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Introduction: As the number of Internet of Things (IoT) devices grows quickly, 
cyber threats are becoming more complex and increasingly sophisticated; thus, 
we need a more robust network security solutions. Traditional deep learning 
approaches often suffer in identifying effectively anomalies in IoT network. To 
tackle this evolving challenge, this research proposes a hybrid architecture of 
Neural Network (NN) models that combine Recurrent-NN (RNN) and Spiking-
NN (SNN), referred to as HRSNN, to improve IoT the security.
Methods: The proposed HRSNN technique has five steps: preprocessing data, 
extracting features, equalization classes, features optimization and classification. 
Data processing step makes sure that input data is accurate and consistent and 
by employing normalization and the removal of outliers’ techniques. Feature 
extraction makes use of the RNN part to automatically detect abnormal 
patterns and high-level features, which are then turned into spike trains for the 
SNN to process over time. In class equalization step, the Synthetic Minority-
Oversampling Technique (SMOTE) is being used resulting in balanced classes. 
Recursive Feature Elimination (RFE) is used to keep the important features for 
feature optimization. Then, the dataset is split into sets for testing and training 
so that the model can be tested properly.
Results: The hybrid model integrates the spatial feature learning skills of RNNs 
with the temporal adaptability of SNNs, results in an improved accuracy and 
resilience in identifying IoT network abnormalities. The proposed HRSNN 
approach, which was tested on the CIC-IoT23 and TON_IoT data sets, achieved 
better performance compared to current deep learning (DL) models. In 
particular, experimental assessments show that the model attained an accuracy 
rate of 99.5% on the “CICIoT2023” dataset and 98.75% on the “TON_IoT” dataset.
Discussion: These results confirm demonstrate that the proposed architecture 
of RNN and SSN can achieve significant advancement to IoT security. By 
combining both spatial and temporal feature learning, HRSNN can improve 
accuracy detection against diverse security threats. The model is reliable, 
accurate, and adaptable for safeguarding IoT networks against diverse security 
threats. Thus, the model addresses the potential solutions in the challenging 
problem of secured IoT networks.
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1 Introduction

The rapid evolution of IoT, cloud computing, and cybersecurity 
technologies has emerged in a new era of interconnected systems. IoT, 
with its potential to revolutionize various sectors like smart homes, 
industries, and cities, offers enhanced adaptability and productivity. 
By enhancing flexibility and productivity, IoT evolves the creation of 
highly interconnected systems that support innovative services 
(Zaman et  al., 2021). These benefits make IoT suitable for both 
commercial and industrial use cases. The IoT’s evolution has also 
coincided with the evolution of specialized solutions, shaping the 
structure of Industrial IoT (IIoT) and Industry 4.0 over the past 
decade (Alabadi et al., 2022). Projections suggest that by 2030, the 
number of IoT devices worldwide will triple from the current 15.14 
billion. Approximately 60% of these devices are utilized in commercial 
markets and business sectors, a trend predicted to remain consistent 
over the next decade (Choudhary, 2024). However, the inherent 
transparency and dynamic nature of IoT networks, integrated with the 
resource constraints of IoT devices, makes them highly susceptible 
to cyberattacks.

Figure 1 outlines the architecture of an IoT network, comprising 
devices, cloud services, actuators, servers, sensors, protocols, and 
applications, and illustrates a framework for anomaly-based IDS in 
IoT networks (Bakhsh et al., 2023). These elements work with both 
authorized and unauthorized users, which makes it hard to find the 
difference between regular behavior and malicious behavior. 
Unauthorized users can take advantage of vulnerabilities in security 
systems, which can lead to cyberattacks. As the number of IoT 
devices in homes and businesses increases, the likelihood of 
cyberattacks also rises. Because these devices do not have enough 
memory, processing capacity, or security, they are easy targets for 
hackers. Hackers take advantage of vulnerabilities to build botnets, 
interrupt services, private information leakage, and invade users’ 
privacy. Strong security measures are required to minimize these 

threats. VPNs and other secure authentication and encrypted 
connection methods keep data safe and private.

IDS make security even better by monitoring and finding 
abnormal behaviors. Signature-based IDS (SIDS) is one type of IDS 
that tracks for known threats, while Anomaly-based IDS (AIDS) is 
another type that tracks for unknown or abnormal behaviors. As 
attacks get more complicated and IoT devices cannot handle as much 
data, traditional security solutions will encounter difficulties with new 
threats. DL and machine learning (ML) have become viable options 
to make IoT networks more secure. These artificial intelligence 
(AI)-powered methods can detect and prevent attacks by analyzing 
patterns in network data and find unusual behaviors. AI has evolved 
better, making DL a better algorithm for IoT-IDS.

Deep Neural Networks (DNN) are effective in handling large 
volume of data, finding patterns, and sorting data. These systems are 
great for AIDS, since they track on servers, clouds, sensors, and 
devices to keep IoT infrastructure safe. Suricata and Snort are two 
examples of IDS that can help to minimize the damage caused by 
botnet attacks. These systems use analytical methods to analyze how 
malware behaves in certain settings (Lifi et al., 2023; Alkhonaini et al., 
2024). DL and ML approaches require this behavioral information 
since they need to keep collecting data while the virus is functioning. 
These approaches show how malware can affect a system and cause 
problems (Alrefaei and Illyas, 2024; Nazir et al., 2024).

Techniques for classification that have been trained on previous 
attacks can find threats more easily. For instance, once an IoT botnet 
carries out a Distributed-Denial-of-Services (DDoS) attack, the model 
may learn to identify other DDoS threats and botnet behaviors in 
similar settings (Saurabh et al., 2025). AI is being used more to find IoT 
intrusions because it can adapt to new attack patterns due to its 
enhanced detection skills (Ayad et al., 2024; Saurabh et al., 2024). But 
there are still problems since attackers are advancing with new versions 
of old techniques that are hard for current solutions to detect. Recent 
studies have targeted on developing AI techniques to improve the 

FIGURE 1

Intrusion detection system (IDS)-based security in IoT outline.
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detection of threats in IoT settings (Asgharzadeh et al., 2024; Gelgi 
et al., 2024) to solve these problems. Adding DL and ML models to 
secure devices have been shown to make them work better and be more 
flexible. Hybrid AI methods, such as combining genetic algorithms 
(GA) with DL, have shown great potential for finding problems in IoT 
networks by improving the selection of features and accuracy of models 
(Almuqren et al., 2023; Hanafi et al., 2024). DL is one of the most 
advanced AI methods since it can handle complicated, nonlinear data. 
It has been used effectively in many real-world situations. Researchers 
are always working to make DL models better so that IDS works better. 
These advancements offer a promising approach to address IoT 
security challenges and protect against evolving threats. This research 
aims to develop an IDS with a hybrid NN methodology for identifying 
diverse classes of attacks generally noticed in IoTs. These attacks 
include HTTP Flood, Bruteforce, TCP Flood, DoS, and UDP Flood.

As the hybrid DL models like LSTM-CNN and BiGRU-CNN 
suffering from increased computational complexity, this research 
proposes the HRSNN model which includes the benefits of RNN and 
SNN in a complementary manner. The RNN part is responsible for 
capturing spatial and sequential relations in IoT traffic, while the 
temporal spike-based encoding of SNN, which resembles 
neuromorphic processing, allows for more energy-efficient and event-
driven processing. This combination improves anomaly detection and 
eliminates unnecessary computation. This makes it ideal for IoT 
devices with limited resources, such as memory, power, and latency. 
HRSNN combines biological plausibility along with DL to strike an 
effective balance of performance and efficiency that is not achievable 
by existing deep hybrid networks, which makes it an innovative and 
valuable solution for IoT intrusion detection. The primary 
contributions of the proposed research are described in the following:

	•	 The study introduces an HRSNN model for IoT network security, 
combining RNN’s spatial feature extraction with SNN’s temporal 
adaptability for robust anomaly detection.

	•	 Key contributions include a five-stage data processing pipeline, 
class equalization using SMOTE, and feature optimization 
via RFE.

	•	 Superior performance on the CIC-IoT23 and TON_IoT datasets, 
achieving enhanced accuracy, reduced false positives, and 
computational efficiency, making it a scalable and practical 
solution for IoT security.

The article is structured in the following manner: Section 2 
analyzes the security challenges of IoT and DL applications in IDS 
with current models. Section 3 details the developed IDS model, 
including its architectures and mathematical formulations. Section 4 
discusses evaluation metrics, experimental results, and comparative 
analysis with current conventional ML and DL-based IDS models. 
Section 5 concludes with key findings.

2 Literature review

This section highlights the need for robust cybersecurity in the 
rapidly expanding IoT ecosystem. It reviews existing research on 
leveraging DL and ML techniques to design intrusion detection for 
IoT. The problems that need to be solved in IoT-IDS include, efficient 
solutions with resources, dealing with data scarcity and asymmetry, 
and getting real-time performance. It also points out important areas 

of research that need to be filled, such as making AI models that can 
be explained and evolve with the ever-changing threat landscape.

Asgharzadeh et al. (2024) proposed a methodology for identifying 
anomalies in IoT networks through the development of a specialized 
Convolutional Neural Network (FECNNIoT) for enhanced feature 
extraction. The approach used a better optimization algorithm called 
the Binary Multi-objectives Enhanced Gorilla Troop Optimization 
(BMEGTO) to choose the best features. A (K-Nearest Neighbors 
(KNN) algorithm then analyzed the improved feature set to find 
intrusions with a high level of accuracy. The CNN-BMEGTO-KNN 
framework was highly accurate with 99.99% on the TON-IoT and 
99.86% on the NSL-KDD data sets. It also reduced the feature set 
down to 27 and 25% of the initial features.

Hanafi et al. (2024) developed a new IDS for IoT networks that 
used a Long Short-Term Memory (LSTM) network and an Improved 
Binary Golden Jackal Optimizer (IBGJO) method. The IBGJO 
method, improved by Opposition-Based Learning, quickly chose the 
most relevant features from the data set, which made the classification 
more accurate. The LSTM network then used these optimized features 
to accurately classify data, achieving an excellent rate of detection of 
98.21% on both the CICIDS 2017 and NSL-KDD datasets. The model 
outperformed current approaches, including BGJO-LSTM, BWOA-
LSTM, BSCA-LSTM, SVM, KNN, and Naive Bayes, showing that it is 
better at finding intrusions in IoT networks.

Kethineni and Pradeepinni (2024) presented a DL-based architecture 
for intrusion detection in smart agricultural systems. The three-tier 
design included a fog processing layer for networked computing. It also 
combined the CNN with a Bidirectional Gated Recurrent Unit 
(CNN-BiGRU) model that had an attention mechanism to find DDoS 
attacks. The Wild Horse Optimization technique was used to make the 
model work better. It achieved high accuracy rates of 99.35% on 
APA-DDoS and 99.71% on ToN-IoT datasets

Yaras and Denner (2024) concentrated on improving the detection 
of attacks in IoT networks by the implementation of a hybrid DL 
model that included 1D-CNN and LSTM. The technique was 
developed and assessed using big data tools such as Apache Spark and 
PySpark within the Google Collaboratory. It analyzed the network 
data to find cyberattacks, especially DDoS attacks, with an accuracy 
of 99.995% on CICIoT2023 and 98.75% on TON_IoT. This method 
worked well to solve the problems of analyzing big data sets made by 
IoT networks, giving a strong way to improve security.

Qaddos et  al. (2024) developed a hybrid DL model for IoT 
security detection, integrating CNN and GRU to proficiently capture 
intricate characteristics and temporal correlations in IoT data. To deal 
with the imbalance in data, the Feature-Weighted SMOTE 
(FW-SMOTE) method was included, and the model was tested on the 
IoTID20 and UNSW-NB15 data sets. The model performed better 
than current benchmarks, with accuracy rates of 99.60 and 99.16%. 
These results showed that the model worked well and could 
be changed to fit different needs. This is a viable solution to make IoT 
ecosystems more secure and resilient against changing cyber threats.

Kasongo and Sun (2019) proposed an IDS system employing RNN 
architectures (LSTM, GRU, Simple RNN) for detecting attacks on the 
NSL-KDD and UNSW-NB15 datasets. A feature selection technique 
based on XGBoost minimized the set of features to only the useful ones. 
The XGBoost-LSTM model performed better in classifying NSL-KDD 
data into two groups (TAC: 88.13%, VAC: 99.49%). The XGBoost-
Simple-RNN model performed better in classifying UNSW-NB15 data 
into two groups (TAC: 87.07%). XGBoost-LSTM (NSL-KDD) and 
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XGBoost-GRU (UNSW-NB15) were the most accurate for classifying 
multiclass attacks. By integrating feature selection with the RNN 
architectures, the framework made detection of attacks better.

Hizal et al. (2024) worked on making intrusion detection better 
in IoT networks, with an emphasis on DDoS attacks. It used a 
two-level DL-based IDS and included preprocessing methods like 
feature reduction and data adjustment to make the model work 
better. The study demonstrated that a two-stage strategy, assessed 
using fully connected, combined, and LSTM models on the 
CICIoT2023 dataset, surpassed conventional single-model 
techniques such as DNN, CNN, and RNN, providing superior and 
more resilient detection of DDoS attacks in IoT networks.

Wang et  al. (2024) worked on making IoT networks safer by 
building a new IDS. The system employed a form of DL called 
Conditional Tabular Generative Adversarial Networks (CTGAN) to 
fix the problem of unbalanced data, where some attacks were less 
prevalent. The system performed better in finding other sorts of 
intrusions by making fake data to identify these less common 
attempts. The model was evaluated on number of datasets and attained 
a higher accuracy compared to current approaches.

Sajid et al. (2024) developed a new hybrid IDS model that used 
XGBoost and CNN for the extraction of features and LSTM for 
classification. This framework was designed to deal with the 
increasing difficulty of network security, which includes problems 
like new sorts of attacks and vast amounts of different types of data. 
The model used XGBoost and CNN to choose features and LSTM to 
classify them. It had a high detection rate and a low false acceptance 
rate across the four test datasets (CIC IDS 2017, UNSW NB15, NSL 
KDD, and WSN DS). This shows that it is effective at improving 
network security against threats that change over time.

Zia et al. (2024) emphasized the security issues arising from the 
increasing application of IoTs in cities that are smart cities, especially 
in zero-touch networks (ZTN) that independently regulate network 
resources. It created a new DL-based IDS (DL-NIDS-ZTN) that 
employed CNN to find several types of intrusions, such as DDoS, 
Botnet, Brute force, and Invasion. The model has a very high accuracy 
of 99.80% on the CICIDS-2018 dataset, making it a strong way to 
protect the integration of IoT equipment and services in smart cities.

Recent studies on AI-driven zero-day intrusion detection focus on 
ML and DL approaches, as well as anomaly detection and hybrid 
methods. While each of these generally performs well, each one has 
significant limitations. A large number of studies are limited in scope, 
concentrating on certain kinds of attacks or certain working 
environments. This is on top of a set of challenges that continue to exist, 
such as high processing costs, the need for real-time response, the ability 
to handle increasing workloads, and the change of working 
environments. A hybrid approach combining the strengths of multiple 
algorithms in overcoming the limitations of individual algorithms is a 
useful trend in the literature. While the studies discussed above are 
helpful, there is a glaring gap when it comes to addressing zero-day 
attacks and the need for newer, more efficient AI models (Yee et al., 2024).

In a study by Dai et al. (2024), the CIC-MalMem-2022 data set 
was used. This study discovered new attacks using auto encoders (AE) 
for anomaly detection and further analyzed using XGBoost and 
Random Forest (RF) to create newer hybrid models. The new models 
that combined anomaly detection and classical ML classifiers had 
better detection rates, the best being the RF-AE model that had 
flawless detection. The model performed almost equally, having 
99.9892% correct classification showing that the model generalized 

well Table 1 shows research gap among IDS-based Security Schemes 
for IoT. This study shows the usefulness of metrics combining anomaly 
and classification approaches in the insurmountable zero-day 
intrusion detection problem.

The research by Sana et al. (2024) developed the anomaly detection 
methods in IoT intrusion detection through the merging of advanced 
IoT ML models and DL models. The special tuning of the model 
parameters, that is, the Bayesian optimization approach, was very 
successful in the fine-tuning of the model parameters. This study shows 
the successful merging of classical IoT models and DL models as a step 
forward in intrusion detection, giving better attack mitigation, 
improved safety, and better IoT network operation.

It was stated that IDS models can track network traffic and find 
DDoS attacks, and that ML and DL models to perform tasks effectively. 
The system used the accuracy, f-measure, and other metrics to test the 
proposed hybrid strategy, which combines SNN and RNN and 
compared it to other standard ML and DL methods.

3 Proposed methodology

This section presents the implementation of developed HRSNN 
model for detecting and classifying attacks in IoT networks. Figure 2 
shows the overall workflow of the suggested HRSNN-based IDS. The 
first step is to collect and prepare practical IoT data about traffic from 
two databases. This data is used to find important features, which are 
subsequently processed and evaluated for analysis. The information 
provided is equitable, and the most relevant features are chosen to make 
sure that the model’s training is effective. Then, this data is used to train 
a hybrid model that uses RNNs to learn successive traffic flows and 
SNNs to classify data quickly and correctly. The system carefully 
evaluated the efficacy of the framework using number of different 
performance indicators. The best-performing model was chosen to 
provide strong and effective solution against cyber-attacks in 
IoT settings.

3.1 Datasets

CICIoT2023: The CIC-IoT-2023 simulates an authentic smart 
home setting with 105 networked IoT devices. This dataset captures 
network traffic generated from 33 distinct attack types categorized into 
seven major categories (DDoS, DoS, Reconnaissance, Web-based, 
Brute-force, Spoofing, and Mirai). The diverse IoT topology, 
encompassing smart home appliances, cameras, microcontrollers, and 
sensors, along with the comprehensive attack scenarios, makes this 
dataset valuable for researchers and security professionals to develop 
and evaluate IDS and other security mechanisms. The data set has 47 
features, which makes it appropriate for studying and comprehending 
the differences between normal and abnormal IoT flow.

TON_IOT: This collection of data includes a lot of current attacks 
in IoT contexts, such as hacking passwords, imaging, DDoS, 
ransomware infections, DoS, backdoor attacks, XSS, injecting, and 
MITM attacks in a realistic, massive operations test environment. This 
study utilizes the Processed Windows 10 dataset, a subset of TON_IoT, 
which focuses on network traffic data collected from a Windows 10 
operating system within the larger IoT testbed. This subset allows for 
a more focused analysis of attack patterns and security vulnerabilities 
specific to Windows 10 devices within the broader IoT ecosystem.
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TABLE 1  Research gap among IDS-based security schemes for IoT.

Authors Method name Merits Demerits

Asgharzadeh 

et al. (2024)

CNN-BMEGTO-KNN The CNN-BMEGTO-KNN model offers high accuracy 

(99.99%) and efficient feature reduction, making it 

suitable for large-scale IoT networks.

Integrating the custom CNN and BMEGTO may increase 

complexity and computational costs, limiting scalability 

for resource-constrained devices.

Hanafi et al. 

(2024)

IBGJO-LSTM The IBGJO-LSTM model achieves high detection 

accuracy (98.21%), making it highly effective for 

intrusion detection in IoT networks.

Combining IBGJO with LSTM can make the system more 

complex and require more computing power, which may 

not be ideal for IoT devices with limited resources.

Kethineni and 

Pradeepinni 

(2024)

CNN-BiGRU The CNN-BiGRU model effectively combines the 

strengths of both convolutional and recurrent 

networks, achieving high accuracy in detecting DDoS 

attacks in smart farming systems.

The model’s complexity may require substantial 

computational resources, making it less suitable for 

deployment on devices with limited processing power.

Yaras and 

Denner (2024)

hybrid CNN-LSTM The hybrid model achieves exceptional accuracy, 

making it highly effective for detecting DDoS attacks 

in IoT networks.

The use of big data technologies and complex deep 

learning models may require a lot of computational power, 

making it difficult to deploy on IoT devices with limited 

resources.

Qaddos et al. 

(2024)

hybrid CNN-GRU The hybrid CNN-GRU model achieves high accuracy 

(99.60 and 99.16%), making it highly effective for 

detecting attacks in an IoT network.

The model’s intricacy and the usage of FW-SMOTE for 

data maintenance may make it harder to run, which might 

make it less scalable for IoT devices with limited resources.

Kasongo and 

Sun (2019)

XGBoost-LSTM Using XGBoost for picking features and RNN 

architectures together makes the model more 

successful by making it more accurate for both binary 

form and multiple-class intrusion detection tasks.

Using more than one RNN architecture with XGBoost for 

selecting features might make the model more complicated 

to run, which would make it less useful for immediate 

identification on IoT devices with limited resources.

Hizal et al. 

(2024)

convolutional, and LSTM The two-stage deep learning approach provides more 

accurate and robust DDoS attack detection compared 

to traditional single-model methods.

The two-level approach is more complicated, which may 

mean it needs more computing power and may not work 

as well for immediate detection on IoT devices with 

limited resources.

Wang et al. 

(2024)

CTGAN CTGAN improves detection accuracy by generating 

synthetic data for rare attacks, enhancing the system’s 

performance.

The use of CTGAN may increase computational costs, 

making the system less suitable for real-time use on 

resource-limited IoT devices.

Sajid et al. 

(2024)

Hybrid XGBoost and CNN for 

feature selection and using LSTM

The hybrid model effectively combines feature 

extraction and classification techniques, resulting in 

high detection accuracy and low False Acceptance Rate 

across multiple datasets.

The complexity of combining XGBoost, CNN, and LSTM 

may increase computational requirements, making it less 

suitable for real-time detection on resource-constrained 

devices.

Zia et al. (2024) DL-NIDS-ZTN The DL-NIDS-ZTN model demonstrates high 

accuracy (99.80%) in detecting multiple types of 

network intrusions, enhancing security in smart cities.

The complexity of deep learning models may require 

significant computational resources, potentially limiting 

their applicability in resource-constrained IoT 

environments within smart cities.

Yee et al. (2024) ML, DL, anomaly detection, and 

hybrid models combining 

multiple algorithms.

Provides a structured overview of AI-driven intrusion 

detection techniques. Highlights the role of hybrid 

models in addressing weaknesses of individual 

algorithms. Identifies strengths of ML/DL in detecting 

previously unseen attacks.

Many reviewed models focus only on specific attack types 

or environments. Limited real-world adaptability due to 

computational demands and scalability issues. Lacks 

empirical validation since it is a review, not an 

implementation.

Dai et al. (2024) AE-based anomaly detection 

integrated with XGBoost-AE, 

RF-AE.

Hybrid anomaly detection-classification framework 

enhances detection capability. RF-AE achieved near-

perfect results (100% accuracy, precision, recall, F1, 

MCC). Demonstrated strong generalization to unseen 

data (99.98% accuracy).

Performance heavily dependent on dataset quality (CIC-

MalMem-2022). May face scalability challenges in real-

time IoT/enterprise networks. Extremely high accuracy 

might indicate possible overfitting if not tested on broader 

datasets.

Sana et al. 

(2024)

ML models (tree-based SVM, 

Ensemble Bagged Tree, Random 

Forest, NN) and DL (LSTM, 

Vision Transformer) with 

Bayesian optimization.

RF and Ensemble Bagged Tree achieved >99.9% 

accuracy with AUC = 1.00. LSTM achieved 99.97% 

accuracy. ViT architecture achieved perfect training 

metrics and outperformed others. Demonstrated a 

three-pronged improvement: reliability, security, and 

network performance.

ViT achieved perfect training accuracy but only 78.70% 

validation accuracy, suggesting potential overfitting and 

weaker generalization. High computational cost of ViT 

may limit deployment on resource-constrained IoT 

devices. Requires careful optimization for practical real-

time scenarios.
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3.2 Preprocessing

This is a necessary step in preparing the data for DL algorithms. 
Practical datasets typically have problems like values that are absent, 
inconsistencies, and irrelevant characteristics that might degrade how 
well a model works. The aim of preprocessing is to quantify and 
organize the data so that the algorithm can learn in the best possible 
way. The following is a thorough description that includes 
mathematical formulas to show important steps:

Missing data: entries that have corrupt or blank in the data set 
might make it harder to learn. The first step is to find and remove the 
columns or rows that have missing values (mv):

Let DS∈ ×m n  be the collection of data with m instances and n 
characteristics Equation 1, which is known as:

	
( ) = 



1,  ,
0,

ij
ij

if ds is missing
mv ds

otherwise 	
(1)

The total missing values in row i is computed as in Equation 2

	
( ) ( )

=
=∑

1

n

ij
j

mc i mv ds
	

(2)

Where mc is defined as the missing count.
Rows with missing values are removed using Equation 3:

	 ( ){ }′ = ∈ =: 0iDS ds DS mc i 	 (3)

Numerical conversion: string or categorical values cannot 
be directly processed by DL models. These values are converted into 
numerical representations using techniques like one-hot encoding or 
label encoding. As illustrated in Equation 4, for a categorical variable 
Cv  with k unique classes, one-hot encoding generates a binary 
vector ∈ ke  :

	

= 


1,     ,
0,i

if the class belongs to i
e

otherwise 	
(4)

Correlation analysis among features: not all features contribute 
equally to the model’s performance. Features with high 
correlation might introduce redundancy and increase 
computational cost.

The correlation matrix ×∈ n nR   is calculated using the Pearson 
Correlation Coefficient Equation 5:

	

( )
σ σ

=
,

i j

i j
ij

a a

Cv a a
r

	
(5)

Where ( ),i jCv a a  is the covariance between features ,i ja a  and 
σ σ,

i ja a  are their standard deviations.
Features with τ>ijr∣∣  (a predefined threshold) are considered 

highly correlated, and one of them is removed Equation 6:

	 { }τ′′ ′= ∈ ∀ ≠ ≤: , | | i ijDS a DS j i r
	

(6)

FIGURE 2

Overall process of proposed HRSNN-based IDS.
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3.3 SMOTE for class equalization

The CIC-IoT23 dataset contains features extracted from IoT 
network traffic, often used for intrusion detection. When working 
with imbalanced classes, the SMOTE can be  applied to generate 
synthetic samples for minority classes, ensuring class balance for ML 
models. SMOTE reduces the bias of ML models toward the majority 
class by improving the representation of minority classes, ensuring 
fairer and more accurate classification outcomes.

Let dataset D contain samples from Ca distinct categories, where 
{ }= …1 2, , , kCa Ca Ca Ca . Assume iCa∣ ∣ represents the number of 

samples in class ia , and the minority class minCa  is the class with the 
smallest sample size Equation 7:

	
{ }= ∈ …min

min
arg , 1,2, ,iCa Ca i kn

i 	
(7)

Here, the majority class majCa ​is the class with the largest sample 
size is given by Equation 8:

	
{ }= ∈ …

max
arg , 1,2, ,maj iCa Ca i kn

i 	
(8)

The objective of SMOTE is minCa∣ ∣ to increase to match majCa∣ ∣, 
thereby balancing the dataset.

First, the total neighbours kn must be decided to consider for 
generating synthetic samples (e.g., kn = 5). Then, the nearest 
neighbour for each minority sample has been found using Euclidean 
distance Equation 9.

	 ( ) ( )=
= − ∈∑

2
, ,1, , ,n n

i j i l j l i jlds a a a a a a 
	

(9)

Where n denotes the number of features.
Then, the synthetic samples are generated for each minority 

sample ia  with a random neighbour ja  using Equation 10.

	 ( )λ= + −.new i j ia a a a 	 (10)

Where λ defines the random value between 0 and 1.
Finally, the synthetic samples are generated till the minority class has 

the same number of samples as the majority class using Equations 11,12.

	 =min,new majCa Ca∣ ∣	 (11)

	 = ∪min, minnew synCa Ca A 	 (12)

Where synA  is the set of generated samples.

3.4 Feature selection

RFE is a powerful technique for optimizing IDS in resource-
constrained IoT environments. It iteratively trains an ML model, 

evaluates the importance of each feature, and removes the least 
significant ones. This process continues until an optimal subset of 
features is identified, leading to more efficient and accurate IDS 
models while minimizing resource consumption. The step-by-step 
process is given below.

	•	 Step  1: Let the dataset contain n features and m samples, 
represented as in Equation 13.

	 ( ){ }×= ∈ ∈, , ,m n mDS A b A b 
	

(13)

Where = …  1 2, , nA a a a  defines the feature matrix, and b is the 
target vector.

	•	 Step 2: train a supervised learning model ( )θ;f A  on the dataset 
to predict b, represented as in Equation 14:

	 ( )θ=ˆ ;b f A 	 (14)

Where θ are the model parameters learned during training.

	•	 Step 3: Compute the importance (I) of each feature ia  based on 
the model f  using the linear model as in Equation 15.

	 ( ) β= = …, 1,2, ,i iI a i n	 (15)

Where βi is denotes the coefficient feature ia .

	•	 Step 4: Rank the features ia  based on their importance (I) scores 
( )iI a  as described in Equation 16:

	 ( ){ } { }= ∈ …, 1,2, ,iRa argsort I a Ra n 	 (16)

	•	 Step 5: Then, remove the lowest-rank feature - as illustrated in 
Equation 17.

	
{ } ( )= =

min
, argnew j iA A a j I a

i 	
(17)

	•	 Step 6: Iterate steps 2–5 until the desired number of features kf  is 
reached, represented as in Equation 18:

	 { }= … ≤1 2, , , ,opt s s skA a a a kf n	 (18)

The selected features optA  are the most relevant for building the 
IDS model.
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Parameterization of the preprocessing stage and feature 
engineering was derived based on empirical validation as well as 
literature. Regarding the correlation-based feature pruning, an 85% 
threshold on correlation levels (τ = 0.85) was used, suggesting that 
feature-pairs above this correlate for redundancy and not for further 
discriminative ability. On the other hand, for SMOTE, the 
oversampling ratio was set to 100% of the minority class size, which is 
standard practice for balancing distributions between categories of 
attacks. An RFE implementation was stopped after selecting 20 
features, through testing and cross-validation; <0.5% gain in accuracy 
was observed beyond this, while training times were heavily increased. 
Thus, the parameters were chosen as a balance between accuracy and 
run-time.

3.5 Hybrid RSNN model for effectual IDS

The preprocessed data is divided into training, validation, and testing 
sets with ratio of 60, 20, and 20%, respectively. The binary classification 
data includes 65 dimensions, while the multiclass data includes 67 
dimensions. These sets include labels for both normal and attack types. A 
hybrid RNN-SNN model is trained using the training dataset. Then, the 
effectiveness of the framework is tested on the validation database, and 
finally, its accuracy is tested on the test set that was held back. This 
procedure is meant to sort data into two groups: “Attack” and “Normal.” 
It can work with both multi-class and distinct problems.

HRSNN is implemented for finding abnormal behaviors in IoT 
networks by using the best two strong neural network design concepts. 
RNNs are great at finding high-level characteristics in network data and 
capturing temporal relationships. They are better for the extraction of 
features. SNNs are good for analyzing how these features change over 
time on IoT devices with limited resources since they process events and 

use less energy. The combined technique uses RNNs to get useful features 
from IoT data and then sends those to an SNN for immediate analysis as 
illustrated in the proposed technique in Figure 3. The SNN produces 
spikes, and the model may find unusual behavior by monitoring these 
increasing patterns for changes from regular behavior. This beneficial 
approach makes it easier to find abnormalities in the convoluted and 
changing settings that are common in IoT networks (Tavanaei 
et al., 2019).

The RNN processes the data with time series, one step at a time. 
At each time step t, the RNN maintains a hidden state thd , which 
captures information from the current input ta  and the previous 
hidden state −1thd  as illustrated in Equation 19:

	 ( )−= + +1t a t hd t hdhd fn Wt a Wt hd bi 	 (19)

Where ×∈ n d
aWt   represents the input weight matrix, 

×∈ d d
hdWt   is defined as the recurrent weight matrix, hdbi  is the bias 

vector, fn represents the ReLU activation function, ∈ d
thd  , d denotes 

the size of the hd.
After processing the entire sequence, the RNN generates a 

sequence of hidden states as described in Equation 20:

	 { }= …1 2, ,RNN THd hd hd hd 	 (20)

SNNs process data based on spiking activity and are effective for 
capturing temporal patterns. Each spiking neuron integrates input 
over time. Its membrane potential tM  evolves as in Equation 21:

	
−= +∑1 ,t t i t i

i
M M Wt a

	
(21)

FIGURE 3

Proposed HRSNN-based IDS for attack detection.
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Where tM  defines the potential of the membrane at time t, iWt  
refers to the weight of the input ,t ia .

A neuron spikes Equation 22 when tM exceeds a threshold θ:

	

≥ θ= 


1,
0,

t
t

if M
S

otherwirse
	

(22)

After spiking, the membrane potential resets: 	 = 0.tM

The SNN captures temporal patterns by processing the spiking 
activity over time using Equation 23:

	 { }= ′ ′ … ′1 2, ,SNN THd hd hd hd 	 (23)

Hybrid RNN-SNN: The input is the raw IoT data A consisting of 
T time steps and n features per time step. The RNN processes the input 
A and outputs spatial features as described in Equation 24 RNNhd :

	 ( )=RNN RNNhd fn A 	 (24)

The spatial features RNNhd  are fed into the SNN, which processes 
temporal patterns as described in Equation 25:

	 ( )=SNN SNN RNNhd fn hd 	 (25)

The SNN output SNNhd  is used for anomaly classification. The 
final output is the predicted label b̂ as described in Equation 26:

	 ( )=ˆ
SNNb g h 	 (26)

Where g  is a sigmoid classification function.
Loss Function: The model is trained using a loss function ( ), ˆL b b , 

where y is the true label, and b̂ is the predicted label. For binary 
classification (e.g., anomaly detection), the binary cross-entropy loss 
is computed as in Equation 27:

	
( ) ( ) ( ) ( )

=

 = − + − −  ∑
1

1, log 1 log 1ˆ
m

i i i i
i

L b b b b b b
m 	

(27)

The model parameters are optimized to minimize ( ), ˆL b b  using 
Adam gradient-based methods (Yamazaki et  al., 2022). The 
pseudocode for the proposed HRSNN model is presented as follows:

Initialization
Input: IoT Datasets (CIC-IoT23, TON_IoT).
Output: anomaly detection
Load IoT datasets

Normalize the dataset to ensure consistent scaling of features.
Remove outliers to maintain data integrity and uniformity.
�Apply RNN to extract spatial patterns and high-level 
abstractions from the dataset.
Encode RNN outputs into spike trains for temporal processing.

Use SMOTE to balance the class distribution in the dataset.
�Perform RFE to select the most relevant features and 
reduce dimensionality.
Split the optimized dataset into training and testing subsets.
Initialize the Hybrid RNN-SNN model.
Train the RNN component to learn spatial features.
�Train the SNN component to process encoded spike trains for 
temporal adaptability.
�Optimize model parameters using backpropagation and 
gradient descent.
Test the trained HRSNN model on the testing dataset.
Generate the classification outputs.

End

4 Experimentation analysis

4.1 Experiment setup

This section highlights the experiments and the performance 
assessment of the developed research methodology in classifying 
attacks in IoT networks. Experiments were conducted to compute the 
performance and effectiveness of the developed research model. The 
experimental assessments are conducted on an Intel i7-Core CPU with 
16GB of RAM, utilizing Python on the TensorFlow 2.0 and Keras 
libraries. The CICIoT2023 dataset comprises multiple data files, and 
combining these files results in a substantial volume of data to process. 
To address this challenge, some studies have utilized samples from the 
dataset (Ayad et al., 2024; Gelgi et al., 2024), reducing training costs 
without significantly impacting the results. Applying the whole dataset 
often discharges computing resources and creates processing infeasible, 
necessitating high-capacity and expensive servers. Instead, a reduced 
dataset was employed, constituting 20% of the original datasets, while 
maintaining the same attack class ratio as the full dataset. This approach 
significantly reduced training and testing costs and time.

4.2 Performance metrics

To evaluate the proposed HRSNN algorithm, tests were 
conducted using both binary and multiclass classifications, and 
compared with current ML and DL algorithms. Performance metrics 
such as accuracy, precision, recall, and F1 score were analyzed and 
discussed with additional visualization through ROC curves and 
confusion matrices.

Accuracy demonstrates the model’s precise prediction efficacy. 
Accuracy estimates the percentage of correctly identified and false 
alarms produced by an attack detection model; it represents the 
general effectiveness of the IDS and was calculated as in Equation 28.

	
+

=
+ + +

TRP TRNAccuracy
TRP TRN FLP FLN 	

(28)

In this context, true positive (TRP) signifies accurately identified 
malicious flows, true negative (TRN) represents accurately identified 
normal flows, false negative (FLN) represents inaccurately identified 
normal flows, and false positive (FRP) represents inaccurately 
identified attacking flows.
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Precision: the FNR, often termed as precision, represents the ratio 
of incorrectly classified attacks to the total number of attack incidents. 
The precision derived from Equation 29 signifies the number of 
positive predictions predicted:

	
=

+
TRPPrecision

TRP FLP 	
(29)

Recall, the proportion of accurately identified abnormal incidents 
relative to the overall count of abnormal events. Equation 30, which 
computes recall, indicates the accurately predicted TRP in total:

	
=

+
 TRPDetection Rate

TRP FLN 	
(30)

The F1 score is important since it reveals further insights into the 
effectiveness of the classification model. It considers FLP and FLN. The 
F-measure is particularly advantageous when the proportion of class 
labels is imbalanced or uneven. The F-score, calculable via 
Equation 31, illustrates the balance between recall and precision:

	
×

= ×
+

1- 2 Precision RecallF Score
Precision Recall 	

(31)

4.3 Results analysis

In order to ensure the robustness of the achieved performance, all 
the experiments were repeated five times with varying random seeds 
and with 5-fold cross-validation. For each fold, this evaluation reports 
the average ± standard deviation (SD) of accuracy, precision, recall, 
and F1-score for each of the five runs. Eventually, the paired t-test was 
performed between the proposed HRSNN model and the best 
competing baseline, i.e., CNN-BMEGTO-KNN, to test the statistical 
significance of improvement of performance observed. A p-value < 
0.05 denotes statistical significance. The statistical tests agree that the 
presented improvement by HRSNN is not due to chance. More 
specifically, the paired t-test between HRSNN and 
CNN-BMEGTO-KNN delivered p < 0.01 for both datasets for all four 
metrics, confirming that performance gains of HRSNN are ascribable 
to statistical significance. Table 2 shows the results of the four metrics 
compared to best DL-IDS approaches. It is that these findings 
underscore that hybrid pipelines, across single runs of experiments, 
consistently perform better than existing DL-IDS approaches 
in generalization.

After preprocessing, the CICIoT2023 dataset was initially tested for 
binary classification using the proposed hybrid algorithm. This was 
compared against five algorithms: CNN-BMEGTO-KNN, 

IBGJO-LSTM, CNN-BiGRU, hybrid CNN-LSTM, and hybrid 
CNN-GRU. The binary evaluation results are summarized in Table 3 and 
illustrated in Figure 4. The developed HRSNN methodology achieved 
the best classification of binary data accuracy, as illustrated in Table 3 and 
Figure 4. This was subsequently followed by CNN-BMEGTO-KNN, 
IBGJO-LSTM, CNN-BiGRU, hybrid CNN-LSTM, and hybrid 
CNN-GRU algorithms. The superior performance of the proposed 
HRSNN algorithm can be attributed to its ability to effectively capture 
both spatial and temporal features, making it highly suitable for complex 
binary classification tasks. Compared to hybrid and traditional models, 
HRSNN demonstrates enhanced feature extraction and integration 
capabilities, leading to improved decision-making accuracy. Additionally, 
the algorithm’s robustness and adaptability to diverse data patterns 
further highlight its advantage over competing methods.

Figure  5 presents the confusion matrix for evaluating the 
constructed HRSNN methodology in a binary context. Figure  6 
illustrates the graphic representation of the generated ROC curve. The 
confusion matrix in Figure 5 indicates that the FLP ratio was nearly 
imperceptible, with just approximately one hundred instances 
incorrectly classified. The TRP ratio was notably enhanced. The ROC 
graph in Figure 6 indicates that the AUC-ROC ratio exceeded 0.99. 
The methods were additionally assessed for classification in multiple 
classes. The designed approach was evaluated alongside various DL 
and ML techniques. Table  4 presents the multi-class assessment 
findings of the methods for the CICIoT2023 data set.

The developed HRSNN methodology achieved an improved 
accuracy in binary classification, trailed by CNN-BMEGTO-KNN, 

TABLE 3  Binary classification results for CICIoT2023 dataset.

Model Traffic 
type

Acc Pre Rec F1

Proposed 

HRSNN

Normal 99.5 99.2 99.2 99.3

Attack 99.1 99.4 98.5 98.8

CNN-

BMEGTO-

KNN

Normal 97.95 96.56 96.95 96.56

Attack 97 97.42 95.32 95.5

IBGJO-LSTM Normal 96.24 95.6 95.3 94.3

Attack 95 94.7 93.2 93.3

CNN-BiGRU Normal 95.534 92.3 91.33 90.6

Attack 93 91.4 92.7 88.43

hybrid CNN-

LSTM

Normal 93.54 90.6 89.2 88.5

Attack 91 90.3 90.3 86.7

hybrid CNN-

GRU

Normal 91.43 88.9 88.2 88.3

Attack 89 88.5 87.3 85.45

TABLE 2  Statistical validation of performance.

Dataset Model Accuracy (%) Precision (%) Recall (%) F1-score (%)

CICIoT2023
Proposed HRSNN 99.48 ± 0.07 99.30 ± 0.09 99.28 ± 0.10 99.29 ± 0.08

CNN-BMEGTO-KNN 97.95 ± 0.15 96.80 ± 0.20 96.13 ± 0.22 96.55 ± 0.18

ToN-IoT
Proposed HRSNN 98.72 ± 0.09 98.55 ± 0.10 98.52 ± 0.12 98.54 ± 0.11

CNN-BMEGTO-KNN 96.95 ± 0.18 94.80 ± 0.21 93.90 ± 0.25 94.50 ± 0.23

Bold values indicate the highest metric values obtained.
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IBGJO-LSTM, CNN-BiGRU, hybrid CNN-LSTM, and hybrid 
CNN-GRU algorithms. The hybrid CNN-GRU algorithm 
recorded the lowest accuracy. The hybrid methodology’s 
confusion matrix, shown in Figure 5, highlights a negligible FPR, 
with only around 100 records misclassified, and a high true 
positive rate. The ROC curve in Figure  6 demonstrates an 
AUC-ROC value exceeding 0.99.

The dataset was also subjected to multiclass classification, with the 
proposed algorithm again compared to the same ten algorithms. 
Table  4 presents the multiclass evaluation results, while Figure  7 
displays them graphically. The evaluation results reveal an important 
difference between multiclass and binary classifications. As the 
number of attack categories in the data set increases, the efficiency of 

FIGURE 4

Graphical chart of binary results on CICIoT2023 data.

FIGURE 5

Binary classification’s confusion matrix on CICIoT2023 data. FIGURE 6

Binary classification’s ROC curve on CICIoT2023 data.
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the algorithms reduces. Using the CICIoT2023 data set, ML and DL 
methodologies demonstrated comparable performance in binary 
classification. However, in multiclass categorization, a notable decline 
in accuracy was observed with the hybrid CNN-LSTM and hybrid 
CNN-GRU algorithms. In contrast, the proposed HRSNN algorithm 
maintained a consistent performance without a significant drop in 
accuracy. Using the CICIoT2023 dataset, the proposed HRSNN 
algorithm achieved the best results, with an attack detection rate of 
99.5% and an attack type detection rate of 99.56%. These results 
demonstrate that the proposed HRSNN algorithm outperforms both 
the other studies and the tested algorithms, achieving the highest 
accuracy values.

The proposed hybrid technique was additionally assessed utilizing 
the TON_IOT data set. The accuracy of the data set is presented in 
Table 5. Figure 8 illustrates the plotted results. The presented HRSNN 
method achieved the maximum accuracy in classifying binary data in 
the TON_IOT dataset, as illustrated in Table 4 and Figure 8. The 
subsequent techniques included CNN-BMEGTO-KNN, IBGJO-
LSTM, CNN-BiGRU, hybrid CNN-LSTM, and hybrid CNN-GRU. The 
NB approach yields the lowest result. Figure 9 presents the confusion 
matrix for evaluating the proposed HRSNN approach in binary mode 
while Figure 10 shows ROC curve, on the TON_IOT dataset. This 
synergy allows HRSNN to address the complexity and variability of 
IoT network data better than other algorithms, which may rely solely 
on either spatial or temporal processing. Additionally, the structured 
methodology, including robust data cleaning, feature optimization, 
and class equalization techniques, ensures that the input data is both 
high-quality and balanced. Overall, the results of the proposed 
HRSNN model outperformed the other compared models in this 
research with proper validation. The HRSNN model produces greater 
outcomes in the CICIoT2023 data set in comparison to those obtained 
from the TON_IoT data set.

To further validate the robustness of parameter selection, a 
sensitivity analysis was performed on three crucial parameters: (i) 
SMOTE oversampling ratio; (ii) correlation threshold τ; and (iii) RFE 
stopping criterion.

	•	 SMOTE Oversampling Ratio: Ratios varying from 50 to 150% 
were tested. Oversampling below 100% induced class imbalance 
and higher false-negative errors, while an oversampling ratio 
higher than 150% usually introduced noise and slight overfitting. 
Thus, an appropriate balance was achieved at 100% oversampling, 
which gave the best F1-score stability across the two datasets.

	•	 Correlation Threshold (τ): Thresholds were varied from 0.70 to 
0.95. If τ was below 0.80, redundant features would be kept and 
thus, accuracy degraded slightly (−1.2%). If τ was ≥0.90, valuable 
complementary features may have been eliminated. The best 
stability and performance were attained at τ = 0.85, as 
corroborated by the literature.

	•	 RFE Stopping Criterion: Tested for subsets between 10 and 30 
features. On average, accuracy increased considerably up to 20, 
remained stable between 20 and 25, and diminished sharply 
when fewer than 15 features were retained. Therefore, 20 
dimensions were selected as the optimal stopping point.

The results listed in Table 6 reveal that the chosen set of parameters 
seemed to give the best detection accuracy and the best false positive 
rate always considered. Hence, their acceptance in the final HRSNN 
architecture was justified. Figures  11–13 depict the graphical 
illustration of the sensitivity analysis based on preprocessing 
techniques applied in this research.

To verify the individual effectiveness of each module building the 
HRSNN architecture on CICIoT2023 and ToN-IoT datasets, the 
ablation study was performed. The following variants were taken 
into consideration:

	•	 Baseline (RNN-only): Only the Recurrent Unit was employed for 
temporal feature extraction.

	•	 Baseline (SNN-only): Only the Spiking Neural Network unit was 
employed without feature enrichment.

	•	 Without SMOTE: Data was trained on class imbalanced data.
	•	 Without RFE: All features were retained; no recursive elimination 

was performed.
	•	 Proposed Hybrid HRSNN (RNN + SNN + SMOTE+RFE): 

Full pipeline.

Table  7 is the summarized comparative ablation study 
performance. The noted observations from these results are:

	•	 When SMOTE is eliminated, the model is very sensitive to class 
imbalance, and hence more false negatives are encouraged.

	•	 When RFE was excluded, redundant features were included, 
which increased the training time but lowered the 
accuracy slightly.

	•	 A procedure based on RNN only improves the feature 
representation but is limited in temporal adaptability, while that 
using SNN only caters to time-based processing but has issues 
with spatial feature complexity.

	•	 The Hybrid RNN + SNN with full preprocessing consistently 
attained the highest detection accuracy and F1-score while 
underpinning computational efficiency.

This ablation study assures each component of the proposed 
pipeline to be necessary. Specifically, SMOTE allows the system to 

TABLE 4  Multiclass classification results for CICIoT2023 dataset.

Model Traffic 
type

Acc Pre Rec F1

Proposed 

HRSNN

Normal 99.5 98.2 98.2 98.3

Attack 98.8 98.4 98.5 98.8

CNN-

BMEGTO-

KNN

Normal 96.95 95.56 93.95 95.56

Attack 96 95.42 93.32 94.5

IBGJO-LSTM Normal 94.24 94.6 92.3 93.3

Attack 94 92.7 91.2 91.3

CNN-BiGRU Normal 92.534 90.3 90.33 88.6

Attack 92 89.4 90.7 86.43

hybrid CNN-

LSTM

Normal 90.54 88.6 88.2 85.5

Attack 90 90.3 87.3 84.7

hybrid CNN-

GRU

Normal 88.43 87.9 86.2 85.3

Attack 88.8 87.5 86.3 83.45
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learn comparably from the minority attack classes; RFE reduces 
redundancy while enhancing performance and efficiency, while the 
hybrid RNN + SNN palace hold spatial and temporal learning for 
features. Figure 14 depicts the graphical depiction of ablation study 
results comparison.

Besides detection accuracy, a comparative study of computational 
efficiency was presented for the proposed HRSNN model against 
existing baselines. Three important parameters were: latency during 
inference per sample, size of the model (MB), and memory 

occupation during execution. The experiments were carried out in 
the same testbed (Intel i7, 16 GB RAM), and records of the metrics 
were kept for both datasets, i.e., CICIoT2023 and ToN-IoT datasets. 
Table 8 summarizes the comparative results. In terms of inference 
time, the HRSNN lies in the range of moderate inference with 1.8 ms/
sample, which is more than the single RNN or SNN models but is 
much less compared to other hybrids like CNN-BiGRU and 
CNN-LSTM. As for the model size (12.5 MB) and peak memory 
usage (210 MB), they are acceptable within the capabilities of 

FIGURE 7

Graphical chart of multiclass results on CICIoT2023 data.

TABLE 5  Binary classification results for TON-IOT dataset.

Model Traffic type Acc Pre Rec F1

Proposed HRSNN Normal 98.75 98.75 98.56 98.65

Attack 98.2 98.4 98.5 98.6

CNN-BMEGTO-KNN Normal 96.95 93.47 93.56 95.45

Attack 94 94.89 92.73 94.5

IBGJO-LSTM Normal 94.24 92.90 92.65 93.23

Attack 94 92.78 91.24 91.12

CNN-BiGRU Normal 92.4 90.89 92.56 92.45

Attack 94 85.78 90.34 84.23

hybrid CNN-LSTM Normal 92.54 90.76 86.45 83.45

Attack 92 90.56 87.34 84.32

hybrid CNN-GRU Normal 90.43 87.65 86.56 85.45

Attack 92.8 87.46 86.67 83.67
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mid-range IoT gateways and edge devices, e.g., Raspberry Pi 4 with 
4–8 GB RAM. These results portray a hybrid architecture having 
slightly more computation than others but that pays for this with 
improved accuracy and robustness. Hence, the HRSNN model is a 
viable option for implementation in IoT edge devices and fog 
computing gateways, especially if lightweight optimizations such as 
pruning or quantization are applied.

While the proposed HRSNN demonstrates strong detection 
accuracy, several important considerations remain. First, the 
current model has not been explicitly tested against adversarial or 
evasion attacks that are intentionally crafted to fool intrusion 
detection systems, which will be addressed in future work through 
adversarial training and robust optimization techniques. Second, 

FIGURE 8

Results of binary classification on TON_IOT data.

FIGURE 9

Binary classification’s confusion matrix on TON_IOT data. FIGURE 10

Binary classification’s ROC curve on TON_IOT data.
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although the architecture is feasible for IoT edge devices with 
moderate resources, it may still be too complex for ultra-constrained 
sensor nodes, highlighting the need for lightweight adaptations 
such as pruning, quantization, or neuromorphic hardware support. 
Finally, like many deep learning models, HRSNN currently 
functions as a “black box,” limiting interpretability of its predictions; 
to overcome this, we plan to integrate explainability methods such 
as SHAP and LIME to provide transparency and improve trust in 
real-world deployments.

5 Conclusion

This study introduced an innovative HRSNN model that 
integrates the spatial feature learning capability of RNNs with the 
temporal adaptability of SNNs to enhance anomaly detection in IoT 

networks. The proposed framework follows a structured five-stage 
process encompassing data cleaning, feature extraction, class 
balancing, feature optimization, and dataset partitioning. By 
leveraging this hybrid design, HRSNN effectively addresses the 
challenges posed by advanced cyberattacks and achieves superior 
detection performance. Experimental evaluations demonstrated that 
the model attained 99.5% accuracy on the CICIoT2023 dataset and 
98.75% accuracy on the ToN-IoT dataset, outperforming state-of-
the-art DL-based IDS approaches. These results confirm that the 
model is reliable, accurate, and adaptable for safeguarding IoT 
networks against diverse security threats. While achieving high 
accuracy and robustness, HRSNN has a moderate computational 
overhead compared to single-model IDS approaches. Inference 
latency and the memory footprint are adequate for an installation on 
a resourceful IoT gateway, but extreme resource-constrained devices 
(sensor nodes with <256 MB RAM) will need further model 

TABLE 6  Sensitivity analysis of preprocessing parameters on HRSNN performance.

Parameter Accuracy 
(CICIoT2023)

F1-score (CICIoT2023) Accuracy (ToN-IoT) F1-score (ToN-
IoT)

SMOTE oversampling Ratio (50%) 98.6 98.4 97.4 97.1

SMOTE oversampling Ratio (100%) 99.5 99.3 98.7 98.6

SMOTE oversampling Ratio (150%) 99.2 99.0 98.3 98.2

Correlation threshold (τ = 0.70) 98.3 98.1 97.2 96.9

Correlation threshold (τ = 0.85) 99.5 99.3 98.7 98.6

Correlation threshold (τ = 0.90) 99.1 99.0 98.5 98.4

RFE features (10) 97.9 97.5 96.8 96.5

RFE features (20) 99.5 99.3 98.7 98.6

RFE features (30) 99.4 99.2 98.6 98.5

FIGURE 11

Effect of SMOTE oversampling ratio on performance.
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compressions or lightweight adaptations. In the future, having pruned 
or quantized models and neuromorphic hardware acceleration will 
be considered for better real-time deployment of the model in a very 
resource-limited IoT environment.

In future work, we  aim to extend the proposed HRSNN 
framework in several directions to further enhance its applicability in 
real-world IoT environments. First, we plan to deploy and benchmark 

the model on edge devices such as Raspberry Pi to validate practical 
feasibility under constrained resources. Second, the integration of 
interpretability techniques like SHAP and LIME will be explored to 
provide transparent insights into the model’s decision-making process, 
thereby increasing trustworthiness in security-critical settings. Third, 
we will extend the model to detect zero-day and unseen attack patterns 
by leveraging transfer learning and adversarial training strategies to 

FIGURE 12

Effect of correlation threshold on performance.

FIGURE 13

Effect of RFE stopping criteria on performance.
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improve resilience against evolving threats. Finally, we  intend to 
investigate lightweight variants of HRSNN, employing pruning, 
quantization, and neuromorphic hardware acceleration, to ensure 

real-time anomaly detection while minimizing latency and energy 
consumption in highly resource-limited IoT deployments.
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TABLE 8  Computational efficiency performance comparison with 
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