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Hairfall is a primary concern for many individuals worldwide today. Hair strands
may fall due to various conditions such as hereditary factors, scalp health issues,
nutritional deficiencies, hormonal fluctuations, or irregular sleep cycles. Our
study presents a novel approach to detecting hairfall trends over time. While
traditional methods infer hairfall rates using CNN and SVM models—classifying
types of hairfall based on high-resolution images and complex techniques—this
study addresses the issue by analyzing user-provided data through simple,
straightforward questions, maintaining ease of use. Each attribute is collected
using a time-centric approach on a daily or weekly basis. For time series
anomaly detection, we utilize LSTM, Random Forest, and the Temporal Fusion
Transformer (TFT) to model hairfall fluctuations and compare them with the
ARIMAX model across various metrics to identify the most suitable one. The
TFT model is selected as the most suitable, with 97.5% accuracy and 97.4%
precision over other models supporting anomaly detection. This allows us to
establish normal margins of deviation from typical hair shedding cycles. This
study enables the proactive detection of anomalies, indicating sudden increases
or decreases in hairfall due to hormonal fluctuations. The results support the
early identification of potential health risks before they become intensified and
help suggest appropriate dietary plans.

KEYWORDS

hairfall detection, time series analysis, anomaly detection, hormonal imbalance,
predictive modeling, health monitoring, nutritional deficiency, scalp health

1 Introduction

Hairfall has revolutionized both the medical and business worlds. According to our
survey, over 80% of people experience hair loss, highlighting the growing importance
of early detection of critical health conditions. As individuals become more cautious
about their hairfall rates, they tend to invest more in products to handle the issue. This
increasing concern has given rise to business trends, including hair treatments, hair care
solutions, and diagnostic services. While these solutions may offer temporary relief, they
often fail to detect the underlying severity of the problem or the need to investigate
potential health conditions. Existing detection methods typically rely on analyzing images
of hairfall and comparing them with early-stage cases to assess risk levels. These methods
employ techniques such as CNN, SVM, KNN, and other traditional algorithms to detect
hairfall. In contrast, our research adopts a scientific and data-driven approach, where
data is collected using time as the primary factor and tracked on a daily or weekly basis,
which utilizes large volumes of numerical data processed through successive encodings.
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This method eliminates the dependency on high-resolution
images, which often require powerful workstations for large-
scale computation.

Studies are conducted to identify key contributing factors
that influence hairfall rates, aiming to enhance prediction and
accuracy. Attributes such as biological factors, environmental
influences, hereditary conditions, hair-related factors, and lifestyle
patterns are found to have a meaningful impact on hairfall
trends over time. The selection of these features was based on
insights from several studies and validated through performance-
based feature extraction methods. Unlike traditional methods,
our approach detects anomalies and embarks on a time-centric
pattern that highlights irregularities and fluctuations in hairfall over
specific periods. These spikes act as early indicators of potential
health threats, enabling timely intervention and promoting both
healthcare awareness and personal care through appropriate
dietary adjustments.

The main purpose of the research specifically deals with
machine learning-based techniques that include LSTM, Random
Forest, and the Temporal Fusion Transformer (TFT), compared
to the ARIMAX model, which is a variant of the ARIMA model.
The proposed detective model is among those tested and compared,
using various statistical measures to evaluate the R-squared score,
mean square error, accuracy, specificity, sensitivity, precision, and
recall. The adoption of machine learning algorithms has opened up
the possibility of equipping each individual with the power of self-
health monitoring, especially for hair health and overall wellbeing.

2 Literature survey

Recent advancements in artificial intelligence (AI) and deep
learning have led to innovative methods for detecting hair loss
and scalp-related issues. These new methods employ techniques
such as grouping similar data (clustering), identifying patterns in
images (image classification), predicting future events (time series
forecasting), and combining multiple models (hybrid ensemble
models). This section of the literature review explains how different
studies have contributed to this area of research.

2.1 Al and ML-based hair fall prediction

For example, Farooq et al. (2024) developed an Al-based
model to predict hair fall patterns by looking at nutritional
factors such as protein, iron, manganese, and calcium. They
utilized machine learning models, including Gradient Boosted
Trees, Random Forest, K-Nearest Neighbors (KNN), Support
Vector Machine (SVM), and Logistic Regression, as well as
combined models, to enhance prediction accuracy. Roy and Protity
(2023) employed image processing and machine learning to detect
irregularities in hair and scalp, including diseases such as alopecia,
psoriasis, and folliculitis. For the classification method, a CNN
was employed, with the support of pre-processing steps such
as histogram equalization and data augmentation to enhance
accuracy. Sultanpure et al. (2024) presented a deep learning model
using CNN combined with a Django-based web platform to
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diagnose diseases. Their approach, which employed trichoscopy
images, achieved a 91.1% validation accuracy in targeting alopecia.
Chowdhury et al. (2024) conducted a deep learning model
comparison between VGG19, Xception, Inception, ResNet, and
DenseNet for disease classifications on hair and scalp. To assist in
the interpretation of the diagnostic tasks in dermatology, Grad-
CAM and saliency maps were used (Chowdhury et al., 2024).
Khan and Subramaniam proposed a cellular automaton-based
rough set neural network with the name of CS-CNS for this task
(Khan and Subramaniam, 2023). The authors merged the Cellular
Automaton-based Rough Set Theory (CA-RST) Method to improve
the performance of the CNN. Khatun et al. used a survey to identify
the hair fall patterns in the Bangladeshi community with the help of
an ML study (Khatun et al., 2022). They utilized SVM, Naive Bayes,
Decision Tree, Random Forest, and XGBoost as the models of
comparison. Sajid et al. conducted an extensive survey that unveiled
patterns of hair care practices and horological patterns (Sajid et al.,
2022). They found out that the female population was more prone
to hair fall in comparison with the male population due to their
exercise regimen. Naga Sai Chennu et al. performed a comparative
analysis of individual algorithms and an ensemble method in their
study (Sai et al., 2023). They worked with various models, including
SVM, K-NN, decision tree, random forest, and logistic regression.
Through their ensemble-based approach, the authors observed
that this method outperformed all other individual methods,
resulting in higher precision and recall rates. Through this study,
the authors have effectively presented the possibility of uniting
models to get the correct diagnostic results for the hair fall-related
conditions. Moreover, the work mainly relied on organized data
and tabular features and had no link to real-time or image-based
scalp diagnosis. Therefore, it was not all that relevant in the field
of dermatology. In addition, the data used were private, which
therefore does not support the generalization needed to obtain
the results. Pandikumar et al. (2024) proposed a deep learning
framework combining genetic data and scalp health metrics,
demonstrating the importance of integrating multimodal inputs for
personalized hair loss prediction. Srinivasan et al. (2023) researched
stress-induced hair loss with the help of KNN and other ML
techniques. Their model also integrated the impact of psychological
factors such as depression, anxiety, and attention deficit disorder
(Srinivasan et al., 2023). Daniels et al. (2021) carried out a proof-
of-concept study that explored the use of artificial intelligence in
evaluating hair assembly features only in terms of their capability
to be applied to the field of hair care treatments (Daniels et al.,
2021). The study compared Al algorithm results with expert human
evaluations, revealing that machine learning techniques could be
highly beneficial in cosmetic science, as they can provide unbiased
and reproducible results, particularly for distinguishing between
treated and untreated hair samples. Although this study is an
important example of the advantages of applying Al in cosmetic
product development, its scope was limited to the product’s visual
aspects, leaving the analysis somewhat superficial. The study did
not delve into examining underlying features or linking them to
deeper clinical conditions such as scalp health, follicular integrity,
or disease progression. Table 1 details how they applied machine
learning, image-based methods, ensemble models, clinical areas,
and real-time applicability.
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TABLE 1 Comparative analysis of hair loss research studies based on technological and clinical attributes.

Farooq et al. (2024) v X v v X
Roy and Protity (2023) v v % v X
Sultanpure et al. (2024) v v X v X
Chowdhury et al. (2024) v v v v X
Khan and Subramaniam (2023) v v X v X
Khatun et al. (2022) v X v v X
Haag and Chennu (2023) v X v v X
Srinivasan et al. (2023) v X X v X
Hadshiew et al. (2024) v X X v X
Trueb (2021) v v v v v
Behal et al. (2024) v v X v X
Suryawanshi et al. (2024) v v X v X
Chang et al. (2020) v v v x v
Rahman et al. (2024) v X % v X
Aditya et al. (2022) v v X v X
Hafsa et al. (2025) v X X v v
Daniels et al. (2021) v v X X X
Kim et al. (2022) v v X v v
Ho et al. (2023) v X X v X
Esfandiari et al. (2012) v X X v X
Pillai et al. (2021) X X X X v
Elsworth and Guttel (2020) X X X X v
Prater et al. (2024) X X v X v
Lindemann et al. (2021) X X X X v
Lim et al. (2021) X X X X v
Coccomini et al. (2024) X v X X v

2.2 Conventional insights into hair loss
without Al integration

Ina M. Hadshiew et al. (2024) commented on the psychological
and emotional aspects of hair loss, with a focus on the stress-
induced Telogen Effluvium (TE) and Androgenetic Alopecia
(AGA) types. The data gathered from the investigation gave
information about the influence of chronic stress on hair
loss, which, in turn, significantly leads to serious psychological
problems, such as low self-esteem, anxiety, and social seclusion.
They suggested the incorporation of stress assessment and
psychological support as part of clinical diagnosis and treatment.
One of the study’s critiques is its excessive reliance on observational
and qualitative methods, which may lead to inadequacies in
the use of objective diagnostic tools or data-driven approaches.
The research did not utilize any computational models, machine
learning techniques, or quantitative biomarker analysis to predict
stress levels or the degree of hair loss. Furthermore, the
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non-availability of large-scale clinical research studies and real-
time monitoring equipment necessitated that the authors limit the
application and expansion of their results to a very specific area.
To address these provided gaps, potential research can utilize the
Al-driven selection of diagnostic tools, the use of wearable stress
monitors, and multimodal data integration to create an augmented,
predictable, and personalized stress-related hair loss management
system. In 2021, Trueb published an exhaustive biological review of
pattern hair loss (PHL), concentrating on PHLs genetic, hormonal,
prostaglandin-related, and epigenetic causes (Trueb, 2021). The
trends that push the condition of pattern hair loss forward in both
sexes and the treatments of antiandrogens and their mechanisms
were discussed by the contributors. Even though their review is
prevailing in the field of PHL, it is a great source of information
that is lacking. The study is notably beneficial due to its lack
of computational modeling, predictive analytics, or integration
with the latest Al-based diagnostic tools. Moreover, the literature
or review paper does not utilize data-centric risk assessment
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algorithms or real-time assessment of treatment efficacy, which
places it more on the basic research side and makes it almost
unavailable in clinical deployment and personalized healthcare
settings. To overcome these limitations, Al can be combined with
patient biology to construct predictive, patient-specific models of
hair loss risk.

2.3 Deep learning and computer vision in
scalp health

For front-facing full-head images, Behal et al. (2024) suggested
a 2D classifier that is CNN-based for the prediction of stages of
hair loss. The authors of this research intended to develop a tool
to be used by medical staff to determine whether the patient has
this problem with the help of the prompt (Behal et al., 2024).
Suryawanshi et al. (2024) introduced an evolved CNN model
inspired by the VGG to diagnose dandruff and three types of
hair diseases, namely fungal infections and alopecia. The authors
have resorted to deep learning, not only for imaging but also for
image processing, to increase the accuracy of disease classification
(Suryawanshi et al., 2024). Chang et al. (2020) hit on the idea
of ScalpEye, a system to check one’s scalp conditions through a
convoluted neural network-processed camera and a platform that
is integrated into the cloud. The invention adopted Faster R-CNN
with Inception-ResNet_v2 for disease recognition (Chang et al.,
2020). Benhabiles et al. (2019) have completed the first research
where deep learning techniques were used for the classification
of men’s hair loss. The study, as well as the research group,
concerned the usage of the Dorban medical classifier in the area
of diagnosis (Benhabiles et al., 2019). Rahman et al. (2024) have
proposed building an archive of data to be used in the future
with CNN and LSTM architectures to be used in a model in the
time series for predicting the severity of hair loss for a person
who has a family history of hair loss, according to their DNA
samples and information about the person’s health status. This
study examined various machine learning models, including SVM,
CNN, and random forest, to evaluate their accuracy rates. Among
them, the best-performing model was the CNN model, with 92%
accuracy, as reported by (Aditya et al., 2022). Emerging AI Trends
and Technological Insights. Hafsa et al. (2025) have highlighted
features of the future of AI that will be implemented through the
ARTAS robotic system. Moreover, the nanozyme therapy of ML
would be a good targeting treatment for the disease. Accordingly,
the treatments would take into account comfort and should not be
harmful to the patient in any way. The authors have put a special
emphasis on the use of these reagent-free therapies (Sheikh et al,
2025).

Daniels et al. (2021) worked on developing Al just to put it
into practice for auditing surgical processes, which is partly because
the method has been promised to be more efficient than manually
raising trails. However, they also used it innovatively; as might be
observed, they analyzed hair samples in a new way using the same
AI method they had employed before in feature evaluation. To
make sure that the Al-based evaluation was really a good method,
a comparison of its performance with that of a human expert was
conducted (Daniels et al., 2021). The authors, Kim et al., recently
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conducted a study to locate and estimate the number of hair
follicles. A localization step applied YOLOv4 and other detection-
transformation models that worked together. Given the results, it
was concluded that YOLOv4 was the best choice for this task. More
specifically, they concentrated on particular factors such as hair
density using a YOLOvV4 network (Kim et al., 2022). Ho et al. (2023)
studied a disease known as pattern loss. They have established that
females predominantly suffer from this disease. They also shed
light on how genetic differences in male and female sex could lead
to hormone production. Consequently, it is necessary to conduct
further studies to confirm the hormonal influence on the disorder.
The study also informs us that it is easier to find a solution to certain
hair losses with a proper identification of the hormonal processes
that can be changed (Ho et al, 2023). Truebs (2021) research
presents a comprehensive discussion of the causes of genetic and
hormonal disorders associated with hair loss types, also exploring
the use of long-term antiandrogens for scalp coverage (Trueb,
2021). Gezici and Sefer (2024) introduced a deep transformer-based
model that predicts asset prices and directions, proving the ability
of the model to uncover long-range temporal dependencies and
complex multi-feature interactions in financial time-series data. In
asimilar vein, Tuncer et al. (2022) integrated a deep 2D transformer
with convolutional neural networks (CNNs) for the forecasting
of asset prices, in which the transformer’s attention mechanism
represented the temporal relationships and the CNN extracted the
spatial patterns from the transformed time-series inputs. Despite
being developed in the finance domain, both studies mention the
adaptability and the efficacy of the transformer architectures for
the analysis of sequential data, thus indicating their significance
for our use of transformers in the modeling and forecasting of
hairfall-related temporal patterns(Gezici and Sefer, 2024; Tuncer
etal., 2022).

3 Proposed methodology

This section discusses the overall workflow for time series
anomaly detection in hairfall analysis. Primarily, the dataset is
collected from users, followed by pre-processing to handle missing
values, feature extraction, feature engineering, and other data
handling techniques. The processed dataset is then implemented
using various algorithms such as LSTM, Temporal Fusion
Transformer (TFT), and Random Forest, which are compared
with the ARIMAX model to identify the best possible model
for predicting hairfall. These deep learning methods not only
enable anomaly detection but also detect the severity of the
condition, thereby recommending suitable dietary plans for the
users. This approach facilitates early detection of potential health
issues, indicating the intensity of the problem. Figure I outlines
the data-driven method to detect hairfall anomalies using machine
learning models.

3.1 Data collection
Data collection involves collecting the data that supports the

prediction of hairfall rate, such as the self-reported hairfall rate,
hair strength, dietary habits, lifestyle metrics, and so on, from
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Proposed Methodology for Time Series Anomaly
Detection using Hairfall as a Metric
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 Suggested Dietary Plan

((

FIGURE 1
Proposed methodology for time series anomaly detection using hairfall as a metric. The framework comprises user data collection, pre-processing,
model training (LSTM, TFT, Random Forest), and feature engineering to detect anomalies, assess severity, and recommend dietary plans.

individuals through surveys and questionnaires. The prediction is  dietary habits, such as the presence of deficiencies, supplement use,
solely based on the real-time data collected through a survey. These  and junk food consumption, are included as well. A comparative
records are used to analyze and inform decisions by implementing  analysis of actual and predicted nutrient intake for a sample
machine learning approaches that contribute to reducing the  user is shown in Figure 3. Several derived attributes, including
hairfall rate. Figure 2 illustrates the distribution of hairfall rates  hormonal fluctuation (HFI1), nutrient deficiency score, scalp
categorized by stress levels using a density ridge plot. health score, and stress impact scores, are calculated to support
effective prediction. Overall, this balanced dataset provides a rich
foundation for analyzing the multifaceted causes of hair loss,
integrating biological, environmental, and behavioral dimensions.

3.1.1 Dataset description

Our approach utilizes a real-time dataset where the data L
e . P; = Protein intake (g)
collected from nearby individuals captures a comprehensive range I — Iron intak
of variables related to hair health, lifestyle, diet, stress, and Ol_ g)n 1nta3e. (mi)
environmental exposure that have a direct impact on hairfall rates. i = Omega-3 intake (g)

The dataset includes demographic details, such as age and gender, Ji = Junk food consumption indicator (binary or score)

as well as biological factors, including hereditary conditions. Si = Supplement use indicator (binary)

Core hair-related features include indicators of hairfall rate, hair D; = Nutrient deficiency sc.ore
HFI; = Hormonal Fluctuation Index
SHS; = Scalp Health Score

SIS; = Stress Impact Score

thickness, hair density, hair type, scalp condition, and usage of hair
treatments and conditioners. Lifestyle attributes include sleeping

hours, hair washing frequency, and the type of shampoo used.

Lo . . i =E t
A significant portion of the dataset focuses on psychological € rrorterm

and stress-related metrics, such as daily stress levels and weekly

Then, the hairfall rate prediction function can be written
stress exposure.

as follows:
HFR; = Hairfall rate for individual i
HFI; = Hormonal Fluctuation Index (HFI1) for individual HFR; = ag + o1 P + ool + a30; + aafi + a5S; + aeD;
X; =. [Xi1> Xi25 -+ > Xin] = Ve?to.r of other features (e.g., nutrient o HFL, + agSHS; + aoSIS; + €
deficiency, stress level, protein intake, etc.)
B = [Bo,B1>- - .»Bn] = model coeflicients .
Interpretation:

The relationship between hairfall rate and influencing variables
can be modeled as:

HFR; = Bo + p1 - HFI; + Z}’:Z B - xij + €

where

e «aj,az,a3 : Capture the positive or negative influence of
essential nutrients

. . e 4 : Models the impact of junk food (likely positive on HFR—

Po is the intercept, . .

. more junk, more hairfall)

B1 captures the effect of hormonal fluctuation, . .

) ) . ; e «s5 : Captures the protective effect of supplement use (likely
€; is the error term capturing unexplained variance.

negative on HFR)
Nutrition-related data are also collected with self-reported e «g: Represents a composite nutrient deficiency score affecting
intake of protein, iron, and omega-3 fatty acids. Indicators of hair health
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Q Plot Zoom
Density Ridge Plot: Hairfall Rate by Stress Level

Stress per Week

FIGURE 2

Hairfall Rate

This density ridge plot represents hairfall rate distribution across different stress levels. Gradient coloring indicates frequency density.

Nutrient Intake Comparison: User 1

0.29
Protein

Iron

Omega-3

mmm Actual (Existing)
. Predicted (New)

8.00

FIGURE 3

intake (orange) for Protein, Iron, and Omega-3.

Intake Ratio

If the user is nutrient deficient, this plot is displayed to indicate the ranges of deficiency by comparing actual intake (blue) with the recommended

4 5 6 7 8

e oy,as,09 : Represent derived health indices related to

hormone, scalp, and stress

Table 2 summarizes the key variables included in the balanced
hairfall dataset, categorized into demographic, clinical, behavioral,
nutritional, and computed risk dimensions. As illustrated in
Figure 4, the jitter plot shows the distribution of Hairfall Rate across
different HFI (Hairfall Factor Index) values, highlighting variability
and clustering across levels of shedding severity.

3.2 Data pre-processing
3.2.1 Data cleaning
The collected data reflects some unstructured and missing

values that contribute to or degrade the model accuracy and
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prediction rates. To overcome these challenges, data cleaning is
necessary and can be achieved by replacing missing values with
central tendency measures, such as the mean, median, and mode,
which reduces the potential bias created by missing entries. Along
with standard deviation, it was used to assess the variability within
numerical features and to identify potential outliers, which could
also affect model robustness if left unaddressed. To further enhance
data consistency and improve algorithm performance, z-score
normalization and min-max scaling are used to refine the best out
of the data collected.

3.2.2 Data encoding

Encoding techniques, such as ordinal, midpoint, and
binary encoding, are used to replace categorical variables with
numerical values, enabling effective processing that supports

accurate predictions. To categorize hairfall problems, supplement
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TABLE 2 Categorization of variables in the balanced hairfall dataset.

Category Variable

Demographic information Age

Gender (inferred via gender_protein2,
gender_iron2)

Hair fall indicators Hairfall problem (binary)

Hairfall rate/day (1-5)

Hair density (1-10)

Hair strength (1-10)

Hair type

Scalp condition

Hair thickness (1-5)

Hair treatment

Lifestyle and behavioral
factors

Sleeping hours

Hair washing frequency

Shampoo type

Conditioner usage

Hereditary hair conditions

Stress and mental health Experience of hair loss during stress

Weekly stress frequency

Stressor type (Exams, Professional, etc.

Daily stress level (1-10 scale)

Nutritional intake Protein intake (g/day)

Iron intake (mg/day)

Omega-3 intake (g/day)

Nutrient deficiency

Water intake

Vitamin deficiencies (self-reported)

Computed risk scores Supplement usage

Created Scalp Score

Stress Impact Score

Hair Fall Index (HFI1)

consumption, conditioner used, and diet routines with Boolean
values (true and false) into Os and 1s using binary encoding.
Furthermore, midpoint encoding categorizes water intake within
a range of values, with the corresponding midpoint calculated.
Ordinal encoding approaches categorize several variables that
have clear increasing ranks, such as sleeping hours, hair type,
shampoo type, stress frequency, and hereditary conditions,
into numerical values. This approach withholds the inherent
hierarchical relationships within the data, enhancing the model’s
ability to learn patterns proactively. These encoding strategies
contributed significantly to optimizing data quality and model
accuracy during the pre-processing phase.

3.2.3 Data featuring
The dataset is further enhanced with additional features that
enable individuals lacking domain-specific knowledge to perform
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sophisticated analysis of hairfall strands. This feature engineering
includes the construction of additional features, ensuring relevant
attributes are extracted using feature extraction methods to derive
meaningful insights from existing data collected. Feature extraction
using Pearson coefficients is performed to determine attributes
that have the highest correlation with the target variables. These
target variables can be hormonal fluctuations, nutrient deficiency,
and stress impact score that directly influence the hairfall rate
on a severe basis. Their dependencies on existing attributes add
relevance to the feature engineering for better analysis.

3.2.4 Data modeling

In this research, multiple linear regression was used to correct
scalp health conditions, which have a direct influence on hairfall
rates, due to the presence of multiple dependency factors, which
are identified using feature extraction, such as shampoo type,
conditioner used, and hair_strength This approach, using multiple
linear regression, outperforms simple linear regression that fails
to capture the complexity of this problem through dynamic
weight adjustments. The model considers Pearson correlation
coefficients to learn about relationships between features and
proportional weights among each contributing attribute. However,
when calculating HFI values through feature engineering, this
multiple linear regression fails to maintain data integrity, as it
involves manual assumptions made through successive iterations
to achieve a better fit. Being time-consuming and to avoid
assumptions, this model was subsequently eliminated as the
ultimate predictor.

e y;:target variable (e.g., Scalp Health Score or Hairfall Rate)

o x; : the j" feature for sample i (e.g, shampoo type,
conditioner used, hair strength, etc.)

e f;: coefficient for feature j

e ¢; :residual error

The model is expressed as follows:

n
yi=Po+ Y Bixi+ €

j=1

where the weights f; are optimized by minimizing the mean
squared error (MSE):

N

1 _
MSE = — > i)

i=1

However, due to:

e Feature interdependence (multicollinearity),

e Need for manual assumptions in feature engineering (e.g.,
computing HFT),

e Inability to capture non-linearities and complex interactions

MLR fails in this scenario as it compromises data integrity
and model interpretability. To achieve a more transparent
and optimized prediction, the symbolic regression method was
employed, which determines the best-fit mathematical equation
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Jitter Plot: HFI vs Hairfall Rate
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FIGURE 4
This jitter plot shows the relationship between hairfall rate and HFI (Hormonal Fluctuation Index). Each point represents an individual data entry with
vertical jitter to reduce overlap.

for the problem rather than relying on predefined equations or
weight tuning. This enables us to generate a usable prediction
formula, which is crucial for medical validation and interpretability.
Other models, such as decision trees or gradient boosting
machines (GBM), were found unsuitable, as they depend on if-
else conditional branching that has no standardized formulation
for execution, thus proving unrealistic in medical or nutritional
prescription contexts. Advanced models, such as XGBoost and
neural networks, which act as black-box algorithms, have hidden
cases with internal logic and decision paths that are unclear.
Therefore, these models are not amenable to deriving meaningful
interpretations or validation.

3.2.5 Data balancing

To ensure balanced feature representation, data balancing
techniques were employed to identify the inconsistencies in
the distribution of key variables. Here, the multiple linear
regression technique is employed to model the relationship
between the predictor variables and the scalp score, thereby
ensuring an accurate estimation of attribute weights. In particular,
the focus lies on refining the Scalp Health Score, which
exhibits significant variability and is also easily influenced by
various factors. The Expectation-Maximization (EM) algorithm
was chosen as a refinement mechanism for the situation of
missing or uncertain data. The correction is achieved through
the iterative estimation of the most probable values by the
EM method, which are drawn from the established statistical
distributions, thereby leading to the capacity of more conclusive
predictions even in the event of partial data input. The EM
algorithm makes the probability distribution less erratic as it
aims at converting the expected values of scalp condition into
a more realistic form, and the integration into the model is
much smoother since it does not distort the interpretability
of the model
the data and estimates the probability, enables the necessary

In summary, this solution, which balances
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speed for predictions to be made while maintaining the
integrity of the individual metrics within the overall hairfall
analysis. Let:

e SHS; = Scalp Health Score for individual i

e X; = [xi,%i,...,%xin] = vector of predictor features
(e.g., shampoo type, conditioner use, stress level, and
protein intake)

e B=1[B0,B1>...,Pn] = regression coeflicients

e &; = residual error

Then the scalp health score is estimated as follows:
SHS; = Bo + Pixin + Baxio + - -+ + BuXin + &i
Let:

° Z;
e Y; = observed (possibly incomplete or noisy) SHS value

= latent (missing/unobserved) true SHS value
e O = model parameters (e.g., means u, variances o?)

E-Step (Expectation): Estimate the expected value of the latent
variable Z; given current parameters:

E [z,- | Yi,é(t)] =7
This could involve calculating the following equation:
ut ) ,
where p is a weighting factor based on observed data confidence

or correlation. M-Step (Maximization): Update parameters 6 to
maximize the expected log-likelihood:

21‘:#(’)4-/0'(1/1‘—

U+ — argmgax Z E [logp Zi16) ] Y,-,G(’)]
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Typically, the model parameters such as:

1 1Y
(t+1)_7 A. 2(t+1)_7 ’f_ (t+1)
W= 3% = 03 (B )

i=1

2

After convergence (i.e., when 9+ ~ 9 ) the refined scalp
health score is:

SHS! = Z;

This output is now balanced, estimated, and suitable for
downstream predictive modeling or anomaly detection.

3.2.6 Data augmentation and SMOTE analysis

The initial dataset had only a small number of samples,
which made it more likely to encounter problems such as
underfitting (failing to learn effectively), biased results, and poor
prediction accuracy. To address this, data augmentation methods
were employed to expand the dataset size and introduce variety
while preserving the original patterns. Additionally, the Synthetic
Minority Over-sampling Technique (SMOTE) was employed to
balance the dataset by generating additional instances, thereby
balancing the underrepresented classes. Furthermore, SMOTE
functions are performed by interpolating between existing data
points to create realistic data points that help stabilize the dataset.
These pre-processing strategies enhance the model’s ability to
learn from a more representative distribution, thereby improving
predictive accuracy and enhancing reliability in forecasting
hairfall rates.

4 Architecture

This architectural diagram depicts the overall process of
anomaly detection using machine learning techniques. Primarily,
the data acquisition phase involves identifying the problem to
understand the scope of analysis and the challenges it presents.
This is followed by a detailed literature survey to gain a better
understanding and gather existing insights from studies, white
papers, journals, and publications, analyzing the methods and
data sources used. This facilitates the efficient collection of real-
time data through well-structured and relevant questionnaires. The
next phase is the data pre-processing layer, which handles missing
values using appropriate central tendencies and normalization
techniques to maintain data uniformity. This leads to the extraction
of meaningful characteristics to model features by using suitable
feature extraction techniques, forming structured data for analysis.
This makes the data suitable for the next phases of machine learning
model application and evaluation.

The model application layer phase, followed by pre-processing,
involves the identification of machine learning algorithms for
implementation. Models that deal with time-related data, such
as LSTM, TFT, and ARIMAX, as well as those that engineer
features from time series, combining static and dynamic factors,
such as Random Forest, are selected. These are capable of
modeling sequential patterns, handling dynamic variables, and
capturing fluctuations over time. These models are evaluated
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over metrics such as R-squared score, mean squared error,
accuracy, and precision. Once the models are validated and selected
hierarchically, the model construction phase involves building a
new algorithm using the selected model from the previous phase,
making valid predictions. To assess the algorithm, the Severity
Assessment Layer phase checks the seriousness or intensity of the
detected anomalies. It is performed by threshold fixation, which
distinguishes between normal and concerning conditions, raising
alerts if the severity is experienced.
This phase identifies and evaluates candidate models for time-

series-based hairfall prediction. Let:

o X; = [X41,X,...,%m] : observed time-series input at time ¢
e Z:static features (e.g., gender, age, genetics)
e M : a candidate model (e.g., LSTM, TFT, ARIMAX, and

Random Forest)

The general model function becomes:
it = M (Xi—p:1,Z), where p is the time window size
Model performance is evaluated using:

e R2Score:

P ()’t _/y\t)z

R=1-=""+ "2

\2
e (e —7)
e Mean Squared Error (MSE):

T

1 ~
MSE = — > ~%)’

t=1

e Accuracy/Precision/Recall for classification-based

severity outputs.

Lastly, the Recommendation and Dashboard Layer simply
makes what has been done clear and understandable by the model.
The layer attempts to identify common patterns while also tracking
the occurrence of anomalies across the data and suggesting diet
or health-related tips. In other words, this sequence of parts
constitutes a smooth transition from the stage of data collection to
the conclusion of personalized recommendations.

Once the best model M™ is selected, it is refined and used
for predictions.

?t = M* (Xt—p:t) Z)

The Severity Assessment Layer defines whether the predicted
value J; is normal or critical. Let:

e 7 : Severity threshold
e S, : Severity status
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S — 1 ify; >t (critical)
7)o otherwise (normal)

An alert is triggered when S; = 1. In the Recommendation and
Dashboard Layer

If S; = 1, the system triggers a personalized response function
R(-) based on user profile Z and history X; ., :

Recommendation ; = R(Z,Xj:4)

Examples of R(-) could be:

e Recommend iron-rich foods if iron intake < 6
e Suggest scalp therapy if the Scalp Health Score < 6,
e Recommend meditation if the Stress Impact Score > 63

Figure 5 displays the complete configuration of the hair
fall detection and recommendation framework and its working
mechanism. The diagram demonstrates a modular pipeline that
encompasses the aforementioned stages of working, including data
collection, pre-processing, model building, severity categorization,

10.3389/frai.2025.1649740

4.1 Mathematical formulation of Temporal
Fusion Transformer (TFT)

The Temporal Fusion Transformer (TFT) is an explainable
multi-horizon forecasting model that integrates recurrent layers,
attention mechanisms, and gating modules to manage both static
and time-varying inputs.

Let:

° xgd) : dynamic covariate at time ¢

o 20 : static covariate

e y;:target variable (e.g., Hairfall Rate or HFI)
® Jiir : predicted target at forecast horizon t

4.1.1 Variable selection via Gated Residual
Network (GRN)

For each covariate:

v = GRN(x) = LayerNorm (x + GLU (W, - ELU (Wx + b;)

and dietary requirement identification through anomaly detection. +b2))
DATA ACQUISITION DATA PREPROCESSING MODEL APPLICATION LAYER
PROBLEM HANDLING MISSING IDENTIFYING ML
IDENTIFICATION VALUES ALGORITHM
Y ¥ :
LITERATURE FEATURE EXTRACTION IMPLEMENTING
SURVEY MODELS (LSTM,TFT,etc
x x
COLLECT REAL-TIME METRICS EVALUATION
DATA FEATURE MODELLING (MSE,R2Score)
|
r . |
MODEL CONSTRUCTION SEVERITY ASSESSMENT LAYER RECOMMENDATION AN
DASHBOARD LAYER
ALGORITHM SELECTION THRESHOLD FIXATION PATTERN RECOGNITION
I — ! ¥
BUILD NEW ALGORITH CHECK STATUS ANOMALY DETECTION
(ALERT SIGNALS)
'] ! %
PREDICTIONS INTENSITY EVALUATION DIETARY SUGGESTIONS
FIGURE 5
illustrates a comprehensive predictive analytics framework encompassing data acquisition, pre-processing, model development, severity assessment,
and recommendation generation. The integrated workflow enables accurate predictions, performance evaluation, and the delivery of actionable
insights through a structured, multi-layered process
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where GLU is the Gated Linear Unit:

GLU(a,b) =a® o(b)
4.1.2 LSTM encoder-decoder

~ht = LSTMenc (Vb ht—l)
hH—t = LSTMdeC (VH'T’ ht)

4.1.3 Temporal attention

)
¥ exp( QK //dy)
= Zi aiVi

Qi =

4.1.4 Output layer
?H’T =W, [ztﬂ:; Ct+r] + b,

4.1.5 Loss function

Ly LR o) o )
L= N Z T Z (ytir _ytir)
max
n= =1
This architecture allows the TFT to:
Select the most relevant variables dynamically

Use recurrent layers for local temporal patterns
Apply attention to long-term dependencies

Maintain interpretability through variable and time-step
importance scores

Though the above description accurately presents the
mathematical operations of the Temporal Fusion Transformer
(TFT), it can also be depicted as a simpler explanation. The TFT
is a device that resembles a clever helper, taking into account
past data to make informed guesses about the future. In the
beginning, it decides which input features are the most significant
at a certain time. Such features could be, for instance, stress level,
protein intake, or hairfall rate. After that, it implements a memory
function to remember recent patterns and trends so that relevant
historical information will not be lost. Moreover, it has a focus
mechanism that draws more attention to particular past periods
or occurrences that have the most significant impact on future
results. Consequently, it goes through and combines the data,
and thus, TFT makes its last prediction of future hairfall rates or
the Hormonal Fluctuation Index (HFI). At the end of the day,
it measures the error by comparing the predicted results with
the actual ones and adjusts the internal parameters to improve
accuracy over time. Basically, the TFT picks the most necessary
parts, keeps track of the past that was useful, concentrates on the
important times, and gains from failures, thus being very efficient
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in forecasting complex hairfall trend scenarios where lifestyle,
nutrition, and hormones play an interdependent role over time.

5 Dataset description and derived
formulae

This research is based on a dataset that contains information
about 750 participants, including university student volunteers and
individuals from the nearby community, collected in February
and March 2025. The data were collected using structured, self-
administered questionnaires designed to record the rate of hair loss,
hair quality, lifestyle patterns, dietary habits, stress levels, and sleep
schedules. These variables have been used as the main inputs for
the models as well as for the calculation of some new features. Since
the dataset is highly sensitive and contains personally identifiable
information, it is not publicly accessible. However, we provide a
thorough account of the variables, the data collection process, and
the steps taken in pre-processing, which facilitates the replication
of the research with similar datasets.

5.1 Stress impact score

To formulate the impact of stress on hairfall rate, a derived
attribute, the stress impact score, is calculated using:

STRESS IMPACT SCORE = DAILY STRESS LEVEL/
7 x(STRESS FREQUENCY)

This formulation integrates both the intensity (daily stress
level) and recurrence (frequency of stress) experienced within
a week, where the independent variables are collected from
individuals as self-reports. Dividing by 7 normalizes the score to
a daily scale, facilitating consistent interpretation across the data.
This derived metric measures how effectively the stress impact
score predicts hairfall severity. The selection of relevant attributes
is derived by performing a feature engineering technique, as it
enhances the representation of latent stress-related factors.

5.2 Nutrient deficiency score

The nutrient deficiency score is calculated to quantify the
impact of key dietary components on hair health. The score is
calculated by using the formula:

NUTRIENT DEFICIENCY SCORE
= 1-(PROTEIN INTAKE + OMEGA-3 INTAKE
+IRON INTAKE),

where each nutrient intake was individually computed by
the following:

NUTRIENT INTAKE = FREQUENCY OF INTAKE IN A WEEK
+*BIO-PROFILE SCALER (Per day)/
BIO-PROFILE SCALER (per week).
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The Bio-Profile Scaler is the gender- and age-based criteria
for understanding dietary supplements. This score estimates the
extent of nutritional deficiency based on the intake frequency of
three key nutrients essential for hair growth: protein, omega-3
fatty acids, and iron. The formulation of nutrient intake considers
overall nutrient intake by a person over a week by calculating the
frequency of intake values with respect to the bio-profile scaler
divided by the overall nutrient intake an average person should
consume in a week (in RDA) as per NIH (National Institute
of Health org.), ensuring consistent comparison across the data.
These derived metrics serve as an effective composite feature that
captures the deficiency of multiple essential nutrients. For instance,
protein is critical for maintaining hair structure, and if the intake
is not sufficient, it leads to brittle and breakable strands. Iron
plays a pivotal role in transporting oxygen to hair follicles, and its
deficiency can inhibit follicular strength and growth. Omega-3 fatty
acids contribute to scalp hydration and overall follicle health. By
combining these into a unified deficiency score, the model gains an
enhanced representation of how diet-related risk factors influence
hairfall severity.

5.3 Scalp health score

The scalp health score, a composite metric, was formulated to
assess the condition of the scalp, which significantly influences the
hairfall outcomes. The score is derived using a linear regression
equation as mentioned below:

SCALP_HEALTH_SCORE = W0 + W1xSHAMPOO_TYPE
+W2x CONDITIONER USED
+W3xHAIR STRENGTH,

where w0 represents the bias term and w1, w2, and w3 represent the
weights calculated for each factor that contributes significantly to
the health of the scalp. All the contributing factors are extracted by
feature engineering, where the shampoo type captures the chemical
or organic nature of products used, the conditioner used reflects the
presence or absence of conditioning treatments, and hair strength
accounts for the resilience and structural integrity of the hair
strand. By applying linear regression to calculate the scalp health
score, which provides a quantifiable approach to scalp and hair care
practices, it enables deeper insights into how external treatments
affect the hairfall rate. Further, the EM algorithm was performed to
calculate the corrected scalp health score for better performance.

5.4 Hormonal fluctuation

Hormonal fluctuations are a critical factor influencing the
regulation of the hair growth cycle. Any disruption in hormonal
balance can lead to excessive hair shedding or thinning. To quantify
the Hormonal Fluctuation Index (HFI), the following formula
is used:

HFI = (STRESS IMPACT SCORE + DAILY STRESS LEVELS
+HAIRFALL RATE PER DAY - SLEEPING HOURS)/
(PROTEIN RATIO + IRON RATIO + OMEGA RATIO

+1),
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where the Stress Impact Score and Daily Stress Level capture
psychological stress, the most impactful trigger for hormonal
imbalance, the Hairfall Rate per Day contributes as a key factor
that best indicates the fluctuation rate, and sleeping hours are
subtracted from the index, as insufficient sleep is associated with
hormonal irregularities. Additionally, the protein ratio, iron ratio,
and omega ratio, which are negatively correlated, are calculated and
divided, thereby accounting for dietary contributions to hormonal
regulation. Here, +1 is the stabilizing term or smoothing constant
that tackles the worst case of nutrient intake, where all three intakes
are zero, causing division error. This comprehensive formulation
enables the HFI to encapsulate both internal and external
influences, making it a valuable feature in predictive modeling.

6 Schematic diagram

The schematic diagram depicted in Figure 6 illustrates a
machine learning-based hair fall detection system that considers
multiple factors contributing to hair loss, including nutritional
deficiencies (such as protein, iron, and omega-3 fatty acids),
environmental pollution, hormonal fluctuations, and stress levels,
to perform analysis. These elements are visually represented as
affecting the hair follicles, indicating their direct impact on hair
health. The key process involves engineering new ML-powered
detective models, which include implementing various models
such as LSTM, TFT, random forest, and ARIMAX, specialized in
handling time-series data. These models handle trends in hairfall
with time and forecast future conditions based on temporal and
health-related features. The system further comprises a Smart AI
Analytics module that utilizes machine learning techniques to
classify the severity of hairfall as either “high” or “low” levels,
dynamically mapping over time. The predictive output provides
an indication of potential threats, along with suggested dietary
plans. Moreover, to some extent, this scientific breakthrough has
led to innovative and rapid health improvements resulting from
hair conditioning. The basic principle of this prediction is that
data science and nutrition science are combined in the direction
of hairfall management, which is effective.

6.1 Hyperparameter selection for TFT

We conducted a hyperparameter selection process for the
Temporal Fusion Transformer (TFT) using a systematic tuning
procedure to tailor the model to our hairfall forecasting
dataset. First, we utilized the default settings from the original
TFT implementation (Lim et al, 2021) and the PyTorch
Forecasting library. We then refined our parameters through a
grid search combined with validation set performance. Among
the hyperparameters that we decided to tune, we could mention
hidden layer size, number of LSTM layers, dropout rate, learning
rate, attention heads, batch size, and maximum prediction horizon.
For each parameter, we tried different values. For instance, it was
tested that if the hidden layer size is 64, 128, or 256, 128 would be
the best with respect to the balance of accuracy and computation
time. We tested learning rates ranging from le-4 to le-3, and we
found that the rate of 3e-4 yielded stable convergence. The tuning
operation was 5-fold cross-validation guided, using validation MSE
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FIGURE 6
ML-based hairfall detection system that highlights key factors, prediction models, and dietary suggestions.

as the main selection criterion and F1 score as an auxiliary measure
of classification accuracy. The chosen setup was not only good in
training but also on unseen test data, which means that the model
was properly optimized for this application.

7 Performance analysis

To observe how correctly each of the selection algorithms
predicted the extent of the hairfall, based on time-centric user
data, a few machine learning and deep learning models, such
as LSTM, Temporal Fusion Transformer (TFT), Random Forest,
and ARIMAX, were operated. Besides LSTM, Random Forest,
and ARIMAX, we also considered two further baselines to verify
the robustness of the comparison between our TFT model and
the competitive ones. These were a Gated Recurrent Unit (GRU)
network. This recurrent architecture can efficiently model complex
temporal dependencies, and a Temporal Convolutional Network
(TCN), which, through dilated causal convolutions, can capture
multi-scale temporal patterns. The reason for choosing these
models was that they are particularly suitable for non-linear
and multi-feature time-series forecasting, thus offering a more
challenging benchmarking of the performance.

The
measurements, which include mean squared error (MSE), R?

instruments were assessed in terms of several

score, accuracy, precision, recall, F1 score, and specificity. At this
stage, the model’s accuracy score reflects how good the model is

Frontiersin Artificial Intelligence

overall, and the R? score shows how well the model can explain
the variations of hairfall that can be the input features, like stress,
diet, and sleep, which are the main things responsible for verifying
the model’s predictive ability. Mean Squared Error (MSE) is a
metric that squares the average deviation between the actual and
the forecasted values, which demonstrates precision in the results.
Precision is about correctness and reducing the chances of false
alarms in severe cases by indicating how many of the positively
predicted classes are indeed correct. The F1 score is a combination
of precision and recall and gives a consistent performance
indicator. Furthermore, specificity demonstrates how effectively
the model identifies non-critical cases, thereby avoiding excessive
unnecessary alerts. When taken together, these measurement scales
enable us to confirm that the model is accurate. In real time, it
will take an important step as the time of the anomaly occurrence
arrives, and thus, it will be dependable for early monitoring of
hairfall cases. The parameters are illustrated in Equations (1)-(7)

Specificity = TN/(TN + FP) (1)

It indicates the fraction of true normal instances that the model
is able to recognize accurately. Subsequently, higher specificity

implies a lower false alarm rate.
Accuracy = (TP + TN)/(TP + TN + FP + EN) 2)

Accuracy is the quantitative representation of the number of
correct predictions out of the total predictions made. It shows the
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overall correctness of the model.

Precision = TP/(TP + FP) (3)
Precision measures the fraction of predicted positive instances
that are truly positive. It indicates the number of times that the

>«

model’s “abnormal” forecasts are accurate in our case.

Recall = TP/(TP + FN) (4)
Recall is a representation of a model’s capability to properly find
abnormal hairfall instances that are abnormal cases in total.

(5)

F1 Score = 2x (Precision x Recall)/(Precision + Recall)

The F1 score blends the precision and recall aspects into one
number. It keeps its relevance when working with an uneven
class distribution.

Mean Squared Error (MSE) = (1/n)x 2 (y; — —)'/)2 (6)
MSE quantifies the mean of the squared deviations between the
estimated and the actual values of a variable, where these differences
indicate the closeness of the predictions to the true values.
R%*Score = 1 — [Z(y, — »)/ Z(y; — »)*] 7)

R? indicates what part of the variance of the dependent variable
has been accounted for by the model.

where TP and T N indicate true positives and negatives, and
FP and F N signify false positives and negatives of the hairfall rate.
Y represents the hairfall rate of each sample. The efficiency of the
proposed models was analyzed and inferred in Table 3.

Table 3 presents a comparative analysis of various forecasting
models based on performance metrics. The results highlight
notable variations in accuracy, precision, and generalization
capability across the models.

Based on the analysis, we infer that TFT consistently
outperformed the other models, achieving the highest accuracy
(97.52%), precision (97.44%), recall (97.25%), and F1-score
(97.29%), along with the lowest mean squared error (0.03) and
the highest R* score (0.98). These results clearly demonstrate the
model’s robustness across multiple evaluation metrics, confirming
its ability to generalize well beyond the training data. These clearly
reflect its superlative ability to detect anomalies with minimal

10.3389/frai.2025.1649740

false alerts while maintaining solid predictive strength. However,
LSTM and Random Forest algorithms followed closely, with LSTM
scoring 93.21% in accuracy and Random Forest at 95.54%. Both
models showed reliable precision and recall values above 93%,
with minimal error margins (MSE of 0.09 and 0.04, respectively).
ARIMAX, however, underperformed in comparison—despite
matching Random Forest’s accuracy (95.54%), its precision
(58.41%), recall (51.15%), and F1-score (52.51%) were significantly
lower, indicating a poor classification rate and prediction score.
The inclusion of GRU and TCN in the baseline comparison
further strengthened the evaluation, as these architectures are well-
suited for capturing complex temporal dependencies and multi-
scale patterns in time-series data. As indicated by Figure 7, the
comparison of the accuracy of the four models—LSTM, TFT,
Random Forest, and ARIMAX—is presented, and the graphic also
shows that the TFT model outperformed the other models in
most of the matrices, such as accuracy, precision, recall, F1-score,
and specificity.

Therefore, the Temporal Fusion Transformer emerges as
the most dependable and precise model for real-time hairfall
monitoring and proactive anomaly detection, offering the potential
for early intervention through lifestyle and dietary guidance. The
results of the GRU and TCN baselines are reported alongside TFT,
LSTM, Random Forest, and ARIMAX. To determine whether the
observed performance differences were statistically significant, we
conducted two-tailed paired t-tests on the evaluation metrics across
all models. The results confirmed that TFT’s improvements over
the next-best-performing baseline were statistically significant (p <
0.05) for both forecasting accuracy and anomaly detection metrics.

8 Implementation

Our proposed model focuses on time-series anomaly detection
for hairfall by utilizing time-centric data collected from the
user to monitor irregularities over time. These sudden spikes
or drops in hairfall rate or hormonal fluctuations may indicate
underlying health threats. A newly designed algorithm was
constructed to accomplish these tasks by integrating the most
effective aspects of various pre-existing models. Over performance
analysis, the Temporal Fusion Transformer (TFT) demonstrated
the highest accuracy and reliability in capturing temporal patterns,
making it the primary backbone of the newly constructed
hybrid algorithm.

TABLE 3 Performance comparison of machine learning models for hairfall prediction.

Parameters LSTM TFT Random forest ARIMAX GRU TCN
Accuracy (%) 93.21 97.52 95.54 95.54 94.87 96.12
Precision (%) 93.06 97.44 95.43 58.41 94.75 96.05
Recall (%) 93.21 97.25 95.23 51.15 94.68 95.92
Fl1-score (%) 93.12 97.29 95.30 52.51 94.71 95.98
Specificity (%) 98.41 99.39 98.89 88.54 98.21 98.95
MSE 0.09 0.03 0.04 0.75 0.06 0.05

R? score 0.96 0.98 0.98 0.51 0.97 0.97
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8.1 Proposed algorithm

1: procedure Analyze Hairfall(df, NUM_USERS)

2: for each user do

3: Prompt age, protein, iron, omega, sleep_hours, stress_level, stress_frequency, hairfall
4: stress_impact = stress_level * stress_frequency

S: (rda _p,rda fe, rda_omega) = get rda values(age)

6: ratios = (protein / rda_p, iron/rda_fe, omega /rda_omega)

7. deficiency = 1 - average(ratios)

8:  new HFI= (hairfall * stress impact) / (sleep_hours * sum(ratios))

9:  matched row = search(df) for best match on age, supplements, family history, nutrients
10:  if matched row is empty then

11:  Apply KMeans on df

12: cluster = predict cluster of user

13: matched_row = row in cluster with min Euclidean distance

14:  endif

15:  Extract existing HFI, existing hairfall, existing_nutrients from matched row
16: HFI_diff = new_HFI - existing_ HFI

17:  hairfall_diff = hairfall - existing_hairfall

18: if HFI diff > 1.5 or hairfall diff >= 2 then

19: Print "Severe change in HFI"

20: else if HFI_diff > 0.8 or hairfall diff >= 1 then
21: Print "High change in HFI"

22: else

23: Print "Normal hairfall and HFI"

24: endif

25: Append result (new_HFI, hairfall, existing HFI, existing_hairfall)
26: if deficiency > O then

27 req_intake = RDA - actual intake

28: Suggest food items based on deficiency
29: Plot actual vs recommended nutrient intake
30: else

31: Print "Nutrient intake sufficient"

328 if new_HFI > 3 or hairfall > 3 then

33: Print "Check non-nutritional causes"

34: end if

35: endif

36: Temporal Fusion Transformer (TFT) for HFI Forecast
37: Simulate past HFI values with noise for the user

38: Convert to TimeSeries format

39:  Scale the series using Scaler

40:  Split data into train and validation sets

41: Create TFT model with necessary parameters (input_chunk length, output_chunk length, etc.)
42:  Fit the TFT model on the training data

43:  Forecast HFI for future periods

44: Inverse transform the forecast values

45:  Plot actual past HFI and forecasted HFI

46: end for
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Our model is designed to detect the anomalies that indicate a
threat by improving the underlying model (TFT). The algorithm
is programmed to take dynamic user inputs and make intelligent
comparisons with historical datasets to detect abnormal hairfall
patterns. Initially, the user is asked to provide personal information,
including age, prevailing hairfall rate (on a scale of 1-5), mean
hours of sleep, level of stress and frequency, protein, iron, and
omega-3 intake over the past week, supplement usage, and family
history of hairfall. The collected input is cross-referenced with
a pre-existing dataset to identify matching attributes such as
age, nutrient intake, supplement usage, and hereditary factors.
If there exists a matching row, the data is directly used for
computations; else, the algorithm applies K-means clustering to
classify different sets of data as clusters and identify the closest tuple
using Euclidean distance.

After the matching phase, the algorithm computes the stress
impact score and nutrient intakes, which indicate nutrient
deficiency. It updates the user’s recent Hairfall Index using
appropriate formulas discussed in the section Data Featuring.
An anomaly is highlighted if the variation in HFI is more than
1.5 or the hairfall rate exceeds by more than 2 against the
matched information. A slight deviation (difference in HFI > 0.8
or difference in hairfall > 1) generates a mild warning if not
labeled as normal over threshold fixations. These severity alert
signals indicate the user’s proneness to possible threats. Further, the
nutritional deficiency calculated is compared with the existential
deficiency factor. These are followed by several cases where, if the
user is predicted to have no deficiency, the message is displayed
accordingly. However, if no previous deficiency was present and the
new input indicates one, a nutrient deficiency warning is triggered.
Based on age and recommended intake, the algorithm estimates
how much more protein, iron, or omega-3 the user needs to fix the
thresholds by suggesting a higher intake of lentils, eggs, leafy greens,
or walnuts. If the deficiency is found to be decreased compared
to before, it indicates the user is on track and no new diet is
required. Visualizing these findings over a histogram leads to a
better understanding of deficient cases.

In order to detect the deviation between actual and predicted
values of hairfall rate against the hormonal fluctuation index, we
use sinusoidal waves that reflect the consistency of the current
condition. This algorithm creates a comparative graph over
multiple users as subplots. These subplots are expressed as grids
for comparative analysis, holding visual distinction of sine waves
for existing matched data and cosine waves for new user input.
This model also visualizes how the computed HFI of each user is
compared to the existing HFI values in the dataset. Vertical lines
that connect the existing and new HFI values using red and blue
colors refer to the intensities of the HFI values, while the nodes
are represented with black points and a horizontal dotted line in
a distinct color, respectively, highlighting their position relative to
the entire dataset.

Further, the role of the TFT function in our model is to
forecast the future prediction of HFI over time. The graphical
representation of the predictions displays the actual values as
black-colored lines, which are constructed by learning from the
historical data of recently observed HFI values. The predicted
values are shown as blue lines, derived from past patterns and other
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internally learned attributes for future days, indicating the possible
future deviations.

EXAMPLE:

--- User 1 Input ---

What is your age? 23

What is the hairfall rate per day(1-5)? 2.5

How many hours do you sleep daily(1-11)? 7

How stressed are you on a scale of 1-182 2

How often do you get stressed in a week(1-4)? 4

How often do you consume protein-rich foods per week(1-7)? 2

How often do you consume iron-rich foods per week(1-7)? 1

How often do you consume omega-3 foods per week(1-7)? 2

Do you take any supplements for deficiencies or hairfall? (Yes/No) no

Do you have a family history of hair loss? (Yes/No) no

@ User 1 Results:

Existing HFI: -0.03, New HFI: -8.95, Change: ©.92

Existing Hairfall Rate: 3.0, New Hairfall Rate: 2.5, Change: ©.5
A\ HIGH CHANGE! Possible health risks due to HFI or hairfall shift

@ Nutrient Deficiency Analysis:
Existing Deficiency Score: -108.36
New Deficiency Score: ©.57
Difference (new - existing): 16.93

[J Nutrient Intake Suggestions:

A\ Lacking 48.80g of protein/day. Try eggs, lentils, dairy.
A\ Lacking 6.86mg of iron/day. Add spinach, meat, beans.

A\ Lacking 1.68g of omega-3/day. Include walnuts, flaxseeds.

--- User 2 Input ---

What is your age? 27

What is the hairfall rate per day(1-5)? 3

How many hours do you sleep daily(1-11)? 7

How stressed are you on a scale of 1-18? 8

How often do you get stressed in a week(1-4)? 3

How often do you consume protein-rich foods per week(1-7)? 5
How often do you consume iron-rich foods per week(1-7)? 6
How often do you consume omega-3 foods per week(1-7)? 5

Do you take any supplements for deficiencies or hairfall? (Yes/No) yes
Do you have a family history of hair loss? (Yes/No) no

@ User 2 Results:

Existing HFI: 3.91, New HFI: 2.89, Change: 1.02

Existing Hairfall Rate: 3.0, New Hairfall Rate: 3.8, Change: 0.0

1. HIGH CHANGE! Possible health risks due to HFI or hairfall shift

® You're not deficient based on current intake! No further intervention needed

I However, your hairfall and HFI indicate a **severe or high abnormality**
not explained by nutritional deficiency.

B This could be due to other factors such as **scalp health, hormonal fluctuations,
or stress impact.**

. Please consider evaluating your **scalp condition** or consult a
**dermatologist or trichologist** for further guidance.

--- User 3 Input ---

What is your age? 43

What is the hairfall rate per day(1-5)? 3

How many hours do you sleep daily(1-11)? 9

How stressed are you on a scale of 1-18? 6

How often do you get stressed in a week(1-4)? 4

How often do you consume protein-rich foods per week(1-7)? 5
How often do you consume iron-rich foods per week(1-7)? 7
How often do you consume omega-3 foods per week(1-7)? 3

Do you take any supplements for deficiencies or hairfall? (Yes/No) no
Do you have a family history of hair loss? (Yes/No) yes

@ User 3 Results:

Existing HFI: 3.91, New HFI: 1.26, Change: 2.65

Existing Hairfall Rate: 3.9, New Hairfall Rate: 3.8, Change: 0.0

& SEVERE CHANGE DETECTED! Significant hormonal imbalance

You're not deficient based on current intake! No further intervention needed.

|, However, your hairfall and HFI indicate a **severe or high abnormality**
not explained by nutritional deficiency.

B This could be due to other factors such as **scalp health, hormonal fluctuations,
or stress impact.**

. Please consider evaluating your **scalp condition** or consult a
**dermatologist or trichologist** for further guidance.
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--- User 4 Input ---

What is your age? 45

What is the hairfall rate per day(1-5)? 4

How many hours do you sleep daily(1-11)? 4

How stressed are you on a scale of 1-10? 7

How often do you get stressed in a week(1-4)? 3

How often do you consume protein-rich foods per week(1-7)? 4
How often do you consume iron-rich foods per week(1-7)? 5
How often do you consume omega-3 foods per week(1-7)? 5

Do you take any supplements for deficiencies or hairfall? (Yes/No) yes
Do you have a family history of hair loss? (Yes/No) no

@ User 4 Results:

Existing HFI: 3.91, New HFI: 4.37, Change: 0.46

Existing Hairfall Rate: 3.0, New Hairfall Rate: 4.8, Change: 1.0

|, HIGH CHANGE! Possible health risks due to HFI or hairfall shift

You're not deficient based on current intake! No further intervention needed.

I, However, your hairfall and HFI indicate a **severe or high abnormality**
not explained by nutritional deficiency.

B This could be due to other factors such as **scalp health, hormonal fluctuations,
or stress impact.**

. Please consider evaluating your **scalp condition** or consult a
**dermatologist or trichologist** for further guidance.

Figure 8 displays the fluctuations of actual against predicted
values, indicating the intensity over a range of deviations. Users
1 and 4 experience high deviation alerting threats, whereas users
2 and 3 experience almost no deviation, indicating less severity.
This representation helps users understand trends in their hair loss,
leading to personalized healthcare.

The positioning of the user’s HFI values over the clustered HFI
values depicted in Figure 9 highlights the underlying categories by
classifying the data into high and low. This enables us to find out if
the value is a fit for existing data.

The TFT model shown in Figure 10 predicts future HFI
by learning from past patterns and relevant attributes such as
nutrition, sleep, and stress. When this function is called, it fetches
the pre-existing data for a particular user and uses time-based
patterns to indicate future risks. This early warning demonstrates
that the TFT model provides a time-aware, interpretable forecast,
which is more advanced compared to other simple models.

Figure 10 displays how the Temporal Fusion Transformer
(TFT) efficiently captures local changes in the Hormonal
Fluctuation Index (HFI) and produces precise short-term
predictions, such as identifying abnormal hair shedding patterns
beforehand and facilitating the administration of suitable
treatments.

8.2 Case study

8.2.1 Case 1: moderate HFI deviation with lower
hairfall rate

The system identifies a moderate deviation where the hormonal
fluctuation is shifted from —0.27 to —0.80, and the hairfall rate
dropped from 4.0 to 3.0. This case forecasts the possibility of a
noticeable change in HFI (AHFI > 0.5), which previously indicated
that there is a probability that the user could experience some threat
in the future. Although the hairfall rate does not exceed the severe
threshold, it has a considerable shift, which triggers a moderate
anomaly alert. This enables the user to monitor and manage their
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health effectively. However, no dietary supplements are suggested,
as the user is not nutritionally deficient. It also suggests that the user
check for other factors or consult a dermatologist.

8.2.2 Case 2: severe HFIl and hairfall rate drop
suggesting hormonal imbalance

This case exhibits a severe anomaly with a high HFI drop from
—0.27 to —0.36, where the hairfall rate reduces from 4 to 2. This use
case represents a high-risk scenario where both HFI and hairfall
rate deviate significantly, exceeding the severe anomaly threshold
(AHFI > 1.0 and ARate = 2), indicating a critical hormonal
imbalance and threats that require medical attention. Nutritional
health is not a concern, as current intake is sufficient, which rules
out dietary deficiency. Even though the user is not deficient, there
is a severe change in hormonal fluctuations; it is better to refer
to a dermatologist immediately to check for other conditions and
ensure that hormonal fluctuations are healthy enough to handle the
hairfall rate drop.

8.2.3 Case 3: high risk with nutrient deficiencies

The model detects a significant decrease in hormonal
fluctuation of 0.64 units when compared to the existing value
(AHFI = 0.64), indicating the possibility of threats in the future.
This result is also combined with the notable drop in hair fall
(ARate = 1.0), leading to early-stage detection of physiological
disruption or threat conditions. Further, nutritional assessments
detect a drastic shift in deficiency score from the preceding
value. This symbolic shift from —9.05 to 0.43 units indicates
the emergence of nutritional gaps, reflecting a daily shortage
of 40g of protein, 571 mg of iron, and 1.6g of omega-3 fatty
acids. Such deficiencies may directly contribute to declining health
factors, including hairfall rates and hormonal fluctuations. As
a result, the model suggests that supplementary diets—such as
eggs, lentils, and dairy products for protein; spinach, meat, and
beans for iron; and walnuts and flaxseeds for omega-3 intake—
can help address these deficiencies. This case also leaves us with
a histogram that effectively compares nutrient intake ratios over
time, highlighting the algorithm’s ability to detect underlying causes
of HFI and hairfall anomalies while providing actionable dietary
plans for intervention.

8.2.4 Case 4: severe hormonal disruption with
nutritional deficits

The extreme fluctuation in HFI by over 1.80 units from the
existing value triggers the flag. However, the hairfall rate has
decreased by 1 unit. This case shows a sudden drop within a certain
period of time, detecting an anomaly in the series. This drastic
change is a critical indicator of physiological instability. However,
the user is indeed nutrient deficient, where the score changes
from —9.79 to 0.14, which shows hidden nutritional insufficiencies,
and our algorithm reports the deficits that need to be tackled,
suggesting appropriate dietary plans to be followed to address
19.43 g of protein, 4.57 mg of iron, and 1.80 g of omega-3 deficiency.
This model’s strength lies not only in detecting severe hormonal
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Model Comparison by Classification Metrics
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FIGURE 7

Illustrates the comparative performance of different forecasting models across key classification metrics. The chart highlights significant differences
in accuracy, precision, recall, F1-score, and specificity, indicating varied effectiveness and reliability among the evaluated models.

User 1: Hairfall vs HFI User 2: Hairfall vs HFI
3.3 4
3.2 1
32
3.0 A
314
& &
£ 2,81 &
= = 3.0 1
- ! £
] . ! g
A ']
2.6 \ i 1 . \ "
\ / \ - v &5
i 1 1 i
[ T I VI A U
4 4 ¥ 1 [l ]
24 . vif \f vy B
! -" ‘\ 1’ |‘ 1’ “ ¥
—— Matched Row wL W, Yo
224 —-- userinput R L% v 2.7 4
o 1 ? 3 4 5 0 1 2 3 4 s
HFI
User 4: Hairfall vs HFI
3.3 4 ~ = s I r
4.2 4 “ v Y -+ \‘ ’I " 4
[} 4 ' ] \ [ ] ]
\ ! \ ] \ . \ 7
p i 1 ’ \ '
32 4.0 - Y ’ \ / . ! ' r
1 K, 3 ’ 'l : 1 ]
% I \ H L g \ i
3.8 - ot -1 N oo
3.1 A ' Fad \,1 W, \\—’l
z a
- 36 -
= E —— Matched Row
& e £ === User Input
= LR
x =
291 32 4
2.8 3.0 4
2.8
2.7
0 1 2 3 4 5 0 1 2 3 a 5
HFI HFI
FIGURE 8

The subplots reveal the deviation of the Hairfall rate against HF| values for multi-user input cases.
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This graph shows the position of user HFI values in comparison to pre-existing HF| values.

anomalies but also in delivering personalized nutritional strategies
to support holistic recovery and balance.

8.2.5 Case 5: normal fluctuations with no
deficiencies

This scenario illustrates a scenario where there is no deficiency
and the person is perfectly fine. The mild variation in the Hormonal
Fluctuation Index, by 0.36 units, and no change in hairfall rate
demonstrate the stabilized health indicators of the user. Further,
the nutrient deficiency test is also passed, confirming that the user’s
dietary plan is sufficient, and it is better to continue with that.
This case demonstrates the model’s ability to identify stable users
and suppress false alarms, thereby supporting its accuracy and
credibility in distinguishing between normal and abnormal states.

8.2.6 Case 6: detecting nutrient deficiencies
despite normal hormonal fluctuations

This case represents mild yet stable changes, with a small
positive shift in hormonal fluctuation by 0.44 and a slight decrease
in the hairfall rate by 0.5 units. This indicates that the user is out of
threat and stabilized, lying within the range with no abnormalities.
It flags the normal fluctuations without raising errors and performs
deficit analysis. It reveals that the person, despite having stabilized
fluctuations, still has some deficiencies that may affect them in the
future. The scores have significantly risen from —10.36 to 0.43,
indicating issues in dietary intake and suggesting the user take 48 g
of protein, 5.7 mg of iron, and 1.37 g of omega-3 as per the deficits,

Frontiersin Artificial Intelligence

19

0 Temporal Fusion Transformer - HFI Forecast

= Past HFI

—— Forecasted HFI
08-

06 -

04 -

0.2 -

00 -

0.2 -

11

14

17
2025-Apr
FIGURE 10
Temporal Fusion Transformer (TFT) forecast of the Hormonal
Fluctuation Index.

which are crucial for hair growth and scalp health. This highlights
that the model efficiently identifies nutritional gaps, allowing for
prevention even when primary indicators appear to be normal.

9 Improvisation

Traditional hairfall detection methods involve biological
testing, which includes analyzing blood samples to identify
deficiencies or hormonal imbalances. Over time, they have

been replaced with machine learning algorithms, such as CNN,
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SVM, and KNN, for image recognition and interpretation to
detect anomalies. Although effective in certain cases, these
models require high-resolution images, large datasets, and
sophisticated image recognition pipelines, which make them
complicated, resource-intensive, and lacking in scientific or
numeric interpretability. Furthermore, many individuals are
unaware or lack the necessary technical knowledge to consistently
capture and upload images documenting their hairfall condition.
Our method addresses all these constraints by gathering user
input data, which is collected based on simple and understandable
questions that users can easily answer, and building significant
attributes for deeper analysis. The key improvisation is the
integration of time-centric data, allowing us to capture abnormal
deviations in hairfall rate over time, which is the core innovation
of this project. By employing numerical data rather than images,
our model is more scalable, interpretable, and diverse. It also
involves several contributing factors, such as nutrient deficiencies,
exposure to pollution, and stress levels, enabling a comprehensive
and intelligent analysis of lifestyle factors.

10 Results and discussions

This article describes the work of creating a machine learning
methodology using LSTM, Random Forest, Temporal Fusion
Transformer (TFT), and ARIMAX models to predict the degree
of hairfall from time-series data. Additionally, a comprehensive
dataset comprising five structured data categories—stress level,
sleep cycles, dietary intake, scalp health, and hormone imbalance—
was utilized for model training and validation. Ultimately, only
the Temporal Fusion Transformer (TFT) model was confirmed as
the most promising one, performing on all major metrics, yielding
the best possible results with 97.52% accuracy, 97.25% recall, and
an R* score of 0.98, and the smallest possible MSE of 0.03. The
way this investigation stands out is by presenting an innovative
perspective based on the Hormonal Fluctuation Index (HFI) tool,
which harmonizes the human factor with the computer engine to
identify hairfall trends on a micro or macro level. Simultaneously,
the model uses multiple components related to the HFI in a real-
time manner and maintains constant feedback to predict human
health changes. This prevented the hairfall if it was not suddenly
too high as predicted. The model also advises the subject on his/her
dietary needs (if there is any nutrient deficit), suggesting that
protein, iron, and omega-3 are good sources consistent with the
user’s health profile. In this way, the model becomes an accurate
identifier and preventive care provider through personalized
recommendations, as well as an early alert system. The coupling of
health data with hair forecast monitoring represents an innovative
approach to health management through proactive and predictive
measures. The forecasts generated by the model developed here
encompass a diverse range of hormone changes and nutritional
intake, providing a combination of molecular understanding
and actionable information that supports the transition from
reactive hair loss prediction to proactive management of the
situation. This technique flawlessly addresses the main question
of detecting hair loss as early as possible and provides suitable,
timely recommendations for lifestyle or dietary changes tailored
to individual characteristics. Moreover, the transparency aspects
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of the TFT model—such as variable selection importance scores
and time-dependent attention weight distributions—provide clear
indications about what kind of lifestyle, dietary, and stress factors
have the greatest impact on the model’s forecast. In this case,
trust in the model is improved, allowing users to take personalized
and practical actions. A new direction that this machine can
take is connecting it with medical data, which can carry enough
information for the machine to give clinical advice. This will also
operate as an effective spare part for the clinicians regarding shared
decision-making in the early stages.

10.1 Comparative evaluation with existing
literature

Our methodology differs from most research on predicting hair
loss, which primarily relies on high-resolution scalp or hair images
with CNN-based classifiers or on clinical datasets containing
biochemical markers and dermatological assessments. Rather,
it is based on self-reported, multivariate time-series data that
encompasses lifestyle and nutritional factors, thereby eliminating
the need for specialized imaging equipment or invasive clinical
measurements. Owing to the fundamental differences in input
modality, feature composition, and data collection protocols,
simply recreating prior image-based or clinical models on our
dataset will not result in a fair or meaningful performance
comparison. Therefore, we provide a qualitative comparison
with representative CNN-based image classifiers and ML-based
health prediction models, highlighting their differences in data
requirements, computational complexity, and practicality in
real-world, non-clinical settings. Our baseline models—LSTM,
GRU, TCN, Random Forest, and ARIMAX—were chosen for
their suitability to temporal, multivariate forecasting tasks and,
therefore, they enable a fair and robust comparison within the same
data domain. This study marks the debut of the Temporal Fusion
Transformer (TFT) application in hairfall anomaly detection with
lifestyle-linked time-series data. The TFT method offers several
advantages, including high interpretability, low deployment costs,
and a minimal data acquisition burden; therefore, it is a viable and
scalable option compared to image-based diagnostic methods.

11 Use cases

The outlined system is believed to have a significant impact.
It utilizes TFT, a powerful machine learning model that helps the
system identify unusual patterns, providing accurate results and
offering useful suggestions that can lead to early detection and
improved health outcomes. One of the primary applications of this
model is in personalized hair health monitoring. Through this,
individuals can track hairfall patterns on a daily or weekly basis,
allowing the system to detect anomalies. This enables timely alerts
to proclaim possible underlying health risks, such as hormonal
imbalances, stress, or poor dietary habits. In the field of clinical
and dermatological care, this framework can be employed as a
supportive tool for diagnosis. Instead of depending solely on visual
inspection or high-cost image processing methods, clinicians can
use derived indices, such as the Hormonal Fluctuation Index (HFI),
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Nutrient Deficiency Score, and Scalp Health Score, to understand
the root causes of hairfall. These derived metrics offer transparency
and reliability, making them ideal for use in dermatological
consultations and for treatment planning.

Another key application lies in nutritional and lifestyle
advisory systems. The model detects dietary deficiencies related
to iron, protein, and omega intake and suggests food intake
recommendations. By integrating biological and behavioral data
with nutritional science, the system helps promote wellness,
positioning the framework as a valuable extension to preventive
healthcare. Moreover, the system serves as an early indicator of
systemic health disorders. Since an abnormal hairfall rate often
reflects physiological or psychological issues, such as anemia or
chronic stress, it can serve as a predictive interface between
personal health tracking and medical diagnostics.

Upon closer examination, this research can make significant
contributions to public health and disease studies. With organized
data, researchers can study hair loss patterns in different age
groups, regions, and environments. These findings can support
public health policies, research on how climate affects health, and
awareness programs about health issues caused by poor nutrition
and stress. Additionally, this model adds value to the haircare
and pharmaceutical industries by providing insights into consumer
behavior. Brands can use real-time user data to understand the
performance and customer acceptance of the products and thus
create targeted marketing tactics. This consumer-centric approach,
driven by data, not only aids in R&D but also delivers an extra spark
to clients through individualized service offerings. To sum up, the
suggested model serves not only as a unique method for self-health
tracking but also as a multifunctional instrument for purposes
ranging from medical diagnoses to business product inventions.

12 Future scope

Future improvements to the hairfall prediction system can
include seasonal factors, as changes in humidity, pollution,
temperature, and UV exposure significantly impact scalp
and hair health. For example, higher hairfall is frequently
observed in monsoon and autumn and is usually associated with
fungal infections of the scalp or a breakdown in the natural
cycle of hair growth. By integrating such seasonal dynamics
into the model, predictions could be enhanced not just for
personal health metrics but also for external environmental
stressors, thereby improving the adaptability and relevance
of the system. To enhance the model by integrating medical
profiles such as symptoms related to anemia, chronic stress,
thyroid dysfunction, and PCOS, which enables the model
to correlate specific hairfall conditions with anomalies. This
would improve the model’s medical relevance and improve its
predictive capability.

Furthermore, incorporating longitudinal data from wearable
health trackers can provide real-time insights by collecting
lifestyle metrics, such as heart rate variability, blood pressure
levels, and oxygen saturation, which serve as stress markers,
thereby enhancing predictive accuracy. Additionally, deploying this
model in a mobile health application can enable users to track
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their hair health trends, receive alerts, and receive personalized
recommendations based on their changing risk profile. These
enhancements not only improve the accuracy of prediction but also
affirm the model’s utility in preventive healthcare and personalized
wellness management.

13 Conclusion

This research aimed to develop an interpretable and active
framework for predicting hairfall rate by emphasizing hormonal
fluctuations as a key determinant. Traditional models, which
rely on visual data, have been replaced with a structured,
interpretable approach that utilizes physiological, behavioral, and
lifestyle attributes. By introducing derived indices, such as the
Hormonal Fluctuation Index (HFI), and implementing several
machine learning models, our analysis reveals TFT as the most
robust model, based on performance metrics, as mentioned in
the performance analysis, and for accurately predicting anomalies
in time-series data. The system that we are suggesting identifies
strange hair loss patterns and issues, personal alarms, and diet tips.
It is effective in everyday activity and provides understandable,
health-related results. For instance, it can be further advanced by
incorporating climatic conditions and medical symptoms, which
will assist in the early identification and prevention of the issue.
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