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In the context of the digital transformation of engineering education, protecting 
student data privacy has become a key challenge for enabling data-driven instruction. 
This study proposes an Entropy-Adaptive Differential Privacy Federated Learning 
method (EADP-FedAvg) to enhance the accuracy of student performance prediction 
while ensuring data privacy. Based on online test records from Python programming 
courses for Electronic Engineering students (grade 2021–2023) at the School of 
Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, 
China, the study uses a Multilayer Perceptron (MLP) model and 10 distributed clients 
for training. Under different privacy budgets (ε = 0.1, 1e-6, and 1.0), EADP-FedAvg 
achieves a test accuracy of 92.7%, macro-average score of 92.1%, and entropy of 
0.207, outperforming standard federated learning and approaching centralized 
learning performance. The results demonstrate that by adaptively adjusting the 
noise level based on output entropy, EADP-FedAvg effectively balances privacy 
preservation and model accuracy. This method offers a novel solution for analyzing 
privacy-sensitive educational data in engineering education.
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1 Introduction

The digital transformation of engineering education has led to an unprecedented increase 
in student data, offering valuable opportunities for optimizing instructional strategies and 
enabling personalized learning. These datasets, ranging from learning behaviors and academic 
performance to interaction records, form the foundation for analyzing student outcomes and 
improving teaching quality (Shou et al., 2024). In many undergraduate engineering programs, 
Python Programming is a core course that cultivates computational thinking and coding skills. 
Its delivery via online platforms generates large-scale structured datasets, making it an ideal 
setting for data-driven educational research. However, the sensitive nature of student data 
raises critical privacy concerns, especially under the tightening global data protection 
regulations and evolving educational ethics standards (Marshall et al., 2022).

To address this challenge, we propose Entropy-Adaptive Differential Privacy Federated 
Averaging (EADP-FedAvg)—a method designed to improve prediction accuracy in Python 
programming courses while safeguarding student privacy. Federated Learning (FL) is a 
decentralized machine learning framework that allows multiple clients to collaboratively train 
a model without sharing raw data, making it naturally suited for privacy-sensitive educational 
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applications (Moshawrab et  al., 2023). However, conventional FL 
combined with fixed-noise Differential Privacy (DP) often suffers 
from significant performance degradation due to excessive noise 
(Elgabli and Mesbah, 2024). EADP-FedAvg tackles this issue by 
dynamically adjusting noise intensity based on the model’s average 
output entropy, achieving a more effective balance between privacy 
and accuracy, even under stringent privacy budgets.

This study uses 2,452 online test records from 493 students 
majoring in Electronic Engineering (Classes of 2021–2023) at Baoji 
University of Arts and Sciences. The dataset includes 17 features such 
as course click counts, assignment scores, and study duration, along 
with four performance categories: Fail, Passed, Good, and Excellent. 
The experiments are conducted in a simulated environment using 10 
federated clients and a Multilayer Perceptron (MLP) model.

The study focuses on the following research questions:

	 1.	 How can FL protect student test data privacy and improve 
prediction accuracy in Python programming courses?

	 2.	 How does entropy-adaptive differential privacy enhance 
conventional FL by optimizing the privacy-accuracy trade-off?

	 3.	 What is the potential of EADP-FedAvg for privacy-preserving 
data analysis in engineering education?

The remainder of this paper is structured as follows. Section 2 
reviews the latest research developments and clarifies the innovative 
positioning of this study within the fields of FL and privacy 
preservation. Section 3 presents the data sources and outlines the 
model architecture. Section 4 describes the experimental setup and 
provides a detailed explanation of the model design. Section 5 offers 
a comparative analysis of three models using evaluation metrics such 
as confusion matrices and information entropy. Finally, Section 6 
summarizes the key findings and explores potential directions for 
future research.

2 Related research

2.1 FL in engineering education

FL is a decentralized machine learning framework that enables 
multiple clients to collaboratively train models without sharing their 
raw data (McMahan et al., 2016). In Python programming courses, 
students generate a wealth of data through online tests and learning 
platforms, including performance records, behavioral features, and 
submission logs. While this data provides valuable resources for 
predicting student outcomes, traditional centralized machine learning 
methods require aggregating data on a central server, which raises 
significant privacy concerns and presents integration challenges due 
to data fragmentation (Bonawitz et  al., 2021). FL addresses these 
issues by performing localized training and aggregating model 
parameters, making it particularly suitable for privacy-sensitive 
educational environments.

In engineering education, FL has already been applied to 
programming course data analysis. For instance, Christiansen et  al. 
(2023) introduced a federated framework for cross-institutional analysis 
of programming course data to predict student performance, 
demonstrating FL’s generalizability in heterogeneous data environments. 
Similarly, Truex et al. (2019) employed FL to analyze C++ course test 

data, using distributed training to protect student privacy while 
maintaining model accuracy. These studies suggest that FL can support 
data-driven teaching optimization in a privacy-compliant manner.

However, several challenges remain in applying FL to educational 
data analysis. First, data heterogeneity across clients can hinder model 
convergence (Mora et al., 2024). Second, when FL is combined with 
DP, the use of fixed noise levels often degrades prediction performance 
(Sattler et  al., 2019). Third, centralized AI methods that rely on 
aggregating data into a single location fall short of meeting privacy 
demands (Song and others, 2023). Lastly, existing FL research has 
rarely explored adaptive noise mechanisms that dynamically balance 
privacy protection with model performance.

2.2 Privacy-preserving technologies in 
education

As engineering education undergoes digital transformation, 
protecting student data privacy has become a cornerstone of data-
driven instruction. In many technical courses such as Python 
Programming, the online test data generated often contains sensitive 
information which, if mishandled, may lead to privacy breaches. To 
address this issue, various privacy-preserving technologies have been 
introduced into educational contexts, including DP, data 
anonymization, Secure Multi-Party Computation (SMPC), and 
Homomorphic Encryption (HE). These methods aim to protect 
student privacy while still supporting high-precision performance 
prediction, making them particularly well-suited for privacy-sensitive 
educational environments.

DP ensures that individual data cannot be reverse-engineered by 
injecting carefully calibrated noise into model outputs or parameters. 
It is considered the gold standard in educational data analysis (Pakina 
and Pujari, 2024). In this study, DP can be used to safeguard test scores 
and behavioral data. For example, (Zhan et  al., 2024) proposed a 
Gaussian mechanism–based DP method for predicting student 
performance that maintained high accuracy under a privacy budget 
of ε = 0.1. However, traditional DP approaches often apply a fixed 
noise level, which can significantly degrade model performance—
especially when working with small datasets (Afrose et al., 2021).

Data anonymization is a fundamental technique that reduces the risk 
of individual identification by removing or replacing personally 
identifiable information (PII), such as student IDs or names. In 
educational data processing, anonymization allows for meaningful 
analysis while protecting student identities. For instance, Chicaiza et al. 
(2020) applied k-anonymity to anonymize learning data from 
programming courses. This technique generalizes or suppresses sensitive 
attributes so that each record is indistinguishable from at least k other 
records based on quasi-identifiers. It enabled cross-class comparison 
without exposing student identities. However, k-anonymity often leads 
to information loss—especially in high-dimensional datasets—by 
reducing the granularity of key features, which can limit deeper data 
analysis and compromise model performance.

Secure Multi-Party Computation (SMPC) allows multiple parties 
to jointly compute functions over their data without revealing the data 
itself. As noted by Khan (2024), this approach is particularly suitable 
for collaborative research across institutions—such as sharing 
behavioral data across schools for joint analysis. While SMPC ensures 
that local data remains private, it requires substantial coordination 
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among parties and may introduce significant communication 
overhead and system complexity.

HE enables direct computation on encrypted data such that the 
decrypted result is identical to what would have been obtained using 
plaintext inputs. The fully homomorphic encryption scheme proposed 
by Zhang et al. (2024) laid the foundation for this area. In theory, 
HE allows training and prediction to occur entirely in the encrypted 
domain, offering the highest level of data privacy. However, current 
HE methods still face challenges of high computational complexity 
and low efficiency, making them difficult to deploy in real-time 
educational scenarios.

2.3 Student data privacy in programming 
courses

The privacy challenges associated with programming course data 
stem primarily from its high dimensionality and heterogeneity. In 
courses like Python Programming, online test data often includes 
numerical features such as scores and discrete features such as click 
counts. Analyzing such complex data typically requires sophisticated 
models, which increases the risk of privacy leakage. Traditional 
methods like data anonymization reduce risk by removing identifiers, 
but often result in significant information loss, limiting the depth of 
analysis (Salas and Domingo-Ferrer, 2018). Techniques such as Secure 
Multi-Party Computation (SMPC) and Homomorphic Encryption 
(HE) enable privacy-preserving computation but are computationally 
intensive, making them impractical for real-time analysis of large-
scale course data (Liu, 2024).

DP has emerged as the preferred method for protecting student 
privacy in programming courses by adding noise to safeguard data. 
For example, Miller and Chattopadhyay (2024) applied DP to test 
score data in a database course and achieved high prediction 
accuracy under a privacy budget of ε = 0.1. However, the use of 
fixed-noise DP can degrade model performance, particularly on 
small datasets. Adaptive DP, which dynamically adjusts the noise 
level, has demonstrated the ability to strike a better balance between 
noise and model utility (Yang et al., 2023). In response to these 
practical challenges, this study proposes the EADP-FedAvg method, 
which leverages average information entropy to dynamically adjust 
noise intensity.

3 Data and methods

3.1 Data definition

The dataset was collected from the Python Programming course 
offered at Baoji University of Arts and Sciences, School of Physics and 
Optoelectronic Technology, and includes data from students majoring 
in Electronic Engineering. Specifically, it covers three academic 
cohorts: Class of 2021 (four classes), Class of 2022 (four classes), and 
Class of 2023 (four classes). The course is a mandatory semester-long 
program aimed at developing students’ programming proficiency and 
algorithmic thinking. A total of 493 students participated, generating 
2,465 test records, of which 2,452 remained after data cleaning.

Each semester includes five online tests, conducted through a 
Learning Management System (LMS), capturing test scores, learning 

behavior, and anonymized student demographics. The performance 
labels are divided into four categories: Fail, Passed, Good, and Excellent.

The total score for each test was 100 points, comprising four types 
of questions. Multiple-choice questions included 5 items worth 4 
points each, totaling 20 points. These primarily assessed students’ 
understanding of fundamental syntax and core programming 
concepts, such as variable naming rules, reserved keywords, and 
operator usage. Fill-in-the-blank questions consisted of 3 items worth 
5 points each, totaling 15 points. Students were required to complete 
specific code snippets, often involving string formatting techniques or 
loop structures. True/False questions included 5 items worth 3 points 
each, totaling 15 points. These tested students’ logical reasoning skills, 
for example, their understanding of increment operations or data type 
distinctions. Programming problems made up the remaining 50 
points across 2 questions. Students were tasked with solving practical 
coding challenges, such as determining whether a number is even or 
odd, or implementing a list summation function. Scoring for these 
items considered the correctness of input handling, logical 
implementation, and the accuracy of the program output.

Learning behavior features include submission frequency, 
response time, and error frequency, totaling 10 features that reflect 
learning patterns and course difficulty.

Student demographic features include gender and age, allowing 
exploration of background influences on performance.

As shown in Table 1, the dataset contains 17 features: 5 related to 
scores, 10 to behavioral patterns, and 2 to student demographics, along 
with 4-class categorical labels. It spans multiple classes and cohorts, 
making it a structured and heterogeneous dataset ideal for 
FL experimentation.

Participation in this study was voluntary, and all students were fully 
informed of the research objectives before data collection. The study 
was approved by the Ethics Committee of the School of Education, 
Baoji University of Arts and Sciences (Approval No.: BJWLXY-2024-
023). All data were anonymized immediately after collection by 
removing identifiable information such as names and class designations, 
and each record was assigned a unique code to protect student privacy.

The dataset, sourced from a Python programming course at a 
single institution and focused on students from a single academic major 
of Electronic Engineering, may not fully capture the diversity of broader 
educational contexts. Although the EADP-FedAvg method has been 
thoroughly validated in this specific setting (see Section 5.2), future 
research will integrate datasets from multiple institutions and diverse 
disciplines to enhance the generalizability of the proposed approach.

3.2 Data preprocessing

To ensure the quality of the Python Programming online test 
dataset and improve compatibility with the MLP model used in 
EADP-FedAvg, this study applied four preprocessing steps to the 
2,452 valid records: data cleaning, feature extraction, normalization, 
and data splitting. These steps addressed missing values, outliers, and 
discrepancies in feature scale.

3.2.1 Data cleaning
Out of the initial 2,465 raw records, 13 invalid entries were 

removed. These included records missing programming scores, 
submissions with response times under 5 min, duplicate entries, and 
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records containing abnormal values. Additionally, error logs not 
related to Python syntax were excluded to maintain data consistency. 
After cleaning, 2,452 records remained for analysis.

3.2.2 Feature extraction
Seventeen features were extracted from the cleaned dataset. These 

included 5 score-related features (total score, multiple choice, fill-in-
the-blank, true/false, and programming), 10 behavior-related features 
(such as submission count and response time), and 2 demographic 
features (gender and age). Each feature vector was defined at the 
individual test attempt level, without temporal aggregation, to align 
with the tabular input requirements of the MLP model.

3.2.3 Data normalization
Due to the varying scales of different features, z-score 

normalization was applied to standardize the data:

	

ìxz
σ
−

=
	

(1)

In Equation 1, x  is the original value, μ is the mean, and σ is the 
standard deviation. After normalization, the transformed features 
have a mean of 0 and a standard deviation of 1, which improves model 
training stability. Gender and categorical label data were excluded 
from this step, as normalization was unnecessary.

3.2.4 Data splitting
By anonymizing student IDs and test identifiers, the final dataset 

of 2,452 records was constructed by merging score, behavior, and 
demographic features. The dataset was split into a training set and a 
test set at an 8:2 ratio, resulting in 1,961 training samples and 491 test 
samples, following standard practices in educational data mining. The 
training data was distributed across 10 clients, with each client 
receiving approximately 196 records. To simplify training, 
independent and identically distributed (IID) sampling was used. The 
test set was reserved for global evaluation.

3.3 EADP-FedAvg

3.3.1 Theoretical foundation
FL enables multiple clients to collaboratively train a global model 

without sharing their raw data. By relying on local updates and model 

parameter aggregation, FL inherently supports privacy preservation 
and is well-suited for distributed educational data scenarios like the 
one in this study.

However, despite its decentralized structure, FL still presents 
potential privacy vulnerabilities. Prior research has demonstrated 
that adversaries can exploit uploaded model parameters or gradients 
to infer characteristics of the original training data, and in some 
cases, even reconstruct parts of the raw samples. These attacks are 
known as gradient inversion attacks or model reconstruction attacks. 
The fundamental cause lies in the fact that model parameters are 
directly influenced by training data; thus, they carry imprints of 
individual samples, especially when client datasets are small or the 
model architecture is complex. This increases the risk that updates 
may leak identifiable personal features.

As a result, the structural design of FL alone is insufficient to 
guarantee complete privacy. To strengthen the privacy protection 
mechanism, techniques such as DP can be employed. DP introduces 
randomness to model updates in each training round, statistically 
masking the influence of any single data point and reducing the 
identifiability embedded in model parameters.

Differential Privacy achieves this by injecting noise into model 
outputs or parameters, ensuring that the probability distributions of 
algorithm outputs over neighboring datasets remain statistically 
similar. The formal DP definition is shown in Equation 2:

	
( ) ( )·r rP S D T e P S D Tε δ   ∈ ≤ ∈  ′ +  	 (2)

Here, ε is the privacy budget that quantifies the strength of the 
privacy guarantee, and δ is the failure probability. S(D) and S(D′) 
denote the algorithm’s output distributions over two neighboring 
datasets, D and D′. Traditional DP-FedAvg methods apply fixed 
Gaussian noise with the following standard deviation (Equation 3):

	

1.25· 2 lnf
δ

σ
ε

 ∆  
 =

	
(3)

Where Δf represents the sensitivity of the function. However, 
using fixed noise often compromises model performance, especially 
in small-scale or heterogeneous educational data settings. To address 
this limitation, EADP-FedAvg introduces an entropy-adaptive 

TABLE 1  Data set statistics.

Category Details Total

Grade Class 1 Class 2 Class 3 Class 4

Grade enrollment

2021 41 40 43 42 166

2022 39 42 41 41 163

2023 39 40 43 42 164

Gender distribution
Male 252

Female 241

Data set overview

Total Students 493

Total Records 2,452

Feature Dimensions 17

Labels Fail, Passed, Good, Excellent
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mechanism. It dynamically adjusts the noise intensity based on the 
average information entropy of the model’s predictions on a test 
dataset. The adjustment function is shown in Equation 4:

	

1.25· 2 ln
1·

avg _ entropy

f
δ

σ
ε

 ∆     =  
  	

(4)

Where avg_entropy represents the average entropy of predicted 
probability distributions, calculated as Equation 5:

	 ( )= −∑avg _entropy logi ip p 	 (5)

The fixed privacy budget (ε = 0.1, δ = 1e-6) ensures consistent 
privacy protection across all clients but may not fully accommodate 
varying privacy needs based on data sensitivity or client heterogeneity. 
A personalized privacy budget, dynamically adjusting ε per client or 
training phase, could further optimize the privacy-performance 
trade-off, as explored in future work.

When entropy is high, noise is reduced to improve performance; 
when entropy is low, noise is increased to enhance privacy protection.

3.3.2 Algorithm design
The EADP-FedAvg algorithm proposed in this study is based on 

the classic FedAvg framework, with the addition of entropy-adaptive 
Gaussian noise in the global aggregation phase to enhance differential 
privacy protection. The core procedure is as follows: first, the server 
randomly initializes the global model parameters and distributes 
them to 10 clients, each containing approximately 196 local training 
samples. Next, each client trains a local MLP model using its data and 
predefined hyperparameters, completing one local update. Third, 
each client computes the information entropy based on the predicted 
probability distribution of its local model on the test data. The server 
then collects all clients’ entropy results and calculates the global avg_
entropy. In the fourth step, the server aggregates the uploaded model 
parameters and adds Gaussian noise adaptively based on the current 
avg_entropy value to achieve differential privacy protection. This 
process is repeated for a total of 200 communication rounds.

The EADP-FedAvg algorithm in this study is shown in Table 2:

4 Experimental design

4.1 Experimental setup

Experiments were conducted on a high-performance computing 
platform simulating a FL environment with multiple collaborating 
clients. To improve training efficiency and model convergence speed, 
the hardware setup included a multi-core CPU and sufficient RAM to 
ensure smooth parallel computation. On the software side, the 
PyTorch framework was used, along with techniques such as data 
loading acceleration, gradient clipping, and the Adam optimizer to 
enhance training stability and performance. The system configuration 
is detailed in Table 3:

The hardware setup includes a 6-core, 12-thread Intel Core 
i7-9850H processor with a maximum turbo frequency of 4.6 GHz, 
64 GB of RAM, and a dedicated NVIDIA GeForce RTX 2080 

GPU. This configuration effectively supports high-performance 
parallel training of multiple clients and accelerates model convergence. 
The software environment runs on 64-bit Windows 10, with the 
EADP-FedAvg algorithm and MLP model implemented using Python 
3.7 and PyTorch 1.9.1. VMware Workstation 16 is used to simulate 
isolated client environments for distributed FL. The Python 
environment is equipped with commonly used libraries such as 
NumPy, SciPy, and Scikit-learn for feature engineering, model 
evaluation, and statistical analysis. PyTorch offers efficient tensor 
operations and automatic differentiation to speed up MLP model 
training and optimization.

The EADP-FedAvg experiment uses 10 clients, each performing 
local training with an MLP model. The model architecture includes 
17 input features, two hidden layers with 128 and 64 neurons 
respectively, and a final output layer producing probabilities for four 
classes which is suitable for tabular classification tasks. Training 
parameters were carefully tuned to balance convergence speed and 
predictive performance. DP is ensured via the Gaussian mechanism, 
with noise standard deviation dynamically computed using the 
entropy-adaptive formula detailed in Section 3.3.1.

The use of 10 clients is intended to strike a balance between 
computational efficiency and representativeness of data 
distribution, ensuring each client receives a sufficient number of 
training samples. This supports stable local training, mitigates 
biases due to data imbalance, and enhances both model robustness 
and experimental reproducibility.

The full experimental parameter settings are provided in Table 4.
To comprehensively evaluate the performance of EADP-FedAvg, 

two baseline models are set up for comparison. The first is the 
conventional FL model, which uses the classical FedAvg algorithm. It 
shares the same MLP architecture and training parameters but does 
not apply any differential privacy mechanisms. This helps assess the 
performance of FL without entropy-adaptive enhancements. The 
second baseline is a centralized learning model, where the MLP is 
trained directly on the complete dataset of 2,452 records without any 
privacy protection. This serves as the theoretical upper bound in terms 
of model performance.

The experiment compares EADP-FedAvg with these two baselines 
across three evaluation metrics on the test set: accuracy, macro-
average score, and average information entropy. The primary goal is 
to demonstrate that EADP-FedAvg can achieve strong model 
performance while providing privacy protection under a privacy 
budget of ε = 0.1. To ensure result stability and reliability, each 
experiment is repeated 20 times, and the average results are reported 
to mitigate the effects of randomness.

4.2 Model and parameters

4.2.1 Model architecture
To accommodate the tabular data structure of the Python 

Programming course, the EADP-FedAvg method employs a Multi-
Layer Perceptron (MLP) model. MLP is a type of feedforward neural 
network known for its simplicity and efficiency, particularly well-suited 
for structured data in multi-class classification tasks (Witten et al., 
2016). The choice of MLP is motivated by the dataset’s static tabular 
format, with 17 features (5 score features, 10 behavioral features, and 2 
demographic features) that do not explicitly include time-series 
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information, enabling efficient modeling with low computational 
complexity. However, behavioral features like login frequency may 
contain latent temporal patterns (e.g., sequential login activities over 
the course duration), which MLP cannot fully capture, as discussed in 
Section 6. The model architecture used in this study is as follows:

	 1.	 Input Layer: 17 features including 5 score features, 10 
behavioral features, and 2 demographic features.

	 2.	 Hidden Layer 1: 128 neurons with ReLU activation to capture 
non-linear relationships among features.

	 3.	 Hidden Layer 2: 64 neurons with ReLU activation to further 
extract high-level features.

	 4.	 Output Layer: 4 neurons corresponding to the 4 classification 
labels, outputting class probabilities.

The forward propagation process of the MLP consists of three 
sequentially connected linear layers. Between the first two layers, 
ReLU activation functions are introduced to enhance the model’s 
non-linear expression capability. First, the input data passes through 
the first linear transformation, followed by ReLU activation to produce 
the output of Hidden Layer 1. This output then proceeds through the 
second linear transformation and another ReLU activation, resulting 
in the output of Hidden Layer 2. Finally, this output is fed into the 
third linear layer to produce the model’s final predictions.

The MLP architecture is relatively simple and has low computational 
complexity, making it well-suited for small-scale educational data as in 
this study. It processes 17-dimensional vectors directly, and the total 
number of trainable parameters in this MLP model is 10,820.

4.2.2 Detailed training procedure
The training process of EADP-FedAvg is based on the Federated 

Averaging algorithm, with the addition of entropy-adaptive Gaussian 

TABLE 2  EADP-FedAvg algorithm.

TABLE 3  Experimental environment settings.

Environment System 
parameters

Hardware CPU Intel Core i7-9850H, 

@4.6 GHz, 6核

RAM 64GB

GPU
NVIDIA GeForce RTX 

2080(8GB GDDR6)

Software Operating system Windows 10, 64bit

Virtualization VMware Workstation 16

Python Python 3.7

ML Framework Pytorch 1.9.1
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noise during the global aggregation phase. To isolate the effect of the 
entropy-adaptive mechanism and ensure experimental controllability, 
we assume independently and IID data across the 10 clients, enabling 
consistent statistical properties. However, in real-world educational 
settings, client data are often non-IID due to heterogeneous student 
behaviors such as varying login patterns or learning paces, which 
may impact global model convergence, as discussed in Section 6.

The steps are as follows:

	 1.	 Global Initialization. The central server first initializes the MLP 
model parameters and randomly distributes the same initial 
weights to 10 clients.

	 2.	 Local Training. Each client trains its MLP model using local data, 
optimizing with the cross-entropy loss function (Equation 6):

	
( ) ( ) ( ) = − ∑ + − −  

1 log 1 log 1i i i iL y y y y
n 	

(6)

Which iy  represents the true label, iy  represents the predicted 
probability, and n is the number of samples.

	 3.	 Entropy Computation. Each client computes the information 
entropy based on the predicted probability distribution of its 
local model on the test data. These entropy values are sent to 
the server and averaged to generate the global average entropy, 
as described in Section 3.3.1.

	 4.	 Global Aggregation. The server receives the locally trained 
model parameters from the 10 clients and performs a weighted 
average to update the global model. To enhance privacy 
protection, entropy-adaptive Gaussian noise is added to the 
aggregated parameters in accordance with differential privacy 

constraints (Equation 7). The noise standard deviation and 
addition mechanism are detailed in Section 3.3.1. The noise is 
added to each layer’s aggregated weights:

	 ( )=      avg avgdp_add _noise ,ów k w k 	 (7)

Which   avgw k  represents the aggregated weights of the −k th layer, 
and the dp_add _noise function adds Gaussian noise to those parameters.

	 5.	 Model Broadcasting. The updated global parameters are broadcast 
back to each client to commence the next training round.

	 6.	 Epochs Termination. The global training proceeds for 200 
epochs until completion.

4.2.3 Parameter settings
Key parameters of the MLP and EADP-FedAvg were tuned to 

ensure convergence and privacy protection, as summarized in Table 5:

5 Experimental results and analysis

5.1 Comparative analysis of the training

Performance evaluation employs the following metrics:

	 1.	 Accuracy. The proportion of correctly predicted samples, it is 
calculated as shown in Equation 8:

	 ( )
=

=

=
+ + +

∑
∑

i1

i i i i1

TP
Accuracy

TP TN FP FN

k
i

k
i 	

(8)

TABLE 4  Experimental parameter settings.

Parameter Value Description

FL parameters Number of clients 10 Simulates distributed training data across 12 

classes

Global epochs 200 Total number of training epochs

Local iterations 5 Number of local training rounds before each 

global aggregation

Batch size 10 Number of samples per batch in local training

Optimizer SGD –

Learning rate 0.01 –

Momentum 0.5 Speeds up convergence and prevents 

oscillation

Loss function Cross-entropy loss Suitable for 4-class classification tasks

Entropy computation Client-side prediction entropy → 

Server average

Each client calculates entropy based on 

predicted probabilities on the test data, then 

uploads to the server for aggregation

Differential privacy parameters Privacy budget ε 0.1 Strength parameter for differential privacy

Tolerance probability δ 1.00E-06 Acceptable probability of privacy breach

Sensitivity Δf 1 Sensitivity based on standardized features

Noise mechanism parameters Noise std. deviation σ Dynamically adjusted using entropy-

adaptive formula

See Section 3.3.1 for details
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	 2.	 Training Loss. Cross-entropy loss, measuring model 
convergence (formula in Section 4.2.2).

	 3.	 Average Information Entropy. Quantifies the uncertainty of the 
predictions and guides the noise adjustment in EADP-FedAvg 
(formula in Section 3.3.1).

Each of the three models was trained on the training set over 20 
independent random trials, with each trial running for 200 epochs. 
The training data presented here represent the average results from 
these 20 trials.

In the centralized learning training process shown in Figure 1, the 
model’s loss converges to 0.055, indicating excellent optimization. 
Accuracy stabilizes around the 150th epoch, reaching 98%. After 200 
epochs, the average information entropy remains low at 0.111, 
demonstrating the model’s strong grasp of the data distribution and 
efficient fitting.

Figure  2 illustrates the training performance of DP-FedAvg 
under privacy protection mechanisms. The model’s loss converges at 
0.188, noticeably higher than centralized learning. Accuracy reaches 
88.577% after 200 epochs. However, due to the additional noise 
introduced by differential privacy, the average information entropy 
increases to 0.374, indicating increased uncertainty in predictions 
despite maintaining reasonable accuracy.

Figure 3 presents the training process of EADP-FedAvg, which 
incorporates entropy-adaptive noise adjustment. Under this 
improved strategy, the model loss converges faster to just 0.01. 
Accuracy improves to 91.229% at 200 epochs, showing a clear 
enhancement compared to DP-FedAvg. Meanwhile, average 

information entropy drops to 0.207, reflecting a better balance 
between privacy protection and model performance achieved by 
the entropy-adaptive mechanism.

Overall, the experimental results demonstrate that EADP-
FedAvg outperforms DP-FedAvg with superior convergence, 
achieving lower training loss and higher accuracy after 200 
epochs. This improvement stems from the entropy-adaptive noise 
mechanism, which dynamically reduces noise interference when 
prediction uncertainty is high, thereby preserving more useful 
information. Although centralized learning attains the highest 
accuracy and lowest entropy with minimal loss, it lacks any data 
privacy protection. In contrast, EADP-FedAvg effectively balances 
privacy protection and convergence efficiency while maintaining 
strong model performance.

5.2 Comparative analysis in the testing

To further compare the generalization performance of the three 
models in multi-class classification tasks, Tables 6–8 present the 
confusion matrix results on the test set for centralized learning, 
DP-FedAvg, and EADP-FedAvg, respectively. The four predicted 
labels—Fail, Passed, Good, and Excellent—correspond to students’ 
performance levels in the course. Below each confusion matrix, the 
Precision for each class is provided to evaluate the model’s local 
prediction accuracy.

From the results, the centralized learning model demonstrates the 
highest accuracy across all categories. In particular, the Good and 
Passed categories achieve Precisions of 0.989 and 0.966, respectively, 
reflecting superior overall predictive performance with 
minimal misclassification.

In contrast, the performance of the DP-FedAvg model drops 
notably after introducing fixed-intensity noise (ε = 0.1). Precision 
for the Fail class falls to 0.87, and for the Excellent class to 0.835, 
suggesting reduced stability in predictions under differential privacy 
constraints. The EADP-FedAvg model, on the other hand, 
incorporates an entropy-adaptive noise mechanism. By dynamically 
adjusting noise levels while maintaining the same privacy budget, it 
improves predictive accuracy. In the Good and Passed classes, 
Precisions reach 0.948 and 0.938 respectively, which is significantly 
better than DP-FedAvg and approaching the level of 
centralized learning.

The final summary of experimental results is as follows:
Table 9 provides an overview of the overall performance of the 

three models. The centralized model ranks highest in accuracy 
(0.969), macro average score (0.965), and lowest average entropy 
(0.111), but it lacks any privacy-preserving capability.

The DP-FedAvg model shows decreased accuracy (0.886) and 
increased average entropy (0.374), indicating higher uncertainty in 
predictions under privacy constraints.

EADP-FedAvg demonstrates notable improvements, with 
accuracy rising to 0.927 and macro average score to 0.921, while 
average entropy drops to 0.207—validating the effectiveness of the 
entropy-adaptive mechanism in enhancing model robustness 
and performance.

Moreover, EADP-FedAvg shows a marked improvement in 
recognizing high-performing students (Excellent category), with recall 
increasing by approximately 4% compared to DP-FedAvg. This is 

TABLE 5  Overview of EADP-FedAvg and MLP parameter configuration.

Category Parameter name Value or 
description

Model parameters Input dimension 17

Output dimension 4

Activation function ReLU

Hidden layer structure

├─ Layer 1 Linear(17 → 128), ReLU

├─ Layer 2 Linear(128 → 64), ReLU

└─ Output layer Linear(64 → 4 或 2)，No 

activation

Training parameters Number of clients 10

Global communication 

epochs

200

Local iterations per 

Client

5

Batch size 10

Learning rate 0.01

Momentum 0.5

Loss function Cross Entropy

Privacy parameters Privacy budget ε = 0.1，δ = 1e−6

Sensitivity ∆f = 1.0

Noise Gaussian Mechanism
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particularly important in evaluation systems, such as programming 
courses, where high-end performance matters significantly.

By dynamically adjusting the noise scale based on average entropy, 
the model achieves an effective trade-off between privacy preservation 

and predictive performance. This design demonstrates strong stability 
in heterogeneous data environments—such as those combining 
academic scores and behavioral features—and offers promising 
potential for generalization and privacy adaptability.

FIGURE 1

Centralized learning training process.

FIGURE 2

DP-FedAvg training process.

FIGURE 3

EADP-FedAvg training process.

TABLE 6  Confusion matrix for centralized learning.

Predicted

Fail Passed Good Excellent

Actual

Fail 69 2 1 0

Passed 1 144 0 3

Good 2 3 173 2

Excellent 0 0 1 90

Total 72 149 175 95

Precision 0.958 0.966 0.989 0.947

TABLE 7  Confusion matrix for DP-FedAvg.

Predicted

Fail Passed Good Excellent

Actual

Fail 60 7 4 1

Passed 5 131 7 5

Good 3 8 158 11

Excellent 1 1 3 86

Total 69 147 172 103

Precision 0.870 0.891 0.919 0.835
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6 Conclusion

This study proposed an EADP-FedAvg, designed to predict 
student performance in engineering education scenarios. The dataset 
was collected from the School of Physics and Optoelectronic 
Technology at Baoji University of Arts and Sciences, covering students 
majoring in Electronic Engineering from cohorts 2021 to 2023. It 
includes 2,452 records from online assessments in the Python 
Programming course. Under a strict privacy budget (ε = 0.1
，δ = 1e-6), the proposed model successfully protected individual 
student data while achieving high predictive performance. On the test 
set, EADP-FedAvg attained an accuracy of 92.7%, significantly 
outperforming the conventional DP-FedAvg (88.6%) and approaching 
the performance upper bound of centralized machine learning 
(96.9%), demonstrating both adaptability and practical utility.

The core advantage of EADP-FedAvg lies in its integration of FL’s 
distributed architecture with an entropy-adaptive differential privacy 
mechanism. The model dynamically reduces the intensity of added 
noise during high-entropy phases, thereby minimizing disruption to 
training, while increasing noise in low-entropy phases to reinforce 
privacy protection. This effectively mitigates the performance 
degradation commonly caused by static-noise mechanisms. As 
shown in Section 5.1, after 200 training rounds, the final loss of the 
EADP-FedAvg model converged to 0.01, and its accuracy reached 
91.229%, outperforming DP-FedAvg’s final loss of 0.188 and accuracy 
of 88.577%. Moreover, the model’s average information entropy 
significantly decreased to 0.207—substantially lower than 
DP-FedAvg’s 0.374—indicating greater predictive certainty and 
model stability, thereby confirming the practical effectiveness of 
EADP-FedAvg’s theoretical foundation.

Despite the promising results, the study has several limitations. First, 
the dataset, sourced from a Python programming course at a single 
institution and focused on students from a single major, may not fully 
capture the diversity of broader educational contexts. Although the 
dataset includes 2,452 records and the EADP-FedAvg method has been 
rigorously validated in this specific setting, achieving a test accuracy of 
92.7%, its generalizability to other institutions or disciplines remains to 
be explored. Second, the use of a fixed privacy budget (ε = 0.1, δ = 1e-6) 
ensures consistent privacy protection across all clients but may not fully 
accommodate varying privacy needs based on data sensitivity, client 
heterogeneity, or task requirements. This uniform approach, while 
effective in achieving 92.7% test accuracy, could introduce excessive 
noise for less sensitive data or insufficient protection for highly sensitive 
data, potentially impacting model performance in diverse educational 
scenarios. Third, the model is based on an MLP architecture, which, 

while effective for the static tabular data used in this study, lacks the 
capability to model temporal dependencies inherent in students’ learning 
behaviors, such as sequential patterns in login activities or performance 
trends over the course duration. Moreover, the study compares only 
three models, including centralized machine learning, DP-FedAvg, and 
EADP-FedAvg, all using the MLP architecture, as shown in Table 9. This 
limits the exploration of diverse architectures and federated learning 
algorithms, potentially restricting the evaluation of EADP-FedAvg’s 
robustness across varied settings. Finally, for experimental simplicity, the 
study assumes independently and IID data across the 10 clients for 
training and testing, as detailed in Section 4.2.2. This assumption, while 
enabling controlled evaluation of EADP-FedAvg’s entropy-adaptive 
mechanism, does not address the more realistic non-IID distribution 
prevalent in federated learning, where client data may exhibit 
heterogeneous distributions. Such heterogeneity could degrade global 
model convergence or introduce biased predictions in real-world 
educational settings.

To address these limitations, future work can explore several 
directions for improvement and extension. First, to enhance the 
generalizability of EADP-FedAvg, we plan to validate the model across 
datasets from multiple institutions and diverse academic disciplines, 
such as Computer Science, Mechanical Engineering, and Mathematics, 
as well as different course types like Java Programming or Data 
Science, to ensure robustness across varied educational contexts, as 
detailed in Supplementary Table S1. Second, to address varying 
privacy needs, we plan to develop a dynamic privacy budget control 
mechanism, adjusting ε based on factors such as data sensitivity, 
client-specific entropy levels, or training phases, to optimize the 
privacy-performance trade-off across heterogeneous educational 
datasets, as outlined in Supplementary Table S4. Third, to capture 
temporal dependencies in student behavior data, we plan to explore 
alternative model architectures, such as Recurrent Neural Networks 
(RNNs) or Transformers, to model sequential patterns like login 
sequences or performance trends over the course duration, and 
compare these with MLP and centralized models, as detailed in 
Supplementary Table S3. Fourth, to address the non-IID nature of real-
world educational datasets, we plan to develop personalized federated 
learning algorithms, such as client clustering based on behavioral 
similarity or local model fine-tuning with meta-learning techniques, 
such as Model-Agnostic Meta-Learning (MAML). These approaches 
will mitigate the impact of heterogeneous student behaviors on global 
model convergence. Finally, to enhance deployment efficiency, we plan 
to explore techniques such as asynchronous updates, model 
compression, and gradient sparsification. To further enhance 
transparency while adhering to privacy constraints, we plan to explore 
sharing aggregated or synthetic datasets compliant with China’s 
Personal Information Protection Law (PIPL) and ethical guidelines, as 

TABLE 8  Confusion Matrix for EADP-FedAvg.

Predicted

Fail Passed Good Excellent

Actual

Fail 68 3 1 0

Passed 4 135 6 3

Good 2 5 164 9

Excellent 0 1 2 88

Total 74 144 173 100

Precision 0.919 0.938 0.948 0.880

TABLE 9  Summary of performance comparison.

Model Accuracy Macro 
average 
score

Average 
entropy

Centralized 

machine 

learning

0.969 0.965 0.111

DP-FedAvg 0.886 0.879 0.374

EADP-FedAvg 0.927 0.921 0.207
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detailed in Supplementary Table S5. All detailed enhancement plans 
are provided in the Supplementary material document.

The proposed EADP-FedAvg approach achieves a desirable 
balance between accuracy and privacy preservation, offering a practical 
path for privacy-aware modeling and intelligent learning analytics in 
engineering education. Future research will continue to enhance the 
model’s generalization capabilities, improve temporal modeling, and 
expand support for personalized privacy mechanisms, advancing the 
application of FL in the domain of intelligent education systems.
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