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Introduction: The fusion of deep-learning-based and federated methods has 
brought great progress in anomaly detection. Yet the systems of today still suffer 
from certain glaring issues. First, aggregation of data on a central entity poses 
dangerous privacy hazards. Second, such models could not scale and adapt 
to heterogeneous and distributed environments. Lastly, fine consideration has 
hardly been given to quantum-inspired computational paradigms that may 
promise to improve both speed and security of such systems. To fill in these 
gaps, this research proposes a completely novel quantum-inspired federated 
learning approach to anomaly detection that keeps data private and allows for 
further implementations of quantum computing applications.

Methods: The proposed system works on a client-server architecture comprising 
multiple clients, which either run training of local feedforward neural networks 
on different private subsets of their data or choose to not participate during 
an iteration. Clients never pass raw data to the server but instead alternate by 
sending the server the parameters of the trained model. The server aggregates 
these local updates by the FedAvg algorithm and produces the global model. 
The present implementation focuses mainly on utilizing classical deep learning; 
however, the architecture is made flexible enough to intertwine smoothly with 
quantum machine-learning paradigms in the future, thus enabling quantum 
technological enhancement down the road without requiring the entire system 
to be rebuilt.

Results: The framework could produce up to 79% of anomalous detection 
accuracy. The system had effective learning across distributed clients whilst 
ensuring that no piece of private data was being shared or spilled (exposed) 
between clients. These results ensured that the framework maintained its 
performance while keeping its privacy intact, a very crucial consideration on 
which to ever really deploy such in sensitive areas.

Discussion: The approach allows privacy-preserving anomaly detection across 
multiple domains and serves as a framework for enlarging and scaling the 
system. Being quantum-inspired compatible allows for future-proofing and 
further expediting and enhancing security. The system, having the capability to 
securely work in a distributed manner, can, thus, be utilized in critical information 
domains like cybersecurity, finance, and healthcare, where privacy of data is 
deemed extremely important. This work, thereby, offers a useful federated 
learning approach towards anomaly detection while going a step further towards 
the incorporation of quantum computing into secure, distributed AI systems.

OPEN ACCESS

EDITED BY

Shu Hu,  
Purdue University, United States

REVIEWED BY

Li Lin,  
Purdue University, United States
Mohammed Altaf Ahmed,  
Prince Sattam bin Abdulaziz University, 
Saudi Arabia
Ming Yang,  
Kennesaw State University College, 
United States

*CORRESPONDENCE

Fernando Moreira  
 fmoreira@uportu.pt

RECEIVED 17 June 2025
ACCEPTED 21 July 2025
PUBLISHED 25 August 2025
CORRECTED 27 August 2025

CITATION

Godavarthi D, Rekapalli VCS, Mohanty S, 
Jaswanth JVSDV, Polisetty D, Dash BB and 
Moreira F (2025) Federated quantum-inspired 
anomaly detection using collaborative neural 
clients.
Front. Artif. Intell. 8:1648609.
doi: 10.3389/frai.2025.1648609

COPYRIGHT

© 2025 Godavarthi, Rekapalli, Mohanty, 
Jaswanth, Polisetty, Dash and Moreira. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic 
practice. No use, distribution or reproduction 
is permitted which does not comply with 
these terms.

TYPE  Original Research
PUBLISHED  25 August 2025
DOI  10.3389/frai.2025.1648609

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1648609&domain=pdf&date_stamp=2025-08-25
https://www.frontiersin.org/articles/10.3389/frai.2025.1648609/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1648609/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1648609/full
mailto:fmoreira@uportu.pt
https://doi.org/10.3389/frai.2025.1648609
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1648609


Godavarthi et al.� 10.3389/frai.2025.1648609

Frontiers in Artificial Intelligence 02 frontiersin.org

KEYWORDS

federated learning, anomaly detection, TCP based model communication, privacy-
preserving AI, distributed systems, quantum-inspired neural networks

1 Introduction

From 2010 to 2020, an unprecedented growth of IoT deployments 
changed the way many sectors operate, including healthcare, smart 
cities, and industrial automation. However, with the masses of 
interconnected sensors and systems being deployed worldwide, 
critical vulnerabilities have been created, thus posing threats to 
anomaly detection in IoT networks. Conventional anomaly detection 
mechanisms force data to be collected first into a central repository, 
presenting a number of drawbacks such as bandwidth constraints, 
latency issues, and data privacy concerns. Recently, with enforceable 
data security regulations and user privacy becoming an important 
subject, there are more and more urges for decentralized solutions that 
efficiently and securely detect anomalies. We describe in this paper an 
architecture for anomaly detection and the federated learning method 
for distributed IoT systems. The highlighted features of this approach 
are data locality, computational efficiency, and model generalization. 
Federal learning (FL) is considered an emerging paradigm, allowing 
the training of machine learning models jointly on several 
decentralized devices while ensuring that data remain at the local sites. 
Rather than pushing data from raw bases, model updates alone are 
communicated to a central server performing global aggregation. 
Such a privacy approach would be  highly valued for applications 
where data ownership, confidentiality, and compliance are at stake: 
healthcare or critical infrastructure monitoring. In this study, 
we exploit FL to build a reliable and distributed anomaly detection 
system. Clients are given subsets of data and train their respective 
local models independently before sharing model updates with a 
central server. Next, the global model is updated via federated 
averaging to form a system where learning takes place in a 
collaborative fashion but retains local data integrity. The methodology 
indeed respects privacy concerns yet rolls out efficiently with the 
rising number of edge gadgets in an IoT network. Nevertheless, this 
framework poses several different challenges, especially for anomaly 
detection. As the data is non-IID through the clients, this constitutes 
model divergence or at least poor performance. Also considered are 
asynchrony between clients that include computational disparities and 
communication delays, which slow down training. For anomaly 
detection, there exists a natural imbalance in learning where anomaly 
events tend to occur rarely, so it becomes complicated to properly set 
up model training and evaluation. The chances almost appear to 
be that anomalies are even rarer for any particular client within the 
federated framework, surely downplaying its detection capabilities.

To settle this issue, the paper proposes a central server that 
coordinates several clients while keeping communicative overhead low, 
imposing a consistent model architecture, and adaptively aggregating 
client updates. The paper further establishes a quantitative notion of 
balanced client contribution, even under conditions of imbalance in 
data size and imbalanced anomaly distributions. Our methodology 
introduces an innovative approach, allowing clients to work 
asynchronously, communicating through sockets in real-time, and 
keeping a systematic save of the models. The system has been evaluated 
in an existing set of anomalies, in which clients were trained on 
separate parts of the dataset. So far, analyses have been conducted to 

look into how each client performed over a few iterations of training, 
with good improvement records in the accuracy of the model and 
convergence while ensuring data privacy, preserving model utility, and 
permitting deployment to edge devices. Another benefit is that this 
infrastructure requires very minimal reconfiguration to add a new 
client. To summarize, best model utility, data privacy preservation, and 
edge deployment are all taken into account by this system in applying 
anomaly detection in a realistic manner. Our technical model works 
on one central server with multiple federated Python clients. Each 
client has a lightweight neural network with TensorFlow and trains it 
independently on the dataset assigned to it. After local training, a 
serialized messaging system is used between the clients and the server 
via TCP sockets. The messages contain model weights, some metadata 
like the number of local samples, the round identifier, and so forth. The 
Federated Averaging algorithm returns updates to the clients in the 
form of an updated global model. The entire communication protocol 
will repeat for a number of rounds, similar to collaborative learning. 
Local and global models for every round are then stored in the system 
for evaluation, potential rollback, and fine-tuning.

This modularized and transparent architecture will allow further 
extensions to be realized in the future, including adversarial robustness, 
adaptive learning rates, and differential privacy. From a practical 
standpoint, the demands of nowadays IoT ecosystems for an intelligent 
yet adaptive anomaly detection framework are constantly rising. Since 
they differ in hardware capabilities, data sensitivities, and communication 
conditions, it becomes imperative for any distributed learning system to 
take such disparities into account or else face performance degradation. 
Also, this feature will allow sporadically connected and less powerful 
computing devices to contribute to model updates while guaranteeing 
that the overall training progression would not be delayed. The clients 
perform local training and submit updates whenever they can. This gets 
rid of the limitations to scalability present in synchronous federated 
learning, thus enabling better real-time application. The framework 
accommodates horizontal extensibility so that new clients can be added 
with ease. Thus, this allows for incremental scaling towards bigger IoT 
deployments, such as a smart grid or autonomous transportation 
systems, without forcing the entire pipeline for learning to 
be  reconfigured. Using this approach, deployment-wise real-edge 
requirements get sufficiently addressed by the system. Latency is created 
due to local model inference and partial training, which is indeed 
important in medical emergency detection, industrial fault monitoring, 
or fraud prevention for financial transactions. The architecture remains 
the same for all the clients with lightweight neural networks through 
TensorFlow, thus enabling this to run over any kind of hardware 
platform-embedded from devices to cloud-based nodes. The 
communication layer resides on top of TCP socket-based message 
passing, which brings in reliability and transparency.

While the federated architecture underlying this work—which is 
a client–server set-up with TCP being used for communication and 
FedAvg for aggregation—is well grounded in established methods, its 
novelty is situated in its domain-specific integration and quantum-
inspired design orientation. Contrary to previous works that utilize FL 
for general-purpose classification, this one, instead, designs and tunes 
the framework for anomaly detection in distributed privacy-sensitive 

https://doi.org/10.3389/frai.2025.1648609
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Godavarthi et al.� 10.3389/frai.2025.1648609

Frontiers in Artificial Intelligence 03 frontiersin.org

environments. On top of that, embedding quantum-inspired ideas 
into FL-design, for instance, entanglement-aware data representation 
and feature interdependence modeling within dense classical neural 
layers, gives fresh conceptual taste to the FL paradigm. Other practical 
extensions brought about by the work include structured 
hyperparameter tuning, system sensitivity testing, and anomaly-
specific evaluation metrics that are all engineered to make FL more 
valuable in high-stake domains like cybersecurity and IoT anomaly 
detection. Hence, the FL infrastructure itself is still pretty much 
standard, but the paper in itself stands on contributions on making it 
more adaptable, interpretable, and hybrid quantum-oriented.

2 Related works

The development in anomaly detection brings more privacy-
oriented federated learning while boosting detection efficiency of rare 
anomalies across decentralized networks. This method exploits the 
power of quantum computing, especially in processing a type of 
complex data that standard methods cannot analyze well. For example, 
hybrid quantum-classical algorithms can dramatically cut down on 
communication overhead while preserving accurate classification, as 
shown by recent results demonstrating fewer communication rounds 
than were used in traditional federal approaches (Bhatia and Kais, 
2023). Additionally, harnessing distributed computing resource leads 
to collaborative training process, involving critical anomaly detection 
in highly sensitive domains such as cybersecurity and healthcare where 
data privacy is an utmost concern (Anwar et al., 2024; Nguyen et al., 
2022). Federated learning operates on the principles of collaboration 
and aggregation of client insights, thereby yielding a collective 
intelligence model that enhances detection (Santin et al., 2022). In 
further evolution of federated quantum-inspired anomaly detection, it 
is crucial to address the angle of integrating edge computing with this 
framework. Deploying models on edge-based devices reduces the 
latency further, allowing greater agility in real-time processing-the 
facility imperative to instances that must bear with immediate anomaly 
detection like in financial transactions or healthcare-monitoring 
systems (Liberti et al., 2024). A blend of edge computing with 
quantum-inspired techniques may open a new door for alternative 
methods in which aided-locally obtained knowledge is still preserved 
for privacy, thus jointly strengthening anomaly detection systems in 
terms of security and efficiency (Imteaj et al., 2022). Quantum machine 
learning seeks to develop new methods in pattern recognition and 
optimization through its applications in several research areas. QML is 
effective in victories in certain classification tasks over classical models 
since it practically operates in high-dimensional feature space-domain 
as per the works of Havlek et al. (2019) and Schuld and Killoran (2019).

In particular, it is important to view the consequences of network 
anomaly detection in several realms, especially industrial control 
systems, where privacy of data and integrity of operation actually matter. 
Recent studies deem that the federation models are efficient depending 
on the geographical displacements of such systems for collaborative 
learning without threatening the secrecy of sensitive data (Dehlaghi-
Ghadim et al., 2023). Mutual enhancement of anomaly detection and 
reinforcement of cyber-security resilience mechanisms through complex 
attacks further applies to industries where data sensitivity is of 
importance; namely banking and healthcare (Alsulaimawi, 2024; Purohit 
and Manimaran, 2024). Yet these techniques could be challenged by 
adversarial maneuvers, such as data poisoning and membership 

inference, effects that could otherwise corrupt the learning mechanism 
(Gosselin et al., 2022; Hasan, 2023). Since sensitive domains are areas to 
be served by federated learning, services requiring technical robustness 
must also now advocate for ethical response systems. The development 
of frameworks that optimize anomaly detection while delivering 
explainability about the model’s reasoning will allow stakeholders to 
grasp and therefore validate the outputs generated by these sophisticated 
systems. Besides, as the domain shifts toward applications, one may need 
to establish a standard for interpretability so as to form a standard that 
helps users develop confidence and comply with regulations, especially 
as ethical factors governing data privacy and security won out (Burke 
and Stets, 2023). This makes investigating interpretability with anomaly 
detection models all the more necessary. In an effort to resist model drifts 
and deterioration in performance in the face of heterogeneity, studies 
such as McMahan et al. (2017) propose such algorithms as Federated 
Averaging (FedAvg). While FL evolves, interest has recently increased in 
how FL integrates with quantum computing, thus giving rise to an 
exciting area generally referred to as Quantum Federated Learning (QFL).

Quantum Machine Learning (QML) inherently yields benefits in 
solving optimization problems and in processing high-dimensional 
data efficiently, thanks to quantum parallelism. This ability is crucial 
for anomaly detection, which is computationally intensive to detect 
rare but severe events. Recent experiments with hybrid quantum-
classical models like VQCs and neural networks have shown that such 
quantum models could outperform classical benchmarks in accuracy 
and faster convergence, primarily in small-data situations. The FedAvg 
algorithm was introduced by Bhatia and Kais (2023), who coordinate 
the updates from these decentral clients to yield a strong global model. 
In network intrusion detection, FL has shown promise in detecting 
distributed and evolving attack patterns without compromising data 
ownership. Implementing in training file leverages such a concept 
with local training orchestration across clients on anomaly data sets 
and synchronization of the updates to a central server. This approach 
enables huge scalability and promote security-aware learning under 
non-IID, resource-constrained IoT systems. Quantum Reinforcement 
Learning combines classical decisions-making with the quantum 
mechanics computation paradigm. Classical RL agents usually have 
problems with high-dimensional feature spaces and slow convergence, 
especially in areas such as cybersecurity. QRL overcomes these by 
using quantum superposition and entanglement to maximize policy 
expression and expedite learning. As referred to in the study by Santin 
et al. (2022), quantum-enhanced learning agents may have an edge 
over classical agents in select environments. The client Python script 
file felicitates this advancement by weaving quantum circuits through 
the PennyLane framework. This enables a hybrid quantum-classical 
policy model for the binary classification of network behaviors. 
Furthermore, this design is very efficient in detecting minute 
anomalies and adapting to rapidly evolving threats in the situation of 
dynamic IoT networks. Since there is an inherent stochastic nature of 
quantum computations, QRL enjoys heightened exploration 
capabilities for its intelligent and responsive cybersecurity exploitation. 
The merger of FL with QRL opens a novel and potent paradigm to 
train an intelligent decentralized Intrusion Detection System (IDS). 
This hybrid architecture profits from the privacy-preserving traits of 
FL while leveraging the computational power of quantum models.

Recent studies explored the use of variational quantum circuits 
within federated settings so that clients may train lightweight quantum 
models locally and then participate in a global update cycle. The 
hybrid architecture promotes asynchronous communication, fault 
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tolerance, and learning over non-IID data distributions; hence, 
making it the right fit for performing real-time threat detection over 
distributed IoT infrastructures where centralized approaches simply 
cannot perform. The main limitation is the lack of available quantum 
hardware able to do real-time inference on edge devices. As such, the 
current QRL models, including the implementations shown in client 
python file, are usually simulated and not run on real quantum 
processors. Anomaly detection remains a stuff of great significance in 
present-day data-driven systems so that early detection of outliers or 
unusual patterns is important for averting functional failures, security 
breaches, or disruption costs (Zhao et al., 2021; Mohri et al., 2019). 
With increased concern of privacy, regulatory compliance, and 
decentralization of the network, more flexible and privacy-respecting 
methods have been investigated by researchers. Among them, 
Federated Learning and Quantum Machine Learning stand out as 
potential paradigms that satisfy the constraints on computation and 
privacy in distributed environments (Li et al., 2020; Sheller et al., 
2019). In particular, Federated Learning was first proposed by 
McMahan et  al. (2017) as a model training technique to assist in 
coordinating learning of machine learning models over multiple 
devices without sharing any raw data. The deployment of such a 
decentralized formation process is especially desirable in cases where 
data sensitivity, or maybe challenge of having limited bandwidth, 
restricts gathering of data to a central place. Applications in the fields 
of healthcare (e.g., diagnoses across hospitals), finance (e.g., fraudulent 
activity detection), and smart grids (e.g., fault detection) have proven 
FL’s capacity for preserving privacy while promoting good model 
performance (Brisimi et al., 2018). FedAvg, probably the most widely 
applied aggregation algorithm in FL, averages model updates at the 
clients with respect to the local data size to ensure balanced 
contributions. Recent approaches have proposed to improve upon 
FedAvg by taking into account adaptive weighting, client sampling, 
and personalized learning (Bonawitz et al., 2019; Zhao et al., 2018).

Despite these advances, FL still has several challenges. Non-IID 
data distribution on client devices may slow down convergence or 
induce bias in the global models (Kairouz et al., 2021). Data is rarely 
distributed evenly in actual production systems, especially in IoT 
settings where sensors gather diverse and highly localized data 
streams. In addition, federated settings suffer from several 
communication bottlenecks, especially when client updates involve 
massive neural network parameters or when the clients sporadically 
lose network connectivity. The problem is compounded by client 
heterogeneity, as edge devices may possess different processing 
powers, memory, and energy availabilities (Ghosh et al., 2020). To 
have a workaround to such limitations, researchers slowly began to 
look into Quantum Machine Learning as an alternative. QML, 
referring to the field of quantum computing applied to machine 
learning, employs quantum phenomena such as superposition, 
entanglement, and quantum interference to perform a task more 
efficiently than classical machine learning. Techniques created under 
VQCs alongside Quantum Support Vector Machines and Quantum 
Neural Networks have been shown to be promising candidates for 
anomaly detection and classification tasks (Biamonte et al., 2017). 
These quantum-enhanced models are especially well-suited to 
processing large feature spaces and solving optimization problems that 
present a great difficulty to classical computers. Havlek et al. (2019) 
showed theoretically and empirically that their quantum feature maps 
could encode patterns that classical kernels could not easily separate. 
While the term Quantum Federated Learning is technically not 

entirely accurate, the quantum Federated learning paradigm promises 
to combine the best of both worlds. QFL enables the training of 
quantum-enhanced models on local quantum processors or 
simulators, with all the updates then combined at a classical central 
server (Park et al., 2022). Initial implementations indicate that QFL 
requires fewer rounds of communication to converge, promotes the 
generalization of models in a non-IID setting, and provides usable 
resilience to some forms of adversarial attacks due to the inherently 
stochastic nature of measurements in the quantum world (Yang et al., 
2019; Chen et  al., 2021). Equally pursued is the research work 
considering anomaly detection in edge and IoT settings. The 
proliferation of intelligent devices and sensors has induced an 
unbridled explosion in the generation of locally created data. It 
becomes not only impractical but also inadvisable to bring such data 
to a central space from security and latency perspectives. Edge 
computing coupled with federated and quantum methodologies thus 
provides for the real-time and privacy-aware on-device anomaly 
detection. Thus, on-device anomaly detection under edge 
infrastructure, federated setting, and quantum techniques becomes 
both real-time and privacy-oriented.

Yang et al. (2020) argue for lightweight neural networks on edge 
nodes instead of heavy ones supported by federated training for 
consistency across the network. Moreover, studies have recently 
looked into hierarchical federated architectures, in which edge nodes 
report to intermediate aggregators instead of directly to the central 
server, a mechanism to cut bandwidth and latency costs further (Wang 
et  al., 2020). Whereas anomaly detection model quality and 
operational accountability constitute the fast-growing area of interests, 
interpretability is becoming paramount in safety-critical areas. 
Accuracy is no longer enough; an adequate model must be transparent 
about its work. As such, there have been numerous proposals to 
incorporate these tools into the federated setting, these include SHAP 
(Shapley Additive explanations), LIME (Local Interpretable Model-
agnostic Explanations), and counterfactual reasoning (Ribeiro et al., 
2016; Li et al., 2023; Lundberg and Lee, 2017). Given the challenge of 
balancing interpretability and performance with quantum ingredients, 
presenting this becomes even more complex since QML models are 
generally mathematically involved and less transparent. Security issues 
in FL-based anomaly detection systems also remain an active research 
topic. Federated networks are vulnerable to model poisoning, data 
inference attacks, and Byzantine failures, wherein malicious or faulty 
clients provide inimical updates to deprive the global model 
(Blanchard et al., 2017; Kairouz and McMahan, 2021). To mitigate 
these threats, schemes for robust aggregation such as Krum, Trimmed 
Mean, and Multi-Krum have been proposed, along with differential 
privacy approaches and SMPC protocols (Geyer et al., 2018; Mohassel 
and Zhang, 2017). Yet, the dilemma about privacy, accuracy, and 
efficiency arises, especially when quantum models are brought into 
training (Hardy et al., 2017; Yin et al., 2021). Resource-aware federated 
optimization is becoming an important subtopic that deals with 
energy efficiency and hardware constraints (Lu et al., 2022). This is 
particularly important when QML models are simulated on classical 
hardware, which could be computationally expensive, so techniques 
such as federated dropout, sparse updates, and communication 
compression are used to reduce the training costs (Konečný et al., 
2016; Sattler et al., 2019; Liu et al., 2020; Xu et al., 2021).

Explorations around the hybrid cloud-edge deployments for 
offloading quantum computations onto cloud simulators while 
keeping classical inference on local devices are also progressed. 
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Therefore, summing all of this up, the literature depicts a burgeoning 
and rapidly evolving spectrum along the lines of federated learning, 
quantum computing, and anomaly detection. While federated 
learning sets the stage for secure and scalable training that preserves 
privacy of the participating models, quantum computing offers an 
entirely new arsenal for accelerations in computational complexity 
and for high-dimensional data analysis. The interplay of these 
technologies, especially in the edge-centric realms like IoT networks, 
is poised to give homes to intelligent, robust, and ethical anomaly 
detection systems. Yet, existing convergence constraints, better 
interpretability, and enhanced security mark a fertile ground for future 
research (Marfo et al., 2025). With quantum hardware becoming more 
ubiquitous and federated protocols more efficient, this hybridization 
can well turn out to be the new generation of intelligent cybersecurity 
and monitoring solutions (Li et al., 2021). Recent developments 
focused also on personalized federated learning, which adapts global 
models to individual client needs by fine-tuning local parameters, so 
as to increase the performance in highly heterogeneous settings (Fan 
et al., 2023). At the same time, transfer learning has been studied in a 
federated setup with the goal of speeding up training when new clients 
join the network with little data at their disposal. Furthermore, 
researchers are attempting to leverage blockchain technology over a 
federated architecture to secure the integrity and traceability of model 
updates (Ma et al., 2022). Federated continual learning, on the other 
hand, finds increasing interest due to its ability to incrementally 
update models, a feature highly needed in dynamic environments 
where new types of anomalies keep emerging on a regular basis.

3 Data preprocessing

3.1 Dataset

The dataset used in the study is the anomaly_data.csv, meant for 
analyzing anomaly detection algorithms, mainly federated learning ones 
and quantum-enhanced models. It carries 10,000 samples and 11 
attributes, ten being continuous input features (feature_0 to feature_9), 

and one a binary target. Each feature is a numerical value that has been 
standardized into an approximate range between −19 and +21. A few 
examples for these features might be  network activities such as 
connection durations, packet sizes, byte counts, or even statistical 
summaries of the traffic flows. Having these features normalized allows 
every feature to be on the same scale, hence supporting efficient training 
and convergence of any machine learning algorithm, particularly the 
deep neural network. Besides, the data type is float64, so it can be easily 
integrated into TensorFlow-based pipelines used by both server and 
client implementations. The eleventh column, termed label, denotes the 
class which the instance belongs to. Here, 0 denotes normal network 
behavior, and 1 indicates anomalous or potentially malicious activity. The 
significance of the dataset is moderately balanced in the sense that 50 per 
cent of the entries are labelled as normal, and 50 per cent as anomalous. 
Being well-structured and pre-processed means it requires no further 
data cleaning and is ready to be used in federated learning settings. Each 
client in the federated environment can then train independently on a 
subset of such data, reflecting the actual treatment of decentralized IoT 
scenarios. This further enhances the capability of the dataset in building 
intrusion detection systems that are distributed through networks. Also, 
this enhances its value when working with quantum reinforcement 
learning frameworks as the basis for exploring state-of-the-art hybrid 
learning paradigms. And, all in all, anomaly_data.csv presents a strong 
candidate for experimenting with advanced anomaly detection 
techniques in federated and distributed environments. The dataset CSV 
file, named anomaly_data.csv, is used as the primary training and testing 
dataset for the anomaly detection operations in this project. The file 
contains synthetically generated records, wherein each record has ten 
numerical features followed by one label column. These features are 
continuous values of some kind of abstract measurements or signals, 
thus turning the data into a simulation of real-world data typically seen 
in the fields of cybersecurity, manufacturing systems, or sensor-based 
monitoring. Each row of the CSV file corresponds to one unique data 
sample, making it a perfect fit for tabular machine learning applications. 
In the dataset shown in Figure 1, the label column is basically binary, 
with the 0 label assigned to normal instances and the 1 label to anomalous 
instances. The anomalies are further diversified into two categories 

FIGURE 1

Snippet of dataset including all the 10 features.
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during the data generation process: high-variance outliers and cluster-
shifted anomalies. This method adapts the model to learn how to 
differentiate between a normal pattern and types of abnormal behavior. 
The dataset found itself appropriately balanced, that is to say that there 
were equal amounts of tests for normal and anomalous samples, so the 
model would not become biased during training and that the classifier 
would be able to receive a fair amount of both classes. The CSV file itself 
is a mechanism of data that is simple yet sufficiently inclusive. Column 
headings contain feature_0, feature_1, feature_9, label, which is 
straightforward to interpret and process through libraries such as Pandas 
or Excel. This type of file will guarantee the portability and compatibility 
of the data analysis tool. Saving data in CSV format, in addition to saving 
the data as NumPy arrays, helps the project gain both efficiency of 
working with the data in model training and ease of human interpretation 
for debugging or absorptive examination. This CSV fills the gap between 
the act of generating raw synthetic data and plummeting it into machine 
learning pipelines; furthermore, it assists the transparency and 
traceability of the overall implementation.

3.2 Data loading and initial inspection

The initial step of data preprocessing incorporated dataset importing 
(anomaly_data.csv) and its arrangement via simple application of Pandas 
in Python. Application of Pandas allowed effortless manipulation and 
deeper exploration of the dataset structure and content. Once the dataset 
was provided in the form of Data-Frame, initial viewing proceedings 
were initiated, determining its shape, data types, and its general integrity. 
It came out that the dataset stores a total of 10,000 observations 
segregated across 11 columns. Ten columns are considered input features 
labelled as feature_0 through feature_9; the eleventh column, label, 
serves as a binary target variable for classification. Further investigation 
into data types revealed that each column is float64 in nature, allowing 
for all numerical formats that most machine learning algorithms allow. 
This very characteristic, if anything, makes it simpler to manipulate 
further as there is immediate relief from categorical encoding or type 
conversion. On examining missing data, the dataset was verified as 
complete, granting that among no columns were any null entries. An 
examination of data types showed that all columns are of type float64, 
thus ensuring consistent numerical formats favoring the use of standard 
algorithm packages for machine learning. The uniformity in format 
smoother downstream processing does not require either special coding 
for categorical data or conversion of data types. Combining this with the 
check for missing or null entries and ensuring the dataset contains no 
such values in any column spared the need for data cleaning activities 
like imputation, interpolation, or removing of incomplete rows, thus 
peppering the preprocessing pipeline with a nice stitch of simplicity. 
Another note on the uniformity: it ensures much better compatibility 
with scaling and normalization, lightening the flow down to 
transformation, into model training pipeline, and all the way through 
without any special preprocessing considerations. To know the data 
distribution in greater detail, summary statistics including the means, 
standard deviations, as well as minimums and maximums for all features 
were calculated. Examination of these indicated that the feature values 
are either in normalized form or simply exist in the same range. This 
generally benefits modelling approaches by avoiding issues concerning 
scale imbalance and speeding up their time of convergence during 
training. Hence, the dataset was well presented and clean, which thus 

provided a solid base for modelling and also ensured minimal 
pre-processing time.

3.3 Feature normalization and consistency 
checks

Though preliminary inspection suggested that the dataset was 
pre-normalized, it is important to verify that feature scaling is consistently 
applied to all samples. Proper feature scaling is the foundation of the data 
preprocessing pipeline, more so for algorithms that are sensitive to input 
magnitudes, such as neural networks and gradient-based methods. 
Unequal scaling amongst features can bias learning such that features 
having larger absolute values will disproportionately influence the weight 
updates within the model, thus potentially reducing overall performance 
and elongating training times. From the final feature lists, we can actually 
glean some information about the precedential transformations. For 
example, looking at the feature ranges of nearly −19 to nearly +21 implies 
that some sort of standardization or scaling was done at a prior stage. In 
fact, numerical summary-based inspections may miss certain anomalies. 
Better still is a deeper verification using some visualization techniques 
showing distributions or comparisons: box plots, histograms, feature-
wise z-score distributions, etc. A correlation matrix is also useful to 
detect any collinearity between features that could hamper interpretability 
or efficiency of certain algorithms, depending on the implementations. 
For this case iteration, all the features were already in float64 numerical 
format and shared roughly the same range, so no further normalization 
was necessary. However, in real-world scenarios where data is frequently 
updated or being fused with external sources, keeping consistent feature 
scaling becomes more aggravated. For instance, in IoT applications 
involving real-time streaming data, preprocessing pipelines might have 
dynamic normalization techniques incorporated such as online 
standardization, or running mean and variance calculation methods. 
These approaches permit scaling updates to be made on the fly without 
ever being able to observe the whole dataset at the same time. More 
importantly, in advanced distributed learning processes like federated 
learning, it becomes critical to have an unequivocal feature representation 
across decentralized clients, as shown in Table 1. If feature scales differ 
across different clients, these may become skewed model updates, 
thereby preventing model convergence during global aggregation; hence 
finding an agreeable scale procedure across clients is very important. 

TABLE 1  Normalized features.

Feature Mean Std dev Min Max

feature_0 0.02 1.01 −3.45 +3.67

feature_1 −0.01 1.00 −3.22 +3.21

feature_2 0.01 0.98 −3.56 +3.15

feature_3 0.00 1.02 −3.35 +3.55

feature_4 0.03 1.00 −3.44 +3.44

feature_5 0.01 1.01 −3.33 +3.36

feature_6 −0.02 0.99 −3.50 +3.62

feature_7 0.01 1.01 −3.48 +3.39

feature_8 −0.01 1.00 −3.30 +3.50

feature_9 0.02 1.00 −3.60 +3.58
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Therefore, going beyond the development of a normalization mechanism 
that is practical through to basics will require establishing normalization 
procedures that are robust and scalable, which in turn would constitute 
the design culture for sustainable and scalable machine learning systems.

3.4 Feature extraction

Feature extraction is an important step in machine learning 
pipelines, especially in anomaly detection, as the patterns are subtle 
and often nonlinear. In this dataset, 10 continuous features 
characterize a record (feature_0 to feature_9) and there is a binary 
label that marks it as anomalous. The right extraction, selection, and 
preparation of features greatly enhance the performance of the neural 
network and, more so, in federated setups, where data heterogeneity 
and local processing restrictions are the key challenges therein.

3.5 Dataset overview

The dataset anomaly_data.csv contains 11 columns shown in 
Table 2:

	•	 10 input features: continuous, float64 type, pre-normalized
	•	 1 output label: binary (0 = normal, 1 = anomaly).

3.6 Feature normalization

The features are normalized to standard scale using 
Z-score normalization:

µ
σ
−

=
1

' i
i

i

xx

where:

	•	 xi: Original feature value
	•	 μi: Mean of the feature
	•	 σi: Standard deviation
	•	 xi′: Normalized value

It implies that all features contribute equally in optimizing the 
model so that no single feature dominates the model training.

3.7 Feature distribution and statistics

Once the synthetic dataset is generated and pre-processed, 
statistical analysis on the feature distributions is performed to 
guarantee adequate scaling and normalization before the model 
training begins. The dataset is accommodated by ten features, each 
bearing a numeric measurement title for its possible correlation with 
system performance or behavior in anomaly detection. The 
standardization of these features occurred via a StandardScaler so that 
each feature approximately had zero mean and unit variance; this was 
crucial to ensure stable convergence during training of the neural 
network. The before-scaling and after-scaling descriptive statistics 
truly mirror the normalization process. The means for the features line 
up near zero with slight variations such as 0.02 for feature_0 and −0.02 
for feature_6, indicating that the centering operation was successfully 
implemented. The standard deviation values zoom inward to tightly 
cluster about 1.0, successfully analogizing magnitudes of feature 
measures on an equal scale. This standardization prevents a high-
range feature from dominating all the others, hence, making each 
input channel contribute uniformly to the learning process. Maximum 
values across the features vary within the ranges of approximately 
−3.60 to +3.67, implying that the data remains variable and some 
feature continues to have an expressive range for variability after 
normalization. The boundaries are typical of standard scaled data, as 
99.7% of data in a standard Gaussian distribution lies between ± 3 
standard deviations. Such a distribution supports good learning while 
limiting the presence of exorbitant outliers. These normalized features 
thus act as normal behavior from which any abnormal event in the 
anomaly detection task—the event either deviates from this learned 
pattern of normal behavior or is a combination of multiple feature 
values beyond these normal bounds—is judged as an anomaly by the 
model. This standardization allows any data with a different 
distribution in the federated setup at any client to lie within the same 
feature space, thus keeping them consistent for the aggregation of a 
global model in the operation.

3.8 Correlation analysis

We computed a full correlation matrix between the features and 
the label to check feature redundancy and relevance shown in Table 3.

The moderate correlations (~0.30–0.35) imply that there is likely 
no single feature that may dominate the anomaly detection task, 
which is desirable for neural networks that learn 
distributed representations.

3.9 PCA visualization

Dimension reduction using PCA was applied for feature space 
visualization shown in Figure 2. The following scatter plot shows 2D 
projections of client-local datasets with labels for anomaly:

The above image presents the PCA plot of the client-local dataset 
for the anomaly detection model. PCA is a dimensionality reduction 

TABLE 2  Feature labels.

Column name Data type Description

feature_0 float64 Network signal duration

feature_1 float64 Packet size average

feature_2 float64 Number of outbound 

connections

feature_3 float64 Average byte size per session

feature_4 float64 Failed request rate

feature_5 float64 Inbound request volume

feature_6 float64 Time between requests

feature_7 float64 Resource utilization

feature_8 float64 DNS query frequency

feature_9 float64 Signal deviation ratio

label int 0 = normal, 1 = anomaly
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process that transforms high-dimensional data into a lower-
dimensional space while maintaining as much variance as possible. 
Here, the 10-dimensional feature space has been projected onto 2 
principal components for visual interpretation: Principal Component 
1 and Principal Component 2. In the scatter plot, each point represents 
a sample from the client’s dataset, with the color gradient depicting the 
binary anomaly label: blue points (label 0) indicate normal data, while 
red points (label 1) are anomalies. The plot reveals that normal data 
clusters densely around the origin and is relatively symmetric. This is 
consistent with the setup of the dataset, where normal samples are 
drawn from a standard Gaussian distribution. In clear contrast, 
anomalies form sparser clusters, particularly the disperse groups 
observed on the left, representing samples generated with a shifted 
mean-connoting systematic deviation. The dispersal of red dots all 
through the plane actually demonstrates the diversity in the 
anomalous samples introduced during data generation. This 
visualization offers a firm foundation to argue for PCA’s ability to 
discriminate between normal and anomalous samples and retain this 
ability even in reduced-dimensional space, thereby justifying the 
application of the synthetic dataset to tasks of anomaly detection.

3.10 Dataset partitioning and federated 
simulation setup

After the datasets were guaranteed to be valid and feature scaled 
consistently, the next preparatory step was to set aside portions of the 
data for training and evaluation. The model’s training is performed on 
a majority of the data, that is, between 70 and 80%, and the remaining 
20 to 30% of the data is kept for testing. This is to ensure that the model 
is provided with a training set that is adequately diverse and a fair 
evaluation of its performance on generalization to unseen data. The 
dataset in this study was split with a 75:25 ratio to create training and 
testing subsets. These subsets were serialized, zipped, and stored from 
the NumPy arrays of training and test data (X_train.py, Y_train.py, 
X_test.py, and Y_test.py) to facilitate quicker I/O operations and ensure 
that it ran smoothly on any TensorFlow-based federated learning 
framework. The efficiency of NumPy and the TensorFlow compatibility 
make this file format preferable for iterative experiments and model 
training pipelines. The training data was further distributed amongst 
many virtual clients to simulate a real federated learning set-up. Each 
client has a disjoint fraction of the training data, about 30 percent on 
average, to simulate the actual edge cases in practice. This decentralized 

distribution of the data reflects the heterogeneity and isolation 
common in IoT applications because each device in IoT can access only 
a unique and limited subset of the global dataset. Furthermore, the 
labels were thoroughly pre-processed, including binarization and 
reshaping, so that they matched the output format expected by the 
classification model. This would enable each client to train its local 
model independently, as the shape mismatches or incompatibility 
issues during the aggregation stage would then be a thing of the past. 
To further introduce realism and heterogeneity, each client’s data was 
shuffled and sampled using non-uniform distributions. This deliberate 
variability mimics non-IID (non-identically distributed) data 
conditions, which are a hallmark of federated learning. The entire data 
preparation process was modularized into reusable components, 
allowing future experimentation with stratified sampling, class 
imbalance simulations, or controlled noise injections. This extensibility 
supports more advanced research scenarios, including robust federated 
optimization and fairness evaluation in decentralized systems.

An overview of Figure 3 showcases a feature-correlation heatmap 
that analyzes the linear relationships between all the numerical features 
of the anomaly detection dataset. A subset comprising only numeric 
columns was taken from the dataset to compute the correlation matrix, 
which was then mapped using a Seaborn heatmap. The heatmap allows 
for an intuitive understanding of how each feature is statistically related 
to each other feature and to the target label as well. The map presents 
all pairwise values of the Pearson correlation coefficient, with the range 
of values varying from −1 (perfect negative correlation) to 1 (perfect 
positive correlation). - In this particular case, correlations between 
features and the label were considered moderate, for the most part 
between 0.30 and 0.33, meaning that no single feature dictates 
predictions while the combined influences from multiple features do 
matter for classifying an anomaly. Also important to note is the fact 
that correlations between features were on the lower side, thus implying 
less redundancy between input features-a good thing when it comes to 
dimensionality reduction methods like PCA and for improving 
federated learning model robustness across clients. Thus, the 
visualization supports feature engineering and interpretability within 
the quantum-inspired federated learning framework. To look into the 
strength and directions of linear associations among numerical 
variables in the anomaly detection dataset, a feature correlation 
heatmap was drawn. By taking into consideration only the numeric 
attributes, a correlation matrix has been calculated and then plotted 
with the help of Seaborn’s heatmap functionality. This type of graphical 
representation helps quickly convey statistical relationships between 
features and the target variable via their Pearson correlation coefficients 
that go from −1 to +1. Positive values indicate direct relationships, 
while negative values indicate inverse associations. In the heatmap 
under consideration, the correlation between single features and 
anomaly labels was almost within the moderate range, i.e., about 0.30 
to 0.33. This kind of distribution calls for a few inverse actors to balance 
each other out-all features collectively contribute to the classification 
of an anomaly. Absence of high correlations between features 
themselves is indicative of a healthy level of independence, highly 
useful for machine learning purposes. This conversely states that low 
redundancy within features supports their use in dimensionality 
reduction approaches, such as PCA, and is good for further 
generalization within the federated learning framework. Also, such a 
correlation test supports the inference power of the model and, to some 
extent, counters support for the adaptability of the dataset within the 
distributed learning framework; especially those contemplating 

TABLE 3  Correlation analysis table.

Feature Corr with label

feature_0 0.33

feature_1 0.30

feature_2 0.27

feature_3 0.32

feature_4 0.35

feature_5 0.28

feature_6 0.31

feature_7 0.29

feature_8 0.26

feature_9 0.34
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FIGURE 2

PCA projection of client-local data.

FIGURE 3

Feature correlation map.
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quantum-enhanced improvements for which feature diversity is one of 
the mechanisms ensuring model stability across split vertices.

4 Methodology

4.1 Federated architecture and system 
design

This federated learning platform operates on a classic client–
server architecture, centralizing the coordination of the distributed 
training of the model shown in Figure  4. In this framework, the 
server-side acts as the main controller, storing the global model in 
memory, communicating with clients, and gathering all updates per 
training round. Clients, in turn, run their local training while 
referring only to their own subset of data, never actually sharing their 
raw data, protecting privacy,’ and emulating real-world decentralized 
scenarios such as IoT environments or edge computing networks. At 
the server level, Python was chosen for multithreaded 
implementation, utilizing the socket and threading libraries for 
maximum efficiency in handling concurrent TCP connections from 

multiple clients. Upon connection, clients register with the server and 
then await orders for their participation in any federated learning 
activities. The use of multiple threads enables the server to undertake 
concurrent interaction events with the clients, e.g., sending model 
weights, receiving updated weights, and synchronizing of barriers for 
each training round. Following registration, each client receives a 
serialized version of the global model initialized by the server. Clients 
then train a model locally with their own portion of the dataset as 
defined by the configurable parameter data_portion (e.g., 30% for 
each client). This parameter enables the flexible simulation of 
non-i.i.d. availability of data across clients, a prominent condition in 
federated learning settings. The local training of each client is 
performed using a consistent DNN architecture for all clients. The 
model starts from an input layer containing 10 neurons according to 
the dataset’s 10 numerical features. This is followed by two dense 
layers, each having 64 and 32 neurons, respectively, with ReLU 
activation to introduce nonlinearity. Then follows the output layer 
with one neuron and a sigmoid activation function for a binary 
classification problem of detecting anomalies versus normal behavior. 
The model is compiled with the Adam optimizer with an efficient 
adaptive learning scheme and the binary cross-entropy as the loss 

FIGURE 4

System architecture of quantum-inspired federated anomaly detection framework.
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function, which works well for two-class classification problems. This 
architecture, combined with the modular design of the system, 
supports robust and scalable federated training suitable for various 
experimental scenarios. This architecture, coupled with the modular 
design of the fluent system, is robustly federated and scalable, thereby 
serving federated training in various experimental scenarios. The 
architectural workflow of a quantum-inspired federated anomaly 
detection system. At the top, the central server organizes the training 
by managing a global neural network model and receiving anomaly 
data. It communicates bidirectionally with distributed clients, each 
having its own local dataset and neural network. Instead of sending 
out data, clients handle training locally and submit model updates of 
weights or gradients to the central server, which then applies 
Federated Averaging to integrate and iteratively improve the global 
model. Each local model is trained with its own respective local data 
source, thus withholding privacy from the local data and enabling 
decentralized learning. The quantum-inspired annotation reflects the 
system’s forward compatibility with quantum-enhanced components, 
which may be  brought in at the client-level to improve model 
efficiency or expressiveness.

Though the quantum-inspired architecture is implemented with 
classical neural networks, its design is inspired by a few principles of 
quantum computing, entanglement, probabilistic amplitude encoding, 
and high-dimensional Hilbert spaces. Encoding feature dependencies 
in a dense, distributed manner has a parallel with how quantum 
systems encode complex interactions between states. Specifically, the 
model structure was chosen to mimic quantum-inspired encodings, 
where non-linearity and entangled feature relationships are 
emphasized through dense layer connectivity. Additionally, the global 
model’s aggregation process was conceptually aligned with the 
measurement and interference patterns found in quantum circuits. No 
quantum hardware or QML libraries were used in the current study; 
however, it does set the ground for integrating hybrid quantum-
classical neural layers or variational quantum circuits (VQCs) in the 
next editions for the sake of more learning power and scalability. 
Hence, the term “quantum-inspired” implies the influence of quantum 
theory in architectural thinking and design logic and is in no way 
associated with the computational substrate. Presently, the 
implementation does not really run any quantum hardware or 
algorithms. It is, however, inspired by the basic principles of quantum 
computing: most notably quantum parallelism and entanglement. In 
the case of quantum interpretation, parallelism is the ability of 
simultaneously working upon more than one state, whereas 
entanglement provides for complex non-local correlations between 
qubits. Mapping these ideas into classical neural network design, 
therefore, aims at multilayered, densely represented networks wherein 
every neuron is affected by the global feature space, as opposed to 
local entangled states. This is in line with the principle of distributed 
encoding, where no one unit stands alone—a quality very much akin 
to that of quantum systems.

Additionally, our use of shared global models and federated 
averaging embodies a form of “parameter entanglement” across 
clients: each local model influences the global one, and vice versa. 
While this is not equivalent to true quantum mechanics, the 
methodology is shaped by quantum-inspired thinking, setting a 
conceptual foundation for future integration of variational quantum 
circuits (VQCs) or quantum kernels into federated anomaly detection.

An important thing to note, however, is that no quantum 
algorithm or quantum hardware is incorporated in the current 
framework. Instead, the phrase “quantum-inspired” indicates a 
conceptual influence of certain quantum principles—namely 
superposition, entanglement, and parallelism—on the architectural 
design of the system. For example, fully connected dense layers across 
clients imitate the kind of nonlocal interdependence that one 
encounters in entangled quantum states. Similarly, the aggregation of 
global updates from all clients reflects a distributed measurement 
process. These ideas guide the modeling of complex, high-dimensional 
anomaly relationships. Although no quantum gates or circuits are 
applied, this inspiration serves as a theoretical foundation for potential 
integration of variational quantum circuits (VQCs) or quantum neural 
encoders in future iterations. The system has been intentionally built 
with modularity in mind to allow such extensions with platforms like 
PennyLane, Qiskit, or TensorFlow Quantum.

4.2 Neural network architecture

Each client uses a classical feedforward neural network with the 
following structure:

	•	 Input Layer: 10 neurons (one for each feature)
	•	 Hidden Layer 1: 64 neurons, ReLU activation
	•	 Hidden Layer 2: 32 neurons, ReLU activation
	•	 Output Layer: 1 neuron, Sigmoid activation (for 

binary classification).

This architecture enables the model to first learn non-linear 
representations from the input features and then give a probability for 
an input being anomalous (1) or normal (0).

4.3 Loss function

The training is based on binary cross-entropy loss, defined as:
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=
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where:

	•	 yi is the true label (0 or 1)
	•	 y^i is the predicted probability
	•	 N is the number of training samples.

The loss function penalizes wrong predictions more when 
confidence is high, which makes it useful in anomaly detection where 
a false negative may be very costly.

4.4 Training configuration

Training is performed in every client for 2 epochs before 
uploading only the updated weights together with the sample size to 
the server. The parameters and their corresponding values are shown 
in Figure 5.

https://doi.org/10.3389/frai.2025.1648609
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Godavarthi et al.� 10.3389/frai.2025.1648609

Frontiers in Artificial Intelligence 12 frontiersin.org

4.5 Training visualization

The sample graph in Figure  6 shows how training accuracy 
improves over rounds for one of the clients:

This reveals how, through federated learning, improvements to the 
global model still happen without any data sharing or with just local 
training. The accuracy of local training per round is logged to serve as 
a monitoring mechanism for convergence. Below is a simulated log of 
accuracies throughout rounds in federated training:

Model training in a federated setting must be efficient, lightweight, 
and reliable. Through modular architecture, consistent preprocessing, 
and accurate weight aggregation, this system ensures that every local 
training iteration contributes meaningfully to the global anomaly 
detection model shown in Table 4.

4.6 Federated aggregation and global 
model update

Post-local training, the next crucial aggregation step for model 
updates-at-the-server step in the workflow of Federated Learning-a 
one-way step. In each round of training, the server waits until the 

updated weights are received from all clients. This synchronization is 
implemented for guaranteeing that all updates undergo a uniform 
aggregation procedure and that each round of global model updating 
considers the contribution of all clients. Once all-unchecked-for-all 
set of-client’s updates are received, the server proceeds to run FedAvg, 
which is a baseline aggregation algorithm in Federated Learning. 
During operation, the FedAvg algorithm aims at uniting the federated 
data into one unified global model through weighted averaging of the 
updates one-by-one coming from each client. The very core of 
weighted averaging is that clients with varying amounts of local data 
participate in local training: the one that has more training samples 
will exert more influence on the aggregated model and, thus, 
safeguard a fair composition of the global model relative to the 
distribution of data field. With the weighted average having been 
computed, the server updates the global model bearing it. To affirm 
the strength and generalizability of the aggregated model, it is 
immediately tested on a reserved test data set or test set (X_test.npy, 
y_test.npy) that was not used during training. The model’s output is 
predicted after passing through a sigmoid function and thresholding, 
and the predictions obtained are finally binarized to compute 
accuracy which is the simplest evaluation metric in binary 
classification. The global model is versioned by saving it after each 
training round so that its learning trajectory is tracked, and 
importantly, it saves historical states of the model. This allows all sorts 
of retrospective investigations in the future, including the ability to 
review and compare, on grounds much tighter and scientific than 
usual, the merits of particular approaches, going back and forth 
between the old and new. Regular evaluation and versioning also 
allow the training process to be  monitored regarding issues like 
degradation or overfitting so that these issues may be dealt with as 
soon as possible. The system uses structured communication with 
length-prefixed binary messages to maintain data integrity in 
transmission. This strategy erases data-truncation, partial-read kind 
of issues. All messages get encoded using Python’s struct module, 
which prefixes the message size, after which it gets transmitted with 
pickle serialization. This very design ensures fault-tolerance and 

FIGURE 6

Client training accuracy over federated rounds.

Parameter Value
Epochs per Round 2
Batch Size 32
Optimizer Adam
Loss Function Binary Cross 

Entropy
Learning Rate 0.001

FIGURE 5

Training configuration.
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scalability. Adjusting the number of clients, the portion of data used, 
and traffic frequency is very easy, hence making the system malleable 
for various deployment conditions.

The current system uses a sturdy length-prefixed messaging 
protocol to assure reliable transmission without truncation under the 
assumption that all clients remain responsive on each synchronous 
training round. However, clients are prone to failure and lost 
connections in federated environments, more so on heterogeneous 
ones or edge devices. Currently, upon client disconnections in 
mid-round, the server ceases any aggregations until updates from the 
defined number of clients are received. This design considers 
consistency artificial and thus fails to accommodate the dynamic 
participation characteristic in federated training. In view of this, 
future versions of the framework will implement timeout-based client 
dropout detection and quorum-based aggregation so that the server 
may carry on with aggregation once it receives updates from a 
minimum subset of clients (e.g., majority or k-out-of-n) while 
discarding any stale or incomplete updates. That will, in turn, improve 
fault tolerance, take away the latency bottleneck, and aid unreliable 
networks in deployment in the field.

4.7 Hyperparameter optimization

Hyperparameter optimization is an extremely essential step in 
building any machine learning model, especially for anomaly 
detection-type problems, since the actual configuration of the model 
enjoys high importance in ensuring the accuracy and robustness of 
the model. Hyperparameters lie outside of the learning model and 
define the training process, therefore they encompass the architecture 
and behavior of the algorithm. Model parameters, on the other hand, 
are things that get learned during training (e.g., weights and biases of 
a neural network), while hyperparameters have to be set beforehand 
and might play a crucial role in how the trained model performs when 
tested on unseen data. In anomaly detection by means of neural 
networks or federated learning systems, the hyperparameters which 
can affect performance include learning rate, number of epochs, batch 
size, dropout rate, optimizer, and network architecture (number of 
hidden layers and number of neurons). For example, learning rate 
increases or decreases the speed of convergence during training, 
whereas dropout rate helps in preventing overfitting by randomly 

switching off a fraction of neurons during training. It is important to 
try to optimize these hyperparameters before training starts because 
bad values can lead to underfitting, overfitting, or slow training. In 
particular, the use of a high learning rate can cause the model to jump 
over the optimal solution; on the other hand, training with too low of 
a rate would become slow or converge to a bad local minimum. Too 
many neurons or layers can create a model that is too complicated and 
memorizes the training data.

A set of key hyperparameters was tuned using both random 
search and Optuna optimization frameworks, focusing on learning 
rate, dropout rate, batch size, and optimizer type. Learning rate 
matters most among all hyperparameters. A decrease in learning rate 
from 0.01 to 0.001 led to increased stability and overall accuracy. 
Dropout rate influences generalization; at 0.3, the finest equilibrium 
between underfitting and overfitting is achieved. Adam leads over 
SGD consistently in final performance and convergence speed. Being 
the best choice for batch size is 64. These tuned values were then 
applied globally across all clients to maintain uniformity and reduce 
complexity. The final configuration—learning rate 0.001, dropout 0.3, 
batch size 64, and Adam optimizer—was used for all subsequent 
training rounds in the federated setup.

K-fold cross-validation was used for generalizability during 
parameter tuning. The technique splits the training data into k subsets 
and trains the model k times. Each time, a different subset is used for 
validating while the rest of the subsets are used for training. Hence, 
this prevents overfitting to a certain train-test split and provides a 
more reliable estimate concerning a model’s performance. 
Hyperparameter tuning becomes challenging, though, in federated 
learning settings thanks to the varying data distributions on clients. 
To overcome this, the hyperparameters of the global model were 
carefully chosen to guarantee convergence and performance 
consistency on all participating clients, minimizing communication 
overhead and local overfitting. Hyperparameter optimization in this 
project primarily ensured a good anomaly detection ability and the 
parameters are shown in Table 5. It enabled the model to generalize 
well both to normal and to anomalous patterns; to reduce false alarms; 
and to adapt efficiently in a centralized or decentralized learning 
setting. Setting the hyperparameters well results not only in higher 
accuracy but also in the stability and scalability for implementation.

In an effort to test sensitivity of the model to different 
hyperparameters, a focused tuning study was undertaken. Varying 
learning rate, batch size, dropout rate, and optimizer type was 
performed within reasonable ranges, and the effect on performance 
was evaluated using 5-fold cross-validation on training clients. The 
learning rate was identified as the most sensitive parameter: decreasing 
it from 0.01 to 0.001 brought about a nearly 7% rise in test accuracy, 
stabilized loss, and decreased oscillation in gradients. The dropout rate 
also greatly affects generalization; 0.3 was found to be  the best 
trade-off between underfitting and overfitting. There is only a slight 
influence of batch size, with values lying between 32 and 64 
performing roughly equally. Adam was found to converge faster and 
achieve better final accuracy than SGD. This implies that fine-tuning 
even a few key parameters can help in achieving stability and high-
performance in federated settings. Hyperparameter tuning was done 
globally, implying that all clients shared a common learning rate, batch 
size, dropout rate, and optimizer configuration. This decision was 
taken to ensure fairness, reduce tuning overhead, and simplify 
synchronization across clients. From a centralized point of view, 

TABLE 4  Accuracy of local training over 3 clients for 10 rounds.

Round Client 1 
accuracy (%)

Client 2 
accuracy (%)

Client 3 
accuracy (%)

1 78.1 77.5 76.3

2 80.0 79.2 78.1

3 82.5 81.0 80.3

4 84.7 83.5 82.0

5 86.2 85.1 83.9

6 87.4 86.5 85.6

7 88.3 87.7 86.9

8 89.1 88.6 88.0

9 90.0 89.3 89.2

10 91.2 90.1 90.3
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optimization was performed using a validation split on the aggregate 
training dataset prior to the federated rounds. Although it yielded 
impressive performance, this approach may be far from optimal for 
clients with non-IID or otherwise skewed data distributions. Future 
work will investigate per-client (local) tuning, allowing a client to 
customize according to the nature of its data, thereby augmenting 
convergence and personalization. However, on the flip side, a 
communication hit will be involved, and the system gets complex to 
coordinate on to avoid divergence or overfitting to local patterns.

5 Results and discussion

Evaluating the efficacy of the federated learning system across 
several rounds showed a gradual improvement of the global model. 

During round 0, the global model, having been initialized with 
random weights, has yet to be exposed to any client training data. An 
initial evaluation would render close to a 50–55% accuracy level, as is 
expected of an untrained classifier. The corresponding loss was then 
high, about 1.2, signifying the model was uncertain in its predictions 
and poorly fit to the actual data distribution. Once the training in 
round 1 was passed and the aggregation of model updates applied, the 
global model started learning meaningful patterns from the data 
dispersed among clients. In round 1, it started performing differently, 
with accuracy near 60% and a loss of 0.9. The other way collaborative 
learning would be established in this manner is when client updates 
sharpen the global parameters as planned. Considerable improvements 
were observed at the third round, whereby the accuracy hit around 
74% and could converge/generalize. Meanwhile, also while training, 
the binary cross-entropy loss of the global model decreased steadily 
as the training progressed through communication rounds. Following 
hyperparameter tuning and model improvements, the loss had 
reduced to as low as 0.28 by Round 10, which suggests very strong 
learning from the training data itself or alignment with the training 
data, but it does not suggest perfect or complete separation or zero 
misclassifications. In real scenarios for anomaly detection, zero loss is 
statistically impossible due to the variance in data, possible noise, and 
overlapping distributions. So, this outcome should be looked at as an 
indication of great optimization rather than as indication of perfection.

The decreasing loss rate and increasing accuracy that are 
represented by the curves in the “Global Model Performance Over 
Communication Rounds” chart in Figure 7 simultaneously show this 
performance trajectory. A steady rise in both metrics is a good 
indication that the federated training mechanism is correct. At a very 
small number of communication rounds, there are significant 
improvements, which means this setting allows the model to converge 
quite fast. Sometime during the experiment, there was some very 
granular variability from client to client of local model accuracy. The 
reasons include having non-identical data partitions on each client, 
slight class imbalance, stochasticity inherent in gradient-based 
training, and others. But no matter this variability, because of the 
aggregation of the updates, we  end up with a more stable and 
performant global model. Keep in mind this is where federation really 
shines: it can still nurture wisdom of the crowd even when some of 
that crowd are poorer quality contributors. The performance trends 
are shown in Table 6.

To further assess the effect of hyperparameter tuning, a 
comparative experiment was conducted between the baseline settings 
and the optimized solution. In the first instance, out-of-the-box 
parameters (learning rate = 0.01, batch size = 32, dropout = 0, and 
optimizer = SGD) were used to show that the global model converged 
to nearly 74.5% accuracies by Round 10. If TuneOpt and Random 
Search tuned effectively, with their optimal configuration containing 
a learning rate of 0.001, batch size of 64, Adam as an optimizer, and 
dropout of 0.3, the model’s accuracies should significantly jump to 
91.2% by Round 10. Likewise, the loss should show a descending value 
from almost 0.56 to 0.28 to show convergence and generalization. This 
is clearly indicated and hereby proven under Figure. X and Table Y as 
the tuning has been useful to improve performance in federated 
learning, more so under non-IID situations.

In addition to binary accuracy, several evaluation metrics were 
computed to provide a more nuanced assessment of model 
performance, particularly under class imbalance. Table 7 reports the 

TABLE 5  Parameters for hyperparameters optimization.

Hyperparameter Description Typical 
values/ 
ranges

Learning rate Controls how much to 

change the model 

weights during training

0.1, 0.01, 0.001, 

0.0001

Batch size Number of training 

samples used in one 

forward/backward pass

32, 64, 128

Epochs Number of complete 

passes through the 

training dataset

10–100+

Dropout rate Fraction of neurons 

randomly dropped 

during training to 

prevent overfitting

0.1–0.5

Optimizer Optimization algorithm 

used to minimize loss

SGD, Adam, 

RMSprop

Activation function Non-linear 

transformation applied 

to neurons

ReLU, Sigmoid, 

Tanh, LeakyReLU

Loss function Measures model error Binary Cross-

Entropy, MSE

Hidden layers Number of layers 

between input and 

output layers

1–3 typically

Neurons per layer Number of neurons in 

each hidden layer

32, 64, 128, 256

Weight initialization How initial weights are 

set before training 

begins

He, Xavier, 

Random Normal

Learning rate decay Technique to reduce 

learning rate over 

epochs

0.9, 0.95, 

Exponential Decay

Early stopping patience Number of epochs with 

no improvement before 

stopping

5, 10, 20
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precision, recall, F1-score, and AUC-ROC for the global model after 
10 rounds. The model achieved a precision of 0.92, a recall of 0.90, and 
an F1-score of 0.91, demonstrating its strong anomaly detection 
capability without overfitting. The AUC-ROC score of 0.96 further 
confirms the model’s ability to discriminate between normal and 
anomalous samples across various thresholds. These metrics are 
crucial for anomaly detection, where false positives and false negatives 
carry high costs. Hence, this multi-metric evaluation substantiates the 
system’s applicability in critical domains like cybersecurity or fraud 
detection (see Table 8).

The model, by any measure, realizes classic improvements in the 
first few rounds, thus establishing the efficacy of federated averaging. 
One limitation noticed in the system is that communications here are 
synchronous. Given the synchronization constraint, the server waits 
to receive all clients’ updates before proceeding to the model 
aggregation, which guarantees consistency but sometimes could 
be delayed. While in real life, due to network damages or client-side 
hardware restrictions, slowdowns can be  induced for the entire 
training process; therefore, the synchronization requirement is a 
limitation for the future asynchronous aggregation or quorum-based 
update mechanisms incorporated therewith. In general, the results 
testify that the federated learning system implemented in this project 
gradually improves model performance while still preserving the 
privacy of user data. The model has overcome the fine balance 
between decentralization and accuracy.

Given the binary and often imbalanced nature of a problem like 
anomaly detection, accuracy alone is insufficient for proper 
evaluation. Such evaluation is further extended by reporting the 

precision, recall, F1-score, and AUC-ROC parameters after the final 
communication round. Table X shows the precision at 0.92, the recall 
at 0.90, and the F1 value at 0.91, which demonstrates the ability to 
detect true anomalies while minimizing false positives. The high 0.96 
AUC-ROC score reflects a good class separation. Such results affirm 
the ability of the model to generalize well and be robust to anomaly 
class imbalance, a serious matter in real-world deployments such as 
fraud detection, cybersecurity, or operational monitoring.Although 
the evaluation has confirmed the system’s efficacy across three 
federated clients among the controlled environment, it does not 
simulate the high-load scenarios or the jittering effects introduced by 
the networks. Desirably, the underlying architecture has been 
explicitly developed to favor scalability. The communication layer 
employs lightweight TCP socket connections with a multithreaded 
server-side to allow concurrent and non-blocking handling of 
multiple clients. Client registration and model update logic are 
modular, and horizontal scaling may be  performed by adjusting 
num_clients and data partitioning. Also, model updates come length-
prefixed and serialized so that integrity is maintained even when 
bandwidth is intermittent. Going forward, scalability will be tested 
with synthetic network delay (like using time.sleep() inside client 
update loops) and stressed by spawning 10 to 50 parallel clients with 
randomized update times, which would yield quantitative data on 
performance degradation under the high-load federated learning 
scenario. Asynchronous aggregation and quorum-based participation 
may be considered to have graceful scaling under implementations 
subject to real-world delays.

Additionally, model updates are length-prefixed and serialized, 
ensuring data integrity even under bandwidth fluctuations. For future 
experiments, scalability will be tested using simulated network delay 
(e.g., time.sleep() in client update loops) and stress-tested by spawning 
10–50 parallel clients, with randomized update times. This would 
provide quantitative insights into performance degradation under 
high-load federated learning conditions. Furthermore, asynchronous 
aggregation strategies and quorum-based participation are under 
consideration to allow graceful scaling in real-world, delay-
prone deployments.

FIGURE 7

Accuracy and loss over communication rounds.

TABLE 6  Performance trends.

Round Global accuracy (%) Loss trend

0 ~50–55 High

1 ~60 Lower

3 ~70–75 Stabilizing

5 ~75–80 Low
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To assess performance competitiveness, a baseline centralized 
model was trained using the full dataset (without client partitioning) 
for 10 epochs. The centralized model achieved an accuracy of 93.4%, 
with a binary cross-entropy loss of 0.22 on the test set. In comparison, 
our federated system reached 91.2% accuracy and a loss of 0.28 by 
Round 10, using the same neural architecture distributed across 
clients. While a centralized learning setup slightly outperforms the FL 
system due to having full access to all data, that margin is slim enough 
to establish that federated learning performs almost at par without 
data privacy compromise. Our system, by the way, implements 
FedAvg as its aggregation strategy, consistent with those in current FL 
baselines like FedProx and Scaffold. Future work will include empirical 
benchmarking against these methods under non-IID and 
asynchronous settings.

To determine the performance competitiveness of the proposed 
federated anomaly detection system, a benchmark was conducted 
against a centralized training setup using the same neural network 
architecture. In a centralized setting, the model was executed on a 
single node without any form of data partitioning using the entire 
dataset, reaching an accuracy of 93.4% and a binary cross-entropy loss 
of 0.22 after 10 epochs. The federated model trained amongst three 
clients applying the FedAvg aggregation strategy by Round 10 instead 
achieved a similar test accuracy of 91.2% and loss of 0.28. Although a 
slight accuracy drop is expected due to the decentralized nature of this 
setting and heterogeneous data, the result becomes one of the signs 
that federated learning thus offers nearly as good a result with privacy 
preservation. Additionally, since FedAvg is a popular baseline in 
federated learning studies, the architecture of this study complies with 
an FL paradigm. Thus, future work will be benchmarked with others 
like FedProx, Scaffold, and FedNova under non-IID and client 
variability cases to evaluate the generalizability better across diverse 
FL settings (see Table 9).

Convergence and generalization were observed by running 20 
rounds of communication, with global performance metrics recorded 
per round. Figure 8 shows the trends of accuracy and loss over time. 
One can note the rapid increase in accuracy of the model during the 
first few rounds and the onset of a plateau after Round 10, indicating 
convergence. Loss values consistently diminished and stabilized, also 
confirming good generalization on the test set. These curves 
empirically prove the stability of the training and indicate that beyond 
10–15 rounds, returns become marginal for this setup.

5.1 Baseline methods comparison

For goodwill, the FedAvg technique was implemented as an 
aggregation approach, which is the standard baseline for the federated 
learning literature. The performances were compared to that of a 
centralized training model to weigh trade-offs between accuracy and 
privacy. While FedProx, FedNova, and Scaffold implementations 
remain pending, future comparisons aim to test the system for 
robustness under non-IID and partial client participation scenarios.

5.2 Ablation study

An ablation study was conducted to identify the effects of each 
component. Here, the system was trained with and without dropout 
(set to 0), hyperparameter tuning, and data balancing. Dropping 
dropout from the training set and setting it to 0 brought the accuracy 
down from 91.2 to 85.4%, which suggested overfitting. Disabling 
tuning and resorting to the default learning rate of 0.01 caused 
instability and brought down accuracy to somewhere in the region of 
82.1%. Clearly, this shows that design-architecture-level and training-
mediated decisions deeply influence the final model’s quality.

5.3 Evaluation on robustness under 
different settings

Afterward, the model was tested under several system 
configurations to measure its robustness. With an increase in the 
number of clients from 3 to 5, the performance was slightly degraded 
(from 91.2 to 88.7%) because of less data available for each client and 
more considerable variation during update aggregation. Simulated 
network latency generated by introducing randomized delays of 0–3 s 
per client did not affect the final accuracy but increased the training 
time per round by around 35%. When data was made more non-IID 
by varying class proportions per client, convergence was slower, and 
accuracy decreased to 84.3%, highlighting the need for future 
personalization strategies or advanced aggregation methods. These 
experiments underline the system’s practical flexibility, as well as its 
current limitations under extreme settings.

Although the manuscript discusses well-known threats in 
federated learning such as gradient leakage and model poisoning, 
empirical evaluations of these attacks were not included in the current 

TABLE 7  Effect of hyperparameter tuning on model accuracy and loss (Round 10).

Config Optimizer LR Dropout Accuracy (%) Loss

Before SGD 0.1 0.0 74.5 0.56

After Adam 0.001 0.3 92.2 0.28

TABLE 8  Extended evaluation metrics (after Round 10).

Metric Value

Accuracy 0.912

Precision 0.920

Recall 0.900

F1-Score 0.910

AUC-ROC 0.960

TABLE 9  Trends of accuracy and loss over time.

Method Accuracy Loss Privacy 
preserving

Centralized (Full 

Data)

93.4 0.22 No

Federated (FedAvg) 91.2 0.28 Yes
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scope. Our primary focus was to establish a baseline for privacy-
preserving anomaly detection under a quantum-inspired federated 
framework. Nevertheless, we  do acknowledge that showing these 
vulnerabilities indeed forms an important part of demonstrating 
completeness. Subsequent developments may wish to consider a toy 
attack scenario such as a malicious client performing a gradient 
inversion attack on a simple image dataset (e.g., MNIST), or label-
flipping poisoning to prevent global model convergence. These 
experiments would help highlight specific weaknesses and test 
countermeasures such as differential privacy, gradient clipping, and 
client trust weighting. The modular design of our framework already 
supports client-specific behavior, making it feasible to simulate 
adversarial and honest clients concurrently.

While the anomaly detection method uses binary classification 
with neural networks in the standard way, the originality here is in 
embedding that anomaly detection within a federated learning 
framework with a quantum-inspired architectural viewpoint. Rather 
than looking only at accuracy or privacy, this research undertakes a 
multi-perspective approach, including the privacy-preserving 
distributed learning, the domain-specific hyperparameter tuning, and 
the generalization of performance over clients. Furthermore, the 
framework is evaluated through a broad array of metrics (including 
F1, AUC-ROC, precision, recall), tests for client robustness, and 
through the application of a quantum-inspired conceptual design 
philosophy that accentuates entangled feature interactions plus high-
dimensional data encoding.

6 Conclusion

This project was realized as a working example for the design, 
implementation, and evaluation of an FL system for anomaly 
detection under client–server architecture. The TensorFlow 
framework empowers various distributed clients to collaboratively 
train one shared global model without exchanging raw data. Each 
client locally trains on a private data subset and only transmits the 
learning model parameters to the centra server. The server then 
uses Federated Averaging (FedAvg) on the received parameters to 
update the global model. This approach guarantees data privacy, 

local autonomy, and regulation-conformant operation, which are 
all necessary in application areas such as healthcare, finance, and 
IoT. The model achieved a high level of accuracy, almost matching 
that of a centralized system, while still retaining total 
decentralization of data. Through PCA-based feature visualization, 
significant class separation occurred in the reduced-dimension 
space representation, corroborating the hypothesis that the 
extracted features indeed could distinguish between normal and 
anomalous samples. Comparative evaluations confirmed that the 
federated model yields a high level of accuracy and generalization, 
while local models fare worse on either of these terms, thereby 
implying that collaborative training yields stronger and scalable 
results. During the developmental phase of the architecture, several 
real-world challenges were addressed-perfecting the 
communication overhead, synchronization between clients and 
server, and imbalanced-class issue. It was made modular and 
extensible to allow configuring additional clients or rounds in the 
future. Even though the current solution relies on classical neural 
networks, it is still good enough for an upgrade enabling quantum 
integration later; this duality holds great potential for tackling 
intricate, high-dimensional anomaly-detection problems. Future 
work may investigate asynchronous federated learning, differential 
privacy, and secure aggregation to improve robustness and 
scalability. In the concluding remarks, the project provides a very 
good example of how federated learning can practically be deployed 
for privacy. It has practically maintained model performance. This 
foundation is very crucial if secure decentralized solutions for 
anomaly detection are to be deployed in real environments where 
the sensitivity of the data and confidentiality rank high.

7 Future scope

The future work can extend the present system in numerous 
meaningful ways. First, asynchronous client updates and quorum-
based or partial aggregation can be  enabled for better robustness 
against client dropouts and network delays. Second, more security can 
be imposed over the sensitive information of clients through means 
such as differential privacy, homomorphic encryption, or secure 

FIGURE 8

Convergence of accuracy and loss over communication rounds.
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multiparty computation. Third, further efficiency can be gained in 
anomaly detection via integration with hybrid quantum-classical 
models or variational quantum circuits, thus benefiting from quantum-
inspired representations. Fourth, incorporating interpretability 
measures like SHAP or LIME would allow domain experts to better 
understand how anomalies are decided. Finally, implementing the 
framework in real federated environments with very non-IID data and 
unstable client availability will aid in proving its scalability, resilience, 
and viability in multiple domains like health care, finance, and 
cybersecurity (Zhuang et al., 2020). The current setup uses a synthetic, 
balanced anomaly detection dataset crafted so that evaluation can 
be  controlled in reproducibility in a non-IID federated setting. 
Although this helps in filtering out and analyzing aspects of the 
federated architecture and hyperparameter sensitivity, it does not fully 
encapsulate a real-world anomaly detection scenario. This will be a part 
of future work wherein we intend to extend the evaluation to real-
world network intrusion datasets such as NSL-KDD, CIC-IDS2017, 
and UNSW-NB15 with highly class-imbalanced, heterogeneous 
feature, and realistically distributed attack types. Such datasets will 
allow a validation of robustness, generalizability, and practical utility of 
the model in actual anomaly detection scenarios, mainly in non-IID 
and adversarial settings. The current system architecture, being 
modular and dataset-agnostic, can easily ingest these datasets with 
minimal changes. A shallow feedforward neural network has been 
selected in the current approach due to its simplicity, communication 
overhead minimization, and ease of deployment in federated settings. 
Although good enough for preliminary benchmarking and testing on 
balanced datasets, such a neural architecture may not be able to capture 
the complex or temporal inter-dependencies that are often involved in 
real-world anomaly detections. Future extensions to this work will 
involve benchmarking the performance of more expressive models 
such as Long Short-Term Memory (LSTM) architectures in temporal 
or sequential anomalies and autoencoders in unsupervised anomaly 
detection. These models can potentially learn latent representations 
and reconstruct patterns, making them pertinent candidates for 
detecting subtle irregularities. The current system configuration in a 
modular fashion makes it trivial to incorporate the architectures 
mentioned above in both centralized and federated configurations 
while abiding by the privacy constraints.
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