network component,
including pooling blocks, activation functions, and convolutional
modules. The order of these modules illustrates how EfficientNetB2
follows a hierarchical approach to maximize resource efficiency and
deep learning performance (Tan et al., 2020). To increase model
accuracy and robustness, EfficientNetB0 upgrades leverage extended
scaling parameters.

3.3 Swin transformer

Convolutional Neural Networks struggle to represent connections
and global context within an image. Here, ViT can play a helpful role
in addressing this problem (Angona and Mondal, 2025a). Vision
transformers excel in visual tasks, leveraging self-attention
mechanisms to capture long-range correlations in raw data, surpassing
CNN§’ performance. Nevertheless, vision transformers face challenges
with high-resolution pictures. Swin transformers expand on the ViT
model’s success to address this issue (Dosovitskiy et al., 2021). In 2021,
the swing transformer architecture was initially presented (Liu et al.,
2021). They perform better because swing transformers can process
with than
vision transformers.

huge images less computational complexity
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FIGURE 2
EfficientNet architecture.
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Pacification is the initial stage in the Swin transformer
architecture. The initial step involves segmenting the input image into
distinct patches. The transformation of image pixels into a vector or
numerical representation is achieved through the application of linear
embedding layers. The transformer blocks are then fed these vectors.
Figure 3 shows the structure of a Swin transformer block. Subunits
make up swing transformer blocks. A multi-layer perceptron layer,
another normalizing layer, an attention layer, and a normalization
layer make up each subunit. The W-MSA (window multi-head self-
attention) in the first subunit computes attention within
non-overlapping windows. Focusing the self-attention computation
on local regions lowers the computational complexity. It is explained
how computationally complex MSA and W-MSA are in Equations 2, 3.
Whereas W-MSA scales linearly with the number of patches, MSA
scales quadratically.

Q(MSA) = 4hwC? +2(hw)’ C @)

Q(W - MSA) = 4hwC? +2M*hwC 3)

« h,w: height and width of the input feature map.

o C:number of feature channels.

o M: window size in the Swin Transformer.

. U(MSA) :computational complexity of global Multi-Head
Self-Attention.

. U(W - MSA) : computational complexity of Window-based
Multi-Head Self-Attention.

« 4hwC?: cost of linear projections (query, key, value, and
output).

. Z(hw)2 C: attention cost for global MSA, quadratic with respect
to spatial size.

(&) q
9
MLP MLP
f f
LN LN
\1/'
= SW-MSA
W-MSA
: i
LN
LN .
) —

FIGURE 3
Swin Transformer architecture.
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« 2M?hwC : attention cost for W-MSA, linear with respect to
window size.

For high-resolution images, in particular, (hw)2 C, the quadratic
term of the original MSA gets expensive with an increasing quantity
of hw patches. When compared, the scalability of the linear term in
U(W - MSA) , 2M*hwC, is significantly greater. The term 2 M
remains constant as the number of patches w increases because the
window size M is constant. The second subunit uses SW-MSA (shifted
window multi-head self-attention). In this case, the cross-window
linkages are shown using the cycle shift approach, which aids the
model in capturing the global context. The implementation of self-
attention occurs within the context of shifted windows, which are
arranged according to a cyclic shift mechanism. The self-attention
mechanism of the Swin Transformer utilizes a relative positional bias,
which significantly improves the ability to capture positional
correlations among patches. The given Equation 4 defines the attention
function (Pacal et al., 2025).

Attention(QK,V) =Softmax(QK" / Vd +B) @)

o Q= Query matrix

o K= Key matrix

o V = Value matrix

o d = dimensionality of query/key vectors
« B = relative positional bias

To calculate attention weights, queries (Q), keys (K), and values
(V) are extracted from input patches; d is a vector dimension, and B
is denoted by relational positional bias matrix that takes into
consideration the positional relationships between patches (Rajasekar
et al., 2024). Two fully connected layers with non-linear activation
make up the multi-layer perceptron layer. Non-linear interactions
between features are captured in this way. Before and after each MSA
and MLP layer, layer normalisation improves training stability. The
input patches are integrated within the output through the
establishment of a residual link, thereby avoiding the need to traverse
the entire block. This helps to preserve information and avoid fading
gradients. Finally, the Swin transformer efliciently captures global
information by selecting and merging the nearby patches. Patch
merging is a hierarchical process that downsamples the image by a
factor of N and concatenates M neighbouring patches along the
channel dimension (Angona and Mondal, 2025b).

This suggested approach is an advanced hybrid deep learning
architecture in Figure 4 intended for intricate picture analysis jobs. It
utilizes the synergistic strengths of three robust models: a ResUNet-A
Encoder to maintain accurate spatial details and multi-scale features,
EfficientNetBO for the efficient extraction of deep, hierarchical
semantic features, and a Swin Transformer to capture long-range
contextual dependencies and global relationships within the integrated
feature set. By amalgamating multiple parallel feature extraction paths
and augmenting the integrated features with transformer-based
contextual reasoning, the model generates a robust and comprehensive
representation of the input image. This synergistic approach, enhanced
by Adam and regularised to prevent overfitting, is particularly useful
for situations requiring both precise localisation and a comprehensive

frontiersin.org
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Proposed framework.

understanding of visual context, such as medical imaging or
detailed classification.

4 Methodology
4.1 Data collection

The dataset used in this study is the publicly available Enteroscope
Biopsy Histopathological Hematoxylin and Eosin Image Dataset for
Image Segmentation Tasks (EBHI-Seg), comprising 4,456
histopathology images, including 2,228 raw histopathological section
images and 2,228 corresponding ground truth images. The dataset was
prepared by 12 biomedical researchers and validated by two
histopathologists at the Cancer Hospital of China Medical University
(Ethics certification no. 202229). Each image was assigned a label
according to the most prominent differentiation stage present, with
the most severe and clearly visible stage used when multiple
differentiation stages appeared in a single image (Shi et al., 2023). The
dataset is publicly available and can be accessed from MIaMIA
Group (2022).

The Enteroscope Biopsy Histopathological Haematoxylin and Eosin
(H&E) Image Dataset for Image Segmentation Tasks (EBHI-Seg) was
developed utilising intestinal biopsy specimens. Images were obtained
at a magnification of 400 x (10 x eyepiece and 40 X objective) using a
Nissan Olympus microscope and NewUsbCamera acquisition software.
All images were stored in RGB format (.png) with a standardised size of
224 x 224 pixels, rendering them appropriate for segmentation and
classification tasks. In Table 2 The dataset includes six tissue categories:
In Figure 5a Normal (well-ordered tubular colorectal tissue without
infection), Figure 5b Polyp (benign mucosal overgrowth with intact
luminal structures and minimal nuclear division), Figure 5c Low-Grade
Intraepithelial Neoplasia (Low-Grade IN) (precancerous lesions
characterised by increased branching, dense arrangements, and mildly

Frontiers in Artificial Intelligence 07

TABLE 2 Class distribution table.

Class Number of Images

Normal 76

Polyp 474
Low-Grade IN 639
High-Grade IN 186
Adenocarcinoma 795
Serrated Adenoma 58

Total 2,228

enlarged nuclei), Figure 5d High-Grade Intraepithelial Neoplasia (High-
Grade IN) (advanced precancerous lesions exhibiting significant
structural abnormalities and frequent nuclear division), Figure 5e
Adenocarcinoma (malignant colorectal tumours with irregular luminal
structures and markedly enlarged nuclei), and Figure 5f Serrated
Adenoma (rare lesions, constituting approximately 1% of colonic
polyps, histologically similar to colonic adenomas). The variety of tissue
categories establishes EBHI-Seg as a reliable benchmark for the
development and assessment of histopathology image segmentation and
classification algorithms. All images in EBHI-Seg are organized into
subdirectories for efficient loading and labeling, ensuring reproducibility
and scalability. The dataset includes both benign and malignant samples,
providing variability and balanced class representation for colorectal
cancer segmentation and classification tasks.

4.2 Data preprocessing
Data preparation is an essential process during the application of DL

methods for histopathology image categorization in colorectal cancer
(Kim et al., 2023). The data preprocessing pipeline ensured the quality

frontiersin.org
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FIGURE 5

High-grade IN Adenocarcinoma Serrated Adenoma

(a—f) Represent adenocarcinoma, high-grade IN, low-grade IN, normal, polyp, serrated adenoma.

and consistency of the input data before model development, as
illustrated in Figure 6. After collection and integration, data cleaning was
performed to resolve missing values and inconsistencies, followed by
normalization, feature encoding, dimensionality reduction, and outlier
handling. The dataset was then split into training, validation, and test
sets, with class imbalance addressed only in the training set through
oversampling and a class-weighted loss function. Images were resized
and augmented using zooming, shearing, shifting, rotations, and
horizontal flipping to improve generalization.

4.2.1 Image resizing and normalization

To maintain morphological details while ensuring computational
efficiency, the histopathology images were set to a resolution of
128x128 pixels (Deng et al., 2009). Resizing maintains essential
attributes for categorization while lowering processing demands. To
stabilize gradient computations during backpropagation, pixel
intensity data were normalized to the [0, 1] range by dividing by 255
(LeCun et al., 2015).

4.2.2 Label encoding

Using integer mappings, the categorical labels of the tissue types
were numerically represented. By enabling the model to interpret class
labels numerically, a common approach in machine learning
applications, this change enabled multi-class classification (Barua
etal., 2024).

4.2.3 Class imbalance and mitigation strategies

The dataset exhibits class imbalance, with fewer Normal (76
images) and Serrated Adenoma (58 images) samples compared to
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FIGURE 6
Overall step-by-step procedure illustrating the preprocessing
workflow.
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other classes. To address this, the following strategies were employed
during model training: data augmentation to increase the
representation of minority classes, oversampling of underrepresented
categories, and class-weighted loss functions to reduce bias toward
majority classes.

4.2.4 Data augmentation

To address class imbalance and improve model robustness,
we applied threefold data augmentation to the training set of the
EBHI-Seg dataset, increasing the dataset size from 2,228 to 6,684
images. As shown in Table 3, there are 8,912 images after augmentation
(original + augmented x3). The employed augmentation techniques
included zooming (up to 20%), shear transformations (up to 0.2),
width and height shifts (up to 20%), random rotations (up to 30°), and
horizontal flipping. These strategies introduced variability while
preserving tissue morphology, thereby enriching feature diversity and
reducing the effects of class imbalance (Litjens et al., 2017), particularly
for underrepresented classes such as Normal and Serrated Adenoma.
It is well established that such augmentation strategies enhance model
generalization in medical imaging, and in our case, they also helped
prevent overfitting by exposing the network to a broader range of
tissue appearances, ultimately leading to improved segmentation and
classification performance.

4.2.5 Dataset split for performance evaluation

The dataset was divided into three parts for experimental
evaluation: 70% for training, 15% for validation, and 15% for testing.
The hybrid model was trained for 100 epochs with an initial learning
rate of le-4 using the Adam optimizer. Early stopping with a patience
of 10 epochs was applied to halt training once the validation loss
stopped improving, thereby preventing overfitting. Model learning
was performed on the training set, while hyperparameter tweaking
and overfitting monitoring were conducted on the validation set.
Regularization techniques included dropout layers with a rate of 0.3
and L2 weight decay. The final performance evaluation was then
carried out solely on the independent set. The hold-out validation
approach facilitated an objective assessment of the proposed hybrid
deep learning framework.

4.3 Model building

Swin Transformer was selected for capturing long-range
contextual dependencies, EfficientNet for its scalable and effective

TABLE 3 Total number of images after augmentation.

Class Original Augmented Total
(x3)

Normal 76 228 304
Polyp 474 1,422 1896
Low-Grade IN 639 1917 2,556
High-Grade IN 186 558 744
Adenocarcinoma 795 2,385 3,180
Serrated Adenoma 58 174 232
Total 2,228 6,684 8,912
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feature extraction, and ResUNet-A for its capacity to retain precise
spatial features. Each of these models addresses a distinct constraint
on its own. Still, when combined, they provide a well-balanced
framework, as shown in Figure 7, that enhances segmentation
accuracy and reduces misclassification, particularly in colorectal tissue
types with similar morphologies.

4.3.1 Shared encoder backbone: multi-scale
feature extraction

The model begins with a shared encoder backbone that processes
the input image. X € RHXWxN , where H, W, and N denote height,
width, and channels, respectively. This backbone is composed of three
parallel streams:

« Spatial Feature Capture with ResUNet-A Encoder

Hierarchical spatial features can be extracted from input images
through the ResUNet-A encoder. To promote feature propagation and
generalization, it includes residual blocks and batch normalization
with dropout layers. Overfitting is prevented by dropout, and residual
connections help mitigate the vanishing gradient problem. The
encoder uses Max pooling layers to downsample the input image,
preserving significant spatial features progressively. This module saves
fine-grained information for further processing. Formally, given the
input image X € R wac,where H,W C denote height, width, and
channels (Equation 5).

d
Fs:fResUNet—A(X), F; e R™ (5)

In this equation, fresuNet—a represents the function defined by
the ResUNet-A encoder architecture. The output F; is the resulting
spatial feature tensor with a dimensionality of d, R is a real number
which encapsulates the multi-scale hierarchical features extracted
from the input.

« EffectiveNet Feature Extractor

For using pre-trained deep representations of ImageNet, a feature
extractor like EfficientNetBO model is employed. Fine-tuning is
facilitated in the last 20 layers, allowing the network to be fine-tuned
over the dataset while preserving useful feature representations. To
reduce dimensions without losing much information, features are
forwarded through global average pooling. For regularization, the
dropout layer is also included. EfficientNet achieves better feature
extraction from its computation-frugal and scalable performance-
based architecture.

d,
Fj = fEfficientNet (X)’ FjeR (6)

Here, fEficientner Denotes the transformation performed by the
pre-trained and fine-tuned EfficientNetB0O model (Equation 6). The
output Fj is a dense feature vector of dimensionality d;, R is a real
number, which contains high-level semantic information distilled
from the input image through global average pooling.

o Swin Transformer: Boosting Contextual Awareness
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ResUNet-A Encoder (Spatial Features)

EfficientNet(Deep features)

Swin Transformer(Global Context)

Feature Fusion

Classification (Softmax)

FIGURE 7
Proposed deep learning framework for classification integrates
ResUNet-A, EfficientNet, Swin Transformer.

Self-attention mechanisms are introduced by a Swin Transformer
layer, enabling the model to recognize contextual relationships and
long-distance relations in the feature-extracted data. The transformer
includes a feed-forward network (FFN) as a post-processing step,
following the use of multi-head attention, to further enhance feature
representations. To improve stability and prevent overfitting,
dropout and layer normalization are employed. Adding the Swin
Transformer to the model provides the local spatial information
perceived by the CNN-based parts with global knowledge regarding
the input.

Fy = fowin(X), F, eR% %

In this final equation, fg,,;, signifies the function computed by the
Swin Transformer layer (Equation 7). The output Fy is a feature
representation of dimensionality d that is enriched with global
contextual information, R is a real number, having integrated long-
range dependencies within the input data through its self-
attention mechanism.

4.3.2 Semantic segmentation decoder

The segmentation task is handled by the ResUNet-A decoder. The
corresponding decoder pathway transmits the spatially detailed
feature maps F; from the ResUNet-A encoder. For incremental
upsampling, this decoder uses transposed convolution layers. For
precise pixel-wise mask generation, skip connections from the
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encoder to the decoder are added at matching levels to recover the
fine-grained spatial details lost during downsampling. Equation 8
provides a formal definition of the full decoding process:

HXWXN g

‘é:fdecoder(Fs)ﬂéeR (8)

Where:

o fiecoder: represents the function defined by the decoder network
(e.g., a series of transposed convolutions and skip connections).

 R:Real number.

o F: is the feature map extracted from the ResUNet-A encoder.

o S:isthe predicted segmentation mask.

o H,W: are the height and width of the input image.

¢ Nelasses_seg: number of target classes for the segmentation task.

4.3.3 Classification and feature fusion

A rich feature set is generated by combining the outputs of the
ResUNet-A encoder (F;), EfficientNet (Fd ), and Swin Transformer(Fg)
. The fused feature vector is passed through a fully connected layer
with softmax activation for final classification into six classes. This
fusion is formally described by Equation 9:

F=¢([ElElIE ]). Fer? ©)

This fused feature vector F is then passed through a fully
connected layer with a softmax activation function for the final
classification into the six target classes, as defined by Equation 10:

7 =Softmax (WF +b) (10)

where:

o Fj: captures spatial features.

o Ej: captures deep hierarchical features.

o Fg: captures global contextual features.
 R:Real number.

« RY: set of all vectors of length d.

o ¢: fusion function.

o : final probability distribution over six classes.
o F:fused features [FS [|Fa|IFg J

o W: classifier weights.

o b: classifier bias.

4.4 Performance metrics

Accuracy: the most direct approach to assess the accuracy of the
classifier involves employing the accuracy metric. One alternative
viewpoint posits that this reflects the ratio of precise predictions in
relation to the total number of estimations as shown in Equation 11.

Accuracy =TP+TN/S (11)
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Precision: In contrast to this ratio and its inverse, ie., (1 -
precision), which represents the percentage of false negatives, 1/
Precision yields recall. It is derived in Equation 12.

Precision=TP /TP + FP (12)

Recall: As shown in Equation 13, conversely, there are false
negatives about True Negatives.

Recall =TP/TP+FN (13)

o TP = True Positives
o TN = True Negatives
« FP = False Positives
« FN = False Negatives

F1-Score: the calculation in Equation 14 involves squaring the
accuracy and recall scores to derive the result.

F1=2*Precision *Recall / Precision + Recall (14)

Pixel accuracy: pixel Accuracy refers to the ratio of correctly classified
pixels to the total number of pixels in an image. This is a crucial
performance metric used in image segmentation applications to assess the
overall effectiveness of a model. Measures how many pixels are correctly
classified across all categories, as shown in Equation 15.

Correctly classified Pixels

Pixel Accuracy = (15)

Total Pixels in the image

Dice coefficient (dice score): the Dice Coeflicient, also called the F1
score. The Dice coefficient is a measurement in Equation 16 used to
measure the similarity between two samples. The following equation
calculates it. 0 < J (A,B) <1

(lan5])

(1] +[2))

D(A,B)=2x (16)

Mean intersection over union (IoU): the Intersection over Union
(IOU), alternatively known as the Jaccard Index as shown in Equation 17.
IoU is a measure used to express similarity. The Jaccard coefficient
measures similarity between finite sets of samples, as the ratio of the
number of elements in the intersection to the number of elements in the
union of the sets. The following formula calculates it. The mean IoU refers
to the average IoU value across all classes. 0 < J (A,B ) <1

](A,B):( (|AmB|) (17)

[4]+[B]-|a )

4.5 System requirements

The Hybrid Deep Learning Framework for Enhanced Colorectal
Cancer Diagnosis: Integrating ResUNet-A, EfficientNet, and Swin
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Transformer for Improved Classification and Segmentation model is
built using Python 3.12 and TensorFlow version 2.4 a reccommended
software. The system’s intel i7 processor and 16GB RAM and 512 SSD
are used to assess the model’s performance.

4.6 Research contribution and clarification

o The novelty of the hybrid approach is clarified: For CRC
classification and segmentation, this work integrates ResUNet-A,
EfficientNet, and Swin Transformer. Although previous research
has investigated CNN-transformer hybrids in other fields, our
integration strikes a balance between global contextual
understanding  (Swin  Transformer), scalable feature
representation (EfficientNet), and detailed spatial extraction
(ResUNet-A) to uniquely address challenges in histopathological
CRC images.

« Statistical and clinical significance: Comparative experiments
with standalone models confirm that improvements are
statistically significant (p <0.05), indicating the proposed
framework achieves meaningful performance gains. Improved
accuracy and robustness reduce the risk of misclassification in
colorectal cancer diagnosis, which holds clinical significance by
supporting earlier detection, more reliable histological grading,
and ultimately better-informed treatment decisions.

« Quantitative segmentation metrics: The Dice coefficient,
Intersection over Union (IoU), and Jaccard index were used to
assess segmentation performance in addition to classification
accuracy. The hybrid model outperformed individual models
with a Dice coefficient of 0.91, IoU of 0.89, and Jaccard index
of 0.88.

o Dataset details: Adenocarcinoma, high-grade IN, low-grade IN,
serrated adenoma, polyp, and normal are the six groups of whole-
slide photographs that are separated into patches (224 x 224
pixels). The dataset was divided into three categories: testing,
validation, and training. Using augmentation (rotation, shear,
zoom, and flipping), class imbalance was resolved. A hold-out
validation strategy, where the dataset was divided into 70% for
training, 15% for validation, and 15% for testing.

ResUNet-A and

EfficientNet separately extract spatial and deep hierarchical

o Clarification of joint/sequential roles:
features as part of the hybrid model’s joint strategy. Prior to final
classification, their outputs are combined and sent to the Swin
Transformer for global context modeling. As a result,
classification and segmentation are combined into a single
pipeline as opposed to being separate, sequential procedures.

5 Results

The performance of  the suggested Hybrid
ResUNet-A + EfficientNet + Swin Transformer model was evaluated
for both CRC segmentation and classification. The frameworK’s ability
to improve feature extraction, enhance segmentation accuracy, and
increase classification performance was assessed relative to standalone
including ResUNet-A, EfficientNet,
Transformer. Quantitative evaluation employed multiple metrics,

architectures, and Swin

including accuracy, precision, recall, F1-score, AUC (area under the
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curve), Dice coeflicient, Intersection over Union (IoU), and pixel
accuracy, as summarized in Proposed Model Algorithm. The model’s
capacity to differentiate among various colorectal tissue types was
further analyzed through confusion matrices, receiver operating
characteristic (ROC) curves, and visual segmentation masks, providing
both quantitative and qualitative validation of its effectiveness.

5.1 Confusion matrix

ResUNet-A, EfficientNet, Swin Transformer, and Hybrid
ResUNet-A + EfficientNet + Swin Transformer are the four models
compared in the confusion matrices to evaluate their classification
performance on images. Every confusion matrix is a heatmap, with the
predicted labels on the x-axis and the accurate labels (actual categories)

10.3389/frai.2025.1647074

on the y-axis. Light to dark blue is the range of colour intensity; darker
hues indicate more categorization accuracy. Strong diagonal values and
suggest that the Hybrid
ResUNet-A + EfficientNet + Swin Transformer model Figure 8a
achieves the best classification accuracy. Although it works well,
ResUNet-A Figure 8b has a slightly higher rate of misclassifications,
particularly in classes such as “Polyps” and “Normal.” Misclassification

low  misclassification  errors

errors are more common in EfficientNet Figure 8¢, which struggles to
differentiate between several classes, exceptionally “High-grade”
Although it still exhibits some misclassification, the Swin Transformer
Figure 8d performs competitively, especially in the “Adenocarcinoma”
class. Overall, the Hybrid model performs better than the others, with
ResUNet-A, Swin Transformer, and EfficientNet. This suggests that
combining several designs can improve classification accuracy for
issues involving numerous classes.
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Confusion matrices of individual models compared with the proposed hybrid model, illustrating misclassification patterns. (a) Hybrid
ResUNet-A + EfficientNet + Swin Transformer, (b) ResUNet-A, (c) EfficientNet, and (d) Swin Transformer.
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5.2 ROC curve

The above figures illustrate four Receiver Operating Characteristic
(ROC) curves that evaluate the performance of various deep learning
models, specifically ResUNet-A, EfficientNet, Swin Transformer, and a
hybrid model that integrates ResUNet-A, EfficientNet, and Swin
Transformer. The ROC curve functions as a method for evaluating the
classification performance of models across various thresholds,
illustrating the relationship between the True Positive Rate (TPR) and
the False Positive Rate (FPR) for multiple classes. Having an AUC rating
between 0.94 and 0.97, Hybrid ResUNet-A + EfficientNet + Swin
Transformer Figure 9a outshines the rest. With values of AUC between
0.92 and 0.96, ResUNet-A Figure 9b is in second place, exhibiting
excellent classification capability but slightly less effective than the hybrid
model. Compared to the previous models, EfficientNet Figure 9c shows
a decent yet somewhat less consistent performance, achieving AUC
scores ranging from 0.90 to 0.94. The Swin Transformer Figure 9d, which
has the lowest AUC scores, ranging from 0.86 to 0.89, may not be as
proficient in in-class differentiation. In general, the Hybrid model is
superior to any other model, followed by ResUNet-A, EfficientNet, and
then Swin Transformer. The ROC curves illustrate how combining

10.3389/frai.2025.1647074

5.3 Performance metrics

As shown in Table 4 and visualized in Figure 10, the proposed
Hybrid ResUNet-A + EfficientNet + Swin Transformer model
consistently outperforms the individual models across all evaluation
metrics. The Hybrid approach achieved the highest accuracy (0.93),
precision (0.92), recall (0.93), and F1-score (0.93), demonstrating its
robustness in colorectal cancer image classification and segmentation.
ResUNet-A  performed reasonably well (accuracy = 0.90,
Fl1-score = 0.88), indicating the benefit of residual connections,
though  insufficient EfficientNet  (accuracy = 0.85,
Fl-score = 0.85) Swin  Transformer
F1-score = 0.83) showed moderate results, reflecting their limitations
when applied independently. Overall, the findings confirm that
combining different architectures enhances global representation,

alone.

and (accuracy = 0.84,

spatial context learning, and feature extraction, thereby reducing
misclassification and improving diagnostic reliability.

5.4 Visualization of segmented images

various topologies improves the consistency of multi-class predictions The Colorectal Cancer (CRC) histology images are
by enhancing classification performance with higher AUC scores. demultiplexed  in  Figure 11  using a  Hybrid
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o _ I
- — )
| r___’——’:,',,/ P
3 oe g ]
£ -~ H
@ (b)
~ 04 ‘/” 2
02 ’,r” = ROC curve (Class AJENOCICinOma) - AUC: 0.94 - - —— ROC curve (Class Adenocardinoms) - AUC: 0.93
L —— ROC curve (Class High-grade IN) - AUC: 0.97 | P e —— ROC curve (Class High-grade IN) - AUC: 0.96
T Moc e s Ao —— POCCI0 (LIRSS 059
e e e iee Roc cive tces Fye)- 04z
ole I . ROC curve (Class Serrated adenomo) - AUC: 0.92
oo @ o a6 s 1o A e - - To
e posicve Rate Fose positve Rate
Hybrid ResUNetA+ EfficientNet+ Swin Transformer ResUNet-A
EfficientNet Swin Transformer
10 10
os o8
© i @ i
g 2
3 3
i " os
- = e i oan o R
7 = ROC curvo (Class Nomal - AUC: 092 L M S st i AN 03
-~ R0 curwo (Clos Semoced aconoma) - AUC1 096 o ROC curve (Class Polys) - AUC: 0.90
0042 | L —— ROC curve (Clazs Serrated adenoma) - AUC: 0.88
oo PYs o as ae 10 00
False Positive Rate . a2 as as as 10
False Posiive Rate
EffiicentNet Swin Transformer
FIGURE 9
Receiver operating characteristic (ROC) curves comparing the classification performance of four models on colorectal cancer histopathology images.
(a) Hybrid ResUNet-A + EfficientNet + Swin Transformer, (b) ResUNet-A, (c) EfficientNet, and (d) Swin Transformer. The hybrid model achieved the
highest AUC values across all tissue classes, demonstrating superior discriminative ability compared to the individual architectures.
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TABLE 4 Results of the proposed model and other compared models.

10.3389/frai.2025.1647074

Model Accuracy Precision Recall Fl-score
Proposed model 0.93 0.92 0.93 0.93
ResUNet-A 0.90 0.89 0.88 0.88
EfficientNet 0.85 0.85 0.86 0.85
Swin Transformer 0.84 0.83 0.83 0.83
Loo Performance Metrics
0.95 4
0.90 - o\.\A
0.851 ® 3/\
- 00O R R
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0.75 T T T T
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~®— ResNet-A —— Swin Transformer
FIGURE 10
Performance metrics such as accuracy, precision, recall, and fl-score of the proposed model.

ResUNet-A + EfficientNet + Swin Transformer model. The figure
has been split into three columns: in the first column, the ground
truth microscopic tissue images are presented as the original
hematoxylin and eosin (H&E)-stained images; in the second
column, the ground truth segmentation masks as marked by the
experts are presented; and in the third column, the segmentation
masks predicted by the model are displayed. By integrating
convolutional and transformer-based models, the model can
efficiently discriminate between various tissue entities, including
tumor regions, stroma, and normal epithelium. EfficientNet
ensures accurate feature representation, ResUNet-A restores
refined spatial information, and Swin Transformer retrieves
distant dependencies, thus enabling precise segmentation. The
model’s capability to accurately describe significant glandular
structures in grading CRC is supported by the rough similarity
between predicted masks and ground truth. Segmentation is
highly accurate but can be improved by employing post-processing
methods, as evidenced by infinitesimal differences at
tissue boundaries.

The segmentation performance was quantitatively assessed in
Table 5 using the Dice coefficient, Intersection over Union (IoU),
and pixel accuracy. The proposed hybrid framework achieved
superior performance, as evidenced by a Dice coefficient of 0.91,
an IoU of 0.89, and a pixel accuracy of 0.90, demonstrating its

efficient integration of global contextual information and

Frontiers in Artificial Intelligence

meticulous spatial feature extraction. ResUNet-A exhibited similar
performance, with a Dice coeflicient of 0.88 and an IoU of 0.81.
The EfficientNet and Swin Transformer models, modified for
segmentation as EfficientNet-U-Net and Swin-UNet, attained
marginally inferior performance, with Dice coeflicients of 0.85 and
0.84, respectively. These findings highlight the advantages of the
hybrid architecture in improving segmentation precision among
colorectal tissue types. The qualitative assessment further validated
that the predicted segmentation masks closely aligned with expert
annotations, demonstrating the robustness and potential clinical
utility of the proposed method.

6 Discussion

This study compared four deep learning models, such as
ResUNet-A, EfficientNet, Swin Transformer, and a Hybrid
ResUNet-A + EfficientNet + Swin Transformer, for colorectal cancer
histology image classification and segmentation. Using confusion
matrices, ROC curves, and performance metrics, the hybrid
consistently outperformed the other models, achieving large diagonal
values, reduced misclassification, and AUC scores of 0.94-0.97. It
reached 93% accuracy with balanced precision (0.92), recall (0.93),
and F1-score (0.93), outperforming ResUNet-A (0.90), EfficientNet
(0.85), and Swin Transformer (0.84). Segmentation analysis further
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Visualization of segmented images such as normal, adenocarcinoma, serrated adenoma, polyp, high-grade IN.

confirmed its strength, with a Dice score of 0.91, an IoU of 0.85, and
a pixel accuracy of 0.90, closely aligning with the expert-annotated
masks. By combining Swin Transformer’s long-range dependency
modelling, ResUNet-A’s spatial context retention, and EfficientNet’s
feature extraction, the hybrid model effectively segments stroma,
normal epithelium, and tumours, supporting accurate grading of
colorectal cancer.

Frontiers in Artificial Intelligence

The proposed hybrid model follows a multi-task design. Feature
representations are first extracted through the integrated backbone
(ResUNet-A + EfficientNet + Swin Transformer). From these shared
features, the network proceeds in two directions: a segmentation head,
which generates pixel-level masks that delineate histologically relevant
regions, and a classification head, which assigns the image to one of
the predefined colorectal tissue categories. In this way, segmentation
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TABLE 5 Segmentation results of the proposed model with other models.

10.3389/frai.2025.1647074

Model Dice coefficient loU Pixel accuracy
Proposed model 0.91 0.89 0.90
ResUNet-A 0.88 0.81 0.87
EfficientNet-U-Net 0.85 0.78 0.84
Swin-UNet 0.84 0.76 0.83

TABLE 6 Comparison of the proposed hybrid model with previous studies in colorectal cancer detection and classification.

Previous Dataset used Methodology Accuracy Precision Recall F1-score
study
Multi-house Polyp Hybrid CNN with U-Net
Raju et al. (2025b) 0.90 0.88 0.89 0.88
Database segmentation
Histopathology Dataset Enhanced Vision
Lo et al. (2024) 0.84 0.89 0.86 0.82
for CRC Transformer
Colorectal Cancer Cascaded Swin Transformer
Zidan et al. (2023) 0.89 0.88 0.87 0.90
Histopathological Images | for segmentation
Nogueira-Rodriguez | CVC-ColonDB (1,000
YOLOv3 model was trained 0.82 0.83 0.80 0.83
etal. (2022) colonoscopy images)

contributes to identifying tissue boundaries and abnormal structures,
thereby enhancing the discriminative ability of the classification
branch, while classification ensures that features learned during
training are optimized for clinically meaningful categories. This
interaction between the two tasks improves overall robustness,
reduces misclassification in morphologically similar tissue types, and
provides interpretable outputs through segmentation masks that
closely resemble expert annotations. By clarifying this design,
we highlight that the framework is not limited to producing image-
level labels but also generates fine-grained structural information,
thereby increasing its reliability and clinical utility.

Table 6 compares the proposed model to previous studies in
CRC, while some studies have CRC. Whileigher classification
accuracies (>96%), our framework’s 93% is significant because it
represents balanced performance across underrepresented and
challenging classes, rather than inflated results driven by easier
categories. More importantly, the hybrid substantially reduced
errors in difficult cases such as polyps, high-grade intraepithelial
neoplasia, and adenocarcinoma, demonstrating robustness,
reliability, and generalizability. By integrating segmentation and
classification into a single pipeline, the model produces interpretable
outputs that align with expert annotations, thereby enhancing trust
and supporting informed clinical decision-making. Thus, the
proposed hybrid framework contributes unique advantages beyond
raw accuracy, making it particularly relevant for real-world
diagnostic applications where balanced performance and
interpretability are critical.

6.1 Limitations

o The dataset size, though diverse, could be expanded further to
enhance generalizability.

o Transformer components increase computational cost, which
may affect real-time clinical deployment.
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o Future work will investigate lightweight transformer modules to
reduce model complexity.

o Post-processing techniques will be improved to refine
segmentation accuracy.

7 Conclusion

This study demonstrated the effectiveness of the proposed Hybrid
ResUNet-A + EfficientNet + Swin Transformer framework for
colorectal cancer histopathology segmentation and classification. By
leveraging the complementary strengths of convolutional and
transformer architectures, the model outperformed individual
baselines, reducing misclassification in challenging classes such as
polyps, high-grade tumors, and adenocarcinomas. The framework
consistently achieved strong results (accuracy: 0.93, precision: 0.92,
recall: 0.93, F1-score: 0.93), supported by ROC curve and confusion
matrix analyses, confirming its robustness and reliability. Beyond
technical improvements, the framework shows significant promise for
clinical integration. Incorporated into digital pathology platforms, it
could serve as a decision support system for pathologists by
pre-screening slides, highlighting suspicious regions, and providing
preliminary classifications. Such integration may reduce workload,
minimize inter-observer variability, and enhance diagnostic confidence,
ultimately improving treatment planning and patient outcomes.

While the framework has achieved high accuracy, there remain
opportunities for further improvement. Future work will focus on
refining segmentation post-processing techniques to enhance boundary
precision, exploring alternative hybridization strategies for improved
efficiency, and validating performance on larger, multi-institutional
datasets to strengthen generalizability. Additionally, investigating real-
time deployment within pathology workflows and decision support
systems will be crucial for seamless adoption in clinical practice. Overall,
the proposed hybrid model provides a robust and clinically relevant step
toward more accurate, efficient, and reliable colorectal cancer diagnostics.
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