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Introduction: As the number of Internet of Things (loT) devices grows quickly,
cyber threats are becoming more complex and increasingly sophisticated; thus,
we need a more robust network security solutions. Traditional deep learning
approaches often suffer in identifying effectively anomalies in IoT network. To
tackle this evolving challenge, this research proposes a hybrid architecture of
Neural Network (NN) models that combine Recurrent-NN (RNN) and Spiking-
NN (SNN), referred to as HRSNN, to improve |oT the security.

Methods: The proposed HRSNN technique has five steps: preprocessing data,
extracting features, equalization classes, features optimization and classification.
Data processing step makes sure that input data is accurate and consistent and
by employing normalization and the removal of outliers’ techniques. Feature
extraction makes use of the RNN part to automatically detect abnormal
patterns and high-level features, which are then turned into spike trains for the
SNN to process over time. In class equalization step, the Synthetic Minority-
Oversampling Technique (SMOTE) is being used resulting in balanced classes.
Recursive Feature Elimination (RFE) is used to keep the important features for
feature optimization. Then, the dataset is split into sets for testing and training
so that the model can be tested properly.

Results: The hybrid model integrates the spatial feature learning skills of RNNs
with the temporal adaptability of SNNs, results in an improved accuracy and
resilience in identifying loT network abnormalities. The proposed HRSNN
approach, which was tested on the CIC-1oT23 and TON_IoT data sets, achieved
better performance compared to current deep learning (DL) models. In
particular, experimental assessments show that the model attained an accuracy
rate of 99.5% on the "CICloT2023" dataset and 98.75% on the "TON_loT" dataset.
Discussion: These results confirm demonstrate that the proposed architecture
of RNN and SSN can achieve significant advancement to loT security. By
combining both spatial and temporal feature learning, HRSNN can improve
accuracy detection against diverse security threats. The model is reliable,
accurate, and adaptable for safeguarding loT networks against diverse security
threats. Thus, the model addresses the potential solutions in the challenging
problem of secured IoT networks.

KEYWORDS

loT security, intrusion detection system (IDS), recurrent neural networks, spiking
neural network, SMOTE, recursive feature elimination
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1 Introduction

The rapid evolution of IoT, cloud computing, and cybersecurity
technologies has emerged in a new era of interconnected systems. IoT,
with its potential to revolutionize various sectors like smart homes,
industries, and cities, offers enhanced adaptability and productivity.
By enhancing flexibility and productivity, IoT evolves the creation of
highly interconnected systems that support innovative services
(Zaman et al., 2021). These benefits make IoT suitable for both
commercial and industrial use cases. The IoT’s evolution has also
coincided with the evolution of specialized solutions, shaping the
structure of Industrial IoT (IIoT) and Industry 4.0 over the past
decade (Alabadi et al., 2022). Projections suggest that by 2030, the
number of IoT devices worldwide will triple from the current 15.14
billion. Approximately 60% of these devices are utilized in commercial
markets and business sectors, a trend predicted to remain consistent
over the next decade (Choudhary, 2024). However, the inherent
transparency and dynamic nature of IoT networks, integrated with the
resource constraints of IoT devices, makes them highly susceptible
to cyberattacks.

Figure 1 outlines the architecture of an IoT network, comprising
devices, cloud services, actuators, servers, sensors, protocols, and
applications, and illustrates a framework for anomaly-based IDS in
IoT networks (Bakhsh et al., 2023). These elements work with both
authorized and unauthorized users, which makes it hard to find the
difference between regular behavior and malicious behavior.
Unauthorized users can take advantage of vulnerabilities in security
systems, which can lead to cyberattacks. As the number of IoT
devices in homes and businesses increases, the likelihood of
cyberattacks also rises. Because these devices do not have enough
memory, processing capacity, or security, they are easy targets for
hackers. Hackers take advantage of vulnerabilities to build botnets,
interrupt services, private information leakage, and invade users’
privacy. Strong security measures are required to minimize these

10.3389/frai.2025.1651516

threats. VPNs and other secure authentication and encrypted
connection methods keep data safe and private.

IDS make security even better by monitoring and finding
abnormal behaviors. Signature-based IDS (SIDS) is one type of IDS
that tracks for known threats, while Anomaly-based IDS (AIDS) is
another type that tracks for unknown or abnormal behaviors. As
attacks get more complicated and IoT devices cannot handle as much
data, traditional security solutions will encounter difficulties with new
threats. DL and machine learning (ML) have become viable options
to make IoT networks more secure. These artificial intelligence
(AI)-powered methods can detect and prevent attacks by analyzing
patterns in network data and find unusual behaviors. AI has evolved
better, making DL a better algorithm for IoT-IDS.

Deep Neural Networks (DNN) are effective in handling large
volume of data, finding patterns, and sorting data. These systems are
great for AIDS, since they track on servers, clouds, sensors, and
devices to keep IoT infrastructure safe. Suricata and Snort are two
examples of IDS that can help to minimize the damage caused by
botnet attacks. These systems use analytical methods to analyze how
malware behaves in certain settings (Lifl et al., 2023; Alkhonaini et al.,
2024). DL and ML approaches require this behavioral information
since they need to keep collecting data while the virus is functioning.
These approaches show how malware can affect a system and cause
problems (Alrefaei and Illyas, 2024; Nazir et al., 2024).

Techniques for classification that have been trained on previous
attacks can find threats more easily. For instance, once an IoT botnet
carries out a Distributed-Denial-of-Services (DDoS) attack, the model
may learn to identify other DDoS threats and botnet behaviors in
similar settings (Saurabh et al., 2025). Al is being used more to find IoT
intrusions because it can adapt to new attack patterns due to its
enhanced detection skills (Ayad et al., 2024; Saurabh et al., 2024). But
there are still problems since attackers are advancing with new versions
of old techniques that are hard for current solutions to detect. Recent
studies have targeted on developing Al techniques to improve the
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FIGURE 1
Intrusion detection system (IDS)-based security in loT outline.
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detection of threats in IoT settings (Asgharzadeh et al., 2024; Gelgi
et al,, 2024) to solve these problems. Adding DL and ML models to
secure devices have been shown to make them work better and be more
flexible. Hybrid AI methods, such as combining genetic algorithms
(GA) with DL, have shown great potential for finding problems in IoT
networks by improving the selection of features and accuracy of models
(Almugren et al., 2023; Hanafi et al., 2024). DL is one of the most
advanced AT methods since it can handle complicated, nonlinear data.
It has been used effectively in many real-world situations. Researchers
are always working to make DL models better so that IDS works better.
These advancements offer a promising approach to address IoT
security challenges and protect against evolving threats. This research
aims to develop an IDS with a hybrid NN methodology for identifying
diverse classes of attacks generally noticed in IoTs. These attacks
include HTTP Flood, Bruteforce, TCP Flood, DoS, and UDP Flood.
As the hybrid DL models like LSTM-CNN and BiGRU-CNN
suffering from increased computational complexity, this research
proposes the HRSNN model which includes the benefits of RNN and
SNN in a complementary manner. The RNN part is responsible for
capturing spatial and sequential relations in IoT traffic, while the
temporal spike-based encoding of SNN, which resembles
neuromorphic processing, allows for more energy-efficient and event-
driven processing. This combination improves anomaly detection and
eliminates unnecessary computation. This makes it ideal for IoT
devices with limited resources, such as memory, power, and latency.
HRSNN combines biological plausibility along with DL to strike an
effective balance of performance and efficiency that is not achievable
by existing deep hybrid networks, which makes it an innovative and
valuable solution for IoT intrusion detection. The primary
contributions of the proposed research are described in the following:

o The study introduces an HRSNN model for IoT network security,
combining RNN’s spatial feature extraction with SNN’s temporal
adaptability for robust anomaly detection.

« Key contributions include a five-stage data processing pipeline,

class equalization using SMOTE, and feature optimization

via RFE.

Superior performance on the CIC-IoT23 and TON_IoT datasets,

achieving enhanced accuracy, reduced false positives, and

computational efficiency, making it a scalable and practical
solution for IoT security.

The article is structured in the following manner: Section 2
analyzes the security challenges of IoT and DL applications in IDS
with current models. Section 3 details the developed IDS model,
including its architectures and mathematical formulations. Section 4
discusses evaluation metrics, experimental results, and comparative
analysis with current conventional ML and DL-based IDS models.
Section 5 concludes with key findings.

2 Literature review

This section highlights the need for robust cybersecurity in the
rapidly expanding IoT ecosystem. It reviews existing research on
leveraging DL and ML techniques to design intrusion detection for
IoT. The problems that need to be solved in IoT-IDS include, efficient
solutions with resources, dealing with data scarcity and asymmetry,
and getting real-time performance. It also points out important areas
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of research that need to be filled, such as making AI models that can
be explained and evolve with the ever-changing threat landscape.

Asgharzadeh et al. (2024) proposed a methodology for identifying
anomalies in IoT networks through the development of a specialized
Convolutional Neural Network (FECNNIoT) for enhanced feature
extraction. The approach used a better optimization algorithm called
the Binary Multi-objectives Enhanced Gorilla Troop Optimization
(BMEGTO) to choose the best features. A (K-Nearest Neighbors
(KNN) algorithm then analyzed the improved feature set to find
intrusions with a high level of accuracy. The CNN-BMEGTO-KNN
framework was highly accurate with 99.99% on the TON-IoT and
99.86% on the NSL-KDD data sets. It also reduced the feature set
down to 27 and 25% of the initial features.

Hanafi et al. (2024) developed a new IDS for IoT networks that
used a Long Short-Term Memory (LSTM) network and an Improved
Binary Golden Jackal Optimizer (IBGJO) method. The IBGJO
method, improved by Opposition-Based Learning, quickly chose the
most relevant features from the data set, which made the classification
more accurate. The LSTM network then used these optimized features
to accurately classify data, achieving an excellent rate of detection of
98.21% on both the CICIDS 2017 and NSL-KDD datasets. The model
outperformed current approaches, including BGJO-LSTM, BWOA-
LSTM, BSCA-LSTM, SVM, KNN, and Naive Bayes, showing that it is
better at finding intrusions in IoT networks.

Kethineni and Pradeepinni (2024) presented a DL-based architecture
for intrusion detection in smart agricultural systems. The three-tier
design included a fog processing layer for networked computing. It also
combined the CNN with a Bidirectional Gated Recurrent Unit
(CNN-BiGRU) model that had an attention mechanism to find DDoS
attacks. The Wild Horse Optimization technique was used to make the
model work better. It achieved high accuracy rates of 99.35% on
APA-DDoS and 99.71% on ToN-IoT datasets

Yaras and Denner (2024) concentrated on improving the detection
of attacks in IoT networks by the implementation of a hybrid DL
model that included 1D-CNN and LSTM. The technique was
developed and assessed using big data tools such as Apache Spark and
PySpark within the Google Collaboratory. It analyzed the network
data to find cyberattacks, especially DDoS attacks, with an accuracy
0f 99.995% on CICI0T2023 and 98.75% on TON_IoT. This method
worked well to solve the problems of analyzing big data sets made by
IoT networks, giving a strong way to improve security.

Qaddos et al. (2024) developed a hybrid DL model for IoT
security detection, integrating CNN and GRU to proficiently capture
intricate characteristics and temporal correlations in IoT data. To deal
with the imbalance in data, the Feature-Weighted SMOTE
(FW-SMOTE) method was included, and the model was tested on the
IoTID20 and UNSW-NBI5 data sets. The model performed better
than current benchmarks, with accuracy rates of 99.60 and 99.16%.
These results showed that the model worked well and could
be changed to fit different needs. This is a viable solution to make IoT
ecosystems more secure and resilient against changing cyber threats.

Kasongo and Sun (2019) proposed an IDS system employing RNN
architectures (LSTM, GRU, Simple RNN) for detecting attacks on the
NSL-KDD and UNSW-NB15 datasets. A feature selection technique
based on XGBoost minimized the set of features to only the useful ones.
The XGBoost-LSTM model performed better in classifying NSL-KDD
data into two groups (TAC: 88.13%, VAC: 99.49%). The XGBoost-
Simple-RNN model performed better in classifying UNSW-NB15 data
into two groups (TAC: 87.07%). XGBoost-LSTM (NSL-KDD) and
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XGBoost-GRU (UNSW-NB15) were the most accurate for classifying
multiclass attacks. By integrating feature selection with the RNN
architectures, the framework made detection of attacks better.

Hizal et al. (2024) worked on making intrusion detection better
in IoT networks, with an emphasis on DDoS attacks. It used a
two-level DL-based IDS and included preprocessing methods like
feature reduction and data adjustment to make the model work
better. The study demonstrated that a two-stage strategy, assessed
using fully connected, combined, and LSTM models on the
CICIoT2023 dataset,
techniques such as DNN, CNN, and RNN, providing superior and

surpassed conventional single-model
more resilient detection of DDoS attacks in IoT networks.

Wang et al. (2024) worked on making IoT networks safer by
building a new IDS. The system employed a form of DL called
Conditional Tabular Generative Adversarial Networks (CTGAN) to
fix the problem of unbalanced data, where some attacks were less
prevalent. The system performed better in finding other sorts of
intrusions by making fake data to identify these less common
attempts. The model was evaluated on number of datasets and attained
a higher accuracy compared to current approaches.

Sajid et al. (2024) developed a new hybrid IDS model that used
XGBoost and CNN for the extraction of features and LSTM for
classification. This framework was designed to deal with the
increasing difficulty of network security, which includes problems
like new sorts of attacks and vast amounts of different types of data.
The model used XGBoost and CNN to choose features and LSTM to
classify them. It had a high detection rate and a low false acceptance
rate across the four test datasets (CIC IDS 2017, UNSW NB15, NSL
KDD, and WSN DS). This shows that it is effective at improving
network security against threats that change over time.

Zia et al. (2024) emphasized the security issues arising from the
increasing application of IoTs in cities that are smart cities, especially
in zero-touch networks (ZTN) that independently regulate network
resources. It created a new DL-based IDS (DL-NIDS-ZTN) that
employed CNN to find several types of intrusions, such as DDoS,
Botnet, Brute force, and Invasion. The model has a very high accuracy
of 99.80% on the CICIDS-2018 dataset, making it a strong way to
protect the integration of IoT equipment and services in smart cities.

Recent studies on Al-driven zero-day intrusion detection focus on
ML and DL approaches, as well as anomaly detection and hybrid
methods. While each of these generally performs well, each one has
significant limitations. A large number of studies are limited in scope,
concentrating on certain kinds of attacks or certain working
environments. This is on top of a set of challenges that continue to exist,
such as high processing costs, the need for real-time response, the ability
to handle increasing workloads, and the change of working
environments. A hybrid approach combining the strengths of multiple
algorithms in overcoming the limitations of individual algorithms is a
useful trend in the literature. While the studies discussed above are
helpful, there is a glaring gap when it comes to addressing zero-day
attacks and the need for newer, more efficient Al models (Yee et al., 2024).

In a study by Dai et al. (2024), the CIC-MalMem-2022 data set
was used. This study discovered new attacks using auto encoders (AE)
for anomaly detection and further analyzed using XGBoost and
Random Forest (RF) to create newer hybrid models. The new models
that combined anomaly detection and classical ML classifiers had
better detection rates, the best being the RF-AE model that had
flawless detection. The model performed almost equally, having
99.9892% correct classification showing that the model generalized
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well Table 1 shows research gap among IDS-based Security Schemes
for ToT. This study shows the usefulness of metrics combining anomaly
and classification approaches in the insurmountable zero-day
intrusion detection problem.

The research by Sana et al. (2024) developed the anomaly detection
methods in IoT intrusion detection through the merging of advanced
IoT ML models and DL models. The special tuning of the model
parameters, that is, the Bayesian optimization approach, was very
successful in the fine-tuning of the model parameters. This study shows
the successful merging of classical IoT models and DL models as a step
forward in intrusion detection, giving better attack mitigation,
improved safety, and better IoT network operation.

It was stated that IDS models can track network traffic and find
DDoS attacks, and that ML and DL models to perform tasks effectively.
The system used the accuracy, f-measure, and other metrics to test the
proposed hybrid strategy, which combines SNN and RNN and
compared it to other standard ML and DL methods.

3 Proposed methodology

This section presents the implementation of developed HRSNN
model for detecting and classifying attacks in IoT networks. Figure 2
shows the overall workflow of the suggested HRSNN-based IDS. The
first step is to collect and prepare practical IoT data about traffic from
two databases. This data is used to find important features, which are
subsequently processed and evaluated for analysis. The information
provided is equitable, and the most relevant features are chosen to make
sure that the model’s training is effective. Then, this data is used to train
a hybrid model that uses RNNs to learn successive traffic flows and
SNNs to classify data quickly and correctly. The system carefully
evaluated the efficacy of the framework using number of different
performance indicators. The best-performing model was chosen to
provide strong and effective solution against cyber-attacks in
IoT settings.

3.1 Datasets

CICI0T2023: The CIC-I0T-2023 simulates an authentic smart
home setting with 105 networked IoT devices. This dataset captures
network traffic generated from 33 distinct attack types categorized into
seven major categories (DDoS, DoS, Reconnaissance, Web-based,
Brute-force, Spoofing, and Mirai). The diverse IoT topology,
encompassing smart home appliances, cameras, microcontrollers, and
sensors, along with the comprehensive attack scenarios, makes this
dataset valuable for researchers and security professionals to develop
and evaluate IDS and other security mechanisms. The data set has 47
features, which makes it appropriate for studying and comprehending
the differences between normal and abnormal IoT flow.

TON_IOT: This collection of data includes a lot of current attacks
in IoT contexts, such as hacking passwords, imaging, DDoS,
ransomware infections, DoS, backdoor attacks, XSS, injecting, and
MITM attacks in a realistic, massive operations test environment. This
study utilizes the Processed Windows 10 dataset, a subset of TON_IoT,
which focuses on network traffic data collected from a Windows 10
operating system within the larger IoT testbed. This subset allows for
a more focused analysis of attack patterns and security vulnerabilities
specific to Windows 10 devices within the broader IoT ecosystem.
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TABLE 1 Research gap among IDS-based security schemes for loT.

Aut Method name
Asgharzadeh CNN-BMEGTO-KNN
etal. (2024)

Merits

The CNN-BMEGTO-KNN model offers high accuracy
(99.99%) and efficient feature reduction, making it

suitable for large-scale IoT networks.

10.3389/frai.2025.1651516

Demerits

Integrating the custom CNN and BMEGTO may increase
complexity and computational costs, limiting scalability

for resource-constrained devices.

Pradeepinni

(2024)

strengths of both convolutional and recurrent
networks, achieving high accuracy in detecting DDoS

attacks in smart farming systems.

Hanafi et al. IBGJO-LSTM The IBGJO-LSTM model achieves high detection Combining IBGJO with LSTM can make the system more
(2024) accuracy (98.21%), making it highly effective for complex and require more computing power, which may

intrusion detection in IoT networks. not be ideal for IoT devices with limited resources.
Kethineni and CNN-BiGRU The CNN-BiGRU model effectively combines the The model’s complexity may require substantial

computational resources, making it less suitable for

deployment on devices with limited processing power.

Yaras and hybrid CNN-LSTM

The hybrid model achieves exceptional accuracy,

The use of big data technologies and complex deep

detecting attacks in an IoT network.

Denner (2024) making it highly effective for detecting DDoS attacks learning models may require a lot of computational power,
in ToT networks. making it difficult to deploy on IoT devices with limited
resources.
Qaddos et al. hybrid CNN-GRU The hybrid CNN-GRU model achieves high accuracy The model’s intricacy and the usage of FW-SMOTE for
(2024) (99.60 and 99.16%), making it highly effective for data maintenance may make it harder to run, which might

make it less scalable for IoT devices with limited resources.

Kasongo and XGBoost-LSTM

Using XGBoost for picking features and RNN

Using more than one RNN architecture with XGBoost for

to traditional single-model methods.

Sun (2019) architectures together makes the model more selecting features might make the model more complicated
successful by making it more accurate for both binary to run, which would make it less useful for immediate
form and multiple-class intrusion detection tasks. identification on IoT devices with limited resources.

Hizal et al. convolutional, and LSTM The two-stage deep learning approach provides more The two-level approach is more complicated, which may

(2024) accurate and robust DDoS attack detection compared mean it needs more computing power and may not work

as well for immediate detection on IoT devices with

limited resources.

Wang et al. CTGAN

CTGAN improves detection accuracy by generating

The use of CTGAN may increase computational costs,

high detection accuracy and low False Acceptance Rate

across multiple datasets.

(2024) synthetic data for rare attacks, enhancing the system’s making the system less suitable for real-time use on
performance. resource-limited IoT devices.

Sajid et al. Hybrid XGBoost and CNN for The hybrid model effectively combines feature The complexity of combining XGBoost, CNN, and LSTM

(2024) feature selection and using LSTM | extraction and classification techniques, resulting in may increase computational requirements, making it less

suitable for real-time detection on resource-constrained

devices.

Ziaetal. (2024) | DL-NIDS-ZTN

The DL-NIDS-ZTN model demonstrates high
accuracy (99.80%) in detecting multiple types of

network intrusions, enhancing security in smart cities.

The complexity of deep learning models may require
significant computational resources, potentially limiting
their applicability in resource-constrained IoT

environments within smart cities.

Yee etal. (2024) | ML, DL, anomaly detection, and
hybrid models combining

multiple algorithms.

Provides a structured overview of Al-driven intrusion
detection techniques. Highlights the role of hybrid
models in addressing weaknesses of individual
algorithms. Identifies strengths of ML/DL in detecting

previously unseen attacks.

Many reviewed models focus only on specific attack types
or environments. Limited real-world adaptability due to
computational demands and scalability issues. Lacks
empirical validation since it is a review, not an

implementation.

Daietal. (2024) = AE-based anomaly detection
integrated with XGBoost-AE,

RF-AE.

Hybrid anomaly detection-classification framework
enhances detection capability. RF-AE achieved near-
perfect results (100% accuracy, precision, recall, F1,
MCC). Demonstrated strong generalization to unseen

data (99.98% accuracy).

Performance heavily dependent on dataset quality (CIC-
MalMem-2022). May face scalability challenges in real-
time IoT/enterprise networks. Extremely high accuracy
might indicate possible overfitting if not tested on broader

datasets.

Sana et al. ML models (tree-based SVM,

(2024) Ensemble Bagged Tree, Random
Forest, NN) and DL (LSTM,
Vision Transformer) with

Bayesian optimization.

RF and Ensemble Bagged Tree achieved >99.9%
accuracy with AUC = 1.00. LSTM achieved 99.97%
accuracy. ViT architecture achieved perfect training
metrics and outperformed others. Demonstrated a
three-pronged improvement: reliability, security, and

network performance.

ViT achieved perfect training accuracy but only 78.70%
validation accuracy, suggesting potential overfitting and
weaker generalization. High computational cost of ViT
may limit deployment on resource-constrained IoT

devices. Requires careful optimization for practical real-

time scenarios.
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3.2 Preprocessing

This is a necessary step in preparing the data for DL algorithms.
Practical datasets typically have problems like values that are absent,
inconsistencies, and irrelevant characteristics that might degrade how
well a model works. The aim of preprocessing is to quantify and
organize the data so that the algorithm can learn in the best possible
way. The following is a thorough description that includes
mathematical formulas to show important steps:

Missing data: entries that have corrupt or blank in the data set
might make it harder to learn. The first step is to find and remove the
columns or rows that have missing values (mv):

Let DSER™" be the collection of data with m instances and n
characteristics Equation 1, which is known as:

1, if ds;; is missing,
mv(dsij)z{ if dsjj is missing o

0, otherwise

The total missing values in row i is computed as in Equation 2
n
mc(i)= va(dslj) (2)
j=1

Where mc is defined as the missing count.
Rows with missing values are removed using Equation 3:

DS ={dsi eDS:mc(i)=0} (3)

Frontiers in Artificial Intelligence

Numerical conversion: string or categorical values cannot
be directly processed by DL models. These values are converted into
numerical representations using techniques like one-hot encoding or
label encoding. As illustrated in Equation 4, for a categorical variable
Cv with k unique classes, one-hot encoding generates a binary
vector e € R¥:

Lif the class bel toi,
€i={ if the class belongs toi @

0,otherwise

Correlation analysis among features: not all features contribute
equally to the models performance. Features with high
correlation might introduce redundancy and increase
computational cost.

The correlation matrix R € R™" is calculated using the Pearson

Correlation Coeflicient Equation 5:
Cv (ai oy )

=) 5
04,04,

Where Cv(ai,a j) is the covariance between features a;,a j and
Og,,0q, are their standard deviations.

Features with |r,-j I>7 (a predefined threshold) are considered
highly correlated, and one of them is removed Equation 6:

DS’ :{a,» eDS Vi, |n| < r} (6)
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3.3 SMOTE for class equalization

The CIC-I0T23 dataset contains features extracted from IoT
network traffic, often used for intrusion detection. When working
with imbalanced classes, the SMOTE can be applied to generate
synthetic samples for minority classes, ensuring class balance for ML
models. SMOTE reduces the bias of ML models toward the majority
class by improving the representation of minority classes, ensuring
fairer and more accurate classification outcomes.

Let dataset D contain samples from Ca distinct categories, where
Ca= {Cal,Caz,...,Cak} . Assume |Ca; | represents the number of
samples in class a;, and the minority class Cap;, is the class with the
smallest sample size Equation 7:

min
Camin = arg . |Cai|:i € {1’2)- . ->k7’l} (7)
1

Here, the majority class Cayq; is the class with the largest sample
size is given by Equation 8:

max
Capaj=arg |Ca;|.i€{1,2,.. .kn} (8)

The objective of SMOTE is | Capiy, | to increase to match |Cayyg;,
thereby balancing the dataset.

First, the total neighbours kn must be decided to consider for
generating synthetic samples (e.g., kn=5). Then, the nearest
neighbour for each minority sample has been found using Euclidean
distance Equation 9.

ds(a,-,aj)z,lz;':l(ai)l—aj,l)z,ai,ajeR" 9)

Where n denotes the number of features.
Then, the synthetic samples are generated for each minority
sample a; with a random neighbour a; using Equation 10.

anewzai+/1.(aj—a,~) (10)

Where A defines the random value between 0 and 1.

Finally, the synthetic samples are generated till the minority class has
the same number of samples as the majority class using Equations 11,12.
(€3))

Camin,new | =| Capaj !

Camin,new = Clmin Y Agyn (12)

Where Ay, is the set of generated samples.

3.4 Feature selection

RFE is a powerful technique for optimizing IDS in resource-
constrained IoT environments. It iteratively trains an ML model,
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evaluates the importance of each feature, and removes the least
significant ones. This process continues until an optimal subset of
features is identified, leading to more efficient and accurate IDS
models while minimizing resource consumption. The step-by-step
process is given below.

o Step I: Let the dataset contain n features and m samples,
represented as in Equation 13.

DS={(4b)AcR™" beR"| (13)

Where A :[al,az,...an: defines the feature matrix, and b is the
target vector.

o Step 2: train a supervised learning model f (A;H) on the dataset
to predict b, represented as in Equation 14:

b=f(A;0) (14)

Where 6 are the model parameters learned during training.

« Step 3: Compute the importance (I) of each feature a; based on
the model f using the linear model as in Equation 15.

I(ai):|,8,-|,i:1,2,...,n (15)

Where f; is denotes the coefficient feature a;.

o Step 4: Rank the features a; based on their importance (I) scores
I(a,») as described in Equation 16:

Ra:argsort{ I(ai)},Rae{l,Z,‘.‘,n} (16)

o Step 5: Then, remove the lowest-rank feature - as illustrated in
Equation 17.

min

I(a;)

Anesz{aj},j:arg (17)

o Step 6: Iterate steps 2-5 until the desired number of features kf is
reached, represented as in Equation 18:

Aopt :{asl,asz,...,ask},kfﬁn (18)

The selected features A,y are the most relevant for building the
IDS model.
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Parameterization of the preprocessing stage and feature
engineering was derived based on empirical validation as well as
literature. Regarding the correlation-based feature pruning, an 85%
threshold on correlation levels (7 = 0.85) was used, suggesting that
feature-pairs above this correlate for redundancy and not for further
discriminative ability. On the other hand, for SMOTE, the
oversampling ratio was set to 100% of the minority class size, which is
standard practice for balancing distributions between categories of
attacks. An RFE implementation was stopped after selecting 20
features, through testing and cross-validation; <0.5% gain in accuracy
was observed beyond this, while training times were heavily increased.
Thus, the parameters were chosen as a balance between accuracy and
run-time.

3.5 Hybrid RSNN model for effectual IDS

The preprocessed data is divided into training, validation, and testing
sets with ratio of 60, 20, and 20%, respectively. The binary classification
data includes 65 dimensions, while the multiclass data includes 67
dimensions. These sets include labels for both normal and attack types. A
hybrid RNN-SNN model is trained using the training dataset. Then, the
effectiveness of the framework is tested on the validation database, and
finally, its accuracy is tested on the test set that was held back. This
procedure is meant to sort data into two groups: “Attack” and “Normal””
It can work with both multi-class and distinct problems.

HRSNN is implemented for finding abnormal behaviors in IoT
networks by using the best two strong neural network design concepts.
RNNs are great at finding high-level characteristics in network data and
capturing temporal relationships. They are better for the extraction of
features. SNNs are good for analyzing how these features change over
time on IoT devices with limited resources since they process events and

10.3389/frai.2025.1651516

use less energy. The combined technique uses RNNG to get useful features
from IoT data and then sends those to an SNN for immediate analysis as
illustrated in the proposed technique in Figure 3. The SNN produces
spikes, and the model may find unusual behavior by monitoring these
increasing patterns for changes from regular behavior. This beneficial
approach makes it easier to find abnormalities in the convoluted and
changing settings that are common in IoT networks (Tavanaei
etal, 2019).

The RNN processes the data with time series, one step at a time.
At each time step ¢, the RNN maintains a hidden state hd;, which
captures information from the current input a; and the previous
hidden state hd,_; as illustrated in Equation 19:

hd; = fn(Wtaat +Wtpghd, 1 + bihd) (19)

Where Wt, € R™4 represents the input weight matrix,
Wty € R% is defined as the recurrent weight matrix, biy is the bias
vector, fnrepresents the ReLU activation function, hd; € ]Rd, d denotes
the size of the hd.

After processing the entire sequence, the RNN generates a
sequence of hidden states as described in Equation 20:

Hdgyy = {hdyhdy,...hdr ) (20)

SNN s process data based on spiking activity and are effective for
capturing temporal patterns. Each spiking neuron integrates input
over time. Its membrane potential M; evolves as in Equation 21:

Mt :Mt—l +2Wtiat,,‘ (21)

1

Input
layer

hidden layer

—

input
layer

it l
@ / il
/X, Spike
f train
FIGURE 3
Proposed HRSNN-based IDS for attack detection.
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Where M, defines the potential of the membrane at time ¢, Wt;
refers to the weight of the input a; ;.
A neuron spikes Equation 22 when M, exceeds a threshold 0:
L if My 26
S = (22)

0, otherwirse

After spiking, the membrane potential resets: M; =0.

The SNN captures temporal patterns by processing the spiking
activity over time using Equation 23:

Hdsny = {hd'hd'y,.. hd'r ) (23)

Hybrid RNN-SNN: The input is the raw IoT data A consisting of
T time steps and n features per time step. The RNN processes the input
A and outputs spatial features as described in Equation 24 hdpnn:

hdgny = frrn (A) (24)

The spatial features hdgyy are fed into the SNN, which processes
temporal patterns as described in Equation 25:

hdsny = frsnn (hdraw ) (25)

The SNN output hdgyy is used for anomaly classification. The
final output is the predicted label b as described in Equation 26:

b=g(hsny) (26)

Where g is a sigmoid classification function.

Loss Function: The model is trained using a loss function L(b,é),
where y is the true label, and b is the predicted label. For binary
classification (e.g., anomaly detection), the binary cross-entropy loss
is computed as in Equation 27:

m

L(bb)= —iZ[bi IOg(@)+(1-bz‘)1°g(1‘g")]

i=1

(27)

The model parameters are optimized to minimize L(b,l;) using
Adam gradient-based methods (Yamazaki et al, 2022). The
pseudocode for the proposed HRSNN model is presented as follows:

Initialization

Input: IoT Datasets (CIC-10T23, TON_IoT).

Output: anomaly detection

Load IoT datasets
Normalize the dataset to ensure consistent scaling of features.
Remove outliers to maintain data integrity and uniformity.
Apply RNN to extract spatial patterns and high-level
abstractions from the dataset.
Encode RNN outputs into spike trains for temporal processing.
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Use SMOTE to balance the class distribution in the dataset.
Perform RFE to select the most relevant features and
reduce dimensionality.

Split the optimized dataset into training and testing subsets.
Initialize the Hybrid RNN-SNN model.

Train the RNN component to learn spatial features.

Train the SNN component to process encoded spike trains for
temporal adaptability.

Optimize model parameters using backpropagation and
gradient descent.

Test the trained HRSNN model on the testing dataset.
Generate the classification outputs.

End

4 Experimentation analysis
4.1 Experiment setup

This section highlights the experiments and the performance
assessment of the developed research methodology in classifying
attacks in IoT networks. Experiments were conducted to compute the
performance and effectiveness of the developed research model. The
experimental assessments are conducted on an Intel i7-Core CPU with
16GB of RAM, utilizing Python on the TensorFlow 2.0 and Keras
libraries. The CICIoT2023 dataset comprises multiple data files, and
combining these files results in a substantial volume of data to process.
To address this challenge, some studies have utilized samples from the
dataset (Ayad et al., 2024; Gelgi et al., 2024), reducing training costs
without significantly impacting the results. Applying the whole dataset
often discharges computing resources and creates processing infeasible,
necessitating high-capacity and expensive servers. Instead, a reduced
dataset was employed, constituting 20% of the original datasets, while
maintaining the same attack class ratio as the full dataset. This approach
significantly reduced training and testing costs and time.

4.2 Performance metrics

To evaluate the proposed HRSNN algorithm, tests were
conducted using both binary and multiclass classifications, and
compared with current ML and DL algorithms. Performance metrics
such as accuracy, precision, recall, and F1 score were analyzed and
discussed with additional visualization through ROC curves and
confusion matrices.

Accuracy demonstrates the model’s precise prediction efficacy.
Accuracy estimates the percentage of correctly identified and false
alarms produced by an attack detection model; it represents the
general effectiveness of the IDS and was calculated as in Equation 28.

TRP +TRN

(28)
TRP+TRN +FLP + FLN

Accuracy =

In this context, true positive (TRP) signifies accurately identified
malicious flows, true negative (TRN) represents accurately identified
normal flows, false negative (FLN) represents inaccurately identified
normal flows, and false positive (FRP) represents inaccurately
identified attacking flows.
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TABLE 2 Statistical validation of performance.

10.3389/frai.2025.1651516

Dataset Model Accuracy (%) Precision (%) Recall (%) Fl1-score (%)
Proposed HRSNN 99.48 + 0.07 99.30 + 0.09 99.28 +0.10 99.29 + 0.08
CICIoT2023
CNN-BMEGTO-KNN 97.95+0.15 96.80 + 0.20 96.13 +0.22 96.55 +0.18
Proposed HRSNN 98.72 + 0.09 98.55 +0.10 98.52 +0.12 98.54 +0.11
ToN-IoT
CNN-BMEGTO-KNN 96.95 +0.18 94.80 +0.21 93.90 +0.25 94.50 +0.23

Bold values indicate the highest metric values obtained.

Precision: the FNR, often termed as precision, represents the ratio
of incorrectly classified attacks to the total number of attack incidents.
The precision derived from Equation 29 signifies the number of
positive predictions predicted:

Precision = ﬂ (29)
TRP +FLP

Recall, the proportion of accurately identified abnormal incidents
relative to the overall count of abnormal events. Equation 30, which
computes recall, indicates the accurately predicted TRP in total:

Detection Rate = __TRP (30)
TRP + FLN

The F1 score is important since it reveals further insights into the
effectiveness of the classification model. It considers FLP and FLN. The
F-measure is particularly advantageous when the proportion of class
labels is imbalanced or uneven. The F-score, calculable via
Equation 31, illustrates the balance between recall and precision:

FL-Score = 2 Precisionx Recall G1)
Precision+ Recall

4.3 Results analysis

In order to ensure the robustness of the achieved performance, all
the experiments were repeated five times with varying random seeds
and with 5-fold cross-validation. For each fold, this evaluation reports
the average + standard deviation (SD) of accuracy, precision, recall,
and F1-score for each of the five runs. Eventually, the paired t-test was
performed between the proposed HRSNN model and the best
competing baseline, i.e., CNN-BMEGTO-KNN, to test the statistical
significance of improvement of performance observed. A p-value <
0.05 denotes statistical significance. The statistical tests agree that the
presented improvement by HRSNN is not due to chance. More
specifically, the paired t-test between HRSNN and
CNN-BMEGTO-KNN delivered p < 0.01 for both datasets for all four
metrics, confirming that performance gains of HRSNN are ascribable
to statistical significance. Table 2 shows the results of the four metrics
compared to best DL-IDS approaches. It is that these findings
underscore that hybrid pipelines, across single runs of experiments,
consistently perform better than existing DL-IDS approaches
in generalization.

After preprocessing, the CICIoT2023 dataset was initially tested for
binary classification using the proposed hybrid algorithm. This was
compared CNN-BMEGTO-KNN,

against five algorithms:
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TABLE 3 Binary classification results for CICloT2023 dataset.

Model Traffic Acc Pre Rec F1
type
Proposed Normal 99.5 99.2 99.2 99.3
HRSNN Attack 99.1 99.4 98.5 98.8
CNN- Normal 97.95 96.56 96.95 96.56
BMEGTO- Attack 97 97.42 95.32 95.5
KNN
IBGJO-LSTM | Normal 96.24 95.6 95.3 943
Attack 95 94,7 932 93.3
CNN-BiGRU | Normal 95.534 923 91.33 90.6
Attack 93 914 927 88.43
hybrid CNN- | Normal 93.54 90.6 89.2 88.5
LSTM Attack 91 90.3 90.3 86.7
hybrid CNN- | Normal 9143 88.9 88.2 88.3
GRU Attack 89 88.5 87.3 85.45

IBGJO-LSTM, CNN-BiGRU, hybrid CNN-LSTM, and hybrid
CNN-GRU. The binary evaluation results are summarized in Table 3 and
illustrated in Figure 4. The developed HRSNN methodology achieved
the best classification of binary data accuracy, as illustrated in Table 3 and
Figure 4. This was subsequently followed by CNN-BMEGTO-KNN,
IBGJO-LSTM, CNN-BiGRU, hybrid CNN-LSTM, and hybrid
CNN-GRU algorithms. The superior performance of the proposed
HRSNN algorithm can be attributed to its ability to effectively capture
both spatial and temporal features, making it highly suitable for complex
binary classification tasks. Compared to hybrid and traditional models,
HRSNN demonstrates enhanced feature extraction and integration
capabilities, leading to improved decision-making accuracy. Additionally,
the algorithm’s robustness and adaptability to diverse data patterns
further highlight its advantage over competing methods.

Figure 5 presents the confusion matrix for evaluating the
constructed HRSNN methodology in a binary context. Figure 6
illustrates the graphic representation of the generated ROC curve. The
confusion matrix in Figure 5 indicates that the FLP ratio was nearly
imperceptible, with just approximately one hundred instances
incorrectly classified. The TRP ratio was notably enhanced. The ROC
graph in Figure 6 indicates that the AUC-ROC ratio exceeded 0.99.
The methods were additionally assessed for classification in multiple
classes. The designed approach was evaluated alongside various DL
and ML techniques. Table 4 presents the multi-class assessment
findings of the methods for the CICIoT2023 data set.

The developed HRSNN methodology achieved an improved
accuracy in binary classification, trailed by CNN-BMEGTO-KNN,
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IBGJO-LSTM, CNN-BiGRU, hybrid CNN-LSTM, and hybrid
CNN-GRU algorithms. The hybrid CNN-GRU algorithm
recorded the lowest accuracy. The hybrid methodology’s
confusion matrix, shown in Figure 5, highlights a negligible FPR,
with only around 100 records misclassified, and a high true
positive rate. The ROC curve in Figure 6 demonstrates an
AUC-ROC value exceeding 0.99.
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FIGURE 4
Graphical chart of binary results on CICloT2023 data.
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FIGURE 5
Binary classification’s confusion matrix on CICloT2023 data. FIGURE 6
Binary classification’s ROC curve on CICloT2023 data.
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The dataset was also subjected to multiclass classification, with the
proposed algorithm again compared to the same ten algorithms.
Table 4 presents the multiclass evaluation results, while Figure 7
displays them graphically. The evaluation results reveal an important
difference between multiclass and binary classifications. As the
number of attack categories in the data set increases, the efficiency of
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TABLE 4 Multiclass classification results for CICloT2023 dataset.

Model Traffic Acc Pre Rec F1
type
Proposed Normal 99.5 98.2 98.2 98.3
HRSNN Attack 98.8 98.4 98.5 98.8
CNN- Normal 96.95 95.56 93.95 95.56
BMEGTO- Attack 9% 95.42 93.32 94.5
KNN
IBGJO-LSTM | Normal 94.24 94.6 923 933
Attack 94 92.7 912 91.3
CNN-BiGRU | Normal 92.534 90.3 90.33 88.6
Attack 92 89.4 90.7 86.43
hybrid CNN- | Normal 90.54 88.6 88.2 85.5
LSTM Attack 90 90.3 87.3 847
hybrid CNN- | Normal 88.43 87.9 86.2 85.3
GRU Attack 88.8 87.5 86.3 83.45

the algorithms reduces. Using the CICI0T2023 data set, ML and DL
methodologies demonstrated comparable performance in binary
classification. However, in multiclass categorization, a notable decline
in accuracy was observed with the hybrid CNN-LSTM and hybrid
CNN-GRU algorithms. In contrast, the proposed HRSNN algorithm
maintained a consistent performance without a significant drop in
accuracy. Using the CICIoT2023 dataset, the proposed HRSNN
algorithm achieved the best results, with an attack detection rate of
99.5% and an attack type detection rate of 99.56%. These results
demonstrate that the proposed HRSNN algorithm outperforms both
the other studies and the tested algorithms, achieving the highest
accuracy values.

The proposed hybrid technique was additionally assessed utilizing
the TON_IOT data set. The accuracy of the data set is presented in
Table 5. Figure 8 illustrates the plotted results. The presented HRSNN
method achieved the maximum accuracy in classifying binary data in
the TON_IOT dataset, as illustrated in Table 4 and Figure 8. The
subsequent techniques included CNN-BMEGTO-KNN, IBGJO-
LSTM, CNN-BiGRU, hybrid CNN-LSTM, and hybrid CNN-GRU. The
NB approach yields the lowest result. Figure 9 presents the confusion
matrix for evaluating the proposed HRSNN approach in binary mode
while Figure 10 shows ROC curve, on the TON_IOT dataset. This
synergy allows HRSNN to address the complexity and variability of
IoT network data better than other algorithms, which may rely solely
on either spatial or temporal processing. Additionally, the structured
methodology, including robust data cleaning, feature optimization,
and class equalization techniques, ensures that the input data is both
high-quality and balanced. Overall, the results of the proposed
HRSNN model outperformed the other compared models in this
research with proper validation. The HRSNN model produces greater
outcomes in the CICI0oT2023 data set in comparison to those obtained
from the TON_IoT data set.

To further validate the robustness of parameter selection, a
sensitivity analysis was performed on three crucial parameters: (i)
SMOTE oversampling ratio; (ii) correlation threshold z; and (iii) RFE
stopping criterion.
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o SMOTE Oversampling Ratio: Ratios varying from 50 to 150%
were tested. Oversampling below 100% induced class imbalance
and higher false-negative errors, while an oversampling ratio
higher than 150% usually introduced noise and slight overfitting.
Thus, an appropriate balance was achieved at 100% oversampling,
which gave the best F1-score stability across the two datasets.

o Correlation Threshold (t): Thresholds were varied from 0.70 to
0.95. If T was below 0.80, redundant features would be kept and
thus, accuracy degraded slightly (—1.2%). If T was >0.90, valuable
complementary features may have been eliminated. The best
stability and performance were attained at ©=0.85, as
corroborated by the literature.

« RFE Stopping Criterion: Tested for subsets between 10 and 30
features. On average, accuracy increased considerably up to 20,
remained stable between 20 and 25, and diminished sharply
when fewer than 15 features were retained. Therefore, 20
dimensions were selected as the optimal stopping point.

The results listed in Table 6 reveal that the chosen set of parameters
seemed to give the best detection accuracy and the best false positive
rate always considered. Hence, their acceptance in the final HRSNN
architecture was justified. Figures 11-13 depict the graphical
illustration of the sensitivity analysis based on preprocessing
techniques applied in this research.

To verify the individual effectiveness of each module building the
HRSNN architecture on CICIoT2023 and ToN-IoT datasets, the
ablation study was performed. The following variants were taken
into consideration:

« Baseline (RNN-only): Only the Recurrent Unit was employed for
temporal feature extraction.

« Baseline (SNN-only): Only the Spiking Neural Network unit was
employed without feature enrichment.

» Without SMOTE: Data was trained on class imbalanced data.

o Without RFE: All features were retained; no recursive elimination
was performed.

o Proposed Hybrid HRSNN (RNN + SNN + SMOTE+RFE):
Full pipeline.

Table 7 is the summarized comparative ablation study
performance. The noted observations from these results are:

o When SMOTE is eliminated, the model is very sensitive to class
imbalance, and hence more false negatives are encouraged.

o« When RFE was excluded, redundant features were included,
which
accuracy slightly.

increased the training time but lowered the

o A procedure based on RNN only improves the feature
representation but is limited in temporal adaptability, while that
using SNN only caters to time-based processing but has issues
with spatial feature complexity.

« The Hybrid RNN + SNN with full preprocessing consistently
attained the highest detection accuracy and Fl-score while
underpinning computational efficiency.

This ablation study assures each component of the proposed
pipeline to be necessary. Specifically, SMOTE allows the system to
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FIGURE 7
Graphical chart of multiclass results on CICloT2023 data.
TABLE 5 Binary classification results for TON-IOT dataset.
Model Traffic type Acc Pre Rec F1
Proposed HRSNN Normal 98.75 98.75 98.56 98.65
Attack 98.2 98.4 98.5 98.6
CNN-BMEGTO-KNN Normal 96.95 93.47 93.56 95.45
Attack 94 94.89 92.73 94.5
IBGJO-LSTM Normal 94.24 92.90 92.65 93.23
Attack 94 92.78 91.24 91.12
CNN-BiGRU Normal 92.4 90.89 92.56 92.45
Attack 94 85.78 90.34 84.23
hybrid CNN-LSTM Normal 92.54 90.76 86.45 83.45
Attack 92 90.56 87.34 84.32
hybrid CNN-GRU Normal 90.43 87.65 86.56 85.45
Attack 92.8 87.46 86.67 83.67

learn comparably from the minority attack classes; RFE reduces
redundancy while enhancing performance and efficiency, while the
hybrid RNN + SNN palace hold spatial and temporal learning for
features. Figure 14 depicts the graphical depiction of ablation study
results comparison.

Besides detection accuracy, a comparative study of computational
efficiency was presented for the proposed HRSNN model against
existing baselines. Three important parameters were: latency during
inference per sample, size of the model (MB), and memory
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occupation during execution. The experiments were carried out in
the same testbed (Intel i7, 16 GB RAM), and records of the metrics
were kept for both datasets, i.e., CICIoT2023 and ToN-IoT datasets.
Table 8 summarizes the comparative results. In terms of inference
time, the HRSNN lies in the range of moderate inference with 1.8 ms/
sample, which is more than the single RNN or SNN models but is
much less compared to other hybrids like CNN-BiGRU and
CNN-LSTM. As for the model size (12.5 MB) and peak memory
usage (210 MB), they are acceptable within the capabilities of
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mid-range IoT gateways and edge devices, e.g., Raspberry Pi 4 with
4-8 GB RAM. These results portray a hybrid architecture having
slightly more computation than others but that pays for this with
improved accuracy and robustness. Hence, the HRSNN model is a
viable option for implementation in IoT edge devices and fog
computing gateways, especially if lightweight optimizations such as
pruning or quantization are applied.

Frontiers in Artificial Intelligence 14

100
95
X
£90
o
Q
c
©
€
S
o
‘£ 85
[J]
a
80 | ‘ | |
75
Normal Attack Normal Attack Normal Attack Normal Attack Normal Attack Normal Attack
Proposed HRSNN CNN-BMEGTO- IBGJO-LSTM CNN-BiGRU hybrid CNN-  hybrid CNN-GRU
KNN IDS based classificaiton models LST™M
M accuracy M Precision M®Recall ®Fl-score
FIGURE 8
Results of binary classification on TON_IOT data.
Training Set [——keras (area=0.972)|
TARGET
0 SUM -
OUTPUT
4941 4981 E
0 83.99% 99.20% =
0.80% i
& 0i5
902
14.69% 95.79%
4.21%
0.0
4979 904 5805 / 5883
— 99.24% 95.58% 98.67%
0, 0 0 T T T
0.76% 4.42% 1.33% o Py o A
FIGURE 9 FPR
Binary classification’s confusion matrix on TON_IOT data. FIGURE 10
Binary classification’'s ROC curve on TON_IOT data.

While the proposed HRSNN demonstrates strong detection
accuracy, several important considerations remain. First, the
current model has not been explicitly tested against adversarial or
evasion attacks that are intentionally crafted to fool intrusion
detection systems, which will be addressed in future work through
adversarial training and robust optimization techniques. Second,
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TABLE 6 Sensitivity analysis of preprocessing parameters on HRSNN performance.

Parameter Accuracy Fl-score (CICloT2023)  Accuracy (ToN-loT) F1-score (ToN-
(CICloT2023) loT)
SMOTE oversampling Ratio (50%) 98.6 98.4 97.4 97.1
SMOTE oversampling Ratio (100%) 99.5 99.3 98.7 98.6
SMOTE oversampling Ratio (150%) 99.2 99.0 98.3 98.2
Correlation threshold (t = 0.70) 98.3 98.1 97.2 96.9
Correlation threshold (t = 0.85) 99.5 99.3 98.7 98.6
Correlation threshold (z = 0.90) 99.1 99.0 98.5 98.4
RFE features (10) 97.9 97.5 96.8 96.5
REFE features (20) 99.5 99.3 98.7 98.6
REE features (30) 99.4 99.2 98.6 98.5
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FIGURE 11
Effect of SMOTE oversampling ratio on performance.

although the architecture is feasible for IoT edge devices with  networks. The proposed framework follows a structured five-stage
moderate resources, it may still be too complex for ultra-constrained ~ process encompassing data cleaning, feature extraction, class
sensor nodes, highlighting the need for lightweight adaptations  balancing, feature optimization, and dataset partitioning. By
such as pruning, quantization, or neuromorphic hardware support.  leveraging this hybrid design, HRSNN effectively addresses the
Finally, like many deep learning models, HRSNN currently  challenges posed by advanced cyberattacks and achieves superior
functions as a “black box,” limiting interpretability of its predictions; ~ detection performance. Experimental evaluations demonstrated that
to overcome this, we plan to integrate explainability methods such  the model attained 99.5% accuracy on the CICIoT2023 dataset and
as SHAP and LIME to provide transparency and improve trustin ~ 98.75% accuracy on the ToN-IoT dataset, outperforming state-of-
real-world deployments. the-art DL-based IDS approaches. These results confirm that the
model is reliable, accurate, and adaptable for safeguarding IoT

networks against diverse security threats. While achieving high

5 Conclusion accuracy and robustness, HRSNN has a moderate computational
overhead compared to single-model IDS approaches. Inference

This study introduced an innovative HRSNN model that latency and the memory footprint are adequate for an installation on
integrates the spatial feature learning capability of RNNs with the  a resourceful IoT gateway, but extreme resource-constrained devices
temporal adaptability of SNNs to enhance anomaly detection in IoT ~ (sensor nodes with <256 MB RAM) will need further model
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Effect of RFE stopping criteria on performance.

compressions or lightweight adaptations. In the future, having pruned
or quantized models and neuromorphic hardware acceleration will
be considered for better real-time deployment of the model in a very
resource-limited IoT environment.

In future work, we aim to extend the proposed HRSNN
framework in several directions to further enhance its applicability in
real-world IoT environments. First, we plan to deploy and benchmark

Frontiers in Artificial Intelligence

the model on edge devices such as Raspberry Pi to validate practical
feasibility under constrained resources. Second, the integration of
interpretability techniques like SHAP and LIME will be explored to
provide transparent insights into the model’s decision-making process,
thereby increasing trustworthiness in security-critical settings. Third,
we will extend the model to detect zero-day and unseen attack patterns
by leveraging transfer learning and adversarial training strategies to
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TABLE 7 Ablation study of HRSNN performance with baseline models.

Model variant

Accuracy (CICloT2023)

F1-score (CICloT2023)

10.3389/frai.2025.1651516
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99 | mmm F1 (ToN-loT)

FIGURE 14
Graphical illustration of ablation study performance comparison.

loT)
RNN-only 97.8 97.6 96.9 96.8
SNN-only 96.5 96.2 95.7 95.4
Without SMOTE 98.1 97.8 96.8 96.3
Without RFE 98.7 98.4 97.9 97.6
Proposed HRSNN (Full 99.5 99.3 98.7 98.6
Model)

100

TABLE 8 Computational efficiency performance comparison with
baseline models.

Inference Model size Memory
time (ms/ (MB) usage (MB)
sample)

RNN-only 1.1 9.8 180
SNN-only 0.9 8.5 165
CNN-BiGRU 26 18.2 310
CNN-LSTM 24 17.9 295
Proposed 1.8 12,5 210
HRSNN

improve resilience against evolving threats. Finally, we intend to
investigate lightweight variants of HRSNN, employing pruning,
quantization, and neuromorphic hardware acceleration, to ensure

Frontiers in Artificial Intelligence

real-time anomaly detection while minimizing latency and energy
consumption in highly resource-limited IoT deployments.
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