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Large language models generate fluent text yet often fail to sustain novelty, task
relevance, and diversity across extended contexts. We argue this shortfall persists
because current systems implement only fragments of a tri-process loop that
supports human creativity: spontaneous ideation in the default-mode network
(DMN; broadly System 1-like), goal-directed evaluation in the central-executive
network (CEN; broadly System 2-like), and a metacognitive integrator—System
3—that, via neuromodulatory gain control, shifts between exploration and focused
control. We introduce Generative System 3 (GS-3), an architecture-agnostic design
pattern with three roles: a high-entropy generator, a learned critic, and an adaptive
gain controller. Beyond “pure prediction” and simple “reflective prompting,”
GS-3 identifies the missing pieces for Artificial Creativity: an internal evaluator,
endogenous control over sampling entropy, and adaptive priors maintained across
extended contexts. This conceptual analysis (i) formalizes novelty, usefulness, and
diversity with operational definitions; (ii) develops multiple gain-update policies
(exponential, linear, logistic) with stability constraints and sensitivity expectations;
(iii) derives falsifiable behavioral indices—associative-distance density, analytic-
verification ratio, and convergence latency—with pass—fail criteria; and (iv) provides
a proof-of-concept blueprint and evaluation protocol (tasks, metrics, ablations,
reproducibility kit). We position GS-3 relative to computational-creativity and co-
creative frameworks, and delineate where brain—model analogies are functional
rather than literal. Ethical guidance addresses bias, cultural homogenization, and
reward gaming of proxy objectives (often termed “dopamine hacking”) through
plural critics, transparent logging, and outcome-tied entropy caps. The result
is a testable roadmap for transitioning from regulated prediction to genuinely
creative generative systems.

KEYWORDS
Artificial Creativity, Generative System 3 (GS-3), large language models (LLMs),
adaptive gain control, computational creativity, System 3 (metacognitive control),
exploration—exploitation trade-off, tri-process cognition

1 Introduction—from fluent prediction to creative
control

Large language models (LLMs) now produce remarkably fluent text, yet they often struggle to
sustain novelty, task relevance, and diversity across extended contexts. We argue this shortfall
persists because current systems implement only fragments of a tri-process loop that supports
human creativity: spontaneous ideation in the default-mode network (DMN; broadly aligned with
System 1), goal-directed evaluation in the central-executive network (CEN; broadly aligned with
System 2), and a metacognitive integrator—Systern 3—that, supported by neuromodulatory gain,

01 frontiersin.org


https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1654716&domain=pdf&date_stamp=2025-10-15
https://www.frontiersin.org/articles/10.3389/frai.2025.1654716/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1654716/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1654716/full
https://orcid.org/0009-0009-3887-7880
mailto:jcchavez@up.edu.mx
mailto:jc@g-8d.com
https://doi.org/10.3389/frai.2025.1654716
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1654716

Chévez-Autor

shifts the mind between exploration and focused control to achieve
integrative creative outcomes. In this view, dual-process accounts are
necessary but not sufficient; System 3 coordinates and regulates how ideas
are generated and pruned, turning “thoughts of thoughts” into adaptive
action. The convergence of these mechanisms in machine systems is what
we call Artificial Creativity.

1.1 The missing link between predictive Al
and creative cognition

From a neuroscience vantage, creative performance depends on
flexible DMN-CEN interaction, with dopaminergic signals
modulating the exploration-exploitation balance (Chen et al., 2025;
Shine, 2019; Westbrook et al., 2021). By contrast, most LLMs behave
like DMN-only decoders: excellent at sequence extension, but lacking
an internal evaluator and endogenous gain control to decide when to
broaden or narrow the search. Bridging this gap requires importing
System 3 principles into model design.

1.2 Why a conceptual analysis now?

Evidence on both sides is converging. LLMs can match or exceed
median human fluency on some divergent-thinking tasks, yet at scale,
their outputs tend to homogenize, reducing collective diversity (Doshi
and Hauser, 2024). Human-AI co-creation increases speed and
fluency but, without structure, can dampen variety or drift from task
goals (Chen and Chan, 2024; Chakrabarty et al., 2024). Meanwhile,
covert neurofeedback that strengthens DMN-CEN coupling elevates
originality in human participants (Luchini et al., 2025). Together,
these findings motivate a synthesis that links cognitive theory, neural
evidence, and generative-model engineering—and states testable
criteria for when an artificial system merits the label creative.
Throughout, any brain-model correspondences are treated as
functional analogies, not biological isomorphisms.

1.3 Contribution and scope

This conceptual analysis does not report new empirical data.
Instead, it advances a falsifiable framework—Generative System 3
(GS-3)—and a concrete evaluation program. GS-3 is an architecture-
agnostic design pattern with three roles: a high-entropy generator
(idea expansion), a learned critic (context-sensitive appraisal), and an
adaptive gain controller (endogenous regulation of sampling entropy).
We contribute four elements: (i) operational definitions of novelty
(distributional distance to a baseline), usefulness (task-conditioned
utility), and diversity (across-run dispersion); (ii) behavioral indices
with pass—fail criteria—associative-distance ~density, analytic-
verification ratio, and convergence latency—so the theory can
be falsified in practice; (iii) a mathematical treatment of gain policies
(exponential, linear, logistic) with stability constraints and sensitivity
expectations; and (iv) a proof-of-concept blueprint and evaluation
protocol (tasks, metrics, ablations, reproducibility kit) that research
groups can implement.

We situate these contributions along a predictive-to-generative

continuum. Pure prediction extends sequences without internal
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evaluation. Regulated generation introduces external controls (e.g.,
temperature, top-k) but still lacks an inner judge. Reflective generation
uses self-prompted critique yet remains scaffold-dependent. GS-3-
level creativity emerges only when a system (a) cycles autonomously
between idea expansion and evaluative pruning, (b) adjusts its own
sampling entropy in response to real-time reward-prediction error,
and (c) maintains adaptive priors over long contexts.

1.4 Roadmap

Section 2 positions GS-3 within computational-creativity
traditions, LLM-based co-creation, and alternative theories. Section 3
summarizes the DMN/CEN/dopamine template and its limits
(functional analogies, not isomorphisms). Section 4 presents the GS-3
architecture with formal definitions, falsification tests, and gain-policy
mathematics. Section 5 offers a proof-of-concept blueprint and
evaluation protocol (hypotheses, metrics, ablations). Section 6 locates
today’s systems on the continuum and identifies gaps GS-3 fills.
Section 7 expands ethics and governance with concrete mitigation
steps. Section 8 concludes with a Discussion that synthesizes
contributions, states boundary conditions, and outlines future work.
By unifying cognitive theory, network neuroscience, and Al
engineering, we aim to establish Artificial Creativity as a testable
construct and to provide a practical roadmap for building and auditing
genuinely creative generative systems.

2 Computational creativity traditions

Early taxonomies emphasize what counts as creative behavior and
how to evaluate it. Boden’s distinctions between psychological and
historical creativity (P- vs. H-creativity) foreground the mechanisms
of combinational, exploratory, and transformational search (Boden,
2004). Formal accounts characterize creative systems by their
generative space and constraints (Wiggins, 2006), while evaluation
frameworks propose measurable criteria for attributing creativity to
artifacts or systems (Ritchie, 2007; Jordanous, 2012). System
exemplars, such as The Painting Fool, demonstrate end-to-end
pipelines that produce artifacts and internal justifications
(Colton, 2012).

These traditions supply two pillars we retain: (a) creativity requires
both a generator of candidates and a process that evaluates them in
context, and (b) claims should be tied to operational criteria. GS-3
extends this foundation by adding an explicit, adaptive gain
mechanism that regulates the breadth/depth of search online and by
specifying falsifiable behavioral indices (novelty, usefulness, diversity)
together with pass/fail thresholds. In short, GS-3 preserves the
generator—evaluator logic but makes the regulator a first-class
component with its own dynamics.

2.1 LLM creativity and co-creation

Modern LLM pipelines span a pragmatic continuum. Pure
prediction extends sequences using maximum-likelihood training
(Sutskever et al., 2014). Regulated generation introduces external
controls—temperature and top-k/top-p settings shape randomness,
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and beam search maintains several high-probability continuations—
which can prevent degeneracy but do not install an inner judge
(Holtzman et al., 2020). Steering methods alter token probabilities
directly (e.g., plug-and-play controls for attributes without backbone
retraining) (Pascual et al., 2021). Reflective prompting scaffolds brief
internal critique (e.g., chain-of-thought) and retrieval-augmented
generation injects external knowledge to improve coherence and
factuality (Chu et al, 2024; Izacard and Grave, 2021). Self-
improvement/self-correction loops iteratively revise drafts with model
feedback (Kamoi et al., 2024; Ding et al., 2024). Multi-agent set-ups
coordinate multiple LLMs to critique and debate (e.g., generative
agents) (Park et al., 2023).

Empirically, co-creation studies show that LLM support often
increases fluency and speed but can reduce variety without
structured collaboration protocols (Chen and Chan, 2024;
Chakrabarty et al., 2024). At the population scale, assistance can
increase individual originality while decreasing collective diversity,
consistent with homogenization risks (Doshi and Hauser, 2024).
Conceptually oriented analyses debate whether current LLMs meet
creativity criteria and where limits remain (Franceschelli and
Musolesi, 2024; Floridi and Chiriatti, 2020).

GS-3 aligns with these trajectories yet differs on one decisive
point: the evaluator and the regulator are internal, learned, and
adaptive. Rather than relying on hand-tuned temperatures, prompt
engineering, or fixed debate scripts, GS-3 requires a critic that
computes task-conditioned utility and a gain controller that adjusts
sampling entropy based on reward-prediction error. This makes the
exploration—exploitation balance endogenous to the system and
testable via ablations (remove critic or gain; swap update rules; vary
the learning rate).

2.2 Complementary theories and boundary
conditions

Information-theoretic and intrinsic-motivation accounts explain
why systems seek novelty or compressive structure (Schmidhuber,
2010). Evolutionary approaches operationalize open-ended novelty
(Lehman and Stanley, 2011). Predictive-processing and free-energy
views model perception and action as minimizing prediction error or
free energy under learned priors (Clark, 2013; Friston, 2010). These
perspectives illuminate why creative systems might alternate between
broad exploration and tight verification.

GS-3 is compatible with these theories but adds a concrete control
story: a generator produces candidates; a critic scores them relative to
task and context; and a gain controller adjusts entropy and effort in
real time, producing measurable signatures (e.g., shifts in associative-
distance density and verification ratios). Where embodied and
enactive views stress sensorimotor grounding, GS-3 can be seen as the
cognitive-control core that any grounded agent still requires to
manage the breadth and depth of search. Where information-theoretic
approaches prize compression or novelty alone, GS-3 foregrounds
usefulness by design through the critic’s utility function. Finally, where
predictive-processing emphasizes error minimization, GS-3 specifies
when and how the system should temporarily widen its hypothesis
space before re-engaging verification.

Together, these comparisons place GS-3 as a synthesis that
retains the generator-evaluator insight from computational
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creativity, adopts practical controls from contemporary LLM
pipelines, and formalizes the missing adaptive regulator. Subsequent
sections develop the architecture (Section 4), metrics, and gain
policies with falsification tests (Section 4), and outline a proof-of-
concept and evaluation protocol suitable for empirical validation
(Section 5).

3 Neurobiological template

Creativity does not reside in a single cortical locus; it emerges
from interactions among large-scale networks modulated by
neuromodulatory systems. In broad terms, associative expansion is
linked to the default-mode network (DMN), and evaluative control is
associated with the central-executive network (CEN), while
neuromodulators, such as dopamine, bias the system toward
exploration or exploitation by altering integration and segregation
dynamics. This section summarizes key findings and clarifies where
brain-model analogies are functional (useful for design) rather than
literal (biological identity).

3.1 Large-scale network architecture:
DMN-CEN coupling

Resting-state and task-based studies converge on a picture in
which creative performance is associated with flexible interaction
between DMN hubs (e.g., medial prefrontal, posterior cingulate,
temporoparietal regions) and CEN hubs (e.g., dorsolateral prefrontal,
posterior parietal cortex). Using state-transition analyses of fMRI
during divergent thinking, dynamic switching between DMN and
executive-control states predicts higher originality and richer
associative distance, consistent with the idea that creativity benefits
from alternating expansion and evaluation rather than the dominance
of either mode alone (Chen et al., 2025). This dynamic view situates
creativity as a property of network coupling over time, not a static
activation pattern.

3.2 Neuromodulatory gain and the
exploration—exploitation balance

Neuromodulatory accounts propose that large-scale brain
dynamics shift between more integrated and more segregated network
configurations as a function of arousal-linked chemical signals.
Reviews of integration-segregation emphasize that noradrenergic
projections from locus coeruleus and cholinergic projections from
basal forebrain are prominent levers for these state transitions: modest
changes in their tone can reconfigure connectivity, biasing cognition
toward either broad, globally integrated processing or more locally
segregated, task-focused processing (Shine, 2019). In parallel, work on
dopamine and cognitive control links striatal D2 receptor availability
to the subjective cost of exerting control and to cost-benefit decisions
about engaging effortful processing, consistent with a role for
dopamine in setting how deeply and persistently goal-directed search
is pursued (Westbrook et al., 2021).

Together, these strands motivate an operational notion of gain: a
control signal that widens or narrows the currently active hypothesis
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space. In integrated, high-gain states, the system samples more broadly
(facilitating associative expansion); in segregated, low-gain states, it
narrows and stabilizes processing (facilitating focused evaluation).
We treat this as a functional template rather than a one-to-one
biological mapping: multiple neuromodulators contribute to these
shifts (Shine, 2019), and dopamine’s role is context dependent and tied
to effort-related control policies (Westbrook et al., 2021). In the
Generative System 3 framework, the abstract gain controller
corresponds to an endogenous mechanism that adjusts sampling
entropy online (e.g., via temperature), thereby implementing the
exploration—exploitation trade-off that, in brains, is jointly shaped by
neuromodulatory systems.

3.3 Multiscale evidence: genetics,
oscillations, and causal perturbation

Evidence for individual differences in creative cognition appears
across levels of analysis. At the macroscale, large-cohort multimodal
work shows that a neural pattern predicting divergent-thinking
performance carries positive weights in default-mode and
frontoparietal control networks and is linked to dopamine-related
neurotransmitters and genes influencing neurotransmitter release,
indicating a biological substrate for variability in network dynamics
relevant to creativity (Liu et al, 2024). At faster timescales,
electrophysiological reviews report pre-solution modulations in
low-frequency rhythms consistent with inwardly directed attention
(alpha/theta changes) and brief gamma-band bursts localized to right
anterior temporal cortex around the moment of insight—together
aligning with a generate-then-verify sequence (Kounios and Beeman,
2014). Crucially, causal manipulations move beyond correlation:
covert real-time fMRI neurofeedback that reinforces coactivation of
default-mode and executive-control circuitry increases originality on
divergent-thinking tasks relative to control conditions (Luchini et al.,
2025). Collectively, these findings support a cycle in which associative
expansion and focused appraisal are coordinated by state-dependent
control signals, providing a biologically grounded template for the
alternation mechanisms formalized in GS-3.

3.4 Translational lessons for artificial
systems

Three design lessons follow for artificial systems seeking
sustained novelty, usefulness, and diversity. First, at least two
separable but re-entrant processing streams are required: a
generator specialized for associative expansion and a critic
specialized for task-conditioned evaluation. Second, a gain
mechanism must adaptively regulate the breadth of search online;
in practice, this means endogenously adjusting sampling entropy or
effort as a function of a learned utility signal, rather than relying
solely on fixed external controls. Third, the system should exhibit
measurable signatures of alternation between expansion and
verification over time. These lessons translate into testable
predictions for Generative System 3: removing the critic should
collapse usefulness at a fixed diversity level; removing the gain
controller (freezing temperature) should eliminate alternation in
associative-distance density and reduce across-run diversity, with
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within-run spread determined by the static decoding setting rather
than by context; and reinforcing generator—critic coactivation (e.g.,
by rewarding alternation) should increase originality without
sacrificing task relevance.

3.5 Boundary conditions and
non-isomorphism

The DMN-CEN-dopamine template is a functional analogy, not
a biological isomorphism. Biological networks operate with spiking
dynamics, heterogeneous cell types, and complex neurochemical
interactions; artificial networks are discrete symbol or vector
processors trained under engineered objectives. Dopamine’s roles are
multifaceted and context dependent, extending beyond a simple
exploration knob; likewise, temperature in a language model is only
one of several ways to regulate uncertainty. The analogy is therefore
limited to architectural roles and control functions: generator versus
evaluator interactions and an adaptive gain that shifts the exploration-
exploitation balance. Our use of these mappings is pragmatic—
intended to generate falsifiable design claims—rather than a claim of
mechanistic identity.

4 GS-3 architecture: definitions,
dynamics, and falsifiability

This section formalizes Generative System 3 (GS-3) while keeping
implementation choices flexible. It specifies roles and interfaces,
operational metrics, a bounded gain policy tied to a learning signal,
behavioral indices with pass—fail criteria, and ablations. Full task lists,
remain in

hyperparameters, and pseudocode

Supplementary Data Sheet 1.

4.1 Roles and interfaces

The architecture comprises three roles with explicit interfaces.

4.1.1 Generator (G)

Proposes k candidates given a context, with a controllable
sampling entropy (temperature T(g)). Output: a set of candidate
continuations with scores from the base model (e.g., log probabilities).

4.1.2 Critic (C)

Scores each candidate x with a task-conditioned utility Uitask,
(x|task, context) € [0, 1], returning a real-valued score for each
candidate and the index of the winner. The critic may be a rubric-
based classifier or a preference model trained from human feedback;
in the latter case, its design, data provenance, and validation should
follow published guidance on feedback-driven NLG (Fernandes et al.,
2023; Casper et al., 2024).

4.1.3 Gain controller (D)

Adjusts T(g) online as a function of recent reward-prediction
error, using a bounded policy (Section 4.3) and a smoothed baseline
of expected utility to calibrate expectations. Output: the next-step
temperature T(g, new,.
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Minimal message flow per cycle is G —» C — D — G, enabling
alternating expansion and verification. This differs from externally
tuned decoding (e.g., temperature sweeps or beam settings) and from
pipelines that rely only on training-time preference alignment; here,
usefulness is estimated by a learned critic active at inference time
(Fernandes et al., 2023; Casper et al., 2024). Regulated decoding still
matters—temperature/top-p/beam settings mitigate degeneracy
(Holtzman et al., 2020)—but GS-3 requires an endogenous controller
that adapts these levers during generation.

4.2 Operational definitions: novelty,
usefulness, diversity

To permit falsification and fair comparison, we adopt simple,
model-agnostic definitions.

4.2.1 Novelty

Represent an artifact x (e.g., a paragraph) with an embedding e(x)
from a fixed, publicly documented encoder. Relative to a preregistered
baseline corpus, novelty increases as the nearest neighbor to x
becomes more distant in cosine space (the exact nearest-neighbor
formula appears in Supplementary Data Sheet 1).

4.2.2 Usefulness

Uitask, (x) is a task-conditioned score in [0, 1], produced either
by a rubric-based human panel or by a separately validated reward
model trained on task-specific preferences (Fernandes et al., 2023;
Casper et al., 2024). For experiments, preregister rubrics, rater
training, and inter-rater reliability; when using reward models, report
validation against held-out human judgments.

4.2.3 Diversity

For a fixed prompt, report dispersion across independent runs
(mean pairwise embedding distance). Exact formulas and encoder
details are provided in Supplementary Data Sheet 1.

Together, novelty, usefulness, and diversity summarize originality,
appropriateness, and dispersion and should be reported with
confidence intervals.

4.3 Bounded gain policy and learning
signal

Define the reward-prediction error as &= Ugbest, t)— U, where
Ugbest, t) is the critic’s top score at cycle t and U, is an exponentially
weighted moving average of recent best scores (full expression
Data  Sheet 1). The
with a bounded
(t+1) = Tamin) + (Tmax, — T(miny)---o(a + 1-6,), where 6 is the logistic

in  Supplementary controller updates

sampling temperature logistic rule: T(g
function, 1) is a small learning-rate constant, and [T(min), T(max,] are
preregistered bounds. This yields smooth, monotone adjustments and
prevents runaway entropy. Linear and exponential alternatives, stability
notes, and sensitivity sweeps appear in Supplementary Data Sheet 1. The
interpretation is consistent with accounts in which cost-benefit control
policies regulate effort allocation, while remaining an engineering—not
biological—control law (Westbrook et al., 2021).
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Intuitively, each cycle compares the current best score to a
smoothed baseline to obtain a “surprise” signal . If performance is
better than expected (6 > 0), temperature increases smoothly; if worse
(6 <0), it decreases. Logistic squashing keeps T(g) within preregistered
bounds, making adjustments gradual and stable. The intercept « sets
the default temperature when on trend, and the learning rate n
controls how strongly surprises move it.

4.4 Behavioral indices and pass—fail criteria

4.4.1 Associative-distance density (ADD)
Distribution of cosine distances between successive idea units
within a run (e.g., sentences or design sketches). GS-3 prediction:
alternating wide-narrow patterns reflecting expansion-
verification cycling; regulated baselines: unimodal, temperature-

dependent spread.

4.4.2 Analytic-verification ratio (AVR)

Proportion of cycles in which C vetoes G’s top candidate and
requests resampling at a lower T(g). GS-3 prediction: AVR
adapts to task difficulty; regulated baselines: AVR is fixed by
external settings.

4.4.3 Convergence latency (CL)
Cycles to meeting a preregistered success criterion (e.g., rubric

score > 7). GS-3 prediction: CL decreases within a session as U
calibrates; reflective baselines show little within-session change.

4.4.4 Pass—fail criteria

Preregister that a GS-3 system must (a) exceed a temperature-
matched baseline on usefulness at equal novelty (dominance on the
novelty—usefulness frontier), (b) achieve higher across-run diversity
without external temperature sweeps, and (c) exhibit AVR and ADD
signatures consistent with alternating exploration-verification (e.g.,
significant periodicity by spectral analysis). Computation details
appear in Supplementary Data Sheet 1.

4.5 Formal hypotheses and ablation tests

H1 (critic necessity). Removing C (scores replaced by random or
constant) reduces usefulness at matched novelty, collapsing the
novelty-usefulness frontier.

H2 (gain necessity). Freezing T(g) (no D) eliminates ADD
alternation and reduces across-run diversity; usefulness becomes
more sensitive to the initial temperature setting.

H3 (policy sensitivity). Logistic-, linear-, and exponential-gain
policies occupy distinct regions of the novelty-usefulness—
diversity logistic yields the best

space; stability at

comparable usefulness.

H4 (memory horizon). Increasing 5 (longer U memory) improves
long-horizon coherence (e.g., cross-paragraph consistency) but

slows adaptation after regime shifts.
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Each hypothesis is falsifiable by implementing the corresponding
ablation and reporting preregistered metrics with confidence intervals
and effect sizes.

4.6 Design space and non-isomorphism

G and C need not be separate models; they may be two modes of a
single backbone, two cooperating agents, or a backbone plus a lightweight
preference head (as in instruction-following systems informed by human
feedback; Fernandes et al., 2023; Casper et al., 2024). Likewise, D can be a
small network conditioned on context features. Brain terms remain
functional analogies: temperature is one of several levers (others include
top-k/top-p, repetition penalties, and plug-and-play attribute controls)
(Pascual et al., 2021). Retrieval can be added as an optional module to
ground candidates; to avoid confounds, use the same retriever across
GS-3 and RAG baselines (Izacard and Grave, 2021). The contribution
here is to require that some endogenous gain exists, that it is coupled to
alearned utility, and that its process-level signatures are measurable.

4.7 Implementation notes and comparators

For completeness and parity, report the decoding settings
(temperature/top-p/beam) and sampling budgets for all conditions,
including pure prediction (Sutskever et al., 2014) and regulated
decoding baselines (Holtzman et al., 2020). When including reflective
prompting as a comparator, preregister the exact scaffolds (e.g., chain-
of-thought prompts) to ensure fair budgets and to acknowledge that
such reflectivity remains externally scaffolded (Chu et al., 2024). If
plug-and-play steering is used as a comparator, cite its peer-reviewed
formulation and disclose active attribute controls (Pascual et al., 2021).

4.8 Interim summary

GS-3 embeds a learned critic and a bounded, adaptive gain policy
into the generation loop, evaluated with preregistered novelty, usefulness,
and diversity metrics plus cycling signatures. These commitments turn
a functional analogy into a testable engineering target while remaining
agnostic to backbone choice and compatible with standard comparators
such as RAG, plug-and-play steering, and reflective prompting (Izacard
and Grave, 2021; Pascual et al., 2021; Chu et al., 2024).

5 Proof-of-concept blueprint and
evaluation protocol

This section describes how to implement and test a minimal instance
of Generative System 3 (GS-3), specifying tasks, metrics, ablations, and
analysis plans that allow other groups to falsify or support the framework.

5.1 Minimal implementation blueprint

5.1.1 Architecture
Use a single transformer backbone with two heads: a generator
head for next-token prediction and a critic head that outputs a
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task-conditioned utility score U(x|task, context). A lightweight
controller maps recent reward-prediction error é to an updated
sampling temperature T(g) for the next generation step (see Section
4 for definitions and bounds). This single-backbone design enables
shared representations while keeping roles separable for ablations.

5.1.2 Training the critic

Collect paired or graded preferences for task outputs using a
rubric aligned with usefulness (e.g., goal fit, coherence, constraint
satisfaction). Train the critic with supervised regression to predict
human utility or with a preference model trained on pairwise
comparisons, as in established human-feedback pipelines and surveys
of feedback integration (Casper et al., 2024; Fernandes et al., 2023).
Keep evaluation sets disjoint from critic training data.

5.1.3 Controller policy

Implement the bounded logistic gain policy described in Section
4 as the default; include linear and exponential variants in
preregistered sensitivity analyses with clipped § and bounded T(g).
Preregister hyperparameter ranges and stopping rules.

5.14 Baselines

Include three baselines: (a) pure prediction at multiple fixed
temperatures; (b) regulated generation with beam search and
temperature sweeps (Holtzman et al., 2020); and (c) reflective
prompting (e.g., chain-of-thought) without an internal learned critic,
using a recent survey as the canonical reference (Chu et al., 2024).
Optional augmented baselines include retrieval-augmented generation
using a published retrieval-and-generation pipeline (Izacard and
Grave, 2021) and iterative self-refinement (Ding et al., 2024; see also
the self-correction survey, Kamoi et al., 2024).

5.2 Tasks and datasets

5.2.1 Divergent thinking

Adapt the Alternate Uses Test (AUT) to text prompts (e.g.,
“unusual uses for a paperclip”), as used in neuroimaging work on
creative switching, to allow comparison with network findings (Chen
et al., 2025). Score usefulness with a task rubric (plausibility under
physical constraints), and compute novelty and diversity as in Section 4.

5.2.2 Constrained creation

Short-form tasks, such as product names or headlines with explicit
constraints (length, audience, and semantic cues), probe the critic’s
ability to trade novelty for goal fit. Retrieval-augmented variants test
whether GS-3 maintains benefits when external knowledge is available
(Izacard and Grave, 2021).

5.2.3 Long-horizon composition

Multi-paragraph story or concept-expansion tasks assess
maintenance of adaptive priors and coherence over extended contexts.
Include checkpoints for mid-course critique and revision.

5.2.4 Human-Al co-creation

Writer-in-the-loop tasks mirror professional workflows and
enable analysis of fluency-variety trade-offs (Chen and Chan, 2024;
Chakrabarty et al., 2024).
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5.2.5 Population-scale dispersion

To test homogenization risk, elicit many outputs per prompt and
quantify across-run diversity and mode collapse, following concerns
documented at scale (Doshi and Hauser, 2024).

5.3 Metrics, reliability, and statistical
analysis

5.3.1 Primary metrics

Use the operational definitions from Section 4: novelty N
(embedding distance from a baseline corpus), usefulness Uitask,
(rubric or held-out reward model), and diversity D (mean pairwise
distance across runs). within-run

Report novelty and

across-run diversity.

5.3.2 Behavioral signatures

Compute associative-distance density (ADD) within runs,
analytic-verification ratio (AVR; critic veto rate with resampling), and
convergence latency (CL; cycles to reach a preregistered usefulness
threshold). Assess periodicity in ADD to detect expansion-
verification alternation.

5.3.3 Reliability

For human inter-rater reliability (e.g.,

Krippendorff’s alpha) and provide rater training materials. For model-

scoring, report
based utility, validate the reward model against human judgments on
a held-out set.

5.3.4 Statistical plan

Preregister hypotheses, metrics, and analysis. Use hierarchical
models or mixed-effects regressions to account for
prompt and rater as random factors. Report effect sizes
with confidence intervals and correct for multiple comparisons
where applicable. Provide power analyses for planned
contrasts (e.g., GS-3 vs. regulated baseline on usefulness at

matched novelty).

5.4 Ablations and sensitivity

5.4.1 Critic removal (H1)
Replace U with random or constant scores and re-run; predict
collapse of usefulness at matched novelty.

5.4.2 Controller freeze (H2)

Hold T g, constant; predict reduced across-run diversity and loss
of ADD alternation.

5.4.3 Policy comparison (H3)

Swap logistic (default), linear, and exponential policies while
holding other components fixed; predict distinct novelty-
saturations

usefulness—diversity trade-offs and fewer T(g

for logistic.

5.4.4 Memory horizon (H4)
Vary f in the baseline U; predict improved long-horizon
coherence at higher /3 but slower adaptation to shifts.
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5.4.5 Prompt perturbations

Vary prompt structure, length, and constraints to test robustness
of gains. Include retrieval toggles to assess interaction with external
knowledge (Izacard and Grave, 2021).

5.5 Reproducibility kit

Release code, model checkpoints (where licensing permits), exact
prompts, rubrics, and analysis scripts. Fix random seeds; log Tg), 6,
Ubesty, and U at each cycle for every run. Provide an audit sheet
documenting compute budgets, training data used for the critic, and any
human-in-the-loop procedures. For closed models, supply reproducible
API settings and a synthetic variant using an open backbone.

5.6 Risk controls and fairness checks

5.6.1 Homogenization audits

Track across-run diversity as a function of controller policy and
dataset domain; include plural critics trained on diverse preference
data to reduce mode collapse (Doshi and Hauser, 2024).

5.6.2 Bias and equity
Stratify usefulness and novelty by dialect, register, or cultural
domain. If disparities emerge, retrain or reweight critic data and re-test.

5.6.3 Overfitting to graders

When using reward or preference models, separate training,
validation, and evaluation distributions; periodically cross-check with
human ratings to prevent exploitation of grader idiosyncrasies (Casper
et al., 2024; Fernandes et al., 2023).

5.6.4 Safety valves

Bound T(g), clip 6, and cap cumulative entropy increases per
session to prevent runaway exploration, consistent with concerns
about degeneration under unbounded sampling (Holtzman
et al., 2020).

5.7 Decision rule

Declare GS-3 support only if, on preregistered tasks, the system
(a) dominates regulated and reflective baselines on usefulness at
matched novelty, (b) achieves higher across-run diversity without
external temperature sweeps, and (c) exhibits cycling signatures in
ADD and AVR consistent with alternating expansion and
verification. Otherwise, the framework is falsified for that task
setting, and ablations should identify which component failed
to contribute.

6 Positioning current systems on the
predictive — generative continuum

This section locates prominent families of large language model
(LLM) systems on a continuum from fluent prediction to partially
reflective pipelines, and clarifies what each already achieves relative to
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Generative System 3 (GS-3). The emphasis is on the presence or
absence of three ingredients that GS-3 treats as necessary for Artificial
Creativity: (i) a generator capable of associative expansion, (ii) a
learned, task-conditioned critic active during inference, and (iii) an
endogenous gain controller that adaptively regulates sampling entropy
during generation.

6.1 Pure prediction (decoder-only; no
internal evaluation)

Autoregressive models trained for next-token prediction excel at
fluent continuation but have no internal judge or regulator; behavior
is largely governed by external decoding hyperparameters (e.g.,
temperature, top-p) (Sutskever et al., 2014). Regulated decoding can
mitigate repetition or dullness but remains an external knob rather
than an internalized policy (Holtzman et al., 2020). In GS-3 terms, this
family has a generator but lacks an internal critic and lacks an
endogenous gain controller.

6.2 Prompt-scaffolded reflectivity

Prompting can scaffold brief internal critique—e.g., chain-of-
thought styles that elicit intermediate reasoning steps (Chu et al.,
2024). These strategies often improve reliability on structured tasks yet
remain scaffold-dependent: the “critic” is effectively encoded in the
prompt template, not learned as a task-conditioned utility model.
Exploration—exploitation is therefore not endogenously regulated, and
adaptation across steps depends on the fixed script. In GS-3 terms, this
family has a generator; the critic is externalized to prompts rather than
learned and active during inference; there is no endogenous
gain controller.

6.3 Retrieval-augmented generation

Coupling generation to a retriever injects external knowledge and
improves factual grounding on knowledge-intensive tasks (Izacard
and Grave, 2021). Standard retrieval-augmented generation (RAG)
pipelines still lack a learned internal critic that scores candidate
continuations for task utility and a gain policy that adapts search
breadth in real time. Breadth is set by retrieval depth and decoding
parameters rather than updated by a live utility signal. In GS-3 terms,
this family has a generator but lacks an internal critic and an
endogenous gain controller.

6.4 Plug-and-play steering at decoding
time

Decoding-time “plug-and-play” controls can up- or down-weight
attributes (e.g., sentiment, toxicity) on the fly without retraining the
backbone (Pascual et al., 2021). Steering nudges the generator but
does not maintain a persistent, task-conditioned evaluator nor an
endogenous entropy controller tied to performance feedback. In GS-3
terms, this family has a generator but lacks an internal critic and an
endogenous gain controller.
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6.5 Instruction-following with human
feedback

Instruction-tuned models align behavior with human preferences
via feedback pipelines. Surveys and analyses detail data collection,
objectives, and limitations of feedback-integrated NLG (Fernandes et al.,
2023; Casper et al, 2024). These pipelines primarily externalize
evaluation into the training data or reward modeling; at inference, most
systems continue to rely on fixed decoding settings rather than a live
gain policy tied to moment-to-moment utility. In GS-3 terms, this
family has a generator; the critic is effectively baked in via training rather
than active during inference; there is no endogenous gain controller.

6.6 Self-correction and iterative refinement

Test-time self-correction mechanisms iteratively propose, critique,
and revise drafts. A recent survey maps when such loops help or fail
across tasks (Kamoi et al., 2024), and domain-specific controllers
demonstrate gains in code generation with explicit revise-and-retry
cycles (Ding et al., 2024). However, loop structure and revision depth
are typically hand-designed; the exploration-verification balance is
not governed by an internal, learned gain signal that adapts step-to-
step. In GS-3 terms, this family has a generator; the critic is scripted/
self-referential rather than learned and general; there is no endogenous
gain controller.

6.7 Multi-agent orchestration

Agentic set-ups coordinate multiple LLMs (planner/critic/worker
roles), sometimes with memory and tools, to simulate social feedback
dynamics (Park et al., 2023). While this can approximate a multi-
perspective critique, policies are usually scripted; there is no single
controller that adapts sampling entropy from reward-prediction error
within a run. In GS-3 terms, this family has a generator; the critic role
is scripted; there is no endogenous gain controller.

6.8 Human—Al co-creation and workflow
integration

In professional settings, LLM support tends to increase throughput
and fluency; without structured protocols, it can also reduce variety
or drift from constraints (Chen and Chan, 2024; Chakrabarty et al.,
2024). Effective workflows, therefore, need explicit mechanisms to
preserve diversity while maintaining task fit—precisely the trade-off
that GS-3 formalizes via a learned critic and adaptive gain.

6.9 Population-level effects and
homogenization risk

At scale, generative assistance can raise individual originality
while lowering collective diversity, indicating homogenization
pressure when many users draw from similarly tuned models and
prompts (Doshi and Hauser, 2024). GS-3’s evaluation emphasizes not
only artifact-level usefulness and novelty but also across-run
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dispersion, making homogenization an explicit quantity to measure
and manage via the gain policy and plural critics.

6.10 Conceptual status of LLM creativity

Debates continue on whether contemporary LLMs meet criteria
for creativity, where limits remain, and how to evaluate claims
(Franceschelli and Musolesi, 2024). GS-3 is positioned as a control-
theoretic addition: it does not claim that steering, prompting, or
retrieval alone are insufficient, but that creative competence requires
an internalized evaluator and an adaptive regulator with falsifiable
process-level signatures (e.g., alternating associative-distance density
and adaptive verification rates).

6.11 What is still missing (gap analysis)

these three

partially addressed:

Across families, ingredients remain only

1 Alearned, task-conditioned critic active during generation (not
only at training time or via prompts).

2 An adaptive gain controller that smoothly adjusts sampling
entropy from a simple learning signal within the session.

3 Process-level signatures (cycling in associative-distance density;
adaptive verification rates) that make the mechanism auditable.

4 GS-3 contributes exactly these pieces while remaining

with

comparators (Holtzman et al., 2020; Izacard and Grave, 2021;

Pascual et al., 2021; Chu et al., 2024).

architecture-agnostic and compatible standard

6.12 Summary

Current systems achieve parts of the creative loop—fluent
expansion, external steering, retrieval grounding, scripted reflection—
but lack an endogenous, learned mechanism that coordinates
expansion with evaluation under adaptive gain. GS-3 specifies that
mechanism and its signatures, providing clear ablations and pass—fail
criteria for empirical tests in Section 5.

7 Ethics, governance, and responsible
deployment

GS-3 aims to operationalize creative generation while minimizing
societal risk. This section outlines risks, design safeguards, reporting
standards, and governance practices that make GS-3 auditable and
alignable in real use.

7.1 Risk landscape

7.1.1 Bias and preference overfitting

Training or validating critics on narrow rater groups can encode
majority preferences and crowd out minority aesthetics. Surveys and
analyses of feedback-driven NLG document how data collection, rater

Frontiers in Artificial Intelligence

10.3389/frai.2025.1654716

instructions, objective choice, and optimization targets shape model
behavior and can entrench unwanted preferences (Fernandes et al.,
2023; Casper et al., 2024).

7.1.2 Homogenization

At the population level, assistance can raise individual originality
while reducing collective diversity—consistent with convergent styles
and “mode collapse” at scale (Doshi and Hauser, 2024). This risk is
directly relevant to GS-3’s diversity objective.

7.1.3 Scaffold dependence

Prompted self-reflection (e.g., chain-of-thought styles) can improve
reliability on some tasks yet remains externally scaffolded and can fail
outside its design envelope (Chu et al., 2024). GS-3 treats such reflectivity
as a baseline, not a substitute for an internal critic and gain policy.

7.14 Attribution and provenance

Use of external knowledge without source tracking can blur
accountability. Retrieval-augmented generation highlights the need
for explicit provenance trails (Izacard and Grave, 2021).

7.1.5 Manipulation and reward gaming

Systems optimizing proxy rewards may learn to exploit
engagement-like signals rather than usefulness; this motivates
transparent utility functions, plural critics, and caps on entropy
changes per cycle (Casper et al., 2024).

7.2 Design safeguards

7.2.1 Plural critics and counterfactual scoring

Train multiple critics with diverse rater pools and aggregate via
robust methods; monitor divergence to detect preference drift
(Fernandes et al., 2023; Casper et al., 2024).

7.2.2 Telemetry for audit

Log candidate sets, critic scores, temperature trajectory, retrieval
queries and sources, and rationale snippets. Release redacted logs for
external auditing subject to privacy constraints.

7.2.3 Entropy governance

Enforce bounded-logistic gain (Section 4) with rate-limiters on
temperature change per cycle; preregister T(miny, T(max), and
learning-rate bounds.

7.2.4 Attribute controls with disclosure

When using decoding-time steering, employ plug-and-play
controls that nudge attributes without retraining, and disclose active
controls in outputs (Pascual et al., 2021).

7.2.5 Knowledge provenance
For any grounded claim, attach sources returned by the retriever
and prefer evidence-linked output modes (Izacard and Grave, 2021).

7.2.6 Co-creation protocols

In collaborative settings, use structured prompts and rubrics to
preserve variety and constraint adherence (Chen and Chan, 2024;
Chakrabarty et al., 2024).
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7.3 Reporting standards

7.3.1 Preregistration
Publish prompts, success criteria, decoding budgets, and
ablation plans.

7.3.2 Human evaluation

Provide rater training materials and report inter-rater reliability;
define task-conditioned rubrics. If using learned reward models,
document data provenance, validation against held-out human
judgments, and failure analyses (Fernandes et al., 2023; Casper
etal., 2024).

7.3.3 Process-level signatures

Report associative-distance density, analytic-verification ratio,
and convergence latency with confidence intervals, plus spectral/auto-
correlation analyses evidencing cycling.

7.3.4 Release materials

Share code for metrics, ablation toggles, seeds and decoding
settings, and (where possible) a minimal GS-3 implementation to
reproduce tables and figures.

7.4 Governance and oversight

7.4.1 Principle-guided constraints

Where high-stakes governance is required, adopt constitution-
style rule sets derived from public input, and bind the critic’s utility
and admissible entropy range to these principles (Huang et al., 2024).
This layer is complementary to, not a replacement for, GS-3’s
endogenous regulation.

74.2 Independent review

Establish review boards to audit data governance, preference
diversity, impact on stakeholders, and telemetry practices; publish
periodic system cards summarizing risks and mitigations.

7.4.3 User agency and consent
Provide clear affordances to decline data use for feedback, select
preference profiles, and request provenance for retrieved evidence.

7.5 Boundary conditions

GS-3 is a control-theoretic proposal for creative generation, not a
normative theory of cultural value. It does not by itself resolve questions
of authorship or intellectual property; rather, it supplies the mechanisms
and measurements by which such policies can be evaluated.

8 Discussion and open problems

This section synthesizes the argument, states boundary conditions,
and outlines priority experiments that could support or falsify
Generative System 3 (GS-3). Emphasis is on what the framework adds
beyond existing accounts, where it may fail, and how to test it with
published, auditable methods.
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8.1 What GS-3 adds

GS-3 contributes a concrete control story for moving beyond fluent
prediction and scaffolded reflectivity: a generator for associative
expansion, a learned critic for task-conditioned appraisal, and an
endogenous gain controller that adjusts sampling entropy online from a
reward-prediction error. In contrast to externally tuned decoding (e.g.,
temperature sweeps, beam width), the exploration-exploitation balance
becomes a learned, auditable policy with measurable signatures (Sections
4-5). This reorients evaluation from static artifacts to process-level
observables and ablation tests using preregistered metrics and baselines
(Holtzman et al., 2020; Chu et al., 2024; Izacard and Grave, 2021).

8.2 Boundary conditions and limitations

8.2.1 Non-isomorphism

The DMN-CEN-dopamine mapping is a functional analogy, not
a claim of biological identity. Neuromodulators shape integration/
segregation and effort allocation in flexible cognition, but their roles
are contextual and multifaceted (Shine, 2019; Westbrook et al., 2021).
Temperature and related decoding controls are only rough proxies for
gain in artificial systems.

8.2.2 Task domain and priors

Gains from an endogenous controller will depend on task
structure. Problems with tight constraints may benefit more from
strong critics and narrower entropy; open-ended ideation may require
wider entropy and more permissive critics. Long-horizon composition
introduces additional stability—adaptation trade-offs (Section 4).

8.3 Proxy risks and evaluation pitfalls

8.3.1 Preference models

Utility models trained from narrow rater pools can encode
unwanted biases or collapse diversity; the literature on feedback-
integrated NLG documents these risks and recommended safeguards
(Fernandes et al., 2023; Casper et al.,, 2024). Accordingly, GS-3
advocates plural critics, provenance for feedback data, and validation
of reward models against held-out human judgments.

8.3.2 Measurement sensitivity

Novelty measured as embedding distance depends on the encoder
and baseline corpus; conclusions should be cross-checked with human
judgments and alternative encoders. Usefulness scores must report
rater training and reliability; when model-based, they require external
validation (Fernandes et al., 2023; Casper et al., 2024).

8.4 Decoding pathologies and controller
claims

High temperature can increase diversity at the expense of
coherence; low temperature can induce repetition and dullness—well-
characterized failure modes under standard decoding (Holtzman
etal., 2020). GS-3 does not claim these trade-offs disappear, but rather
that an online gain policy can steer them adaptively within a run; this
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remains an empirical question addressed by the pass—fail criteria in
Section 5.

8.5 Priority experiments

Minimal single-backbone implementations should be compared
against regulated and reflective baselines under matched compute,
prompts, and retrieval settings (Holtzman et al., 2020; Chu et al., 2024;
Izacard and Grave, 2021). Divergent-thinking tasks (e.g., alternative
uses), constrained creation (e.g., headlines with requirements), and
long-horizon composition provide complementary stress tests. Writer-
in-the-loop tasks probe fluency-variety trade-offs in professional
workflows (Chen and Chan, 2024; Chakrabarty et al., 2024). At
population scale, audits should test for homogenization (increases in
individual usefulness/originality alongside decreases in collective
diversity) and whether plural critics and gain policies mitigate it
(Doshi and Hauser, 2024). Preregistration should include hypotheses,
ablations (remove critic; freeze gain; swap policies), stopping rules,
and telemetry (candidate sets, critic scores, reward-prediction error,
temperature trajectory) to support external audit.

8.6 Open problems

8.6.1 Multimodal and embodied extensions

Extending the generator—critic-gain loop to vision, audio, and
action raises questions about shared versus modality-specific critics
and controllers, especially for agents that learn from interaction.

8.6.2 Memory and priors

How should the running baseline of expected utility be maintained
across chapters, sessions, or projects without inducing inertia or
overfitting to early successes?

8.6.3 Plural critics and value alignment

Aggregating diverse preference models may preserve diversity
while maintaining task fit, but it complicates optimization and
governance (Fernandes et al., 2023; Casper et al., 2024). What
aggregation rules best handle disagreement without masking
minority values? Can constitution-style, publicly derived
principles provide guardrails without collapsing variety (Huang
et al.,, 2024)?

8.6.4 Interaction with external tools

Retrieval and plug-and-play steering provide complementary
control surfaces; their interaction with an internal gain policy requires
systematic mapping to avoid redundant or destabilizing effects
(Izacard and Grave, 2021; Pascual et al., 2021).

8.7 Summary

GS-3 is a proposal to turn a functional analogy into a testable
engineering target. Its value hinges on rigorous comparisons to strong
baselines, preregistered metrics and ablations, and transparent
reporting. If its predictions fail, that outcome is informative—favoring
alternative accounts such as scaffolded reflectivity or purely external
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regulation. If they succeed, they mark a step toward artificial systems
that manage the tension between novelty, usefulness, and diversity by
learning to regulate their own creative process (Holtzman et al., 2020;
Chu et al., 2024; Izacard and Grave, 2021; Chen and Chan, 2024; Doshi
and Hauser, 2024).
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