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Until recently, the conversation about generative artificial intelligence in science 
revolved around the textual prowess of large language models such as GPT-3.5 
and the promise that they might one day draft a decent literature review. Since 
then, progress has been nothing short of breathtaking. We now find ourselves in 
the era of multimodal, agentic systems that listen, see, speak and act, orchestrating 
cloud software and physical laboratory hardware with a fluency that would have 
sounded speculative in early 2023. In this review, I merge the substance of our 
2024 white paper for the World Economic Forum Top-10-Technologies Report 
with the latest advances through mid-2025, charting a course from automated 
literature synthesis and hypothesis generation to self-driving laboratories, organoid 
intelligence and climate-scale forecasting. The discussion is grounded in emerging 
governance regimes—notably the European Union Artificial Intelligence Act and 
ISO 42001—and is written from the dual vantage-point of a toxicologist who has 
spent a career championing robust, humane science and of a field chief editor 
charged with safeguarding scholarly standards in Frontiers in Artificial Intelligence. 
I argue that research is entering a “co-pilot to lab-pilot” transition in which AI 
no longer merely interprets knowledge but increasingly acts upon it. This shift 
promises dramatic efficiency gains yet simultaneously amplifies concerns about 
reproducibility, auditability, safety and equitable access.
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1 Introduction

In 2023, the World Economic Forum (WEF) has embraced Artificial Intelligence-
Facilitated Healthcare by creating a Transformative Map in collaboration with Frontiers1. This 
gave us the opportunity2 to reach a broad audience with more than 50,000 downloads. The 
recorded launch event featuring Leena Pankhania (Generative AI Strategy Lead, AND Digital), 
María Fernanda Espinosa Garcés (former President of the United Nations General Assembly, 

1  https://intelligence.weforum.org/topics/a1G680000008gwUEAQ (last accessed 12 Aug 2025).

2  https://www.frontiersin.org/news/2023/06/26/ai-in-healthcare-world-economic-forum-emerging-

technologies-report (last accessed 12 Aug 2025).

OPEN ACCESS

EDITED BY

Tse-Yen Yang,  
China Medical University (Taiwan), Taiwan

REVIEWED BY

Jennifer D'Souza,  
Technische Informationsbibliothek (TIB), 
Germany
TaChen Chen,  
Nihon Pharmaceutical University, Japan
Furqan Alam,  
Sohar University, Oman

*CORRESPONDENCE

Thomas Hartung  
 thartung@jhsph.edu

RECEIVED 18 June 2025
ACCEPTED 14 August 2025
PUBLISHED 29 August 2025

CITATION

Hartung T (2025) AI, agentic models and lab 
automation for scientific discovery — the 
beginning of scAInce.
Front. Artif. Intell. 8:1649155.
doi: 10.3389/frai.2025.1649155

COPYRIGHT

© 2025 Hartung. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Review
PUBLISHED  29 August 2025
DOI  10.3389/frai.2025.1649155

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1649155&domain=pdf&date_stamp=2025-08-29
https://www.frontiersin.org/articles/10.3389/frai.2025.1649155/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1649155/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1649155/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1649155/full
https://orcid.org/0000-0003-1359-7689
https://intelligence.weforum.org/topics/a1G680000008gwUEAQ
https://www.frontiersin.org/news/2023/06/26/ai-in-healthcare-world-economic-forum-emerging-technologies-report
https://www.frontiersin.org/news/2023/06/26/ai-in-healthcare-world-economic-forum-emerging-technologies-report
mailto:thartung@jhsph.edu
https://doi.org/10.3389/frai.2025.1649155
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1649155


Hartung� 10.3389/frai.2025.1649155

Frontiers in Artificial Intelligence 02 frontiersin.org

United Nations) and the author is still available3. In continuation, in 
2024, the WEF published its report Top 10 Emerging Technologies of 
20244. The author co-drafted chapter one on AI for Scientific Discovery 
(Fink et al., 2024). To start, here, some of the author’s thoughts in 
developing the document with coauthors Olga Fink (Swiss Federal 
Institute of Technology in Lausanne), Sang Yup Lee (Korea Advanced 
Institute of Science and Technology) and Andrew Maynard (Arizona 
State University) summarized. Beyond this, I will discuss the most 
recent developments in the Generative AI space and their impact on 
the scientific machinery. Recent surveys have begun to map the 
intersection of generative AI capabilities and toxicological 
applications, outlining both sustainability opportunities and domain-
specific implementation challenges (Alam et al., 2025).

2 AI and large language models for 
scientific discovery — key issues and 
areas of impact

Artificial Intelligence (AI) and Large Language Models (LLMs) 
are transforming scientific research and enhancing the pace and scope 
of discovery. This section provides a high-level overview of the main 
domains where these tools are already reshaping practice—automated 
literature synthesis, hypothesis generation, experimental design, data 
analysis, and cross-disciplinary communication. The goal here is to 
introduce these areas and outline their broad significance; subsequent 
sections (4–7) expand on each with detailed methodologies, case 
studies, and domain-specific examples. These emerging technologies 
enable unprecedented breakthroughs by retrieving information, 
analyzing vast datasets, automating lab procedures, and facilitating 
new hypotheses through AI-driven interactions. The potential for AI 
extends across various domains, promising major advances in areas 
like disease treatment or green technologies, while at the same time, 
they are fostering better scientific global collaboration. As AI and 
LLMs integrate deeper into scientific methodologies, they not only 
expand the boundaries of current knowledge but also redefine how 
research is conducted.

2.1 Automated literature review and 
Meta-analysis transforming scientific 
synthesis and speeding up discovery 
processes

Automated literature review and the meta-analysis of the results 
of scientific studies using AI-driven systems represent a significant 
shift in how scientific knowledge is synthesized and utilized. These 
systems can process and analyze vast amounts of published research 
at speeds and scales unachievable by human efforts alone. By 
identifying patterns, trends, and anomalies within extensive datasets, 

3  https://toplink.weforum.org/sessions/a0W68000008hxmUEAQ/top-10-

emerging-technologies-2023? (free registration required) (last accessed 12 

Aug 2025).

4  https://www3.weforum.org/docs/WEF_Top_10_Emerging_Technologies_

of_2024.pdf (last accessed 12 Aug 2025).

AI can consistently offer comprehensive, up-to-date summaries and 
insights. This capability is especially crucial in fields like medicine and 
environmental science, where rapid advancements can have 
immediate implications on policy and practice.

One major area of impact is the enhancement of research 
efficiency. Now, researchers can devote more time to experimental 
design and data interpretation rather than sifting through literature, 
which is accelerating the pace of scientific discovery. These AI systems 
also promote a more interconnected scientific community. By 
breaking down barriers related to the accessibility of knowledge, they 
enable a democratization of information, allowing for a broader base 
of scientists to engage with cutting-edge research regardless of 
geographical or institutional boundaries.

Systematic reviews are the most objective and transparent way of 
synthesizing information originating from evidence-based medicine, 
and AI is facilitating and drastically accelerating this process. For 
example, Insilica’s SysRev5 has enabled more than 16,000 systematic 
review projects in the last 5 years. Equally, AI-driven platforms like 
Iris.ai6, Elicit.ai7 or Semantic Scholar8, or the ORKG ASK platform 
developed by the TIB Leibniz Information Centre for Science and 
Technology, which provides an open-source infrastructure for 
semantically enriched scholarly search and question answering9, 
facilitate comprehensive literature reviews by mapping out relevant 
studies and reducing reading time. PubMed, another example, uses AI 
for query manipulation, author name disambiguation, and automatic 
indexing of articles. PubMed for example uses AI for Best Match, 
query manipulation, author name disambiguation, and automatic 
indexing of articles (Kiester and Turp, 2022).

However, the reliance on AI for literature review also introduces 
challenges, including the need for open access publishing, consistently 
high-quality data inputs, and the potential for algorithmic biases. 
Ensuring the accuracy, fairness, and transparency of AI-driven 
reviews is essential to maintain scientific integrity and trust in 
AI-facilitated research methodologies. However, the value of 
comprehensive literature assessments and the increasingly systematic 
review of the body of existing knowledge is an enormous value 
proposition of AI-based literature analyses. A meta-analysis by 
Doneva et  al. (2024) underscores just how far the field has leapt: 
powered by an LLM-centric pipeline the team screened and extracted 
data from more than five-hundred pharmacogenomics papers, lifting 
F1 scores a full ten points above rule-based baselines and completing 
the entire review in under a week.

2.2 Hypothesis generation — the 
interdisciplinary impact of LLMs on 
research

The use of LLMs for hypothesis generation marks a transformative 
advancement in scientific research methodologies. By analyzing 

5  https://www.sysrev.com (last accessed 12 Aug 2025).

6  https://iris.ai/ (last accessed 12 Aug 2025).

7  https://elicit.com (last accessed 12 Aug 2025).

8  https://www.semanticscholar.org (last accessed 12 Aug 2025).

9  https://ask.orkg.org/; source code: https://gitlab.com/TIBHannover/orkg/

orkg-ask (last accessed 12 Aug 2025).
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existing datasets, these AI-driven systems can propose new scientific 
hypotheses, uncovering potential areas of investigation that might 
remain hidden using traditional analytical methods. This capability 
accelerates the discovery process and enhances the creativity and 
scope of scientific inquiry.

A significant benefit of LLMs in hypothesis generation is their 
ability to integrate and synthesize diverse data types from varied 
sources. This can lead to the growth of interdisciplinary research 
approaches, bridging gaps between distinct scientific domains and 
fostering innovative solutions to complex problems. Additionally, 
LLMs can identify subtle correlations and patterns that human 
researchers might overlook and propose novel hypotheses that can 
lead to breakthroughs in understanding and technology.

Examples of developments that highlight AI’s role in enhancing 
scientific understanding and innovation include, for instance, Placek 
et al. (2021) identify genes potentially linked to Amyotrophic Lateral 
Sclerosis (ALS), offering new research pathways. The paper uses 
sparse canonical correlation analysis (sCCA)—a machine learning 
method—to analyze genetic data in relation to cognitive outcomes 
in ALS patients. This is in enabling data-driven generation of a 
weighted polygenic risk score (wPRS). The use of AI to translate 
complex genomic data for clinicians to improve cancer treatment 
planning is advancing (O’Connor and McVeigh, 2025). Beyond this, 
a steadily growing body of AI-enabled studies now illustrates how 
machine-learning systems unravel scientific problems and open 
entirely new lines of enquiry. Jumper et al. (2021) AlphaFold-2 
(Google DeepMind10) stunned the structural-biology community by 
predicting protein folds across whole proteomes with near-
experimental accuracy, notably awarded recently the Nobel Prize in 
chemistry; laboratories that once spent months on crystallography 
can now begin functional studies immediately, accelerating 
everything from enzyme engineering to rare-disease research. In 
drug discovery, Stokes et  al. (2020) used a deep neural network 
trained on > 100 million compounds to identify the antibiotic 
“halicin,” a scaffold wholly unlike existing classes, thereby 
rejuvenating the antibacterial pipeline at a time of mounting 
resistance (Boiko et al., 2023). Autonomous chemistry has taken a 
parallel leap: Boiko et al. combined a GPT-4-driven planner with 
robotic synthesis and analysis, demonstrating that a language-model 
agent can design, execute and interpret multi-step reactions without 
human intervention, effectively turning hypothesis generation and 
testing into a closed computational loop. On the translational 
frontier, Insilico Medicine’s generatively designed anti-fibrotic 
ISM001-055 advanced to Phase II trials in 2024—the first 
AI-invented small molecule to reach that milestone and a proof-of-
concept for compressing pre-clinical timelines11. Materials science 
shows a similar pattern: DeepMind’s GNoME engine used graph 
neural networks to predict the stability of 380,000 hitherto unknown 
crystals, enlarging the searchable chemical space by almost an order 
of magnitude and pointing experimentalists to high-value targets for 
batteries and quantum devices (Merchant et al., 2023).

10  Available at: https://deepmind.com/research/case-studies/alphafold (last 

accessed 12 Aug 2025).

11  https://insilico.com/news/tnik-ipf-phase2a?utm_source=chatgpt.com 

(last accessed 12 Aug 2025).

Together these cases—from protein folding and antibiotic 
discovery to autonomous synthesis, AI-invented therapeutics, crystal 
prediction and probabilistic weather modeling—illustrate the breadth 
with which data-driven methods are redefining what questions 
scientists can ask and how quickly they can answer them.

Google DeepMind’s newly announced AlphaEvolve12 agent 
pushes the idea of hypothesis generation beyond the life sciences 
(Gibney, 2025): by coupling Gemini large-language models to an 
evolutionary search loop that autonomously proposes, tests and 
refines code-based “hypotheses,” the system recently discovered a 
48-multiplication algorithm for 4 × 4 complex-valued matrix 
multiplication—beating a record that had stood since 1969 and 
yielding double-digit speed-ups in critical AI kernels.

However, relying on AI for hypothesis generation also poses 
challenges related to their validation. Ensuring that these 
hypotheses are not only innovative but also scientifically valid and 
testable is crucial. There is also the need to address potential biases 
in the data used by LLMs, which could lead to skewed or 
unrepresentative hypotheses, impacting the direction and integrity 
of research efforts. While LLMs present exciting possibilities, their 
use must be  carefully managed if we  are to harness their full 
potential responsibly.

2.3 Enhancing experimental design — AI’s 
role in improving and optimizing 
experimental methodologies

AI’s role in enhancing experimental design is pivotal in 
streamlining research methodologies and refining the scientific 
process. By suggesting optimized methodologies, identifying potential 
pitfalls, and recommending improvements, AI systems can 
substantially increase the robustness and reliability of experimental 
outcomes. This capability is crucial across various scientific disciplines, 
where the complexity of experiments often poses significant challenges 
in design and execution.

The integration of AI in experimental design allows for a more 
systematic and data-driven approach to setting up experiments. AI 
algorithms can simulate multiple experimental scenarios in a virtual 
environment before actual implementation, saving time and resources 
while identifying the most promising approaches for investigation. An 
example are AI tools developed to optimize chemical reactions in 
pharmaceutical research, significantly reducing trial and error 
(Velasco et al., 2025). AI can suggest new and simpler experimental 
paths based on data from previous experiments (Boiko et al., 2023). 
This predictive capability ensures that experiments are not only well-
designed but also more likely to yield valid and reproducible results. 
An example of this is utilizing AI applications in designing clinical 
trials13 to identify the most effective therapeutic doses with minimal 
side effects, as demonstrated in recent adaptive trial simulations 
integrating Bayesian optimization for dose-finding in oncology.

12  https://deepmind.google/discover/blog/alphaevolve-a-gemini-powered-

coding-agent-for-designing-advanced-algorithms/ (last accessed 12 Aug 2025).

13  https://www.clinicaltrials.gov/ (last accessed 12 Aug 2025).
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However, the use of AI in this context also raises important 
considerations. The quality of outcomes from AI-assisted designs 
depends heavily on the underlying algorithms and the data sets 
used to train them. Ensuring the transparency and 
interpretability14 of AI decisions is essential to in maintaining 
trust and understanding among researchers. Moreover, there 
must be  a balance between AI suggestions and expert human 
oversight to ensure that experimental designs adhere to ethical 
standards and scientific rigor.

2.4 Data analysis and interpretation in 
complex research

AI’s profound impact on data analysis and interpretation in 
complex research fields such as genomics and epidemiology is 
reshaping the landscape of scientific discovery. By handling and 
interpreting vast datasets, AI systems enable researchers to identify 
patterns and relationships that are too subtle or complex for traditional 
analytical methods. The application of machine learning in genomics 
to predict disease susceptibility from vast genomic datasets represent 
examples (Wu et al., 2018; Ho et al., 2019; Long et al., 2023). This 
capability is crucial in areas where understanding the interplay of 
numerous genetic or environmental factors is essential to advancing 
knowledge and developing targeted interventions.

The integration of AI in these fields accelerates the research 
process, enhances the precision of findings, and supports more 
personalized approaches to treatment and prevention strategies. For 
example, in genomics, AI can predict gene function from DNA 
sequences, while in epidemiology, it can model disease spread and 
effectiveness of intervention strategies under various scenarios. 
Another example are AI-driven epidemiological models predicting 
the spread of infectious diseases like COVID-19 to inform public 
health decisions15.

However, the application of AI in data analysis also introduces 
significant challenges. Ensuring the accuracy and reliability of 
AI-generated insights requires robust algorithms and high-quality, 
well-curated datasets. There is also a critical need for transparency in 
AI methodologies to allow validation of the results by the scientific 
community. Moreover, ethical concerns regarding data privacy, 
consent, and potential biases in AI models must be  rigorously 
addressed to maintain trust and integrity in research outcomes.

2.5 Improving cross-disciplinary 
communication by breaking down barriers 
and fostering global collaboration

The facilitation of cross-disciplinary communication by AI 
models is a critical development in the landscape of scientific research. 
AI’s ability to translate and clarify domain-specific terminologies and 
concepts enhances understanding between diverse scientific 

14  https://www.interpretable.ai/interpretability/what/ (last accessed 12 

Aug 2025).

15  https://covid19.healthdata.org/ (last accessed 12 Aug 2025).

communities. This advancement is particularly vital in an era where 
complex global challenges require integrated approaches from 
multiple scientific disciplines.

AI-driven tools can bridge the communication gaps that often 
exist between different fields by providing accurate translations of 
specialized language and adapting information for interdisciplinary 
audiences. This enables researchers from varying backgrounds to 
collaborate more effectively, share insights, and innovate collectively, 
leading to breakthroughs that might not be achievable within single-
discipline silos. Microsoft’s AI translator project16, which bridges 
language gaps in scientific collaborations, is a prominent example of 
AI in this context.

However, the implementation of AI in facilitating cross-
disciplinary communication also introduces several challenges. 
Ensuring the accuracy of translations and interpretations of complex 
scientific terms is paramount; misinterpretations could lead to 
significant misunderstandings and potentially flawed research 
conclusions. Additionally, there is a need to maintain an appropriate 
level of human oversight in the integration of AI tools to preserve the 
nuanced understanding that expert knowledge brings to 
interdisciplinary collaborations. Balancing AI assistance with expert 
involvement is crucial to fostering productive dialogue and innovation 
across scientific boundaries.

3 From text-only models to embodied 
agents

The announcement of GPT-4 in March 2023 marked a watershed 
moment: the first general-purpose model to pass many professional 
examinations and to generate passable scientific prose with minimal 
prompt engineering. Rapid iteration followed. GPT-4o, released in 
May 2025, and GPT-5 in August of 2025 integrates real-time speech, 
vision and text processing with response latencies below three 
hundred milliseconds while retaining GPT-4-level reasoning 
accuracy17. Comparable leaps have come from the open-weight 
community. Meta’s Llama-3 series culminated in Llama-3.1, a 
405-billion-parameter model that matches closed systems on standard 
benchmarks but—crucially—ships its weights under a permissive 
license, enabling transparent fine-tuning and error analysis18. In 
parallel, research groups have shifted from single-shot prompting 
toward agentic chains that decompose user goals into sequences of tool 
calls. OpenAI’s Deep Research framework19, introduced in February 
2025, can retrieve, read, critique and synthesize hundreds of papers in 
under an hour while recording an audit trail of every intermediate 
step. The once-speculative idea of an “AI PhD student” suddenly 
feels proximate.

These technical breakthroughs rest on infrastructural and 
conceptual advances that deserve explicit mention. First, the cost of 

16  Available at: https://www.microsoft.com/en-us/research/blog/microsoft-

research-and-worldwidescience-org-collaborate-to-remove-language-

barriers/ (last accessed 12 Aug 2025).

17  https://openai.com/index/hello-gpt-4o/ (last accessed 12 Aug 2025).

18  https://ai.meta.com/blog/meta-llama-3-1/ (last accessed 12 Aug 2025).

19  https://openai.com/index/introducing-deep-research/ (last accessed 12 

Aug 2025).
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fine-tuning and inference has plummeted thanks to quantization, 
sparsity and specialized hardware, democratizing access for academic 
laboratories. Overall, from the release of ChatGPT 3.5 to the latest 
GPT-4o models, token inference costs have dropped by more than 
10–20 times in many cases, depending on the specific tier and usage. 
Second, reinforcement learning from human feedback has been 
augmented with automated critiques and constitutional training, 
allowing models to align with scientific norms such as citation fidelity 
and hedging. Third, multimodal pre-training on cross-domain 
corpora—ranging from protein structures and electron-microscopy 
images to climate reanalysis grids—has collapsed disciplinary silos, 
enabling zero-shot transfer that would have required years of bespoke 
modeling work. Taken together these developments supply the raw 
capability that underlies every application discussed in the remainder 
of this review.

4 Automated literature synthesis at 
human-superhuman scale

Systematic reviews and meta-analyses represent the evidentiary 
bed-rock of modern scholarship, yet they are notorious for the months 
of painstaking labor they demand. The arrival of retrieval-augmented 
generation (RAG) architectures has transformed this landscape. In a 
typical workflow an LLM-powered agent issues structured search 
queries to multiple bibliographic databases, screens titles and abstracts 
against eligibility criteria, downloads full-text PDFs, extracts 
quantitative effect sizes and finally produces a narrative synthesis 
complete with forest plots and GRADE assessments. The human 
expert now occupies a supervisory role, validating inclusion decisions 
and verifying statistical calculations rather than performing every 
mechanical step.

Enormous gains in efficiency are being reported across medicine, 
psychology and materials science. At the same time, new pitfalls are 
emerging. LLMs can hallucinate citations or confuse similarly titled 
papers. RAG mitigates but does not eliminate these errors, so editorial 
policies must continue to insist on verifiable DOIs and transparent 
search strategies.

The standard-setting community has responded swiftly. An 
extension of the PRISMA guideline tentatively named PRISMA-AI is 
under consultation (Cacciamani et al., 2023); it aims to reflect the 
most pertinent technical details for reproducibility, focusing on 
outcomes, risk of bias, and applicability in AI-related systematic 
reviews and adds check-boxes for model version, temperature, 
retrieval index, chunk size and citation-verification method. I strongly 
endorse the adoption of such metadata requirements. They will 
protect readers and downstream meta-researchers from cryptic AI 
pipelines while preserving the efficiency benefits of automation.

PRISMA-AI’s principal strength lies in its capacity to embed 
reproducibility and transparency into AI-assisted systematic 
reviews by mandating detailed disclosure of model versions, 
retrieval indices, chunk sizes, and citation-verification methods 
(Cacciamani et  al., 2023). This structured metadata facilitates 
verification, meta-research, and error tracing, enabling both 
human and machine auditors to assess the validity of review 
processes. Importantly, the framework extends the traditional 
PRISMA checklist to account for parameters unique to AI 
pipelines, such as temperature settings in large language models 

and retrieval augmentation strategies, which have been shown to 
influence inclusion decisions (Doneva et al., 2024).

However, limitations remain. Over-reliance on AI-assisted 
screening without adequate human oversight risks propagating 
selection bias or misclassification of studies, particularly when models 
are trained on incomplete or domain-biased corpora (Kiester and 
Turp, 2022). Furthermore, the absence of interoperability standards 
between review platforms complicates the adoption of uniform 
parameters across institutions. Adoption barriers include the need for 
targeted training in AI-specific review practices, integration of 
metadata requirements into journal editorial policies, and the 
availability of institutional infrastructure to support persistent storage 
of AI-generated outputs. Addressing these issues will be critical if 
PRISMA-AI is to transition from a consultation draft to a widely 
implemented reporting standard (Table 1).

5 Hypothesis generation and the rise 
of computational serendipity

Popperian science proceeds by bold conjectures and severe 
tests, yet the generation of those conjectures is often romanticized 
as an act of individual genius. AI offers a complementary, data-
driven route to creativity, surfacing connections that no single 
human mind could feasibly navigate. Multimodal foundation 
models trained on genomics, electronic health records, protein 
structures, chemical libraries and scholarly text can embed 
heterogeneous entities into a shared latent space. Cosine 
proximity in that space frequently corresponds to functional or 
causal relationships, suggesting drug-target pairs, gene-disease 
links or material-property correlations ripe for experimental 
validation. AI not only proves hypotheses; rather, it can accelerate 
the ideation phase. An illustrative example is the Acceleron 
system, by Nigam et al. (2024)20; this tool is specifically designed 
to assist researchers during the challenging ideation phase of the 

20  https://ai-2-ase.github.io/papers/7%5CCameraReady.pdf (last accessed 

12 Aug 2025).

TABLE 1  Comparative summary of PRISMA-AI and STARD-AI frameworks, 
highlighting key strengths, limitations, and potential adoption barriers.

Aspect PRISMA-AI STARD-AI

Strengths Reproducibility & 

transparency; AI-specific 

metadata (model version, 

retrieval parameters); 

verifiable DOIs

Structured checklist for 

diagnostic AI; dataset 

provenance; aligns with 

STARD; regulatory relevance

Limitations Risk of over-reliance; bias 

from incomplete corpora; 

lack of interoperability 

standards

Limited to diagnostic 

contexts; high compliance 

burden; variability in 

institutional readiness

Adoption 

Barriers

Training needs; editorial 

policy integration; 

infrastructure for metadata 

storage

Harmonization with other 

frameworks; training for 

authors/reviewers; phased 

enforcement
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research life cycle. It employs an agent-based architecture with 
Large Language Models (LLMs) acting as “colleague” and 
“mentor” personas to guide researchers through formulating 
comprehensive research proposals. Acceleron aids in validating 
the novelty of research ideas by identifying gaps in existing 
literature and suggesting plausible methodologies, effectively 
streamlining the early stages of research development.

Closed-loop biomedical QA systems can now approach semi-
autonomous literature analysis. In the WeiseEule framework by Aftab 
et al. (2024), a modular prompt-enhancement architecture allowed 
LLMs to retrieve, prioritize, and answer complex biomedical queries 
across large knowledge bases with minimal human input, achieving 
high retrieval precision and superior answer quality: In this “needle-
in-the-haystack” test across 50 complex biomedical questions, 
automated keyword extraction, re-ranking strategies, and modularity 
in namespace and LLM (GPT-3, GPT-4, etc.) were used.

Sceptics rightly warn that latent-space proximity does not equate 
to causation and that biases in training data can skew suggested 
hypotheses toward well-studied pathways. The next frontier therefore 
lies in coupling generative modeling with causal inference tools and 
active-learning loops, thereby iteratively steering the agent toward 
genuinely novel parameter regions. The Controllable Generative 
Modeling via Causal Reasoning introduces the CAGE framework, 
which infers cause-effect relationships within the latent space of deep 
generative models (Bose et al., 2022). By defining and estimating unit-
level causal effects, CAGE enables controllable generation based on 
counterfactual sampling, addressing the limitations of mere proximity 
in latent spaces. The next frontier in AI involves coupling generative 
models with causal inference tools and active learning loops to 
iteratively guide models toward unexplored parameter regions. 
Schölkopf et al. (2021) discuss how machine learning systems can 
move beyond statistical correlations to acquire causal representations 
of data, which are more robust and generalizable. They outline 
foundational principles and propose future directions, such as 
integrating causal structure learning with deep generative models.

6 Self-driving laboratories and 
autonomous experimentation

If automated literature synthesis accelerates the reading of science, 
autonomous laboratories promise to accelerate the doing21 (Tom et al., 
2024; Canty et al., 2025). The archetype is the ChemCrow architecture 
(Bran et al., 2024), which grafts a large-language-model front-end 
onto a set of specialized chemistry tools—spectrometers, liquid-
handling robots, chromatography systems—via an action-queue 
API. Give the agent a desired product and safety constraints; it 
searches reaction databases, proposes synthetic routes, orders 
reagents, schedules equipment time, executes experiments and 
analyses results, iteratively refining conditions until yield targets are 
met. In 2023 such systems were rudimentary demonstrations; by 2024 
Nature reported a fully autonomous synthesis of twenty-nine 
organosilicon compounds, eight of which were previously unknown 
(Boiko et al., 2023). Recent perspectives propose shared self-driving 

21  https://www.futurehouse.org (last accessed 12 Aug 2025).

laboratory (SDL) infrastructure, coupled with public compute-credit 
programs, as a means to democratize access and prevent concentration 
of autonomous experimentation capacity in a few well-resourced 
institutions (Canty et al., 2025).

The life-sciences analogue couples cell-handling robotics with 
high-content imaging and on-the-fly deep-learning analytics. In 
toxicology this means running concentration–response assays on 
human iPSC-derived organoids, capturing terabytes of microscopy 
data, extracting morphological embeddings and feeding those back 
into a Bayesian optimizer that decides the next dosing schedule 
(Renner et al., 2020; Elder et al., 2021). In vaccine research, AI has 
considerably compressed candidate ranking22 (Olawade et al., 2024). 
These achievements do not eliminate human scientists; they free us to 
focus on mechanistic interpretation and ethical oversight while 
machines handle the drudgery.

The regulatory implications are profound. Under the EU AI Act 
(European Union, 2024), any system that “establishes level of exposure 
to mitigate health hazards” is potentially high-risk if deployed outside 
pure research settings. Consequently, every self-driving lab targeted 
at translational endpoints must undergo conformity assessment, 
document data provenance and provide uncertainty estimates. ISO 
42001 (ISO/IEC, 2023) offers a management-system framework to 
satisfy these obligations, analogous to ISO 13485 for medical-device 
quality. Early adoption will shield laboratories from costly retrofits 
when regulation tightens further.

7 Domain case studies

7.1 Drug discovery

The promise that AI would deliver de-novo therapeutic molecules 
is materializing. AI-assisted drug discovery and design is 
revolutionizing the pharmaceutical industry by accelerating the 
identification and development of new drugs. AI platforms like 
AtomNet use deep learning to predict molecule behavior, speeding up 
drug discovery processes (Zhavoronkov et al., 2019). Utilizing AI to 
model biochemical processes and molecular interactions enhances the 
efficiency and effectiveness of drug discovery, significantly reducing 
the time and cost typically required to bring a new drug to market. 
Insilico Medicine’s fibrosis candidate entered Phase II in 2024, the first 
small-molecule whose scaffold and pharmacophore were generated 
end-to-end by deep learning23. Their AI platform, Pharma.ai, rapidly 
identifies and designs novel drug candidates, specifically a promising 
treatment for idiopathic pulmonary fibrosis—a serious lung condition. 
By leveraging deep learning for simulating drug interactions and 
optimizing molecular structures, they significantly shortened the 
pre-clinical development phase. This predictive capability not only 

22  https://www.mckinsey.com/industries/life-sciences/our-insights/beyond-

the-pandemic-the-next-chapter-of-innovation-in-vaccines? (last accessed 

12 Aug 2025).

23  In Silico Medicine. (2023). “AI-Driven Drug Discovery Propels Novel 

Candidate into Phase 2.” Available at: https://www.insilico.com/clinical-trials 

and https://www.eurekalert.org/news-releases/1058384 (last accessed 12 

Aug 2025).
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speeds up the discovery process but also improves the safety profile of 
developmental drugs by filtering out compounds with undesirable 
effects early in the process. DeepMind’s spinoff Isomorphic Labs aims 
to dose its first patient by late-202524. These programs succeed because 
they combine generative chemistry with target-identification models 
trained on AlphaFold2 structures and public omics repositories. They 
also illustrate a subtle regulatory tension: AI can shave years off 
pre-clinical optimization, but agencies still require explainability 
dossiers that reconcile black-box embeddings with pharmacological 
intuition. Explaining why a molecule works is becoming as important 
as demonstrating that it works.

7.2 Predictive toxicology and 
environmental risk

AI models are transforming predictive toxicology and 
environmental risk assessment by enabling the prediction of the 
toxicological effects of chemicals with reduced reliance on physical 
testing. This shift not only expedites the assessment process but also 
enhances safety in product development and environmental 
protection. By simulating how chemicals interact with biological 
systems, AI can predict adverse effects, significantly reducing the risk 
to both human health and the environment. For example, in the US, 
the Environmental Protection Agency’s Toxicity Forecaster (ToxCast)25 
or information on similar chemicals can be used to predict potential 
toxicity of chemicals using AI. A lifetime advocating for alternatives 
to animal testing has taught me that reproducibility and human 
relevance trump tradition (Hartung, 2024). AI read-across systems 
trained on physicochemical descriptors and curated in-vitro datasets 
now predict toxicity endpoints with a fidelity that rivals or exceeds 
in-vivo rodent studies (Luechtefeld et  al., 2018; Kleinstreuer and 
Hartung, 2024). The use of AI in this field allows for a broader analysis 
of chemical safety by processing large datasets more efficiently than 
traditional methods. This includes integrating diverse data types—
from molecular structure to real-world exposure data—to provide a 
comprehensive view of potential risks. Consequently, companies can 
refine product formulations to mitigate harmful effects before they 
reach the market, and regulatory bodies can make more informed 
decisions regarding chemical approvals. Building on recent analyses 
of generative AI’s potential for sustainable toxicology (Alam et al., 
2025), these models can be applied to predict chemical hazards while 
reducing reliance on animal testing.

However, the deployment of AI in toxicology and risk 
assessment comes with critical considerations. The accuracy of AI 
predictions depends heavily on the quality and breadth of the 
training data. There is also a need for transparency in AI processes 
to build trust among stakeholders (Hartung et al., 2025), ensuring 
that decisions are based on interpretability and verifiable models 
which create dependable and reproducible results (Kleinstreuer and 

24  https://www.pymnts.com/artificial-intelligence-2/2025/google-deepmind-

ceo-ai-designed-drugs-coming-to-clinical-trials-in-2025/?utm_source=chatgpt.

com (last accessed 12 Aug 2025).

25  https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-

data (last accessed 12 Aug 2025).

Hartung, 2024). Additionally, aligning AI-driven assessments with 
today’s regulatory standards and updating those standards to 
accommodate new AI capabilities are essential for realizing the full 
potential of AI in environmental safety.

7.3 Microphysiological systems and 
organoid intelligence

The integration of AI with microphysiological systems (Roth and 
MPS-WS Berlin, 2021) including organ-on-a-chip technology marks 
a significant advancement in biomedical research and pharmaceutical 
testing. Indeed, research on AI in organoids and organ-on-a-chip has 
increased by 1,500% over the last decade26, a clear indication of its 
perceived impact. AI enhances these technologies by enabling more 
accurate simulations of human organ responses, which are critical for 
effective disease modeling and drug testing. This synergy allows for 
the precise manipulation and monitoring of biological processes at the 
microscale, leading to better predictive models of drug efficacy 
and toxicity.

AI’s role in optimizing the design and operation of these systems 
includes automating the control of experimental conditions, analyzing 
large volumes of data to identify patterns, and predicting outcomes of 
pharmacological tests with high accuracy. This not only speeds up the 
research process but also reduces the reliance on animal testing by 
providing a more relevant human-based model.

However, the application of AI in this area also presents several 
challenges. Ensuring that AI systems can accurately replicate complex 
human physiology requires sophisticated algorithms trained on 
diverse and high-quality data. There are also ethical considerations 
related to data privacy and the potential for biases in the AI models, 
which could affect the reliability of the simulations. Additionally, the 
high costs associated with developing and maintaining advanced 
AI-integrated organ-on-a-chip systems may limit their accessibility 
and widespread adoption in the scientific community.

Organ-on-chip devices once produced informative but hard-to-
quantify readouts. AI solves this by extracting rich morphological 
embeddings and temporal signatures from high-content imaging. 
Increasingly, AI allows the modeling of MPS and its fine-tuning by 
loops of virtual and real-world experiments (Smirnova et al., 2018). 
The integration of microphysiological systems with deep learning 
analytics has seen a substantial rise in scholarly publications over the 
past decade, reflecting the growing convergence of bioengineering and 
artificial intelligence (Hartung and Smirnova, 2025). The next horizon 
is so-called Organoid Intelligence (Smirnova et  al., 2023): neural 
organoids interfaced with micro-electrode arrays whose electrical 
activity is modulated by reinforcement-learning algorithms. Whether 
such “brains in a dish” remain mere models or evolve into entities that 
raise moral questions is a discussion we  can no longer postpone 
(Hartung et al., 2024).

26  https://www.pharmiweb.jobs/article/research-on-ai-in-organoids-and-

organ-on-a-chip-sees-1-500-percent-growth-in-the-last-decade- (last 

accessed 12 Aug 2025).
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7.4 Materials science

Discovery of functional materials has historically relied on intuition 
and costly trial-and-error. DeepMind’s GNoME project leveraged graph 
neural networks to propose more than 380,000 potentially stable crystal 
structures, dwarfing the experimental record (Merchant et al., 2023). Yet 
independent laboratories have so far validated fewer than 5 %, 
highlighting the gap between computational novelty and practical 
synthesis. AI remains indispensable here—particularly for inverse design 
conditioned on manufacturability constraints—but the GNoME episode 
reminds us that hype can outpace verification when metrics are 
ill-defined. Self-driving laboartories might help here, e.g., A-Lab was 
introduced as an autonomous laboratory for the solid-state synthesis of 
inorganic powders (Szymanski et al., 2023; Peplow, 2023).

7.5 Climate-scale forecasting

Beyond laboratory and molecular sciences, AI is increasingly 
applied to climate-scale forecasting, leveraging multimodal Earth 
system datasets for near-real-time prediction of extreme events and 
long-term climate trends. Recent advances in AI-driven climate 
reanalysis have demonstrated substantial gains in spatiotemporal 
resolution and computational efficiency, enabling more accurate 
forecasting of tropical cyclones, heatwaves, and precipitation 
extremes at global scale (Kurth et  al., 2023). Such models, when 
integrated into the scAInce paradigm, exemplify how large-scale, 
machine-readable environmental data can directly inform mitigation 
and adaptation strategies, closing the loop between scientific 
prediction and policy action.

8 Toward governance, reproducibility 
and equitable access

Technological acceleration is a double-edged sword. 
Reproducibility crises already plague several disciplines; opaque AI 
pipelines risk magnifying the problem unless we embed transparency 
from the outset. I  therefore advocate a STARD-AI checklist 
(Sounderajah et  al., 2021), i.e., a guide for reporting studies that 
evaluate the accuracy of AI in diagnostic tests, that records dataset 
provenance, prompt parameters, temperature, tool calls and hardware 
details, paralleling the rigor expected for clinical trials. Publishers and 
grant agencies should mandate such metadata. Peer reviewers will 
need training, but the investment is minor compared with the societal 
cost of irreproducible science.

STARD-AI27 provides a structured checklist for transparent 
reporting of AI-centred diagnostic test accuracy studies, aligning with 
broader efforts to improve reproducibility and auditability in clinical 
AI research (Sounderajah et al., 2021). The framework’s strengths 

27  FAIRsharing.org: STARD-AI; STAndards for the Reporting of Diagnostic 

accuracy - Artificial Intelligence, DOI: 10.25504/FAIRsharing.fffd9e, https://

fairsharing.org/6247 (last accessed 12 Aug 2025).

include its emphasis on dataset provenance, model versioning, and 
performance metrics, which enable peer reviewers, editors, and 
regulators to assess the robustness and generalisability of reported 
findings. By mirroring the established STARD framework, STARD-AI 
benefits from a familiar structure that can be more readily integrated 
into existing clinical research workflows (Sounderajah et al., 2021). 
While STARD-AI offers a mature and well-structured framework for 
reporting AI-centred diagnostic test accuracy studies, its current 
scope remains primarily confined to diagnostic applications, and 
broader adaptation will be needed to address non-diagnostic AI use 
cases in scientific research. Analogous extensions for interventional 
trials (CONSORT-AI) and trial protocols (SPIRIT-AI) (Liu et  al., 
2020a, 2020b) illustrate how domain-specific guidance can be phased 
into editorial and regulatory workflows (Cruz Rivera et al., 2020).

Nonetheless, its current scope is optimized for diagnostic 
contexts; non-diagnostic AI applications in scientific research—such 
as AI for hypothesis generation, laboratory automation, or predictive 
modeling in environmental science—may require adapted or 
complementary guidelines. Limitations also include the resource 
and time burden of completing the checklist, particularly for small 
research teams or early-stage projects, and variability in institutional 
readiness to implement such standards (Hartung et  al., 2025). 
Potential adoption barriers include the need for harmonization with 
other domain-specific reporting frameworks, targeted training for 
authors and reviewers, and phased enforcement by journals and 
funding agencies to prevent compliance from becoming an 
exclusionary criterion.

Equity represents the other grand challenge. Access to 
foundation-model inference remains concentrated in a handful 
of corporations. Open-weight releases like Llama-3.1 demonstrate 
a viable alternative, yet academic researchers still face barriers 
when fine-tuning multi-billion-parameter models on local 
hardware. Cloud-credit programs and federated-learning 
consortia can help, but sustained public funding is indispensable. 
If frontier AI is to benefit global scholarship, we  must treat 
compute as a public infrastructure akin to telescopes 
or synchrotrons.

To thrive in supervisory “lab-pilot” roles within AI-augmented 
research environments, scientists will require a broadened skillset that 
extends beyond traditional domain expertise, including:

	•	 Causal inference and experimental design – to ensure AI-driven 
hypotheses and protocols are grounded in valid cause–
effect reasoning.

	•	 Algorithmic auditing and model interpretability – to evaluate AI 
outputs for bias, robustness, and reproducibility.

	•	 Data governance and ethics – encompassing privacy, consent, 
FAIR compliance, and equity-of-access principles.

	•	 Human–computer interaction (HCI) design  – to optimize 
interfaces and workflows for collaborative human–AI 
decision-making.

	•	 Cross-disciplinary communication  – to translate AI-enabled 
insights across domains and stakeholder groups.

	•	 Regulatory and policy literacy – to align AI-enabled research 
with applicable governance frameworks such as the EU AI Act 
and ISO 42001.
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Integrating these competencies into scientific training will require 
deliberate curriculum reform28 (National Academies of Sciences, 
Engineering, and Medicine, 2024), particularly at the graduate level. 
Emerging pilot programmes—such as interdisciplinary data ethics 
courses at major research universities, doctoral tracks combining 
machine learning with biomedical applications, and professional 
certifications in AI governance—demonstrate viable models for 
embedding these skills alongside traditional disciplinary training. 
Building on such examples, graduate curricula could incorporate 
modular coursework on algorithmic accountability, causal reasoning, 
and HCI, coupled with practicum experiences in AI-enabled 
laboratories. Partnerships between universities, industry, and 
regulatory bodies can further ensure that training remains aligned 
with evolving technological capabilities and governance requirements. 
By institutionalizing this skillset, the next generation of scientists will 
be prepared not only to supervise AI-driven research effectively, but 
also to safeguard its integrity, inclusivity, and societal relevance.

9 From AI for science to science for 
AI: toward scAInce

The previous sections portrayed AI primarily as an instrument 
that accelerates existing scientific practice. A more profound 
transformation is now visible: scientific practice itself is being 
reorganized to suit the needs and affordances of AI. I  call this 
emerging paradigm scAInce—a word fusion that signals a shift from 
science powered by artificial intelligence to science optimized for 
artificial intelligence.

The core premise of scAInce is that a machine-readable body of 
knowledge, rather than a corpus written solely for human eyes, will 
increasingly shape what counts as public knowledge. Large language 
models and graph neural networks learn from structured 
representations—tokens, triples, tensors—and their performance 
scales with the volume, completeness and consistency of those 
representations. A PDF that buries experimental details in prose is 
barely more digestible to a model than to a hurried reader; by contrast, 
a publication that exposes its methods, results and metadata in 
interoperable formats can be ingested, compared, critiqued and reused 
at scale. The consequence is a reorientation of scholarly norms toward 
openness, standardization and machine interpretability.

While Computational Science traditionally refers to the use of 
algorithmic models and numerical simulations to address domain-
specific questions, and Data Science to the extraction of insights from 
large datasets through statistical and machine learning methods, 
scAInce differs in both orientation and operational logic. It treats the 
scientific process itself as an optimizable system for machine 
reasoning, reorganizing knowledge production to maximize machine 
interpretability and information efficiency. Whereas Computational 
Science and Data Science typically begin from human-posed questions 
and adapt tools to fit them, scAInce increasingly allows the capabilities 
and constraints of AI systems—such as data format requirements, 

28  UNESCO (2021). Recommendation on Open Science. Paris: 

UNESCO. https://www.unesco.org/en/legal-affairs/recommendation-open-

science (last accessed 12 Aug 2025).

model scalability, and search-space tractability—to shape which 
questions are asked, how they are framed, and how evidence is 
generated. This raises the prospect that research agendas may 
gradually shift from curiosity-driven exploration toward problems 
that are computationally convenient or yield rapid performance gains 
for AI. While such alignment can accelerate progress, it also risks 
narrowing the epistemic landscape, privileging machine-tractable 
inquiries over those that are societally important but algorithmically 
challenging. Recognizing and mitigating this bias—through 
governance safeguards, diversity-of-approach metrics, and deliberate 
preservation of exploratory science—will be essential to maintaining 
a balanced and inclusive research ecosystem. To clarify these 
distinctions and situate scAInce within the broader landscape of 
AI-enabled research, Table 2 compares its scope, epistemic drivers, 
inputs, methodological feedback loops, and associated risks with those 
of computational science and data science.

9.1 Machine-readable publications as the 
default scholarly unit

An open, machine-readable publication begins with full-text that 
carries persistent identifiers for every cited entity—ORCID29 for 
authors, ROR30 for institutions, DOI31 for references, RRID32 for 
reagents—and continues with well-structured supplementary 
material. Figures link to raw image repositories; tables export as CSV 
(Comma-Separated Values); statistical analyses store provenance 
information on software version, seed and confidence intervals. The 
Singapore Statement on Research Integrity33 called for transparency 
as early as 2010, but until recently the incentive to comply was weak. 
Today compliance confers a tangible performance dividend when AI 
systems mine the literature, making richly annotated papers more 
visible, more citable and ultimately more fundable.

9.2 FAIR data and the primacy of metadata

The FAIR principles34—findable, accessible, interoperable and 
reusable—have become a mantra, yet in practice many “FAIR” datasets 
are discoverable only through bespoke portals or lack harmonized 
ontologies. scAInce demands stricter adherence. Metadata is no longer 
administrative afterthought but scientific infrastructure. Higashi et al. 
(2024) offer a vivid proof-point: their LLM-guided refactoring engine 
harmonized fourteen-million sample descriptors from the Gene 
Expression Omnibus with near-perfect precision, turning a notorious 
metadata quagmire into a fully query-able knowledge graph overnight. 
Without controlled vocabularies, units, provenance and licensing terms, 
even petabyte-scale repositories remain opaque to automated reasoning. 

29  https://orcid.org (last accessed 12 Aug 2025).

30  https://ror.org (last accessed 12 Aug 2025).

31  https://www.doi.org (last accessed 12 Aug 2025).

32  https://www.rrids.org (last accessed 12 Aug 2025).

33  https://www.jsps.go.jp/file/storage/general/english/e-kousei/data/

singapore_statement_EN.pdf (last accessed 12 Aug 2025).

34  https://www.go-fair.org/fair-principles/ (last accessed 12 Aug 2025).
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The European Open Science Cloud35 has begun to enforce ontology-
aligned deposition for funded projects, and major US agencies follow suit 
under the 2023 federal data-sharing mandate. Journals should do the 
same. At Frontiers in AI we  now request a machine-readable data-
availability statement as a condition of acceptance.

9.3 From small-scale experiments to 
quality-controlled megasets

A second hallmark of scAInce is the replacement of piecemeal, 
idiosyncratic studies by coordinated campaigns that create megasets: 
large, quality-controlled datasets whose marginal cost per additional 
observation is low relative to their societal value. The rationale echoes 
evidence-based medicine: individual trials are fragile, but systematic 
evidence accumulates power. In toxicology, integrated testing strategies 
that combine high-throughput screens, computational models and 
selected in-vivo assays already outperform single-study paradigms 
(Caloni et al., 2022). Similar trends are evident in structural biology, 
where the AlphaFold Protein Structure Database (Varadi et al., 2024) 
delivers complete proteomes, and in environmental monitoring, where 
global biodiversity observatories generate harmonized sensor streams. 
AI thrives on these megasets, and in turn it exposes residual coverage 
gaps, guiding where next to invest experimental resources.

9.4 AI as director of research: creating the 
missing nodes

Once knowledge is represented as a graph—nodes for entities, 
edges for relations—AI can compute the value of potential new 
nodes. Techniques borrowed from active learning and Bayesian 
experimental design estimate the expected information gain of a 
yet-to-be-performed study. Funders can therefore allocate budgets 

35  https://research-and-innovation.ec.europa.eu/strategy/strategy-research-

and-innovation/our-digital-future/open-science/european-open-science-

cloud-eosc_en (last accessed 12 Aug 2025).

not by topical fashion or political pressure but by information 
efficiency: which experiment, if executed, would shrink overall 
uncertainty the most? There is enormous potential in such 
information-gain scoring, letting review-bots rank grant applications 
and, in effect, price experimental uncertainty in real time. Converging 
evidence confirms the feasibility of that vision: Google’s newly 
granted patent US 11354342 B236 operationalizes an “information-
gain” score for ranking documents in automated assistants, the 
Bayesian-experimental-design community now offers differentiable 
estimators of expected information gain that can steer live wet-lab 
protocols (Ao and Li, 2024), and the GFlowNets framework 
generalizes the same criterion to high-dimensional molecular and 
materials search—together showing that uncertainty-priced, 
information-efficient science already works from search engines to 
bench-top synthesis. The result is a virtuous cycle: comprehensive 
datasets feed better models; models reveal knowledge gaps; 
gap-driven funding yields new data that further enrich the Commons.

9.5 An emerging information economy for 
experimental studies

The epistemic currency of scAInce is machine-readable information. 
When data acquire clear, computable utility, market-like mechanisms 
become feasible. Tokenized data rights, prediction-market-inspired 
funding pools, and pay-for-results contracts could channel private capital 
into high-impact experiments while keeping outputs open. Skeptics fear 
enclosure of the knowledge commons, yet well-designed licenses—
copyleft for data, permissive for downstream models—can reconcile 
investment incentives with openness. The Global Alliance for Genomics 
and Health37 has demonstrated that federated data trusts can protect 
individual privacy while enabling population-scale AI analyses. Similar 
structures could underwrite climate models, materials databases or even 
large-animal toxicology surrogates.

36  https://patents.google.com/patent/US11354342B2/en (last accessed 12 

Aug 2025).

37  https://www.ga4gh.org (last accessed 12 Aug 2025).

TABLE 2  Comparison of computational science, data science, and scAInce.

Dimension Computational science Data science scAInce

Primary objective Simulate and model complex phenomena 

using numerical algorithms

Extract patterns, trends, and 

predictions from datasets

Optimize the entire scientific process for machine 

interpretability and information efficiency

Epistemic driver Human-curiosity-driven problem 

formulation

Data availability and statistical 

inference opportunities

Machine tractability, scalability, and active learning value 

estimates

Core inputs Mathematical models, domain theory, and 

simulation parameters

Structured/unstructured datasets; 

statistical and ML algorithms

Machine-readable corpora, standardized metadata, 

interoperable knowledge graphs, megasets

Methodological 

feedback loop

Human designs model → computation 

produces results → human interprets

Human curates data → model extracts 

patterns → human interprets

AI identifies knowledge gaps → prioritizes experiments → 

integrates new data → re-optimizes research direction

Role of human 

expert

Model design, parameter tuning, 

interpretation

Data cleaning, feature engineering, 

interpretation

Supervisory oversight, ethical governance, methodological 

audit, cross-domain integration

Risks Model oversimplification, numerical 

instability

Data bias, overfitting, spurious 

correlations

Agenda drift toward machine-tractable problems, erosion 

of exploratory science, concentration of data resources
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9.6 Impact on data-poor and qualitative 
disciplines

An important dimension of equity in scAInce relates to disciplines 
that are inherently data-poor or rely primarily on qualitative methods, 
such as parts of the humanities, anthropology, certain branches of 
history, and emerging scientific domains still in early data-collection 
phases. Because the scAInce paradigm thrives on large, standardized, and 
machine-readable “megasets,” these fields risk marginalization if their 
contributions are undervalued in algorithmically optimized research 
agendas. This could deepen existing disparities in visibility, funding, and 
scholarly influence, while narrowing the epistemic diversity needed for 
a balanced scientific ecosystem.

Several approaches can mitigate this imbalance. First, synthetic-
data generation—when transparently documented—can augment 
sparse datasets, enabling AI models to explore plausible scenarios 
without displacing the interpretive richness of original sources. 
Structured frameworks for synthetic data creation, spanning both 
quantitative and qualitative domains, have recently been proposed, 
with applications including synthetic populations, expert systems, 
and survey replacements (Timpone and Yang, 2024). Second, cross-
modal transfer learning from richer domains can allow models to 
draw inferences even from small or unstructured corpora, for 
example by aligning textual, visual, and metadata representations. 
Third, machine-assisted “quantitizing” approaches can help transform 
qualitative insights into analyzable formats without eroding their 
contextual nuance, facilitating the integration of humanities and 
social science data into large-scale AI systems (Karjus, 2023). Fourth, 
funding earmarks and policy incentives can explicitly support the 
digitization, annotation, and integration of qualitative archives into 
interoperable formats, ensuring they remain accessible to AI systems 
without losing their interpretive depth. Finally, governance 
frameworks should monitor and report discipline-level AI adoption 
and impact metrics to identify early signs of exclusion. Embedding 
such safeguards into scAInce infrastructures will help maintain the 
inclusivity, interdisciplinarity, and cultural breadth that are vital to 
the long-term health of the scientific enterprise.

9.7 A call to action

Researchers should treat machine-readable dissemination as integral 
to the scientific method, not as an optional post-hoc gesture. Journals 
must raise the bar on data and metadata deposition. Funders ought to 
allocate a fixed percentage of every grant to ensure FAIR compliance and 
to support community curators. Finally, the international policy 
community, building on UNESCO’s 2021 Recommendation on Open 
Science38, should negotiate an intergovernmental accord that guarantees 
open, machine-readable access to publicly funded research.

The reward is immense. scAInce promises an era in which 
collective understanding expands not by incremental labor but by 
compounding returns on shared information. If we  seize the 
opportunity, AI systems will not merely replicate existing scholarship; 
they will help us design its scaffolding.

38  https://www.unesco.org/en/open-science (last accessed 12 Aug 2025).

9.8 Risks and ethical considerations

Science for AI raises its own dilemmas. If citation counts already 
skew toward English-language journals, algorithmic optimization may 
amplify the imbalance, marginalizing scholars from the Global South 
whose work remains under-represented in major repositories. Data 
monopolies could emerge if access to megasets becomes paywalled or 
subject to opaque governance. Equally troubling is the potential 
erosion of serendipity: an AI that allocates funds purely by information 
gain might undervalue exploratory research lacking obvious 
immediate payoff. Governance frameworks must therefore include 
equity-of-access and diversity-of-approach metrics alongside 
efficiency scores.

A less quantifiable but equally significant concern is the potential 
erosion of the “spirit of science” if research agendas increasingly 
converge on machine-tractable problems. Left unchecked, 
algorithmic optimization for information gain or predictive accuracy 
could inadvertently deprioritize exploratory, high-risk inquiries that 
lack immediate computational payoff but are essential for paradigm 
shifts. As summarized in Table 2, scAInce differs from computational 
and data science in that its methodological feedback loops are often 
shaped by AI system capabilities; without corrective measures, this 
dynamic may narrow the epistemic landscape, privileging efficiency 
over curiosity. This narrowing of focus may reinforce existing 
disciplinary hierarchies, deepen inequalities between data-rich and 
data-poor fields, and reduce the diversity of epistemic approaches 
that sustains scientific resilience. To counter this tendency, 
governance frameworks should incorporate diversity-of-approach 
metrics alongside efficiency and reproducibility benchmarks, 
ensuring that funding and publication systems explicitly reward 
methodological pluralism, underrepresented research topics, and 
unconventional study designs. Such safeguards will help preserve the 
creative breadth and serendipitous discovery that have historically 
driven transformative advances in science.

10 Conclusion: from co-pilot to 
lab-pilot

We stand on the brink of a qualitative shift in how knowledge is 
generated. The distinction between reading science and doing science 
is blurring as agentic AI systems orchestrate both literature review 
and laboratory execution (Figure 1). Early evidence suggests that 
tasks once requiring months now compress into days without 
sacrificing rigor. Yet the speed advantage brings proportional 
responsibility. Regulators, editors and researchers must collaborate to 
embed transparency, safety nets and equitable access before 
autonomous workflows become irreversible defaults. Figure 2 gives 
an example of a lab-pilot to toxicology.

Seen from the vantage-point of 2025, the horizon is startlingly 
clear. Within a few years, expert elicitation projects such as 
METR39 (Measuring Elicitation of Technological Capabilities), 
using structured methods to extract knowledge from experts to 
make decisions or assess performance in areas where information 

39  https://metr.org
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is limited or uncertain, predict that goal-directed agents will 
complete month-long human research projects within a single 
day. I  find the estimate optimistic yet believable. The critical 

question is not whether science will accelerate but whose science 
will accelerate and under what safeguards. As editors we have the 
privilege and the duty to shape this trajectory. Let us wield that 

FIGURE 2

Example of the envisaged lab-pilot for toxicology.

FIGURE 1

Illustration of the anticipated transition from AI as a supportive co-pilot to an orchestrator of scientific processes.
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responsibility with the same curiosity, humility and insistence on 
evidence that define the best of our profession.
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