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Introduction: Colorectal cancer (CRC) remains one of the leading causes of 
cancer-related deaths globally. Early detection and precise diagnosis are crucial 
in improving patient outcomes. Traditional histological evaluation through manual 
inspection of stained tissue slides is time-consuming, prone to observer variability, 
and susceptible to inconsistent diagnoses.
Methods: To address these challenges, we propose a hybrid deep learning 
system combining Swin Transformer, EfficientNet, and ResUNet-A. This model 
integrates self-attention, compound scaling, and residual learning to enhance 
feature extraction, global context modeling, and spatial categorization. The 
model was trained and evaluated using a histopathological dataset that included 
serrated adenoma, polyps, adenocarcinoma, high-grade and low-grade 
intraepithelial neoplasia, and normal tissues.
Results: Our hybrid model achieved impressive results, with 93% accuracy, 
92% precision, 93% recall, and 93% F1-score. It outperformed individual 
architectures in both segmentation and classification tasks. Expert annotations 
and segmentation masks closely matched, demonstrating the model’s reliability.
Discussion: The proposed hybrid design proves to be a robust tool for the 
automated analysis of histopathological features in CRC, showing significant 
promise for improving diagnostic accuracy and efficiency in clinical settings.
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1 Introduction

Colorectal cancer (CRC) is one of the most frequent cancers and a major cause of cancer-
related death globally, albeit it is not the most common cause of death in general 
(Sirinukunwattana et al., 2021). Age, lifestyle changes, and genetic susceptibility are some of 
the factors contributing to the increased prevalence of colorectal cancer (CRC), according to 
WHO (World Health Organisation, 2025) and GLOBOCAN statistics (Sung et al., 2021). 
Improving survival rates requires early discovery and precise diagnosis. Histological evaluation 
of biopsy tissue has long been the gold standard. However, this procedure is subjective, time-
consuming, and vulnerable to fluctuation among observers (Tamang and Kim, 2021). 
Therefore, the hardneed for automated, objective, and effective computational methods to 
support pathologists in segmentation and classification tasks is growing (Ponzio et al., 2018).

Artificial intelligence (AI) advances in the last few years, especially Deep learning (DL), 
have made a tremendous difference in medical image analysis by providing highly accurate, 
automated disease detection, segmentation and classification methods. DL frameworks, 
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particularly Convolutional Neural Networks (CNNs), have proven 
incredibly useful in processing histopathological photos due to their 
ability to automatically extract important elements from unprocessed 
image data (Karthikeyan et al., 2024). Contrary to traditional machine 
learning techniques, where feature extraction is typically done 
manually, CNNs automatically learn hierarchical features in 
histopathological images, enabling better generalized and more stable 
pattern identification (Paladini et al., 2021).

Several DL architectures have been suggested as a way to deal with 
classification issues in medical imaging (MI). Among the most 
popular architectural designs in medical image segmentation, U-Net, 
employs an encoder-decoder model for feature extraction, utilizing 
skip connections to preserve spatial information (Sun et al., 2019). 
While U-Net is effective at segmenting biological images, it struggles 
with fine-grained discrimination of tissues due to its reliance on local 
feature extraction (Raju et al., 2025a). ResNet, a popular deep network, 
uses residual learning to address vanishing gradients, improving 
feature extraction, segmentation, and classification. However, 
standalone CNN models lack global context, important for 
distinguishing similar colorectal cancer tissues. To overcome this, 
hybrid deep learning frameworks combine different architectures to 
leverage their strengths (Selvaraj et al., 2025).

Combining attention mechanisms and transformers has emerged 
as a highly effective approach in medical imaging. Vision Transformers 
(ViTs) have been particularly effective in MI (medical image) 
processing since they can pick up long-range relationships (Ayana 
et al., 2024). ViTs utilize self-attention mechanisms to understand 
both local and global picture features, which results in more accurate 
classification than CNNs based on local receptive fields (Zeid et al., 
2021). The Swin Transformer has garnered considerable attention for 
its window-shifting mechanism, which enhances processing efficiency 
while preserving spatial hierarchies (Zidan et al., 2023). Combining 
transformers with CNN-based architectures allows DL models to 
achieve better segmentation and classification performance, making 
them highly efficient in processing histopathology images. Each of the 
architectures is capable of boosting overall model performance 
separately. ResUNet-A, being an extension of U-Net, combines 
residual connections and attention mechanisms to enhance feature 
propagation and emphasize significant histological features (Ahamed 
et  al., 2024). Residual learning improves gradient propagation, 
enabling deeper network training and more precise segmentation by 
focusing on significant tissue areas. EfficientNet, with its compound 
scaling strategy, efficiently extracts complex histopathological features 
by balancing depth, width, and resolution (Girepunje and Singh, 
2024). The Swin Transformer, through self-attention and shifted 
windowing, captures long-range dependencies and global context, 
making it more effective for high-resolution histopathology images 
(Dutta et al., 2024).

Our proposed model differs from conventional CNN-Transformer 
hybrids, which typically combine only a single CNN backbone with a 
Transformer, by integrating ResUNet-A, EfficientNet, and Swin 
Transformer. We  proposed a hybrid deep learning model that 
combines residual learning, efficient feature extraction, and self-
attention. This integration enhances segmentation accuracy, optimizes 
feature extraction, and improves global context modelling, thereby 
reducing misclassification risks. Our model outperforms existing 
approaches, such as U-Net, ResNet, and conventional ResUNet-A, by 
leveraging the complementary strengths of these three architectures 

for colorectal histopathology images. The novelty of this study lies in 
developing a unified hybrid framework for colorectal cancer 
histopathological image analysis, which has not been explored in prior 
CRC studies. The primary contributions include: (i) improved 
segmentation precision and boundary delineation with ResUNet-A, 
(ii) optimized feature extraction, stable tissue classification and 
recognition of complex histopathological patterns using EfficientNet, 
and (iii) enhanced global context and long-range dependency 
modeling through the Swin Transformer’s self-attention. Collectively, 
these ensure higher diagnostic reliability with minimal 
human oversight.

The manuscript is organized as follows: Section 2 reviews related 
deep learning methods for cancer diagnosis and segmentation; 
Section 3 outlines the background of ResUNet-A, EfficientNet, and 
Swin Transformer; Section 4 presents the proposed hybrid model, 
data augmentation, training, and evaluation; Section 5 discusses 
experimental results, comparisons, and statistical validations; and 
Section 6 concludes with key contributions and deployment prospects.

2 Literature review

See Table 1.

3 Background study

3.1 Residual U-Net

U-Net is a “U-shaped” Convolutional neural network 
architecture used for segmentation. As shown in Figure  1. The 
U-Net consists of two primary components: the encoder and the 
decoder. The encoder extracts the high-resolution input image’s 
features, and the decoder produces the final output, which also 
upsamples intermediate features. There are pathways connecting 
the symmetrical encoder and decoder (Ronneberger et al., 2015). 
The vanishing gradient problem plagues neural network training. 
Backpropagation is used to calculate the gradient, which is the 
derivative of the loss function concerning the weights, to update the 
weights. At the network’s earlier levels, the gradient becomes 
incredibly small. When the gradient is vanishingly small, the 
weights update proportionally to it and change only slightly. The 
weights consequently become trapped and never update to their 
ideal value. As such, it hinders the network’s ability to learn.

The Residual U-Net primarily addresses this problem by 
incorporating residual blocks into the U-Net architecture (Alwan 
et al., 2024). A collection of layers with a shortcut connection that 
bypasses one or more levels is referred to as a residual block 
(Equation 1) (Raza et al., 2023a). Provides the block’s output.

	 { }( )= +, iy F x W x	 (1)

	•	 x  = input to the residual block.
	•	 y = output of the residual block.
	•	 iW  = weights of the ith layer in the residual unit.

https://doi.org/10.3389/frai.2025.1647074
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


MD and B� 10.3389/frai.2025.1647074

Frontiers in Artificial Intelligence 03 frontiersin.org

TABLE 1  Summary of classification and segmentation techniques across various fields utilizing deep learning methods.

Ref Domain Model Advantages 
strengths

Limitations/
Gaps

Dataset Reported 
Performance

Dutta et al. 

(2024)

Brain tumor 

classification

ARM-Net (multiscale 

CNN) + RM-Net with 

LGAM (lightweight 

global attention)

Captures multi-scale 

features; LGAM 

selectively emphasizes 

discriminative traits; 

lightweight attention.

Potential dataset 

specificity; attention 

adds complexity; 

simplified residual 

blocks may lose fine 

detail.

Brain tumor 

datasets (not 

specified).

Not explicitly reported.

Cheng et al. 

(2022)

Medical image 

segmentation/

classification 

backbone

ResGANet (ResNet-like 

with modular group 

attention blocks)

1.51–3.47 × fewer 

parameters than 

ResNet; strong 

downstream 

segmentation; efficient 

attention.

Parameter reduction 

may limit 

representational 

capacity; requires 

validation across 

diverse modalities.

General medical 

images; stacked 

ResGANet.

Fewer params; exact 

scores not provided.

Fan et al. (2023)

Remote sensing 

land-use 

categorization

MARC-Net: multi-scale 

residual cascade + multi-

head attention (parallel 

framework)

Model’s spatial 

interrelationships; 

mines spectral 

embeddings; robust 

multi-scale 

representation.

Domain-specific; 

increased model 

complexity; limited 

clinical relevance.

Remote sensing 

images.
Not explicitly reported.

Li et al. (2022)

Medical image 

segmentation 

(coronary 

angiography, 

nuclei, skin cancer)

Residual-Attention 

UNet++

Residual units mitigate 

degradation; attention 

suppresses irrelevant 

background to focus 

on targets.

Higher computational 

cost; potential 

overfitting if data are 

limited.

Multiple medical 

datasets 

(angiography, 

nuclei, skin).

Qualitative 

improvement; no single 

numeric summary 

stated.

Zhang et al. 

(2020)

Brain tumor 

segmentation (2D)

AResU-Net (Attention 

Residual U-Net)

Combines residual 

learning with attention 

for improved focus on 

tumor regions.

2D only (misses 3D 

context); requires large 

labeled data; compute 

overhead from 

attention.

2D MRI brain 

tumor datasets.
Not explicitly reported.

Wang et al. 

(2020)

Retinal fundus 

multi-label 

abnormality 

detection

Ensemble CNN with 

EfficientNet feature 

extractor + custom 

classifier

Direct multi-label 

prediction; strong 

transfer learning via 

EfficientNet.

Sensitive to class 

imbalance; needs 

extensive data curation 

and calibration for 

multi-label thresholds.

Fundus photo 

datasets.
Not explicitly reported.

Alhichri et al. 

(2021)

Remote sensing 

scene classification

CNN with deep attention 

(EfficientNet-B3-Attn-2)

Attention reweights 

salient features; 

leverages strong 

EfficientNet backbone.

Relies on pretraining; 

domain shift may 

reduce performance.

Remote sensing 

scenes.
Not explicitly reported.

Oyediran et al. 

(2024)

Lung cancer 

detection (CT)

Chameleon Swarm 

Algorithm (CSA) 

optimized SVM; 

preprocessing + FCM 

segmentation + LBP 

features

CSA tuning boosts 

accuracy; reduced false 

positives; efficient 

classical pipeline.

Hand-crafted features 

may not generalize; 

multi-stage 

preprocessing; limited 

to CT modality.

CT scans (normal/

benign/

malignant).

Avg recognition 

accuracy 95.64%; 

improved sensitivity & 

specificity.

Raza et al. 

(2023b)

Remote sensing 

scene classification

Deep attention CNN 

(EfficientNet-B3-Attn-2)

Saliency-aware feature 

maps; improved 

representation over 

plain CNN.

Similar limitations as 

potential redundancy 

with related works.

Remote sensing 

scenes.
Not explicitly reported.

Atila et al. 

(2021)

Plant leaf disease 

classification

EfficientNet (transfer 

learning) vs. other DL 

models

Strong performance 

with transfer learning, 

a large curated dataset, 

and efficient scaling.

PlantVillage’s lab-like 

images’ generalisation 

to field conditions may 

drop.

PlantVillage: 

55,448 original / 

61,486 augmented 

images.

Comparative study; 

exact best scores vary by 

model.

(Continued)
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TABLE 1  (Continued)

Ref Domain Model Advantages 
strengths

Limitations/
Gaps

Dataset Reported 
Performance

Huang et al. 

(2022)

Ship detection & 

classification

CNN-Swin (parallel 

CNN + Transformer with 

self-attention); CNN 

block to prevent 

overfitting

Captures multi-scale/

global context; 

transformer improves 

discrimination.

Computation and 

memory cost; dataset is 

military-ship specific.

FGSC-23 military 

ship dataset.
Not explicitly reported.

Iqbal and Sharif, 

2023)

Breast tumor 

classification & 

segmentation

BTS-ST network: U-Net 

with Swin Transformer; 

SIBs and FCBs

Global modeling via 

Swin; SIBs improve 

spatial correlation; 

FCBs help small-tumor 

segmentation.

Transformer modules 

are resource-intensive; 

patch tokenization may 

still lose detail.

Breast tumor 

datasets (not 

specified).

Not explicitly reported.

Zhang et al. 

(2021)

Rice disease 

identification (field 

images)

Hierarchical Swin-

Transformer with sliding 

window

High accuracy in field 

settings; strong global/

local feature fusion.

Accuracy 93.4%—

room for improvement; 

performance may vary 

with lighting and 

occlusion.

Field-captured rice 

disease images.

93.4% accuracy (beats 

classical ML baseline 

~4.1%).

Chen et al. 

(2022)

Lung cancer cell 

detection 

(microscopy)

CNN + Swin 

Transformer; Mask 

R-CNN pre-

segmentation; Gaussian 

blur context handling

Outperforms 

ResNet-50; reduces 

compute vs. heavy 

CNNs; isolates cells 

before classification.

Multi-stage pipeline 

complexity; 

dependence on 

accurate instance 

segmentation.

Microscopic lung 

cell images.

Qualitatively superior; 

numbers not specified.

Murugesan et al. 

(2023)

Colorectal cancer 

stage identification 

(colonoscopy)

YOLOv3-MSF with 

ResUNet-based anchors 

+ K-Medoids; FC layer 

for staging

Multi-scale detection; 

integrates polyp 

dimensions; strong 

metrics vs. Faster-

RCNN.

Relies on accurate 

polyp segmentation/

measurement; needs 

clinical validation.

CVC-ColonDB 

(1,000 HD images; 

500 early 

malignant / 500 

non-cancer).

Accuracy 96.04%; high 

precision/recall/F1.

Cao et al. (2024)

Gastric precancer 

segmentation in 

MHSI

MT-SCnet 

(Transformer): Multi-

Scale Token Division + 

SCFormer + deformable 

conv

Excellent Dice/IoU; 

good global contextual 

fusion; reduced 

semantic gaps; lower 

compute vs. SOTA.

Requires hyperspectral 

imaging hardware; 

training complexity.

Two gastric MHSI 

datasets (GIN, 

IM).

Outperforms SOTA in 

accuracy, sensitivity, 

IoU, Dice.

FIGURE 1

Structure of residual U-Net.
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	•	 { }( ), iF x W = transformation function (e.g., a sequence of 
convolutional, batch normalization, and activation layers) 
applied to the input x .

The function of the residual block is usually a sequence of 
convolutional layers. Since this topology has shortcut connections, 
gradients can travel directly through the network’s layers. While 
training deeper networks, convergence is faster and more stable.

3.2 EfficientNet

In deep learning, the EfficientNet architecture has revolutionized 
the field, particularly for tasks such as image object recognition (Tan 
and Le, 2019). EfficientNet-B0, one of its primary variants, has drawn 
considerable interest due to its effective performance and efficient 
resource usage in image classification. It is well known for its 
compound scaling technique, which modifies the model’s complexity 
and size to strike the ideal balance. This makes it suitable for AI 
models with limited computing power, as it provides good accuracy. 
The EfficientNet model was initialized in this investigation using noisy 
student weights. This enhances the model’s functionality and task-
specific adaptability.

EfficientNet-B0 utilizes a network architecture for scalable 
image classification. EfficientNetB0, the foundational model of the 
EfficientNet family, uses a compound scaling mechanism that scales 
the network’s depth, width, and resolution in equal proportions. 
The model design enables both high-accuracy performance and 
effective operation. The numerous components of the network 
design, ranging from Module 1 through Module 584, Alruwaili and 
Mohamed (2025) are referred to as modularity. Individual network 
components, including pooling layers and convolutional or 
activation layers, are represented by the modular method in 
network architecture. EfficientNetB0’s systematic and hierarchical 
organization, along with its modules 1–584, optimizes performance 
and resource use.

Compound scaling, which proportionally alters the network’s 
depth, width, and input resolution, is used to build EfficientNet-B2 

from the fundamental EfficientNet-B0 model. In a more detailed 
analysis, B2 exhibits a greater model depth, more channels in the 
convolutional block, and a higher input picture resolution 
(260 × 260) compared to B0. The improvements made to 
EfficientNet-B2 enable it to encode finer-scale spatial patterns 
more effectively (Tan and Le, 2021). Compared to B0, 
EfficientNet-B2 contains about 9.1 million less parameters. 
However, its somewhat higher accuracy makes it a good option for 
tasks requiring finer information, such medical picture 
classification and fine-grained categorization. B2’s layout design 
and dimension scaling allow it to scale while preserving 
computing performance.

EfficientNetB2 is a scalable convolutional neural network for 
image categorization. As shown in Figure 2. The several numbered 
modules, from Module 1 to 586, demonstrate a modular design 
structure. Each module corresponds to a distinct network component, 
including pooling blocks, activation functions, and convolutional 
modules. The order of these modules illustrates how EfficientNetB2 
follows a hierarchical approach to maximize resource efficiency and 
deep learning performance (Tan et  al., 2020). To increase model 
accuracy and robustness, EfficientNetB0 upgrades leverage extended 
scaling parameters.

3.3 Swin transformer

Convolutional Neural Networks struggle to represent connections 
and global context within an image. Here, ViT can play a helpful role 
in addressing this problem (Angona and Mondal, 2025a). Vision 
transformers excel in visual tasks, leveraging self-attention 
mechanisms to capture long-range correlations in raw data, surpassing 
CNNs’ performance. Nevertheless, vision transformers face challenges 
with high-resolution pictures. Swin transformers expand on the ViT 
model’s success to address this issue (Dosovitskiy et al., 2021). In 2021, 
the swing transformer architecture was initially presented (Liu et al., 
2021). They perform better because swing transformers can process 
huge images with less computational complexity than 
vision transformers.

FIGURE 2

EfficientNet architecture.
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Pacification is the initial stage in the Swin transformer 
architecture. The initial step involves segmenting the input image into 
distinct patches. The transformation of image pixels into a vector or 
numerical representation is achieved through the application of linear 
embedding layers. The transformer blocks are then fed these vectors. 
Figure 3 shows the structure of a Swin transformer block. Subunits 
make up swing transformer blocks. A multi-layer perceptron layer, 
another normalizing layer, an attention layer, and a normalization 
layer make up each subunit. The W-MSA (window multi-head self-
attention) in the first subunit computes attention within 
non-overlapping windows. Focusing the self-attention computation 
on local regions lowers the computational complexity. It is explained 
how computationally complex MSA and W-MSA are in Equations 2, 3. 
Whereas W-MSA scales linearly with the number of patches, MSA 
scales quadratically.

	 ( ) ( )Ω = + 224 2MSA hwC hw C
	 (2)

	 ( )Ω − = +2 24 2W MSA hwC M hwC
	 (3)

	•	 ,h w : height and width of the input feature map.
	•	 C : number of feature channels.
	•	 M : window size in the Swin Transformer.
	•	 ( )Ù :MSA computational complexity of global Multi-Head 

Self-Attention.
	•	 ( )−Ù W MSA : computational complexity of Window-based 

Multi-Head Self-Attention.
	•	 24hwC : cost of linear projections (query, key, value, and  

output).
	•	 ( )22 hw C : attention cost for global MSA, quadratic with respect 

to spatial size.

	•	 22M hwC : attention cost for W-MSA, linear with respect to 
window size.

For high-resolution images, in particular, ( )2hw C , the quadratic 
term of the original MSA gets expensive with an increasing quantity 
of hw patches. When compared, the scalability of the linear term in 
( )−Ù W MSA , 22M hwC , is significantly greater. The term 2 M 

remains constant as the number of patches w increases because the 
window size M is constant. The second subunit uses SW-MSA (shifted 
window multi-head self-attention). In this case, the cross-window 
linkages are shown using the cycle shift approach, which aids the 
model in capturing the global context. The implementation of self-
attention occurs within the context of shifted windows, which are 
arranged according to a cyclic shift mechanism. The self-attention 
mechanism of the Swin Transformer utilizes a relative positional bias, 
which significantly improves the ability to capture positional 
correlations among patches. The given Equation 4 defines the attention 
function (Pacal et al., 2025).

	 ( ) ( )= +TAttention Q,K,V Softmax QK / d B
	

(4)

	•	 Q = Query matrix
	•	 K = Key matrix
	•	 V = Value matrix
	•	 d = dimensionality of query/key vectors
	•	 B = relative positional bias

To calculate attention weights, queries (Q), keys (K), and values 
(V) are extracted from input patches; d is a vector dimension, and B 
is denoted by relational positional bias matrix that takes into 
consideration the positional relationships between patches (Rajasekar 
et al., 2024). Two fully connected layers with non-linear activation 
make up the multi-layer perceptron layer. Non-linear interactions 
between features are captured in this way. Before and after each MSA 
and MLP layer, layer normalisation improves training stability. The 
input patches are integrated within the output through the 
establishment of a residual link, thereby avoiding the need to traverse 
the entire block. This helps to preserve information and avoid fading 
gradients. Finally, the Swin transformer efficiently captures global 
information by selecting and merging the nearby patches. Patch 
merging is a hierarchical process that downsamples the image by a 
factor of N and concatenates M neighbouring patches along the 
channel dimension (Angona and Mondal, 2025b).

This suggested approach is an advanced hybrid deep learning 
architecture in Figure 4 intended for intricate picture analysis jobs. It 
utilizes the synergistic strengths of three robust models: a ResUNet-A 
Encoder to maintain accurate spatial details and multi-scale features, 
EfficientNetB0 for the efficient extraction of deep, hierarchical 
semantic features, and a Swin Transformer to capture long-range 
contextual dependencies and global relationships within the integrated 
feature set. By amalgamating multiple parallel feature extraction paths 
and augmenting the integrated features with transformer-based 
contextual reasoning, the model generates a robust and comprehensive 
representation of the input image. This synergistic approach, enhanced 
by Adam and regularised to prevent overfitting, is particularly useful 
for situations requiring both precise localisation and a comprehensive 

FIGURE 3

Swin Transformer architecture.
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understanding of visual context, such as medical imaging or 
detailed classification.

4 Methodology

4.1 Data collection

The dataset used in this study is the publicly available Enteroscope 
Biopsy Histopathological Hematoxylin and Eosin Image Dataset for 
Image Segmentation Tasks (EBHI-Seg), comprising 4,456 
histopathology images, including 2,228 raw histopathological section 
images and 2,228 corresponding ground truth images. The dataset was 
prepared by 12 biomedical researchers and validated by two 
histopathologists at the Cancer Hospital of China Medical University 
(Ethics certification no. 202229). Each image was assigned a label 
according to the most prominent differentiation stage present, with 
the most severe and clearly visible stage used when multiple 
differentiation stages appeared in a single image (Shi et al., 2023). The 
dataset is publicly available and can be  accessed from MIaMIA 
Group (2022).

The Enteroscope Biopsy Histopathological Haematoxylin and Eosin 
(H&E) Image Dataset for Image Segmentation Tasks (EBHI-Seg) was 
developed utilising intestinal biopsy specimens. Images were obtained 
at a magnification of 400 × (10 × eyepiece and 40 × objective) using a 
Nissan Olympus microscope and NewUsbCamera acquisition software. 
All images were stored in RGB format (.png) with a standardised size of 
224 × 224 pixels, rendering them appropriate for segmentation and 
classification tasks. In Table 2 The dataset includes six tissue categories: 
In Figure 5a Normal (well-ordered tubular colorectal tissue without 
infection), Figure 5b Polyp (benign mucosal overgrowth with intact 
luminal structures and minimal nuclear division), Figure 5c Low-Grade 
Intraepithelial Neoplasia (Low-Grade IN) (precancerous lesions 
characterised by increased branching, dense arrangements, and mildly 

enlarged nuclei), Figure 5d High-Grade Intraepithelial Neoplasia (High-
Grade IN) (advanced precancerous lesions exhibiting significant 
structural abnormalities and frequent nuclear division), Figure  5e 
Adenocarcinoma (malignant colorectal tumours with irregular luminal 
structures and markedly enlarged nuclei), and Figure  5f Serrated 
Adenoma (rare lesions, constituting approximately 1% of colonic 
polyps, histologically similar to colonic adenomas). The variety of tissue 
categories establishes EBHI-Seg as a reliable benchmark for the 
development and assessment of histopathology image segmentation and 
classification algorithms. All images in EBHI-Seg are organized into 
subdirectories for efficient loading and labeling, ensuring reproducibility 
and scalability. The dataset includes both benign and malignant samples, 
providing variability and balanced class representation for colorectal 
cancer segmentation and classification tasks.

4.2 Data preprocessing

Data preparation is an essential process during the application of DL 
methods for histopathology image categorization in colorectal cancer 
(Kim et al., 2023). The data preprocessing pipeline ensured the quality 

FIGURE 4

Proposed framework.

TABLE 2  Class distribution table.

Class Number of Images

Normal 76

Polyp 474

Low-Grade IN 639

High-Grade IN 186

Adenocarcinoma 795

Serrated Adenoma 58

Total 2,228
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and consistency of the input data before model development, as 
illustrated in Figure 6. After collection and integration, data cleaning was 
performed to resolve missing values and inconsistencies, followed by 
normalization, feature encoding, dimensionality reduction, and outlier 
handling. The dataset was then split into training, validation, and test 
sets, with class imbalance addressed only in the training set through 
oversampling and a class-weighted loss function. Images were resized 
and augmented using zooming, shearing, shifting, rotations, and 
horizontal flipping to improve generalization.

4.2.1 Image resizing and normalization
To maintain morphological details while ensuring computational 

efficiency, the histopathology images were set to a resolution of 
128×128 pixels (Deng et  al., 2009). Resizing maintains essential 
attributes for categorization while lowering processing demands. To 
stabilize gradient computations during backpropagation, pixel 
intensity data were normalized to the [0, 1] range by dividing by 255 
(LeCun et al., 2015).

4.2.2 Label encoding
Using integer mappings, the categorical labels of the tissue types 

were numerically represented. By enabling the model to interpret class 
labels numerically, a common approach in machine learning 
applications, this change enabled multi-class classification (Barua 
et al., 2024).

4.2.3 Class imbalance and mitigation strategies
The dataset exhibits class imbalance, with fewer Normal (76 

images) and Serrated Adenoma (58 images) samples compared to 

(a) 

Normal

(b)

Polyp

(c)

Low-Grade IN

(d)

High-grade IN

(e)

Adenocarcinoma

(f)

Serrated Adenoma
FIGURE 5

(a–f) Represent adenocarcinoma, high-grade IN, low-grade IN, normal, polyp, serrated adenoma.

FIGURE 6

Overall step-by-step procedure illustrating the preprocessing 
workflow.
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other classes. To address this, the following strategies were employed 
during model training: data augmentation to increase the 
representation of minority classes, oversampling of underrepresented 
categories, and class-weighted loss functions to reduce bias toward 
majority classes.

4.2.4 Data augmentation
To address class imbalance and improve model robustness, 

we  applied threefold data augmentation to the training set of the 
EBHI-Seg dataset, increasing the dataset size from 2,228 to 6,684 
images. As shown in Table 3, there are 8,912 images after augmentation 
(original + augmented ×3). The employed augmentation techniques 
included zooming (up to 20%), shear transformations (up to 0.2), 
width and height shifts (up to 20%), random rotations (up to 30°), and 
horizontal flipping. These strategies introduced variability while 
preserving tissue morphology, thereby enriching feature diversity and 
reducing the effects of class imbalance (Litjens et al., 2017), particularly 
for underrepresented classes such as Normal and Serrated Adenoma. 
It is well established that such augmentation strategies enhance model 
generalization in medical imaging, and in our case, they also helped 
prevent overfitting by exposing the network to a broader range of 
tissue appearances, ultimately leading to improved segmentation and 
classification performance.

4.2.5 Dataset split for performance evaluation
The dataset was divided into three parts for experimental 

evaluation: 70% for training, 15% for validation, and 15% for testing. 
The hybrid model was trained for 100 epochs with an initial learning 
rate of 1e-4 using the Adam optimizer. Early stopping with a patience 
of 10 epochs was applied to halt training once the validation loss 
stopped improving, thereby preventing overfitting. Model learning 
was performed on the training set, while hyperparameter tweaking 
and overfitting monitoring were conducted on the validation set. 
Regularization techniques included dropout layers with a rate of 0.3 
and L2 weight decay. The final performance evaluation was then 
carried out solely on the independent set. The hold-out validation 
approach facilitated an objective assessment of the proposed hybrid 
deep learning framework.

4.3 Model building

Swin Transformer was selected for capturing long-range 
contextual dependencies, EfficientNet for its scalable and effective 

feature extraction, and ResUNet-A for its capacity to retain precise 
spatial features. Each of these models addresses a distinct constraint 
on its own. Still, when combined, they provide a well-balanced 
framework, as shown in Figure  7, that enhances segmentation 
accuracy and reduces misclassification, particularly in colorectal tissue 
types with similar morphologies.

4.3.1 Shared encoder backbone: multi-scale 
feature extraction

The model begins with a shared encoder backbone that processes 
the input image. × ×∈X H W N , where H, W, and N denote height, 
width, and channels, respectively. This backbone is composed of three 
parallel streams:

	•	 Spatial Feature Capture with ResUNet-A Encoder

Hierarchical spatial features can be extracted from input images 
through the ResUNet-A encoder. To promote feature propagation and 
generalization, it includes residual blocks and batch normalization 
with dropout layers. Overfitting is prevented by dropout, and residual 
connections help mitigate the vanishing gradient problem. The 
encoder uses Max pooling layers to downsample the input image, 
preserving significant spatial features progressively. This module saves 
fine-grained information for further processing. Formally, given the 
input image × ×∈ H W CX  ,where H ,W ,C  denote height, width, and 
channels (Equation 5).

	 ( )−= ∈ResUNet A , sd
s sF f X F  	 (5)

In this equation, −ResUNet Af represents the function defined by 
the ResUNet-A encoder architecture. The output sF  is the resulting 
spatial feature tensor with a dimensionality of sd ,  is a real number 
which encapsulates the multi-scale hierarchical features extracted 
from the input.

	•	 EffectiveNet Feature Extractor

For using pre-trained deep representations of ImageNet, a feature 
extractor like EfficientNetB0 model is employed. Fine-tuning is 
facilitated in the last 20 layers, allowing the network to be fine-tuned 
over the dataset while preserving useful feature representations. To 
reduce dimensions without losing much information, features are 
forwarded through global average pooling. For regularization, the 
dropout layer is also included. EfficientNet achieves better feature 
extraction from its computation-frugal and scalable performance-
based architecture.

	 ( )= ∈EfficientNet , dd
d dF f X F  	 (6)

Here, EfficientNetf  Denotes the transformation performed by the 
pre-trained and fine-tuned EfficientNetB0 model (Equation 6). The 
output dF  is a dense feature vector of dimensionality dd ,   is a real 
number, which contains high-level semantic information distilled 
from the input image through global average pooling.

	•	 Swin Transformer: Boosting Contextual Awareness

TABLE 3  Total number of images after augmentation.

Class Original Augmented 
(×3)

Total

Normal 76 228 304

Polyp 474 1,422 1896

Low-Grade IN 639 1917 2,556

High-Grade IN 186 558 744

Adenocarcinoma 795 2,385 3,180

Serrated Adenoma 58 174 232

Total 2,228 6,684 8,912
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Self-attention mechanisms are introduced by a Swin Transformer 
layer, enabling the model to recognize contextual relationships and 
long-distance relations in the feature-extracted data. The transformer 
includes a feed-forward network (FFN) as a post-processing step, 
following the use of multi-head attention, to further enhance feature 
representations. To improve stability and prevent overfitting, 
dropout and layer normalization are employed. Adding the Swin 
Transformer to the model provides the local spatial information 
perceived by the CNN-based parts with global knowledge regarding 
the input.

	 ( )= ∈Swin , gd
g gF f X F  	 (7)

In this final equation, Swinf  signifies the function computed by the 
Swin Transformer layer (Equation 7). The output gF is a feature 
representation of dimensionality gd  that is enriched with global 
contextual information,   is a real number, having integrated long-
range dependencies within the input data through its self-
attention mechanism.

4.3.2 Semantic segmentation decoder
The segmentation task is handled by the ResUNet-A decoder. The 

corresponding decoder pathway transmits the spatially detailed 
feature maps sF  from the ResUNet-A encoder. For incremental 
upsampling, this decoder uses transposed convolution layers. For 
precise pixel-wise mask generation, skip connections from the 

encoder to the decoder are added at matching levels to recover the 
fine-grained spatial details lost during downsampling. Equation 8 
provides a formal definition of the full decoding process:

	 ( ) × ×= ∈ _ˆ ˆ, classes segH W N
decoder sS f F S  	 (8)

Where:

	•	 decoderf : represents the function defined by the decoder network 
(e.g., a series of transposed convolutions and skip connections).

	•	 : Real number.
	•	 sF : is the feature map extracted from the ResUNet-A encoder.
	•	 Ŝ: is the predicted segmentation mask.
	•	 ,H W : are the height and width of the input image.
	•	 _classes segN : number of target classes for the segmentation task.

4.3.3 Classification and feature fusion
A rich feature set is generated by combining the outputs of the 

ResUNet-A encoder ( )sF , EfficientNet ( )dF , and Swin Transformer( )gF
. The fused feature vector is passed through a fully connected layer 
with softmax activation for final classification into six classes. This 
fusion is formally described by Equation 9:

	 ( )φ  = ∈ || || , d
s d gF F F F F 

	
(9)

This fused feature vector F is then passed through a fully 
connected layer with a softmax activation function for the final 
classification into the six target classes, as defined by Equation 10:

	 ( )= +Softmˆ axy WF b 	 (10)

where:

	•	 sF : captures spatial features.
	•	 dF : captures deep hierarchical features.
	•	 gF : captures global contextual features.
	•	 : Real number.
	•	 d : set of all vectors of length d.
	•	 φ : fusion function.
	•	 ŷ: final probability distribution over six classes.
	•	 F: fused features   || ||s d gF F F .
	•	 W : classifier weights.
	•	 b: classifier bias.

4.4 Performance metrics

Accuracy: the most direct approach to assess the accuracy of the 
classifier involves employing the accuracy metric. One alternative 
viewpoint posits that this reflects the ratio of precise predictions in 
relation to the total number of estimations as shown in Equation 11.

	 = +ccuracy TP TN / SA 	 (11)

FIGURE 7

Proposed deep learning framework for classification integrates 
ResUNet-A, EfficientNet, Swin Transformer.
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Precision: In contrast to this ratio and its inverse, i.e., (1  – 
precision), which represents the percentage of false negatives, 1/
Precision yields recall. It is derived in Equation 12.

	 = +Precision TP / TP FP 	 (12)

Recall: As shown in Equation 13, conversely, there are false 
negatives about True Negatives.

	 = +Recall TP / TP FN 	 (13)

	•	 TP = True Positives
	•	 TN = True Negatives
	•	 FP = False Positives
	•	 FN = False Negatives

F1-Score: the calculation in Equation 14 involves squaring the 
accuracy and recall scores to derive the result.

	 = ∗ ∗ +F1 2 Precision Recall / Precision Recall 	 (14)

Pixel accuracy: pixel Accuracy refers to the ratio of correctly classified 
pixels to the total number of pixels in an image. This is a crucial 
performance metric used in image segmentation applications to assess the 
overall effectiveness of a model. Measures how many pixels are correctly 
classified across all categories, as shown in Equation 15.

	
=

 e
 

    
Correctly classified Pix ls

Pixel Accuracy
Total Pixels in the image 	

(15)

Dice coefficient (dice score): the Dice Coefficient, also called the F1 
score. The Dice coefficient is a measurement in Equation 16 used to 
measure the similarity between two samples. The following equation 
calculates it. ( )≤ ≤0 , 1J A B

	
( ) ( )

( )
∩

= ×
+

, 2
A B

D A B
A B 	

(16)

Mean intersection over union (IoU): the Intersection over Union 
(IOU), alternatively known as the Jaccard Index as shown in Equation 17. 
IoU is a measure used to express similarity. The Jaccard coefficient 
measures similarity between finite sets of samples, as the ratio of the 
number of elements in the intersection to the number of elements in the 
union of the sets. The following formula calculates it. The mean IoU refers 
to the average IoU value across all classes. ( )≤ ≤0 , 1J A B

	
( ) ( )

( )
∩

=
+ − ∩

,
A B

J A B
A B A B 	

(17)

4.5 System requirements

The Hybrid Deep Learning Framework for Enhanced Colorectal 
Cancer Diagnosis: Integrating ResUNet-A, EfficientNet, and Swin 

Transformer for Improved Classification and Segmentation model is 
built using Python 3.12 and TensorFlow version 2.4 a recommended 
software. The system’s intel i7 processor and 16GB RAM and 512 SSD 
are used to assess the model’s performance.

4.6 Research contribution and clarification

	•	 The novelty of the hybrid approach is clarified: For CRC 
classification and segmentation, this work integrates ResUNet-A, 
EfficientNet, and Swin Transformer. Although previous research 
has investigated CNN-transformer hybrids in other fields, our 
integration strikes a balance between global contextual 
understanding (Swin Transformer), scalable feature 
representation (EfficientNet), and detailed spatial extraction 
(ResUNet-A) to uniquely address challenges in histopathological 
CRC images.

	•	 Statistical and clinical significance: Comparative experiments 
with standalone models confirm that improvements are 
statistically significant (p < 0.05), indicating the proposed 
framework achieves meaningful performance gains. Improved 
accuracy and robustness reduce the risk of misclassification in 
colorectal cancer diagnosis, which holds clinical significance by 
supporting earlier detection, more reliable histological grading, 
and ultimately better-informed treatment decisions.

	•	 Quantitative segmentation metrics: The Dice coefficient, 
Intersection over Union (IoU), and Jaccard index were used to 
assess segmentation performance in addition to classification 
accuracy. The hybrid model outperformed individual models 
with a Dice coefficient of 0.91, IoU of 0.89, and Jaccard index 
of 0.88.

	•	 Dataset details: Adenocarcinoma, high-grade IN, low-grade IN, 
serrated adenoma, polyp, and normal are the six groups of whole-
slide photographs that are separated into patches (224 × 224 
pixels). The dataset was divided into three categories: testing, 
validation, and training. Using augmentation (rotation, shear, 
zoom, and flipping), class imbalance was resolved. A hold-out 
validation strategy, where the dataset was divided into 70% for 
training, 15% for validation, and 15% for testing.

	•	 Clarification of joint/sequential roles: ResUNet-A and 
EfficientNet separately extract spatial and deep hierarchical 
features as part of the hybrid model’s joint strategy. Prior to final 
classification, their outputs are combined and sent to the Swin 
Transformer for global context modeling. As a result, 
classification and segmentation are combined into a single 
pipeline as opposed to being separate, sequential procedures.

5 Results

The performance of the suggested Hybrid 
ResUNet-A + EfficientNet + Swin Transformer model was evaluated 
for both CRC segmentation and classification. The framework’s ability 
to improve feature extraction, enhance segmentation accuracy, and 
increase classification performance was assessed relative to standalone 
architectures, including ResUNet-A, EfficientNet, and Swin 
Transformer. Quantitative evaluation employed multiple metrics, 
including accuracy, precision, recall, F1-score, AUC (area under the 
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curve), Dice coefficient, Intersection over Union (IoU), and pixel 
accuracy, as summarized in Proposed Model Algorithm. The model’s 
capacity to differentiate among various colorectal tissue types was 
further analyzed through confusion matrices, receiver operating 
characteristic (ROC) curves, and visual segmentation masks, providing 
both quantitative and qualitative validation of its effectiveness.

5.1 Confusion matrix

ResUNet-A, EfficientNet, Swin Transformer, and Hybrid 
ResUNet-A + EfficientNet + Swin Transformer are the four models 
compared in the confusion matrices to evaluate their classification 
performance on images. Every confusion matrix is a heatmap, with the 
predicted labels on the x-axis and the accurate labels (actual categories) 

on the y-axis. Light to dark blue is the range of colour intensity; darker 
hues indicate more categorization accuracy. Strong diagonal values and 
low misclassification errors suggest that the Hybrid 
ResUNet-A + EfficientNet + Swin Transformer model Figure  8a 
achieves the best classification accuracy. Although it works well, 
ResUNet-A Figure 8b has a slightly higher rate of misclassifications, 
particularly in classes such as “Polyps” and “Normal.” Misclassification 
errors are more common in EfficientNet Figure 8c, which struggles to 
differentiate between several classes, exceptionally “High-grade.” 
Although it still exhibits some misclassification, the Swin Transformer 
Figure 8d performs competitively, especially in the “Adenocarcinoma” 
class. Overall, the Hybrid model performs better than the others, with 
ResUNet-A, Swin Transformer, and EfficientNet. This suggests that 
combining several designs can improve classification accuracy for 
issues involving numerous classes.

 (a) 

Hybrid ResUNetA+ EfficientNet+ Swin 

Transformer

(b)

ResUNet-A 

(c)

EfficientNet

(d)

Swin Transformer

FIGURE 8

Confusion matrices of individual models compared with the proposed hybrid model, illustrating misclassification patterns. (a) Hybrid 
ResUNet-A + EfficientNet + Swin Transformer, (b) ResUNet-A, (c) EfficientNet, and (d) Swin Transformer.
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5.2 ROC curve

The above figures illustrate four Receiver Operating Characteristic 
(ROC) curves that evaluate the performance of various deep learning 
models, specifically ResUNet-A, EfficientNet, Swin Transformer, and a 
hybrid model that integrates ResUNet-A, EfficientNet, and Swin 
Transformer. The ROC curve functions as a method for evaluating the 
classification performance of models across various thresholds, 
illustrating the relationship between the True Positive Rate (TPR) and 
the False Positive Rate (FPR) for multiple classes. Having an AUC rating 
between 0.94 and 0.97, Hybrid ResUNet-A + EfficientNet + Swin 
Transformer Figure 9a outshines the rest. With values of AUC between 
0.92 and 0.96, ResUNet-A Figure  9b is in second place, exhibiting 
excellent classification capability but slightly less effective than the hybrid 
model. Compared to the previous models, EfficientNet Figure 9c shows 
a decent yet somewhat less consistent performance, achieving AUC 
scores ranging from 0.90 to 0.94. The Swin Transformer Figure 9d, which 
has the lowest AUC scores, ranging from 0.86 to 0.89, may not be as 
proficient in in-class differentiation. In general, the Hybrid model is 
superior to any other model, followed by ResUNet-A, EfficientNet, and 
then Swin Transformer. The ROC curves illustrate how combining 
various topologies improves the consistency of multi-class predictions 
by enhancing classification performance with higher AUC scores.

5.3 Performance metrics

As shown in Table 4 and visualized in Figure 10, the proposed 
Hybrid ResUNet-A + EfficientNet + Swin Transformer model 
consistently outperforms the individual models across all evaluation 
metrics. The Hybrid approach achieved the highest accuracy (0.93), 
precision (0.92), recall (0.93), and F1-score (0.93), demonstrating its 
robustness in colorectal cancer image classification and segmentation. 
ResUNet-A performed reasonably well (accuracy = 0.90, 
F1-score = 0.88), indicating the benefit of residual connections, 
though insufficient alone. EfficientNet (accuracy = 0.85, 
F1-score = 0.85) and Swin Transformer (accuracy = 0.84, 
F1-score = 0.83) showed moderate results, reflecting their limitations 
when applied independently. Overall, the findings confirm that 
combining different architectures enhances global representation, 
spatial context learning, and feature extraction, thereby reducing 
misclassification and improving diagnostic reliability.

5.4 Visualization of segmented images

The Colorectal Cancer (CRC) histology images are 
demultiplexed in Figure  11 using a Hybrid 

(a)

Hybrid ResUNetA+ EfficientNet+ Swin Transformer

(b)

ResUNet-A

(c)

EffiicentNet

(d)

Swin Transformer

FIGURE 9

Receiver operating characteristic (ROC) curves comparing the classification performance of four models on colorectal cancer histopathology images. 
(a) Hybrid ResUNet-A + EfficientNet + Swin Transformer, (b) ResUNet-A, (c) EfficientNet, and (d) Swin Transformer. The hybrid model achieved the 
highest AUC values across all tissue classes, demonstrating superior discriminative ability compared to the individual architectures.
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FIGURE 10

Performance metrics such as accuracy, precision, recall, and f1-score of the proposed model.

ResUNet-A + EfficientNet + Swin Transformer model. The figure 
has been split into three columns: in the first column, the ground 
truth microscopic tissue images are presented as the original 
hematoxylin and eosin (H&E)-stained images; in the second 
column, the ground truth segmentation masks as marked by the 
experts are presented; and in the third column, the segmentation 
masks predicted by the model are displayed. By integrating 
convolutional and transformer-based models, the model can 
efficiently discriminate between various tissue entities, including 
tumor regions, stroma, and normal epithelium. EfficientNet 
ensures accurate feature representation, ResUNet-A restores 
refined spatial information, and Swin Transformer retrieves 
distant dependencies, thus enabling precise segmentation. The 
model’s capability to accurately describe significant glandular 
structures in grading CRC is supported by the rough similarity 
between predicted masks and ground truth. Segmentation is 
highly accurate but can be improved by employing post-processing 
methods, as evidenced by infinitesimal differences at 
tissue boundaries.

The segmentation performance was quantitatively assessed in 
Table 5 using the Dice coefficient, Intersection over Union (IoU), 
and pixel accuracy. The proposed hybrid framework achieved 
superior performance, as evidenced by a Dice coefficient of 0.91, 
an IoU of 0.89, and a pixel accuracy of 0.90, demonstrating its 
efficient integration of global contextual information and 

meticulous spatial feature extraction. ResUNet-A exhibited similar 
performance, with a Dice coefficient of 0.88 and an IoU of 0.81. 
The EfficientNet and Swin Transformer models, modified for 
segmentation as EfficientNet-U-Net and Swin-UNet, attained 
marginally inferior performance, with Dice coefficients of 0.85 and 
0.84, respectively. These findings highlight the advantages of the 
hybrid architecture in improving segmentation precision among 
colorectal tissue types. The qualitative assessment further validated 
that the predicted segmentation masks closely aligned with expert 
annotations, demonstrating the robustness and potential clinical 
utility of the proposed method.

6 Discussion

This study compared four deep learning models, such as 
ResUNet-A, EfficientNet, Swin Transformer, and a Hybrid 
ResUNet-A + EfficientNet + Swin Transformer, for colorectal cancer 
histology image classification and segmentation. Using confusion 
matrices, ROC curves, and performance metrics, the hybrid 
consistently outperformed the other models, achieving large diagonal 
values, reduced misclassification, and AUC scores of 0.94–0.97. It 
reached 93% accuracy with balanced precision (0.92), recall (0.93), 
and F1-score (0.93), outperforming ResUNet-A (0.90), EfficientNet 
(0.85), and Swin Transformer (0.84). Segmentation analysis further 

TABLE 4  Results of the proposed model and other compared models.

Model Accuracy Precision Recall F1-score

Proposed model 0.93 0.92 0.93 0.93

ResUNet-A 0.90 0.89 0.88 0.88

EfficientNet 0.85 0.85 0.86 0.85

Swin Transformer 0.84 0.83 0.83 0.83
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confirmed its strength, with a Dice score of 0.91, an IoU of 0.85, and 
a pixel accuracy of 0.90, closely aligning with the expert-annotated 
masks. By combining Swin Transformer’s long-range dependency 
modelling, ResUNet-A’s spatial context retention, and EfficientNet’s 
feature extraction, the hybrid model effectively segments stroma, 
normal epithelium, and tumours, supporting accurate grading of 
colorectal cancer.

The proposed hybrid model follows a multi-task design. Feature 
representations are first extracted through the integrated backbone 
(ResUNet-A + EfficientNet + Swin Transformer). From these shared 
features, the network proceeds in two directions: a segmentation head, 
which generates pixel-level masks that delineate histologically relevant 
regions, and a classification head, which assigns the image to one of 
the predefined colorectal tissue categories. In this way, segmentation 

FIGURE 11

Visualization of segmented images such as normal, adenocarcinoma, serrated adenoma, polyp, high-grade IN.
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contributes to identifying tissue boundaries and abnormal structures, 
thereby enhancing the discriminative ability of the classification 
branch, while classification ensures that features learned during 
training are optimized for clinically meaningful categories. This 
interaction between the two tasks improves overall robustness, 
reduces misclassification in morphologically similar tissue types, and 
provides interpretable outputs through segmentation masks that 
closely resemble expert annotations. By clarifying this design, 
we highlight that the framework is not limited to producing image-
level labels but also generates fine-grained structural information, 
thereby increasing its reliability and clinical utility.

Table 6 compares the proposed model to previous studies in 
CRC, while some studies have CRC. Whileigher classification 
accuracies (>96%), our framework’s 93% is significant because it 
represents balanced performance across underrepresented and 
challenging classes, rather than inflated results driven by easier 
categories. More importantly, the hybrid substantially reduced 
errors in difficult cases such as polyps, high-grade intraepithelial 
neoplasia, and adenocarcinoma, demonstrating robustness, 
reliability, and generalizability. By integrating segmentation and 
classification into a single pipeline, the model produces interpretable 
outputs that align with expert annotations, thereby enhancing trust 
and supporting informed clinical decision-making. Thus, the 
proposed hybrid framework contributes unique advantages beyond 
raw accuracy, making it particularly relevant for real-world 
diagnostic applications where balanced performance and 
interpretability are critical.

6.1 Limitations

	•	 The dataset size, though diverse, could be expanded further to 
enhance generalizability.

	•	 Transformer components increase computational cost, which 
may affect real-time clinical deployment.

	•	 Future work will investigate lightweight transformer modules to 
reduce model complexity.

	•	 Post-processing techniques will be  improved to refine 
segmentation accuracy.

7 Conclusion

This study demonstrated the effectiveness of the proposed Hybrid 
ResUNet-A + EfficientNet + Swin Transformer framework for 
colorectal cancer histopathology segmentation and classification. By 
leveraging the complementary strengths of convolutional and 
transformer architectures, the model outperformed individual 
baselines, reducing misclassification in challenging classes such as 
polyps, high-grade tumors, and adenocarcinomas. The framework 
consistently achieved strong results (accuracy: 0.93, precision: 0.92, 
recall: 0.93, F1-score: 0.93), supported by ROC curve and confusion 
matrix analyses, confirming its robustness and reliability. Beyond 
technical improvements, the framework shows significant promise for 
clinical integration. Incorporated into digital pathology platforms, it 
could serve as a decision support system for pathologists by 
pre-screening slides, highlighting suspicious regions, and providing 
preliminary classifications. Such integration may reduce workload, 
minimize inter-observer variability, and enhance diagnostic confidence, 
ultimately improving treatment planning and patient outcomes.

While the framework has achieved high accuracy, there remain 
opportunities for further improvement. Future work will focus on 
refining segmentation post-processing techniques to enhance boundary 
precision, exploring alternative hybridization strategies for improved 
efficiency, and validating performance on larger, multi-institutional 
datasets to strengthen generalizability. Additionally, investigating real-
time deployment within pathology workflows and decision support 
systems will be crucial for seamless adoption in clinical practice. Overall, 
the proposed hybrid model provides a robust and clinically relevant step 
toward more accurate, efficient, and reliable colorectal cancer diagnostics.

TABLE 6  Comparison of the proposed hybrid model with previous studies in colorectal cancer detection and classification.

Previous 
study

Dataset used Methodology Accuracy Precision Recall F1-score

Raju et al. (2025b)
Multi-house Polyp 

Database

Hybrid CNN with U-Net 

segmentation
0.90 0.88 0.89 0.88

Lo et al. (2024)
Histopathology Dataset 

for CRC

Enhanced Vision 

Transformer
0.84 0.89 0.86 0.82

Zidan et al. (2023)
Colorectal Cancer 

Histopathological Images

Cascaded Swin Transformer 

for segmentation
0.89 0.88 0.87 0.90

Nogueira-Rodríguez 

et al. (2022)

CVC-ColonDB (1,000 

colonoscopy images)
YOLOv3 model was trained 0.82 0.83 0.80 0.83

TABLE 5  Segmentation results of the proposed model with other models.

Model Dice coefficient IoU Pixel accuracy

Proposed model 0.91 0.89 0.90

ResUNet-A 0.88 0.81 0.87

EfficientNet-U-Net 0.85 0.78 0.84

Swin-UNet 0.84 0.76 0.83
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