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Introduction: Patients missing their appointments (no-shows) are a persistent 
issue that results in idle resources while delaying critical patient prognosis. 
Likewise, long waiting times increase frustration for patients, leaving a negative 
impression on the appointment. In this paper, we  explore 3 modalities of 
diagnostic and interventional radiology appointments for pediatric patients at 
the Hospital for Sick Children (SickKids), Toronto, ON, Canada. Our goal was to 
survey machine learning methods that best predict the risk of patient no-shows 
and long wait-times exceeding 1 hour for scheduling teams to propose targeted 
downstream accommodations.

Methods: We  experimented with 6 predictive model types separately trained 
on both tasks which included extreme gradient boosting (XGBoost), Random 
Forest (RF), Support Vector Machine, Logistic Regression, Artificial Neural 
Network, and a pre-trained large language model (LLM). Utilizing 20 features 
containing a mixture of patient demographics and appointment related data, 
we  experimented with different data balancing methods including instance 
hardness threshold (IHT) and class weighting to reduce bias in prediction. 
We then conducted a comparative study of the improvements made by utilizing 
continuous contextual data in our LLM which boasted a 51% improvement in F1 
score for the wait-time model.

Results: Our XGBoost model had the best combination of AUC and F1 scores 
(0.96 and 0.62, respectively) for predicting no-show while RF had the best AUC 
and F1 scores (0.83 and 0.61, respectively) for wait-time prediction. The LLMs 
also performed well for 90% probability thresholds (high risk patients) while 
being robustly calibrated on unseen test data.

Discussion: Our results surveyed multiple algorithms and data balancing 
methods to propose the greatest performing models on our tasks, implemented 
a unique methodology to use LLMs on heterogeneous data within this domain, 
and demonstrated the greater importance of contextual appointment data over 
patient demographic features for a more equitable prediction algorithm. Going 
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forward, the predictive output (calibrated probabilities of events) can be used as 
stochastic input for risk-based optimized scheduling to provide accommodation 
for patients less likely to receive quality access to healthcare.

KEYWORDS

no-show, wait-times, scheduling, prediction, large language model, machine learning, 
data balancing, calibration

1 Introduction

Medical appointment no-shows, often referred to as missed 
appointments, is a persistent global issue that can prove costly for 
hospitals (Jabalera Mesa et  al., 2017; Dunstan et  al., 2023). 
Additionally, long wait-times due to unoptimized scheduling can 
negatively impact patient experience and even discourage patients 
from attending their future appointments. No-shows also have the 
added risk of increasing complications in patients due to delays in 
follow-ups. This also results in an overall increased cost in hospital 
resources to accommodate these events. Although minimizing the 
costs of no-shows and wait-times are important, it’s critical to be aware 
of the potential socioeconomic disparity when proposing methods to 
reduce patient no-shows and long wait-times (Chen, 2023; Taheri-
Shirazi et al., 2023).

Approximately 3,000 appointments are scheduled every month for 
magnetic resonance imaging (MRI), ultrasound (US), and computed 
tomography scans (CT), within the department of diagnostic and 
interventional radiology (DIR) at the Hospital for Sick Children 
(SickKids), Toronto, Ontario, Canada. Due to the large number of DIR 
appointments conducted every year, even a small rate of no-shows can 
prove costly. DIR scans play an important role in disease diagnosis, 
often serving as the initial step in designing treatment plans. Depending 
on the nature of their health concerns, patients may be directed to 
various modalities of DIR. Once a clinical department clinician requests 
a scan for their patient, the request is sent to one of various modalities. 
If a patient misses their appointment, a letter is then sent back to the 
referring department to notify them of the occurrence. After the scan 
is completed, subsequent patient care steps are defined based on the 
conclusions drawn by the radiologist. This can include communicating 
whether the patient requires follow-up scans or blood and tissue 
biopsies before the prescribed treatment plan. Therefore, having 
accurate predictions for DIR scheduling is critical for minimizing delays 
in treatment planning and taking steps for equitable delivery of care.

Our research is focused on surveying various predictive models 
trained on SickKids DIR appointment data to propose the best 
performing model and methods for clinical use. The future goal would 
be to utilize this research for a downstream optimization algorithm that 
uses predicted probabilities for more accurately informed scheduling 
decisions. Some of these downstream tasks could include providing 
alternative schedules for patients that have a high risk of missing their 
appointment, alternative overbooking methods, and proposed targeted 
accommodations for patients with higher risk of negative appointment 
outcome. Additionally, we are predicting both tasks (no-shows and 
wait-times) for the following reasons: the downstream accommodation 
could utilize both predictions, it serves as a follow up to the results of 
our previous study (Taheri-Shirazi et al., 2023), our methodologies 
proposed in this paper are applicable to both tasks using the same data, 
and the tasks are inherently intertwined problems. This research study 
provides the first step of maximizing DIR appointment efficiency to 

ensure an equitable level of care for all patients regardless of 
patient demographics.

We utilized the following 6 algorithms for each prediction task: 
logistic regression (LR), support vector machine (SVM), random 
forest (RF), extreme gradient boosting (XGBoost), artificial neural 
network (ANN), and a ClinicalBERT large language model (LLM). 
The major quantitative metrics for success in these experiments are F1 
and area under the receiver operating curve (AUC) scores due to the 
skewed nature of the data. As such, we  gave greater weight to 
performance on the minority class.

Several preventative strategies have been implemented in clinics 
for missed appointments with varying degrees of success. One 
category of approach includes intervention strategies which target 
patient behavior through incentives or deterrents (Vikander et al., 
1986), patient prepayments (Garuda et al., 1998), financial penalties 
for not showing up (Bech, 2005; Goffman et  al., 2017), reminder 
notifications (phone calls, text messages) (Wu et al., 2019; Schwebel 
and Larimer, 2018), and patient education (Weaver et al., 2019). A 
systemic review of 29 studies reported that the impact of telephone, 
SMS, and automated phone calls resulted in a change of 34% in 
appointments missed (Hasvold and Wootton, 2011). It remains to 
be seen if these strategies can be further bolstered through targeted 
reminder notifications where higher risk no-shows benefit from 
additional reminders. Other strategies include overbooking methods 
to prevent vacant appointment slots (LaGanga and Lawrence, 2007).

The use of strategies to maximize appointment attendance invokes 
ethical issues which, if left unaddressed, can result in discrimination, 
alienation, and stigma. For example, the use of algorithms to predict 
non-attendance has resulted in overbooking racialized patients, 
making them wait longer and reducing the quality of their healthcare 
experience (Samorani et al., 2021). Making a different choice based on 
the same prediction task, however, could result in improved access to 
care. Understanding a family’s reasons for potential non-attendance 
could enable a care team to identify opportunities to address equity-
related barriers to attendance, for example: engaging a translator or 
patient advocate, changing the appointment time to suit a single 
parent’s work schedule, or providing transportation vouchers.

From our prior research, we found correlations from household 
income, percent single caregiver, and English proficiency to 
be  significant indicators for no-show status (Taheri-Shirazi et  al., 
2023). Despite these observations, accurately making predictions on 
patient behavior and wait-times is yet to be successfully implemented. 
Our research surveys methods to improve prediction and study the 
impacts of leveraging appointment specific data over solely using 
patient demographic features. This paper will first outline our 
background research and how our data was collected, processed, and 
analyzed for feature engineering and training. Next, we define the 
methods and models utilized in our experimentation, including data 
balancing and calibration. Finally, we will discuss the results of our 
experiments and the conclusions that can be drawn from them.
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2 Materials and methods

2.1 Literature review

There are numerous factors contributing to patient no-show and 
wait-time behavior that could point to helpful predictive features in 
appointment outcome (Daggy et  al., 2010; Cronin et  al., 2013; 
Dantas et al., 2018; Joseph et al., 2022). With regards to no-show 
prediction, factors encompass patient age, distance from hospital, 
gender, previous appointment history (Lee et  al., 2005), socio-
economic class, percentage of non English speakers in postal area, 
referral clinic, income coverages, indication on if the appointment 
was a follow-up (Lehmann et al., 2007), and appointment specialties. 
In one study, afternoon appointments with short lead times (time 
from scheduling to actual appointment date) and long appointment 
durations were found to influence outcomes of missed appointments 
(Peng et al., 2014). Additionally, some studies have highlighted the 
significance of weather conditions on the day of the appointment as 
an important predictor of no-shows (Peng et  al., 2014; Liu 
et al., 2022).

A systematic literature review published in 2018 revealed that the 
features most associated with no-show behavior include young adult 
age ranges, lower socioeconomic status, length of commute, and lack 
of private insurance. Notably, high lead time and prior no-show 
history were identified as the features exerting the greatest impact on 
missed appointments (Mohammadi et  al., 2018). Finally, when 
looking at predictive wait-times, a study on radiation oncology 
appointments found that the most predictive features were allocated 
appointment time, radiotherapy fraction number, most recent 
appointment duration, median appointment durations, and the 
number of treatment fields (Joseph et al., 2017).

Drawing upon these influential factors, numerous statistical and 
machine learning models have been proposed to predict patient 
no-shows and wait-times. Logistic regression has traditionally been 
the mainstream model for this purpose due to its efficiency in 
modeling binary responses (Goldman, 1982; Kurasawa et al., 2015; 
Huang and Hanauer, 2016). However, in recent years, a variety of 
machine learning algorithms beyond logistic regression have been 
increasingly utilized, including ANNs and Naive Bayes (Mohammadi 
et al., 2018). A novel approach introduced in a 2019 study used 
sparse stacked denoising autoencoders (SSDAEs) for predicting 
missed appointments with its best model (SDAE + LR) having an 
AUC of 0.704 and F1 score of 0.288 (Dashtban and Li, 2019). This 
model integrated data reconstruction and prediction phases, which 
are typically separated into existing deep learning applications for 
hospital data which significantly outperformed other methods. This 
research was followed up again in 2021 with similar results 
(Dashtban and Li, 2021). Another study done in 2019 compared the 
performance using recall as opposed to AUC across nine machine 
learning algorithms including AdaBoost, Logistic Regression, Naive 
Bayes, SVM, Stochastic Gradient Descent, Decision Tree, Extra 
Trees Classifier, Random Forest, and XGBoost (Joseph, 2019). It was 
found that AdaBoost outperformed all other algorithms with an 
AUC of 0.7. In contrast, a systematic literature review of machine 
learning techniques applied to no-show appointments done in 2022 
across 24 articles showed that RF had the best performance with an 
AUC of 0.969 (Salazar et al., 2022). We see a similar trend with 
regards to wait-time prediction models in which RF models 

performed the best, as shown in a radiation oncology study done in 
2017 (Joseph et  al., 2017). Another study by the Oregon Health 
Science University (OHSU) conducted research on outpatient 
pediatric ophthalmology appointments to predict wait-times using 
a variety of ML algorithms in which RF achieved the highest root 
mean squared error (RMSE) and the highest AUC score of 0.811 
(Lin et al., 2020). Similar patient demographic features were used to 
achieve these performance metrics such as age, financial class, 
returning patient, and more.

Finally, since our data faces the added challenge of class imbalance, 
it was important for our research to consider methods that mitigate 
any bias in its output. A pediatric hospital in Chile tackled the class 
imbalance problem through algorithms such as RUS Boost, Balanced 
RF, Balanced Bagging and Easy Ensemble. They concluded that the 
imbalanced learning ensemble methods outperformed the basic 
scikit-learn algorithms when predicting across most departments 
(Dunstan et al., 2023). Another study done in 2024 implemented a 
Symbolic Regression (SR) algorithm to predict no-shows and 
addressed class imbalance by applying a resampling technique: 
Instance Hardness Threshold (IHT) (Deina et al., 2024). Their results 
indicated that SR with IHT had superior performance over more 
traditional techniques on this problem.

2.2 Data

This section covers the data received from the SickKids DIR 
department that was collected using EPIC databases for our 2 
prediction tasks. The dataset characteristics, exploratory data analysis, 
visualizations, cleaning methodology, feature engineering, and text 
augmentation for building LLMs are outlined below for replication of 
our model implementations.

2.2.1 Dataset
The raw data collected from DIR included 421,743 rows and 67 

features. The original dataset contained samples from June 2018 up 
to and including December 2023. This dataset contained 130,975 
unique patients with 3 major categories of appointments which are 
completed, canceled, and sent statuses. We only used completed 
outpatient appointments due to inconsistencies in the other 
categories that would require extensive auditing. Additionally, the 
raw data contained 134,038 MRI, 244,284 US, and 44,107 CT 
diagnostic scans which had varying rates of long wait time and no 
shows. The patients used for our study range from ages 1 day old to 
6,574 (18 years) days old and all live within the postal regions of 
Ontario beginning with the following letters: L, M, N, P, and K. All 
models were tested on the same unseen test set containing 16,277 
instances from June 2023 to December 2023 (the last 6 months of 
the dataset) to prevent biases and data leakage.

2.2.2 Exploratory data analysis
This section defines some key data characteristics that better 

showcase the patient demographics these models were trained on.
Firstly, the data was relatively evenly split among the two sexes 

with males representing approximately 54% of the data and 53% of all 
missed appointments. Next, wait-time was found to have a mean of 
31.65 minutes. This metric was derived from the difference between 
the exam start time and patient check-in time. After dividing the 
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distribution of wait-times into bins of 60 minutes, we found that most 
of the wait-times fall within 1 hour, which allowed us to create an 
approximate threshold for defining a long wait-time and excluding 
outliers which we will explore further in section 2.2.3.

The procedure category is another fundamental aspect of each 
appointment with it being either an MRI, US, or CT scan. Our analysis 
found that approximately 28% of appointments were for MRI scans, 
63.6% for US, and 8.4% for CT. Expectedly, the bulk of the no shows 
came from US appointments which made up 90% of the no-show 
instances, followed by 6% for MRI and 4% for CT. Additionally, US 
had the highest rate at 2.1% no-show, followed by CT at 0.66%, and 
MRI at 0.30%.

When investigating the number of missed appointments across 
6-month intervals, we can see a higher number of no-shows a few 
years ago compared to the previous 18 months. Figure 1 illustrates 
this trend from 2018 to 2023 with a statistically significant drop 
(p < 0.05) from the first half of 2021 to the second half of 2022. The 
reason for this drop is not formally known, however, our estimate 
is that it may be correlated with the removal of covid restrictions 
within Ontario around the time of the drop. This may have 
incentivized patients to follow through on their appointments as it 
was also around the time that post-pandemic wait-lists began to 
increase. This meant that missing an appointment could have 
pushed out re-booked slots by weeks or even months.

Another important indicator for predicting both no-shows and 
long wait times is the appointment schedule hour (Peng et al., 2014). 
We categorized the schedule hours into 4-time frames which are early 
morning (12 am - 6 am), morning (6 am – 12 pm), afternoon (12 pm – 
5 pm), and evening (5 pm – 12 am). When analyzing the pre-processed 
dataset of 154,935 appointments, we found that approximately 55% of 
scheduled exams were in the morning, 35% in the afternoon, 10% in 

the evening, and <0.19% in the early morning. Of the appointments 
resulting in no-show, 0 were from early morning, 352 were morning 
appointments (0.41% no-show rate), 3,083 were afternoon 
appointments (5.69% no-show rate), and 158 (1% no-show rate) were 
evening appointments. Therefore, based on our analysis, afternoon 
appointments are proportionally the highest risk of resulting in a 
missed appointment. It is important to note that the appointment 
dates for no-shows are the time that staff indicated within the system 
that the patient missed their appointment (overwriting previous dates) 
and not the exact appointment time. For this study, we assume that 
the time indicated for patient no-show is approximately the same as 
the original appointment date.

Based on our literature review, lead times were one of the most 
important features for no-show prediction models (Peng et al., 2014). 
Unfortunately, within our data, lead times are only available for 
completed and attended appointments due to the EPIC system 
workflow. Currently, if a patient misses their appointment, a duplicate 
of the original order is made in the system with no-show related 
tagging and IDs that release the order as the same day as the final 
schedule date. This makes every exam date the same as the date the 
appointment was entered into the system as a no-show (i.e., lead time 
equals 0). Retrieving the original order information would reveal the 
actual lead time, however, this required an extensive audit and more 
resources than we had available for this study.

Finally, we ran a correlation test using a heatmap across prominent 
numerical features to find relationships that may exist between our 
potential feature set. Our correlation heatmap revealed a slight 
correlation between schedule hour, previous no show history, and the 
no-show label. Additionally, scheduled hour, wait-time-information-
system priority (WTIS-Priority), and wait-time features appeared to 
have higher correlations.

FIGURE 1

Bar plot visualizing the rate of no shows biannually.
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2.2.3 Data cleaning
This section outlines 9 steps we took to pre-process our data and 

their associated justifications. We also removed any fields that may 
provide unfair knowledge of appointment data that would not 
be available at the time of scheduling. The raw data included 421,743 
ordered appointments with 67 features and 130,975 unique patients. 
All patients in our dataset were anonymized with unique identifiers 
for patient data privacy.

Step  1—filter for only complete appointments—remaining 
data = 271,802.

The first step in our data cleaning process was dropping any 
incomplete appointments using the “procedure status” field. After 
discussions with the DIR department, it was best to only keep 
“complete orders” since other order categories were inconsistent in 
their labeling of no-show such as with canceled orders. The resulting 
appointment count then became 271,802.

Step  2—filter out appointments that had a missing check-in 
datetime—remaining data = 271,772.

We dropped any orders that had a missing check-in datetime 
because all complete appointments, including those that were missed, 
should have had a logged check-in time according to the DIR 
department. Even when a patient misses an appointment, the system 
replaces the check-in date with the missed exam date. This resulted in 
a total appointment count of 271,772.

Step  3—filter out non-Ontario postal codes—remaining 
data = 267,423.

We filtered our data to only include postal codes beginning with 
K, L, M, N, and P such that our models target a certain range of 
Ontario that would also have census statistics. This resulted in 267,423 
remaining appointments.

Step  4—filter out patients over the age of 18—remaining 
data = 262,267.

We filtered out any patient age at the time of appointment that was 
over 18 (6574.32 days) to focus our research on pediatric DIR exams 
which created an appointment count of 262,267.

Step  5—filter out patients without a listed sex—remaining 
data = 262,162.

We removed any patients that did not have a specified sex (male 
or female) for uniformity of training data, resulting in 
262,162 patients.

Step 6—Filter out any patients who had a wait-time over 300 min—
remaining data = 253,497.

We removed any scans that had a wait-time (check in time to 
exam start time) lasting over 300 minutes since any appointment over 
this amount was an egregious outlier that was assumed to be  an 
anomaly not properly modelled in our data. This resulted in a total of 
253,497 orders.

Step 7—Filter out appointments with durations longer than 5 h—
remaining data = 252,718.

Appointments were filtered to only include appointment durations 
(exam start time to exam end time) between 0 and 5 hours as 
we assumed these were outliers not properly modelled in the data 
considering clinics only operate for 8 hours. This left a total of 252,718 
remaining appointments.

Step  8—Filter out duplicate orders based on matching exam 
datetimes and accession numbers—remaining data = 157,200.

When analyzing the data we discovered that there existed instances 
of duplicate orders. These included appointments where a patient had the 

same check-in, ordering, exam, and schedule date time. Alternatively, 
there may be  appointments with the same accession number. These 
instances meant that a patient had multiple appointments scheduled for 
the same time slot. Some practices also split an exam resulting in what 
looked like multiple appointments. We removed these duplicates as well 
since a no-show would occur on all split order entries. Removing 
duplicates resulted in 157,200 remaining orders.

Step  9—Filter out orders that did not have a referring clinical 
specialty—remaining data = 154,935.

Finally, we  mapped web-scraped clinical specialties to the 
ordering provider and removed any appointments that did not include 
a clinical provider specialty resulting in a final total of 154,935 orders.

After cleaning, additional columns were added as numerical 
encoded versions of categorical variables such as schedule month (1–12), 
scheduled day of week (1–7), and gender (0, 1) (see Appendix for final 
feature list). The data was then split into training and testing such that 
the unseen test set would include all appointments from the last 
6 months of our data (June 1, 2023, to December 2023 inclusive). Our 
final training set for baseline models (models trained on data without 
any under sampling techniques) comprised of 138,658 appointments 
and a test set of 16,277. During model training, all models except for the 
BERT LLMs (which used a 20% validation split of the training set), 
utilized 10-fold cross validation with a split ratio of 9:1 on training data.

2.2.4 Feature engineering
Several of the features have been engineered from existing features 

and external sources. One set of features included estimated patient 
demographic information by postal code which was gathered from 
Statistics Canada 2021 census. This means that the few patients that 
reside outside the Canadian census were not included in our predictive 
modeling as discussed in section 2.2.3. Demographic results were 
gathered based on postal codes starting with L, M, N, P, K. The average 
statistics for postal areas included were the percentage of English 
speakers, percentage of single-parent households, and average income. 
Next, missing distance information was imputed using the residing 
postal code and a calculated distance to the hospital based on the 
haversine formula. Another significant feature engineered for 
prediction was the estimated referring department. Using the 
authorizing provider of the patient appointment, we  scraped the 
clinical specializations of each doctor and nurse practitioner from the 
college of physicians and surgeons of Ontario (CPSO) (CPSO, 2019). 
These were then assigned as the patient’s authorizing category. After 
scraping over 3,750 doctors, we narrowed down the specializations to 
41 categories with the aid of a clinician. So, if a patient’s authorizing 
provider had a specialization in cardiology, the estimated referral 
specialty would be cardiology.

For our BERT LLM models, we took all the relevant fields from the 
tabular data and transformed them into a single interpretable string 
resembling text input. A script to take key numerical values and 
translate it into a meaningful sentence was created to leverage transfer 
learning and the attention based contextual learning of LLMs (see 
Appendix for a sample input for an LLM model). An additional 
sentence was also added on select LLM experiments that included the 
reason for exam. This feature was not available for a large portion of 
the target class of data for no-show prediction and was thus omitted in 
the base models. Additionally, any reason for exam that had no-show 
tagging within it was scrubbed, resulting in a much smaller usable 
subset for that feature. Table 1 summarizes our feature engineering.
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2.3 Models

The following section describes the 6 underlying architectures 
we used for prediction and the steps taken to train, validate, and test 
them. All models were tested using the last 6 months of data to assess 
the model’s generalizability on time series data. Additionally, models 
were trained and tuned using a random seed of 42 for replication.

2.3.1 Logistic regression
Logistic regression is a binary classification technique that maps 

a weighted set of features using a logistic function such as a sigmoid, 
to a set of probabilities that can be interpreted as classifications. The 
model was tuned using 10-fold stratified cross validation with an 
assigned class weighting of 10:1 for the positive minority class to 
account for data imbalance. The solver was selected to be Newton 
Cholesky after conducting a grid search for optimal solvers which 
creates a hessian matrix and solves the linear system. Finally, the 
maximum iterations before converging were set to 1,000 for 
computational efficiency. All data entered had to be  scaled and 
encoded into numerical format for training and validation.

2.3.2 XGBoost
Gradient boosting is an efficient machine learning algorithm that 

ensembles additive weak learner models to sequentially correct the 
previous decision trees by following the gradient to minimize loss (Chen 
and Guestrin, 2016). Our XGBoost model uses a log loss metric to 
calculate error and uses a weight of 10:1 for the minority class to 
accommodate for the class imbalance selected through grid search. 
Finally, the model was validated using 10-fold stratified cross validation 
and fitted on scaled numerical representations of our feature set.

2.3.3 Random Forest
A random forest model utilizes a decision tree system that 

ensembles and aggregates multiple small decision tree models to make 
a prediction. The RF was tuned using 10-fold stratified cross validation 
which had an optimal weighting of 5:1 for the minority class. All other 
parameters were left unchanged based on our validation grid search.

2.3.4 Support vector machine
SVM is a classic prediction model that uses support vectors to 

maximize the margin between the ‘w’ hyperplane that separates classes 
and its support vector to improve classifications. SVMs typically do 
not perform well on large datasets due to slower computational time. 
However, they were used as a baseline model for their ability to 
identify small patterns in complex datasets. The SVM used stratified 
cross validation with a split of 10 folds on numerically encoded 
normalized data. The model was built using the SVC library with a 
class weight of 10:1 for the minority class as this was found to 
be optimal by our grid search.

2.3.5 Artificial neural network
A feed forward ANN was used to discover if deep learning could 

be beneficial to our prediction problem as hypothesized in our previous 
paper (Taheri-Shirazi et  al., 2023). While deep learning has made 
significant advancements in prediction and generative modelling, it is 
well known that they typically struggle with non-homogenous tabular 
data such as ours (Shwartz-Ziv and Armon, 2022). Despite this, 
we wanted to explore the potential benefits these models could have by 
overcoming the limitations of our feature engineering. Our NN is 
comprised of 2 dense layers (64 and 32 units respectively) with RELU 
activation functions. The output dense layer produces 1 binary 
classification and uses a sigmoid activation function. The model uses 
an Adam optimizer with a learning rate of 0.001. The loss function for 
our model is a custom loss function that weighs false positives and 
negatives in accordance with the imbalanced data. False positives are 
given a weight of 2 and false negatives a weight of 3. The function then 
uses binary cross entropy loss weighted as 1 and then computes the 

TABLE 1  Engineered features and the source information used to 
generate them.

Engineered features Available information

‘Age at scan’ Patient’s age at scan check in date and 

time, Date of birth

Postal code’: first three digits of FSA Postal code

‘Procedure name’: procedure names 

(MRI, US, CT)

Procedure category

‘Week day’: appointment week day 

ranging from 1 to 7 representing 

Monday to Sunday

Scheduled exam date and time

‘Scheduled hour’: scheduled hours 

ranging from 1 to 23

Scheduled exam date and time (positive 

no shows are date exam entered as 

no-show and assumed to be scheduled 

exam date)

No show’: appointment no show (no 

show: 1, show:0)

Procedure name

‘Distance’: distance to hospital Postal code

‘Pre appointments’: accumulative 

summation of the patients’ previous 

appointments

Patient MRN

‘Pre no show’: previous no show 

history

Patient MRN, no show

‘Income’: the average household 

income based on postal

2021 Canada Census of Population

‘Non eng %’: percentage of non-

English speakers in patient’s 

neighborhood

2021 Canada Census of Population

‘Single parent %’: percentage of single 

parent families in patient’s 

neighborhood

2021 Canada Census of Population

Authorizing Category: the estimated 

ordering providers specialty

Authorizing Provider and CPSO public 

data on doctor specialties

Impute missing WTIS-Priority entries: 

wait time information system priority 

which we assume to be the priority 

level assigned. (US all given value of 0 

since these do no have a priority)

Missing WTIS-Priority levels were 

imputed using a k-nearest neighbors 

method using the 20 nearest neighbors.

‘Appointments in hour’: the number 

adjacent appointments that occur that 

the time of a specific appointment

Scheduled exam date and time was used 

to group all exams that started within 

the same hour and quantify the 

adjacent appointments

Numerically encoded features All features with categorical strings 

were converted into sequential 

numerical encoding. For instance, 

gender having male and female was 

converted to 0 and 1.
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number of false positives and false negatives in a batch. The final loss 
function is the weighted sum of the binary cross entropy loss, false 
positives, and false negatives. The final model was validated with 
10-fold stratified cross validation over 10 epochs with a batch size of 32.

2.3.6 Bert LLM
To leverage the advancements of transfer-learning, 

we implemented an LLM that would capture the context of sequential 
text data. BERT models use bi-directional encoding to read an entire 
sequence at once and obtain a word’s surrounding context. A linear 
classification layer is then added on top of the transformer for binary 
prediction. Having created an ML pipeline that transforms the tabular 
data into an interpretable text string that selectively places greater 
attention on certain features, our BERT model then transfers its initial 
weights from a clinically specialized version of BERT called “Bio_
ClinicalBERT” from Hugging Face. The LLM was trained on 5 epochs 
using a 16 gigabyte Nvidia Tesla P100 HPC GPU with an AdamW 
optimizer, a learning rate of 3e-5, and a warmup using the first 10% of 
the training data. This was validated using a separate validation set 
that is 20% of the original train data for fine tuning before being tested.

2.4 Imbalanced learning techniques

Imbalanced Learning attempts to resolve severe class distribution 
skews. Without applying imbalanced techniques, an algorithm might 
become biased towards the majority class resulting in poorer 
performance on the target event (no-show and long wait-time) 
(Hasanin et al., 2019).

Many model pipelines have been proposed to handle class imbalance 
which are commonly used such as data level techniques where the data is 
either under sampled (Beckmann et al., 2015; Smith et al., 2013) or over 
sampled (Chawla et al., 2002) to balance the classes. Although data level 
techniques are widely used, they often suffer from the issue of 
generalizability where the training data does not reflect real world 
proportions. Other methods include algorithm level ensemble techniques. 
An algorithm level technique forces the algorithm to pay more attention 
to the minority class. Ensemble level techniques make conventional 
ensemble algorithms more sensitive to the minority class such as 
RUSBoost (Seiffert et al., 2010) and balanced RF (Chen et al., 2004).

For the purposes of our research, we experimented with a data 
level technique called Instance Hardness Threshold. It generates 
Instance Hardness to filter instances that are likely to be misclassified 
by multiple classifiers. An instance’s Hardness is evaluated based on 
how many classifiers misclassify it. Once a hardness threshold was 
established, instances with hardness values exceeding this threshold 
were excluded. Since the LLM models used an augmented continuous 
version of the same numerical tabular data, the weak learner models 
found many of the instances as hard. This resulted in an overly 
aggressive under sampling of the majority class. So, we decided to 
omit this method from our final evaluation of the LLMs. Additionally, 
we tuned all our default models to pay more attention to the minority 
class and type II errors through grid search class weighting to account 
for class imbalance without manipulating the data in training.

2.4.1 Model calibration
A clinically deployable model should output a continuous risk 

metric that would allow scheduling teams to implement different 
contingencies for the patient appointment rather than having a 

simple binary classification (Jiang et al., 2011). A common approach 
is to utilize the predicted probabilities associated with each 
classification as a risk measure. However, these probabilities can vary 
greatly depending on the algorithm and do not accurately reflect the 
true state of the prediction. For instance, XGBoost tends to 
be overconfident in its predictions. So, we used isotonic regression 
calibration on the validation data to ensure the prediction 
probabilities have a linear relationship with true event rates. 
Additionally, isotonic regression is seen to improve performance on 
imbalanced datasets which typically outperform other parametric 
calibration methods (Huang et al., 2020).

To calibrate the models with default data balancing, we saved the 
predicted probabilities and labels during each split of cross validation. 
During each training fold, the model was trained on 90% of the data 
while predicting for the other 10%. So, when combining the 
predictions of the 10% splits, we  produced a set of validation 
probabilities equivalent to the training set size. For the LLM models, 
the regular 20% validation split predictions were used for calibration. 
Using these prediction probabilities, we then calibrated the validation 
probability to fit a perfectly calibrated line (positive diagonal line) 
using isotonic regression. The fitted calibrator was then used for the 
final test predictions to provide generalizable calibrated probabilities.

3 Results

In this section, we discuss our experimental results applying the 
models presented in section 2. We first compare our calibrated results 
without any data balancing techniques besides class weighting 
followed by the IHT method to under sample 5 of our models for both 
no-show and long wait time classification tasks. We  then present 
results comparing our LLM’s utilizing a subset of the data that includes 
a more extensive contextual feature called “reason for exam.” Finally, 
we  compare the results of our models using a 90% probability 
threshold for well calibrated models to assess the precision of 
predictions with a high risk of a target event.

3.1 No-show model results

Our first set of models were trained to predict patient no-shows 
using a mix of demographic and appointment related features. Our 
initial results shown in Table  2 provide the relevant performance 
metrics across our 6 chosen models using the default balancing for 
no-show across all modalities. Our baseline approach is to adjust the 
class weights and tune the parameters using grid search to penalize 
the minority misclassifications more heavily. Figure  2 shows the 
receiver operating curve for all default balancing no-show models on 
testing data. The second approach uses the IHT method on top of the 
baseline approaches with results shown in Table 3. Finally, the test data 
for the LLMs take the same input as the other models but transforms 
them into continuous text strings.

3.2 Wait-time model results

The following set of model results is for our binary wait-time 
predictions where class 1 is for appointment wait-times exceeding 
1 hour and class 0 is for wait-times less than 1 hour. Figure 3 plots the 
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ROC curves for each model on the wait-time task. Next, the results 
provide an additional layer of insight with regards to the performance 
methodology of using IHT on skewed data. Table  4 reports the 
calibrated balanced data results across our models while Table  5 
reports our results using the IHT method. As with the No-Show 
models, the BERT models did not utilize an IHT method of class 
rebalance. However, the default BERT model reported here used the 
reason for exam feature as it produced superior results (discussed 
further in Section 3.3).

3.3 Appointment context feature LLM 
results

The “reason for exam” field is an additional text feature 
available within our data that provides clinical comments on why 
the patient was scheduled for an exam. Since these are unstructured 
text strings, the utilization of this feature was best reserved for an 
LLM. As mentioned in section 2.0 of our methodologies. When 
curating this feature, since it was only available on a fraction of the 

FIGURE 2

ROC curve on test data for all calibrated default balanced no-show models.

TABLE 3  No show results—all modalities with IHT under sampling.

Model AUC F1 Precision Recall Accuracy

XGBoost 0.87 0.34 0.22 0.78 0.96

Logistic regression 0.91 0.39 0.19 0.64 0.96

Random forrest 0.94 0.37 0.25 0.72 0.96

SVM 0.83 0.21 0.12 0.73 0.92

ANN 0.92 0.14 0.08 0.82 0.85

TABLE 2  No-show results—all modalities with default data balancing.

Model AUC F1 Precision Recall Accuracy

XGBoost 0.96 0.62 0.82 0.49 0.99

Logistic regression 0.90 0.34 0.38 0.32 0.98

Random forrest 0.95 0.60 0.68 0.54 0.99

SVM 0.94 0.33 0.45 0.26 0.98

BERT LLM 0.95 0.51 0.79 0.38 0.99

ANN 0.95 0.57 0.80 0.44 0.99
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positive classes for no-shows, we decided to create an additional 
experiment on a smaller subset of train and test data reflective of 
the raw data proportions. Additionally, since missingness was not 
a limitation for the wait-time models with both classes having 
reason for exam fields, we provide comparative results using the 
same data with and without the field. The goal of this experiment 
is to show the importance of appointment specific context when 
predicting patient behavior. The following Tables 6, 7 show the 

performance of our LLMs with and without the “reason for exam” 
feature for predicting no-shows and long wait-times, respectively. 
Additionally, these tests were conducted with tuned class weights 
and default data balances. It is important to note that when 
comparing the results of the no-show models, the LLM with 
the reason for exam feature has a significantly smaller dataset with 
32 positive cases on a test set of 2,207 and a total train size 
of 15,257.

FIGURE 3

ROC curve on test data for all calibrated default balanced wait-time models.

TABLE 4  Wait time results—all modalities with default data balancing.

Model AUC F1 Precision Recall Accuracy

XGBoost 0.82 0.57 0.61 0.54 0.80

Logistic regression 0.81 0.57 0.61 0.54 0.80

Random forest 0.83 0.61 0.62 0.60 0.81

SVM 0.80 0.53 0.55 0.52 0.77

BERT LLM 0.82 0.62 0.59 0.66 0.79

ANN 0.82 0.62 0.60 0.65 0.80

TABLE 5  Wait time results—all modalities with IHT under sampling.

Model AUC F1 Precision Recall Accuracy

XGBoost 0.82 0.49 0.33 0.95 0.5

Logistic regression 0.81 0.56 0.41 0.88 0.65

Random forest 0.81 0.55 0.40 0.89 0.63

SVM 0.77 0.62 0.5 0.82 0.75

ANN 0.82 0.62 0.5 0.82 0.75
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3.4 Results for predictions with high 
probability of target class

This section assesses performance when taking the prediction 
probability as a risk measure. A simple binary prediction regarding a 
no-show would not be as practical in clinical use because different 
response protocols would have varying levels of impact (Jiang et al., 
2011). For instance, if a model gives a high probability of no-show, 
then a scheduling team may want to utilize more invasive protocols 
such as overbooking. However, this would mean false positives are 
more costly which would require a model with high precision. In 
contrast, if the model has a smaller probability of patient no-show, 
then less extreme protocols such as additional personal reminder calls 
could be suggested. The following results in Tables 8, 9 presents model 

performances when looking at patients with over 90% probability of 
no show and long wait-time. Additionally, each model was predicted 
on the same test set of 16,277 with a total of 237 positive instances. The 
precision evaluation metrics are based on predictions with greater 
than 90% probability of the target class and not overall predictive 
accuracy using the threshold. This is the number of true positives 
predicted with above 90% probability divided by the total number of 
predictions above 90% probability.

	
=

+
TPprecision

TP FP

Finally, each model was calibrated using isotonic regression on the 
validation data, however, some models were still not well calibrated to 

TABLE 8  Calibrated No-show model precision with default data balancing on test set for predictions with probability of no-show greater than 90% (all 
predictions are positive).

Model Total number of high 
probability predictions

Number of true positive 
predictions

Precision

XGBoost 96 89 0.93

Logistic regression 4 1 0.25

Random forest 96 82 0.85

SVM 0 NA NA

ANN 75 68 0.91

BERT LLM 64 59 0.92

TABLE 9  Calibrated wait time model precision with default data balancing on test set for predictions with probability of wait-time greater than 90% (all 
predictions are positive).

Model Total number of high 
probability predictions

Number of true positive 
predictions

Precision

XGBoost 102 88 0.86

Logistic regression 4 3 0.75

Random forest 53 51 0.96

SVM 0 NA NA

ANN 7 4 0.57

BERT LLM 132 127 0.96

TABLE 6  No-show LLM results—all modalities with and without “reason for exam” field.

Model AUC F1 Precision Recall Accuracy

BERT LLM without 

reason field (full dataset)

0.95 0.51 0.79 0.38 0.99

BERT LLM with reason 

field (smaller subset)

0.86 0.10 0.25 0.06 0.98

TABLE 7  Wait-time LLM results—all modalities with and without “reason for exam” field. (full training dataset used for both models with 20% validation 
split).

Model AUC F1 Precision Recall Accuracy

BERT LLM without 

reason field

0.82 0.41 0.66 0.30 0.79

BERT LLM with reason 

field

0.82 0.62 0.59 0.66 0.79

https://doi.org/10.3389/frai.2025.1652397
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Rafique et al.� 10.3389/frai.2025.1652397

Frontiers in Artificial Intelligence 11 frontiersin.org

the unseen test data. These included the LR, SVM, RF no-show 
models, and the ANN wait-time model. The remaining models were 
relatively well calibrated to the test data, thus allowing us to use the 
calibrated probabilities as a risk metric. Figure 4 is a sample calibration 
plot of the XGBoost wait-time model.

3.5 Feature importances

This section reports the feature importance metrics of the 
XGBoost and RF models which were the most well-rounded for 
no-show and wait-time tasks, respectively. The following Figures 5, 6 
plot the feature importances on a scale of 0 to 1  in which higher 
weights are given greater importance within predictions.

4 Discussion

Within this research study, we experimented with a broad range 
of machine learning architectures for 2 prediction problems which are 
patient no-show and long wait-times. This research follows up on our 
previous study (Taheri-Shirazi et al., 2023) by providing more insight 
into new methodologies of predicting these appointment outcomes 
while improving upon our previous results. The novelty of our 
research comes from the uniquely large dataset specialized for 
pediatric DIR appointments, proposed methodology for leveraging 
deep learning on these tasks, comparatively studying model 
performances with contextual feature sets, and developing a set of 

robust risk-based models that boast promising performance for high 
probability thresholds.

Firstly, as our experiments were able to leverage more data, virtually 
every model outperformed our previous study when comparing models 
trained on all modalities. Previously, although the AUC score had a 
promising value of 0.8, the F1 scores were lacking with a score as low as 
0.16 for the no-show model and 0.43 for wait-time prediction (Taheri-
Shirazi et al., 2023). In contrast, our best no-show model, the XGBoost, 
achieved an AUC and F1 score of 0.96 and 0.62, respectively. We also 
found that for no-show models, performance on US appointments had 
improved F1 scores but similar AUC scores. This is likely due to the large 
skew of appointments being US, with the majority of no show cases being 
from this modality. Alternatively, wait-time models seemed to perform 
much better on CT and MRI exams, which is likely a result of a much 
larger skew of positive classes being from MRI and CT scans.

Next, the literature typically used tree-based models for this 
problem due to its structured data, however, our deep learning 
models still performed comparatively well given the nature of the 
data. This would prove very promising since the feature set could 
be expanded from its current state to better leverage the deep learning 
architectures. This was especially apparent with the LLM wait-time 
models. The BERT wait-time model had an almost equivalent 
performance to the best performing RF model while also being well 
calibrated and having the best precision when using a high probability 
threshold which is more relevant for the downstream use case of 
these algorithms. Although we expected to see poorer performance 
due to the nature of our heterogenous data, our LLM models achieved 
an AUC score of 0.95 for no-show and 0.82 for the wait-time model. 

FIGURE 4

XGBoost calibrated model prediction plot of predicted probability vs. the true event rate. The plot groups data into 10 bins. The purple ribbon indicates 
the 95% confidence interval of predictions using bootstrapped resampling. The blue histogram at the bottom represents the density of negative events 
(majority class) and the red histogram at the top is for the positive events (minority class).
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FIGURE 6

Feature importance bar chart for RF on Wait-time prediction. Red dotted line marked at 0.025 weight to differentiate relative lower importance 
features.

While we tuned the model and prompts to yield a good result in 
validation, there is still significant room for improvement with 
regards to using LLMs for this use case given additional 
contextual data.

The “reason for exam” and “clinician specialties” are among 2 
fields that we expected to provide a unique context to improve 
classifications. The results of our comparison in LLM performance 
with and without the “reason for exam” feature indicated that this 

FIGURE 5

Feature importance bar chart for XGBoost on No-Show prediction. Red dotted line marked at 0.015 weight to differentiate relative lower importance 
features.
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contextual feature is significant as it was able to improve our F1, 
recall, and accuracy score by a substantial amount for wait-time 
tasks (51%, 122%, 0.38% respective improvement). However, since 
our no-show data with a valid “reason for exam” was limited to 
only 354 total positive cases in training and 32  in testing, the 
results were expectedly low for F1, recall, and precision. Despite 
this, the AUC score of our smaller no-show model still achieved a 
value of 0.823. These results demonstrate not only how we can 
leverage the advantages of LLMs for these tasks but also the 
significant gain in performance from contextual data. This allows 
our models to be less dependent on patient demographics, which 
is critical for equitable decision making when implementing 
accommodation or alternatives for high-risk individuals. This is 
because the predicted risk would instead be based on a patient’s 
appointment and scheduling circumstances rather than personal 
demographics such as income.

Next, contrary to the literature, our models did not perform better 
when utilizing the IHT method. The performance metrics for most 
models were either relatively the same or significantly worse. This may 
have been a consequence of overly aggressive under-sampling by the 
algorithm on the majority class. The weak learners remove too many 
samples that are close to the decision boundary and deem it as hard 
to classify. This may have resulted in reduced generalizability and the 
model’s ability to learn distinctions between classes. Additionally, IHT 
typically uses linear classifiers as weak learners while our data likely 
requires more complex non-linear decision boundaries. A better 
approach might be to introduce an under-sampling threshold and 
utilize more complex weak learner models to classify hard cases to 
limit the removal of too much data. Additionally, combining this with 
minority over sampling techniques such as SMOTE could improve 
robustness as studies have shown this can improve generalization 
(Kim and Jung, 2023).

Feature importances were another significant finding within our 
research. Our XGBoost and RF feature importance indicated that 
WTIS-Priority was one of the most significant features for both 
no-show and wait-time prediction as shown in Figures 5, 6. However, 
the WTIS-Priority is possibly a redundant feature for US 
appointments (majority) as they are all valued at 0 priority since this 
was not a field used by the modality. US appointments having 
superior no-show prediction performance in contrast to CT and 
MRI cases may point to a possible grouped modality (US vs. MRI/
CT) feature being a significant indicator in prediction over the 
priority level for no-shows. Additionally, “Care coordination flag,” 
“scheduled hour,” “scheduled in hour,” and “previous no-show” are 
other sources of higher feature importance for the no-show XGBoost 
model and the wait-time RF model. Among the patient demographic 
features, coinciding with the literature, we  found that socio-
economic status portrayed through income is the most prominent 
feature, but only slightly more than the other features. However, 
these features prove to be  less significant in comparison to 
appointment specific fields such as general anesthesia, clinician 
specialty, and procedure name (modality). This could suggest that 
future models may still perform well while omitting these 
controversial features if more relevant appointment fields such as 
lead time become available. This would be  significant for the 
adoption of any no-show or wait-time model that seeks to prevent 
unfair biases in prediction by producing a demographically blind 
model (Taheri-Shirazi et al., 2023).

Finally, the thresholding results prove to be the most promising 
display of use for our predictive models. A clinical deployment of 
these classifications into a stochastic optimization algorithm would 
likely utilize the predicted probabilities as contingencies for different 
protocols. If a patient is predicted to have a very high risk of no-show 
or long wait-time, more invasive protocols may be suggested. This 
makes model calibration an important aspect when selecting a final 
model beyond just the accuracy and precision metrics. The calibration 
results revealed that the LLM and XGBoost remained well calibrated 
on unseen data with the LLM being more robust in its predictions. 
Furthermore, the results show that XGBoost strikes the best balance 
for the number of high probability predictions and its high precision 
for no-shows while the BERT model provided the best precision using 
a 90% threshold for waiting times.

4.1 Limitations

Our study was limited in several ways while leaving room for 
future work. Firstly, we  were unable to utilize lead-time data for 
no-show appointments due to the nature of data collection in the 
scheduling system. This may have prevented even larger improvements 
in performance based on its significance in literature. Next, the 
clinician specialties were estimated substitutes for a field called 
“ordering department” since the current system overwrites the 
original clinical department with the modality upon completion of the 
exam. With regards to our ClinicalBERT LLM models, although 
we  demonstrated the viability of this architecture for these tasks, 
significant improvements can still be made. These may include more 
contextual input data, fine tuning the rebalancing techniques with 
thresholding, more sophisticated input data augmentation, and 
experimenting with other large foundational models such as GPT 
models. Furthermore, the reason for exam feature is dependent on 
providers incorporating meaningful comments to contextualize the 
appointment. Additionally, our models did not directly account for 
missingness, which is a common issue in medical records data. The 
models assume features required in training are present in test data. 
Future work should attempt to generalize the models further by 
testing on external data while verifying performance on data with 
missing values. This would improve robustness and applicability for 
other institutions. Finally, the target no-show event had a significantly 
smaller set of data that included a proper reason for exam. In the 
future, if an extensive audit can be  carried out, more contextual 
information regarding the reason for the appointment could prove 
useful when predicting no-shows.

5 Conclusion

Our research tackled two important use cases which are to survey 
the best models and methods to predict patient no-show and long wait-
times. The study not only improved prediction metrics given a 
significantly smaller event rate compared to other studies, but it also 
revealed a new area of potential advancements in classification on these 
tasks with LLMs, allowing for effective use of more unstructured data to 
further improve predictions. Our research has also shown that 
contextual appointment related data such as a “reason for exam” and 
scan priority or modality, are more useful in predicting appointment 
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outcome than patient demographics. This would promote greater equity 
when implementing a proposed AI scheduler by producing a 
demographically blind model that predicts based on appointment 
features rather than the patient’s postal demographics. Finally, using a 
series of varied models and data balancing techniques, we found that for 
no-shows, the XGBoost performed the best when accounting for both 
AUC and F1 while the RF and BERT models would be the best choices 
for a wait-time model. Our future work will utilize continuous 
probability predictions for a downstream AI assisted scheduling system 
to reduce these event related costs and provide targeted accommodations 
for individuals more likely to experience these events.
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Appendix. Data processing and feature engineering

This appendix provides additional information on the exact feature sets used within our model training before and after cleaning. It also 
provides a sample prompt used for our LLM training input.

Raw feature list after initial cleaning

The following is a list of our final feature after cleaning: ‘AnonymizedID,’ ‘ORDER_ID,’ ‘Modality,’ ‘PATIENT_CLASS,’ ‘ORDERING_DTTM,’ 
‘ORDERING_DEPARTMENT_NAME,’ ‘SCHED_ON_DTTM,’ ‘SCHED_EXAM_DTTM,’ ‘CHECKIN_DTTM,’ ‘age_at_scan,’ ‘procedure_name,’ 
‘APPT_NAME,’ ‘week_day,’ ‘scheduled_hour,’ ‘no_show,’ ‘distance,’ ‘pre_appointments,’ ‘pre_no_show,’ ‘income,’ ‘non_eng_%,’ ‘lone_parent_%,’ 
‘GA,’ ‘CARE_COORDITION_FLAG_YN,’ ‘WTIS_PRIORITY,’ ‘WTIS_SDP,’ ‘appointment_duration,’ ‘wait_time,’ ‘gender_numeric,’ 
‘DistanceInKMFromSK,’ ‘REASON_FOR_EXAM,’ ‘postal,’ ‘Modality.1,’ ‘Order_Creator,’ ‘ORDERING_PROVIDER,’ ‘AUTHORIZING_
PROVIDER,’ ‘TECHNOLOGIST_NAME,’ ‘REASN_FOR_EXAM,’ ‘Authorizing Category,’ ‘Re-Clean Flag,’ ‘lead_time,’ ‘lead_time_bins,’ ‘exam_
time_of_day,’ ‘sched_month,’ ‘sched_year,’ ‘sched_month_number,’ ‘postal_encoded,’ ‘Specs_encoded’.

Final feature set used for training

The following list are the features used in training: ‘age_at_scan,’ ‘procedure_name,’ ‘week_day,’ ‘scheduled_hour,’ ‘distance,’ ‘pre_
appointments,’ ‘pre_no_show,’ ‘income,’ ‘non_eng_%,’ ‘lone_parent_%,’ ‘GA,’ ‘CARE_COORDITION_FLAG_YN,’ ‘WTIS_PRIORITY,’ ‘WTIS_
SDP,’ ‘gender_numeric,’ ‘sched_year,’ ‘sched_month_number,’ ‘postal_encoded,’ ‘Specs_encoded,’ ‘appointments_in_hour.’

Sample prompt for LLM model input

The following sentence is a fake example (for data privacy reasons) of the kind of input we used in this model with each input following the 
same structure with different values included from the columns:

“A male pediatric patient requires a diagnostic appointment for a MRI scan which was referred by a clinician specializing in Neurosurgery. 
The patient will be 2000 days old at the time of the appointment, which is currently scheduled for Thursday June 1, 2018 at 4 h. This appointment 
is of top priority. The patient’s parental household income is estimated as $31280.0 CAD. The patient comes from a neighborhood with a 21.862% 
single parent demographic. This neighborhood also has a 6.995% non-English speaking demographic. The address postal code is L1A with a 
distance of 50.26 KM from the Hospital. The patient also has a history of not showing up to 0 appointments out of the 1 previous appointment 
they have had.”
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