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Large language models generate fluent text yet often fail to sustain novelty, task 
relevance, and diversity across extended contexts. We argue this shortfall persists 
because current systems implement only fragments of a tri-process loop that 
supports human creativity: spontaneous ideation in the default-mode network 
(DMN; broadly System 1–like), goal-directed evaluation in the central-executive 
network (CEN; broadly System 2–like), and a metacognitive integrator—System 
3—that, via neuromodulatory gain control, shifts between exploration and focused 
control. We introduce Generative System 3 (GS-3), an architecture-agnostic design 
pattern with three roles: a high-entropy generator, a learned critic, and an adaptive 
gain controller. Beyond “pure prediction” and simple “reflective prompting,” 
GS-3 identifies the missing pieces for Artificial Creativity: an internal evaluator, 
endogenous control over sampling entropy, and adaptive priors maintained across 
extended contexts. This conceptual analysis (i) formalizes novelty, usefulness, and 
diversity with operational definitions; (ii) develops multiple gain-update policies 
(exponential, linear, logistic) with stability constraints and sensitivity expectations; 
(iii) derives falsifiable behavioral indices—associative-distance density, analytic-
verification ratio, and convergence latency—with pass–fail criteria; and (iv) provides 
a proof-of-concept blueprint and evaluation protocol (tasks, metrics, ablations, 
reproducibility kit). We position GS-3 relative to computational-creativity and co-
creative frameworks, and delineate where brain–model analogies are functional 
rather than literal. Ethical guidance addresses bias, cultural homogenization, and 
reward gaming of proxy objectives (often termed “dopamine hacking”) through 
plural critics, transparent logging, and outcome-tied entropy caps. The result 
is a testable roadmap for transitioning from regulated prediction to genuinely 
creative generative systems.
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1 Introduction—from fluent prediction to creative 
control

Large language models (LLMs) now produce remarkably fluent text, yet they often struggle to 
sustain novelty, task relevance, and diversity across extended contexts. We argue this shortfall 
persists because current systems implement only fragments of a tri-process loop that supports 
human creativity: spontaneous ideation in the default-mode network (DMN; broadly aligned with 
System 1), goal-directed evaluation in the central-executive network (CEN; broadly aligned with 
System 2), and a metacognitive integrator—System 3—that, supported by neuromodulatory gain, 

OPEN ACCESS

EDITED BY

Eric Chalmers,  
Mount Royal University, Canada

REVIEWED BY

Predrag K. Nikolic,  
Swinburne University of Technology Sarawak 
Campus, Malaysia
Iván Durango,  
University of Castilla La Mancha, Spain

*CORRESPONDENCE

Juan Carlos Chávez-Autor  
 jcchavez@up.edu.mx; 
 jc@g-8d.com

RECEIVED 01 July 2025
ACCEPTED 29 September 2025
PUBLISHED 15 October 2025

CITATION

​Chávez-Autor JC (2025) Artificial Creativity: 
from predictive AI to Generative System 3.
Front. Artif. Intell. 8:1654716.
doi: 10.3389/frai.2025.1654716

COPYRIGHT

© 2025 Chávez-Autor. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE  Conceptual Analysis
PUBLISHED  15 October 2025
DOI  10.3389/frai.2025.1654716

https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1654716&domain=pdf&date_stamp=2025-10-15
https://www.frontiersin.org/articles/10.3389/frai.2025.1654716/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1654716/full
https://www.frontiersin.org/articles/10.3389/frai.2025.1654716/full
https://orcid.org/0009-0009-3887-7880
mailto:jcchavez@up.edu.mx
mailto:jc@g-8d.com
https://doi.org/10.3389/frai.2025.1654716
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/Artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1654716


Chávez-Autor� 10.3389/frai.2025.1654716

Frontiers in Artificial Intelligence 02 frontiersin.org

shifts the mind between exploration and focused control to achieve 
integrative creative outcomes. In this view, dual-process accounts are 
necessary but not sufficient; System 3 coordinates and regulates how ideas 
are generated and pruned, turning “thoughts of thoughts” into adaptive 
action. The convergence of these mechanisms in machine systems is what 
we call Artificial Creativity.

1.1 The missing link between predictive AI 
and creative cognition

From a neuroscience vantage, creative performance depends on 
flexible DMN–CEN interaction, with dopaminergic signals 
modulating the exploration–exploitation balance (Chen et al., 2025; 
Shine, 2019; Westbrook et al., 2021). By contrast, most LLMs behave 
like DMN-only decoders: excellent at sequence extension, but lacking 
an internal evaluator and endogenous gain control to decide when to 
broaden or narrow the search. Bridging this gap requires importing 
System 3 principles into model design.

1.2 Why a conceptual analysis now?

Evidence on both sides is converging. LLMs can match or exceed 
median human fluency on some divergent-thinking tasks, yet at scale, 
their outputs tend to homogenize, reducing collective diversity (Doshi 
and Hauser, 2024). Human–AI co-creation increases speed and 
fluency but, without structure, can dampen variety or drift from task 
goals (Chen and Chan, 2024; Chakrabarty et al., 2024). Meanwhile, 
covert neurofeedback that strengthens DMN–CEN coupling elevates 
originality in human participants (Luchini et  al., 2025). Together, 
these findings motivate a synthesis that links cognitive theory, neural 
evidence, and generative-model engineering—and states testable 
criteria for when an artificial system merits the label creative. 
Throughout, any brain–model correspondences are treated as 
functional analogies, not biological isomorphisms.

1.3 Contribution and scope

This conceptual analysis does not report new empirical data. 
Instead, it advances a falsifiable framework—Generative System 3 
(GS-3)—and a concrete evaluation program. GS-3 is an architecture-
agnostic design pattern with three roles: a high-entropy generator 
(idea expansion), a learned critic (context-sensitive appraisal), and an 
adaptive gain controller (endogenous regulation of sampling entropy). 
We contribute four elements: (i) operational definitions of novelty 
(distributional distance to a baseline), usefulness (task-conditioned 
utility), and diversity (across-run dispersion); (ii) behavioral indices 
with pass–fail criteria—associative-distance density, analytic-
verification ratio, and convergence latency—so the theory can 
be falsified in practice; (iii) a mathematical treatment of gain policies 
(exponential, linear, logistic) with stability constraints and sensitivity 
expectations; and (iv) a proof-of-concept blueprint and evaluation 
protocol (tasks, metrics, ablations, reproducibility kit) that research 
groups can implement.

We situate these contributions along a predictive-to-generative 
continuum. Pure prediction extends sequences without internal 

evaluation. Regulated generation introduces external controls (e.g., 
temperature, top-k) but still lacks an inner judge. Reflective generation 
uses self-prompted critique yet remains scaffold-dependent. GS-3–
level creativity emerges only when a system (a) cycles autonomously 
between idea expansion and evaluative pruning, (b) adjusts its own 
sampling entropy in response to real-time reward-prediction error, 
and (c) maintains adaptive priors over long contexts.

1.4 Roadmap

Section 2 positions GS-3 within computational-creativity 
traditions, LLM-based co-creation, and alternative theories. Section 3 
summarizes the DMN/CEN/dopamine template and its limits 
(functional analogies, not isomorphisms). Section 4 presents the GS-3 
architecture with formal definitions, falsification tests, and gain-policy 
mathematics. Section 5 offers a proof-of-concept blueprint and 
evaluation protocol (hypotheses, metrics, ablations). Section 6 locates 
today’s systems on the continuum and identifies gaps GS-3 fills. 
Section 7 expands ethics and governance with concrete mitigation 
steps. Section 8 concludes with a Discussion that synthesizes 
contributions, states boundary conditions, and outlines future work. 
By unifying cognitive theory, network neuroscience, and AI 
engineering, we  aim to establish Artificial Creativity as a testable 
construct and to provide a practical roadmap for building and auditing 
genuinely creative generative systems.

2 Computational creativity traditions

Early taxonomies emphasize what counts as creative behavior and 
how to evaluate it. Boden’s distinctions between psychological and 
historical creativity (P- vs. H-creativity) foreground the mechanisms 
of combinational, exploratory, and transformational search (Boden, 
2004). Formal accounts characterize creative systems by their 
generative space and constraints (Wiggins, 2006), while evaluation 
frameworks propose measurable criteria for attributing creativity to 
artifacts or systems (Ritchie, 2007; Jordanous, 2012). System 
exemplars, such as The Painting Fool, demonstrate end-to-end 
pipelines that produce artifacts and internal justifications 
(Colton, 2012).

These traditions supply two pillars we retain: (a) creativity requires 
both a generator of candidates and a process that evaluates them in 
context, and (b) claims should be tied to operational criteria. GS-3 
extends this foundation by adding an explicit, adaptive gain 
mechanism that regulates the breadth/depth of search online and by 
specifying falsifiable behavioral indices (novelty, usefulness, diversity) 
together with pass/fail thresholds. In short, GS-3 preserves the 
generator–evaluator logic but makes the regulator a first-class 
component with its own dynamics.

2.1 LLM creativity and co-creation

Modern LLM pipelines span a pragmatic continuum. Pure 
prediction extends sequences using maximum-likelihood training 
(Sutskever et  al., 2014). Regulated generation introduces external 
controls—temperature and top-k/top-p settings shape randomness, 
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and beam search maintains several high-probability continuations—
which can prevent degeneracy but do not install an inner judge 
(Holtzman et al., 2020). Steering methods alter token probabilities 
directly (e.g., plug-and-play controls for attributes without backbone 
retraining) (Pascual et al., 2021). Reflective prompting scaffolds brief 
internal critique (e.g., chain-of-thought) and retrieval-augmented 
generation injects external knowledge to improve coherence and 
factuality (Chu et  al., 2024; Izacard and Grave, 2021). Self-
improvement/self-correction loops iteratively revise drafts with model 
feedback (Kamoi et al., 2024; Ding et al., 2024). Multi-agent set-ups 
coordinate multiple LLMs to critique and debate (e.g., generative 
agents) (Park et al., 2023).

Empirically, co-creation studies show that LLM support often 
increases fluency and speed but can reduce variety without 
structured collaboration protocols (Chen and Chan, 2024; 
Chakrabarty et al., 2024). At the population scale, assistance can 
increase individual originality while decreasing collective diversity, 
consistent with homogenization risks (Doshi and Hauser, 2024). 
Conceptually oriented analyses debate whether current LLMs meet 
creativity criteria and where limits remain (Franceschelli and 
Musolesi, 2024; Floridi and Chiriatti, 2020).

GS-3 aligns with these trajectories yet differs on one decisive 
point: the evaluator and the regulator are internal, learned, and 
adaptive. Rather than relying on hand-tuned temperatures, prompt 
engineering, or fixed debate scripts, GS-3 requires a critic that 
computes task-conditioned utility and a gain controller that adjusts 
sampling entropy based on reward-prediction error. This makes the 
exploration–exploitation balance endogenous to the system and 
testable via ablations (remove critic or gain; swap update rules; vary 
the learning rate).

2.2 Complementary theories and boundary 
conditions

Information-theoretic and intrinsic-motivation accounts explain 
why systems seek novelty or compressive structure (Schmidhuber, 
2010). Evolutionary approaches operationalize open-ended novelty 
(Lehman and Stanley, 2011). Predictive-processing and free-energy 
views model perception and action as minimizing prediction error or 
free energy under learned priors (Clark, 2013; Friston, 2010). These 
perspectives illuminate why creative systems might alternate between 
broad exploration and tight verification.

GS-3 is compatible with these theories but adds a concrete control 
story: a generator produces candidates; a critic scores them relative to 
task and context; and a gain controller adjusts entropy and effort in 
real time, producing measurable signatures (e.g., shifts in associative-
distance density and verification ratios). Where embodied and 
enactive views stress sensorimotor grounding, GS-3 can be seen as the 
cognitive-control core that any grounded agent still requires to 
manage the breadth and depth of search. Where information-theoretic 
approaches prize compression or novelty alone, GS-3 foregrounds 
usefulness by design through the critic’s utility function. Finally, where 
predictive-processing emphasizes error minimization, GS-3 specifies 
when and how the system should temporarily widen its hypothesis 
space before re-engaging verification.

Together, these comparisons place GS-3 as a synthesis that 
retains the generator–evaluator insight from computational 

creativity, adopts practical controls from contemporary LLM 
pipelines, and formalizes the missing adaptive regulator. Subsequent 
sections develop the architecture (Section 4), metrics, and gain 
policies with falsification tests (Section 4), and outline a proof-of-
concept and evaluation protocol suitable for empirical validation 
(Section 5).

3 Neurobiological template

Creativity does not reside in a single cortical locus; it emerges 
from interactions among large-scale networks modulated by 
neuromodulatory systems. In broad terms, associative expansion is 
linked to the default-mode network (DMN), and evaluative control is 
associated with the central-executive network (CEN), while 
neuromodulators, such as dopamine, bias the system toward 
exploration or exploitation by altering integration and segregation 
dynamics. This section summarizes key findings and clarifies where 
brain–model analogies are functional (useful for design) rather than 
literal (biological identity).

3.1 Large-scale network architecture: 
DMN–CEN coupling

Resting-state and task-based studies converge on a picture in 
which creative performance is associated with flexible interaction 
between DMN hubs (e.g., medial prefrontal, posterior cingulate, 
temporoparietal regions) and CEN hubs (e.g., dorsolateral prefrontal, 
posterior parietal cortex). Using state-transition analyses of fMRI 
during divergent thinking, dynamic switching between DMN and 
executive-control states predicts higher originality and richer 
associative distance, consistent with the idea that creativity benefits 
from alternating expansion and evaluation rather than the dominance 
of either mode alone (Chen et al., 2025). This dynamic view situates 
creativity as a property of network coupling over time, not a static 
activation pattern.

3.2 Neuromodulatory gain and the 
exploration–exploitation balance

Neuromodulatory accounts propose that large-scale brain 
dynamics shift between more integrated and more segregated network 
configurations as a function of arousal-linked chemical signals. 
Reviews of integration–segregation emphasize that noradrenergic 
projections from locus coeruleus and cholinergic projections from 
basal forebrain are prominent levers for these state transitions: modest 
changes in their tone can reconfigure connectivity, biasing cognition 
toward either broad, globally integrated processing or more locally 
segregated, task-focused processing (Shine, 2019). In parallel, work on 
dopamine and cognitive control links striatal D2 receptor availability 
to the subjective cost of exerting control and to cost–benefit decisions 
about engaging effortful processing, consistent with a role for 
dopamine in setting how deeply and persistently goal-directed search 
is pursued (Westbrook et al., 2021).

Together, these strands motivate an operational notion of gain: a 
control signal that widens or narrows the currently active hypothesis 
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space. In integrated, high-gain states, the system samples more broadly 
(facilitating associative expansion); in segregated, low-gain states, it 
narrows and stabilizes processing (facilitating focused evaluation). 
We  treat this as a functional template rather than a one-to-one 
biological mapping: multiple neuromodulators contribute to these 
shifts (Shine, 2019), and dopamine’s role is context dependent and tied 
to effort-related control policies (Westbrook et  al., 2021). In the 
Generative System 3 framework, the abstract gain controller 
corresponds to an endogenous mechanism that adjusts sampling 
entropy online (e.g., via temperature), thereby implementing the 
exploration–exploitation trade-off that, in brains, is jointly shaped by 
neuromodulatory systems.

3.3 Multiscale evidence: genetics, 
oscillations, and causal perturbation

Evidence for individual differences in creative cognition appears 
across levels of analysis. At the macroscale, large-cohort multimodal 
work shows that a neural pattern predicting divergent-thinking 
performance carries positive weights in default-mode and 
frontoparietal control networks and is linked to dopamine-related 
neurotransmitters and genes influencing neurotransmitter release, 
indicating a biological substrate for variability in network dynamics 
relevant to creativity (Liu et  al., 2024). At faster timescales, 
electrophysiological reviews report pre-solution modulations in 
low-frequency rhythms consistent with inwardly directed attention 
(alpha/theta changes) and brief gamma-band bursts localized to right 
anterior temporal cortex around the moment of insight—together 
aligning with a generate-then-verify sequence (Kounios and Beeman, 
2014). Crucially, causal manipulations move beyond correlation: 
covert real-time fMRI neurofeedback that reinforces coactivation of 
default-mode and executive-control circuitry increases originality on 
divergent-thinking tasks relative to control conditions (Luchini et al., 
2025). Collectively, these findings support a cycle in which associative 
expansion and focused appraisal are coordinated by state-dependent 
control signals, providing a biologically grounded template for the 
alternation mechanisms formalized in GS-3.

3.4 Translational lessons for artificial 
systems

Three design lessons follow for artificial systems seeking 
sustained novelty, usefulness, and diversity. First, at least two 
separable but re-entrant processing streams are required: a 
generator specialized for associative expansion and a critic 
specialized for task-conditioned evaluation. Second, a gain 
mechanism must adaptively regulate the breadth of search online; 
in practice, this means endogenously adjusting sampling entropy or 
effort as a function of a learned utility signal, rather than relying 
solely on fixed external controls. Third, the system should exhibit 
measurable signatures of alternation between expansion and 
verification over time. These lessons translate into testable 
predictions for Generative System 3: removing the critic should 
collapse usefulness at a fixed diversity level; removing the gain 
controller (freezing temperature) should eliminate alternation in 
associative-distance density and reduce across-run diversity, with 

within-run spread determined by the static decoding setting rather 
than by context; and reinforcing generator–critic coactivation (e.g., 
by rewarding alternation) should increase originality without 
sacrificing task relevance.

3.5 Boundary conditions and 
non-isomorphism

The DMN–CEN–dopamine template is a functional analogy, not 
a biological isomorphism. Biological networks operate with spiking 
dynamics, heterogeneous cell types, and complex neurochemical 
interactions; artificial networks are discrete symbol or vector 
processors trained under engineered objectives. Dopamine’s roles are 
multifaceted and context dependent, extending beyond a simple 
exploration knob; likewise, temperature in a language model is only 
one of several ways to regulate uncertainty. The analogy is therefore 
limited to architectural roles and control functions: generator versus 
evaluator interactions and an adaptive gain that shifts the exploration–
exploitation balance. Our use of these mappings is pragmatic—
intended to generate falsifiable design claims—rather than a claim of 
mechanistic identity.

4 GS-3 architecture: definitions, 
dynamics, and falsifiability

This section formalizes Generative System 3 (GS-3) while keeping 
implementation choices flexible. It specifies roles and interfaces, 
operational metrics, a bounded gain policy tied to a learning signal, 
behavioral indices with pass–fail criteria, and ablations. Full task lists, 
hyperparameters, and pseudocode remain in 
Supplementary Data Sheet 1.

4.1 Roles and interfaces

The architecture comprises three roles with explicit interfaces.

4.1.1 Generator (G)
Proposes k candidates given a context, with a controllable 

sampling entropy (temperature T₍g₎). Output: a set of candidate 
continuations with scores from the base model (e.g., log probabilities).

4.1.2 Critic (C)
Scores each candidate x with a task-conditioned utility U₍task₎ 

(x|task, context) ∈ [0, 1], returning a real-valued score for each 
candidate and the index of the winner. The critic may be a rubric-
based classifier or a preference model trained from human feedback; 
in the latter case, its design, data provenance, and validation should 
follow published guidance on feedback-driven NLG (Fernandes et al., 
2023; Casper et al., 2024).

4.1.3 Gain controller (D)
Adjusts T₍g₎ online as a function of recent reward-prediction 

error, using a bounded policy (Section 4.3) and a smoothed baseline 
of expected utility to calibrate expectations. Output: the next-step 
temperature T₍g, new₎.
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Minimal message flow per cycle is G → C → D → G, enabling 
alternating expansion and verification. This differs from externally 
tuned decoding (e.g., temperature sweeps or beam settings) and from 
pipelines that rely only on training-time preference alignment; here, 
usefulness is estimated by a learned critic active at inference time 
(Fernandes et al., 2023; Casper et al., 2024). Regulated decoding still 
matters—temperature/top-p/beam settings mitigate degeneracy 
(Holtzman et al., 2020)—but GS-3 requires an endogenous controller 
that adapts these levers during generation.

4.2 Operational definitions: novelty, 
usefulness, diversity

To permit falsification and fair comparison, we  adopt simple, 
model-agnostic definitions.

4.2.1 Novelty
Represent an artifact x (e.g., a paragraph) with an embedding e(x) 

from a fixed, publicly documented encoder. Relative to a preregistered 
baseline corpus, novelty increases as the nearest neighbor to x 
becomes more distant in cosine space (the exact nearest-neighbor 
formula appears in Supplementary Data Sheet 1).

4.2.2 Usefulness
U₍task₎ (x) is a task-conditioned score in [0, 1], produced either 

by a rubric-based human panel or by a separately validated reward 
model trained on task-specific preferences (Fernandes et al., 2023; 
Casper et  al., 2024). For experiments, preregister rubrics, rater 
training, and inter-rater reliability; when using reward models, report 
validation against held-out human judgments.

4.2.3 Diversity
For a fixed prompt, report dispersion across independent runs 

(mean pairwise embedding distance). Exact formulas and encoder 
details are provided in Supplementary Data Sheet 1.

Together, novelty, usefulness, and diversity summarize originality, 
appropriateness, and dispersion and should be  reported with 
confidence intervals.

4.3 Bounded gain policy and learning 
signal

Define the reward-prediction error as δₜ = U₍best, t₎ − Ūₜ, where 
U₍best, t₎ is the critic’s top score at cycle t and Ūₜ is an exponentially 
weighted moving average of recent best scores (full expression 
in Supplementary Data Sheet 1). The controller updates 
sampling temperature with a bounded logistic rule: T₍g₎
(t + 1) = T₍min₎ + (T₍max₎ − T₍min₎)⋯σ(α + η·δₜ), where σ is the logistic 
function, η is a small learning-rate constant, and [T₍min₎, T₍max₎] are 
preregistered bounds. This yields smooth, monotone adjustments and 
prevents runaway entropy. Linear and exponential alternatives, stability 
notes, and sensitivity sweeps appear in Supplementary Data Sheet 1. The 
interpretation is consistent with accounts in which cost–benefit control 
policies regulate effort allocation, while remaining an engineering—not 
biological—control law (Westbrook et al., 2021).

Intuitively, each cycle compares the current best score to a 
smoothed baseline to obtain a “surprise” signal δ. If performance is 
better than expected (δ > 0), temperature increases smoothly; if worse 
(δ < 0), it decreases. Logistic squashing keeps T₍g₎ within preregistered 
bounds, making adjustments gradual and stable. The intercept α sets 
the default temperature when on trend, and the learning rate η 
controls how strongly surprises move it.

4.4 Behavioral indices and pass–fail criteria

4.4.1 Associative-distance density (ADD)
Distribution of cosine distances between successive idea units 

within a run (e.g., sentences or design sketches). GS-3 prediction: 
alternating wide–narrow patterns reflecting expansion–
verification cycling; regulated baselines: unimodal, temperature-
dependent spread.

4.4.2 Analytic-verification ratio (AVR)
Proportion of cycles in which C vetoes G’s top candidate and 

requests resampling at a lower T₍g₎. GS-3 prediction: AVR 
adapts to task difficulty; regulated baselines: AVR is fixed by 
external settings.

4.4.3 Convergence latency (CL)
Cycles to meeting a preregistered success criterion (e.g., rubric 

score ≥ τ). GS-3 prediction: CL decreases within a session as Ū 
calibrates; reflective baselines show little within-session change.

4.4.4 Pass–fail criteria
Preregister that a GS-3 system must (a) exceed a temperature-

matched baseline on usefulness at equal novelty (dominance on the 
novelty–usefulness frontier), (b) achieve higher across-run diversity 
without external temperature sweeps, and (c) exhibit AVR and ADD 
signatures consistent with alternating exploration–verification (e.g., 
significant periodicity by spectral analysis). Computation details 
appear in Supplementary Data Sheet 1.

4.5 Formal hypotheses and ablation tests

H1 (critic necessity). Removing C (scores replaced by random or 
constant) reduces usefulness at matched novelty, collapsing the 
novelty–usefulness frontier.

H2 (gain necessity). Freezing T₍g₎ (no D) eliminates ADD 
alternation and reduces across-run diversity; usefulness becomes 
more sensitive to the initial temperature setting.

H3 (policy sensitivity). Logistic-, linear-, and exponential-gain 
policies occupy distinct regions of the novelty–usefulness–
diversity space; logistic yields the best stability at 
comparable usefulness.

H4 (memory horizon). Increasing β (longer Ū memory) improves 
long-horizon coherence (e.g., cross-paragraph consistency) but 
slows adaptation after regime shifts.
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Each hypothesis is falsifiable by implementing the corresponding 
ablation and reporting preregistered metrics with confidence intervals 
and effect sizes.

4.6 Design space and non-isomorphism

G and C need not be separate models; they may be two modes of a 
single backbone, two cooperating agents, or a backbone plus a lightweight 
preference head (as in instruction-following systems informed by human 
feedback; Fernandes et al., 2023; Casper et al., 2024). Likewise, D can be a 
small network conditioned on context features. Brain terms remain 
functional analogies: temperature is one of several levers (others include 
top-k/top-p, repetition penalties, and plug-and-play attribute controls) 
(Pascual et al., 2021). Retrieval can be added as an optional module to 
ground candidates; to avoid confounds, use the same retriever across 
GS-3 and RAG baselines (Izacard and Grave, 2021). The contribution 
here is to require that some endogenous gain exists, that it is coupled to 
a learned utility, and that its process-level signatures are measurable.

4.7 Implementation notes and comparators

For completeness and parity, report the decoding settings 
(temperature/top-p/beam) and sampling budgets for all conditions, 
including pure prediction (Sutskever et  al., 2014) and regulated 
decoding baselines (Holtzman et al., 2020). When including reflective 
prompting as a comparator, preregister the exact scaffolds (e.g., chain-
of-thought prompts) to ensure fair budgets and to acknowledge that 
such reflectivity remains externally scaffolded (Chu et al., 2024). If 
plug-and-play steering is used as a comparator, cite its peer-reviewed 
formulation and disclose active attribute controls (Pascual et al., 2021).

4.8 Interim summary

GS-3 embeds a learned critic and a bounded, adaptive gain policy 
into the generation loop, evaluated with preregistered novelty, usefulness, 
and diversity metrics plus cycling signatures. These commitments turn 
a functional analogy into a testable engineering target while remaining 
agnostic to backbone choice and compatible with standard comparators 
such as RAG, plug-and-play steering, and reflective prompting (Izacard 
and Grave, 2021; Pascual et al., 2021; Chu et al., 2024).

5 Proof-of-concept blueprint and 
evaluation protocol

This section describes how to implement and test a minimal instance 
of Generative System 3 (GS-3), specifying tasks, metrics, ablations, and 
analysis plans that allow other groups to falsify or support the framework.

5.1 Minimal implementation blueprint

5.1.1 Architecture
Use a single transformer backbone with two heads: a generator 

head for next-token prediction and a critic head that outputs a 

task-conditioned utility score U(x|task, context). A lightweight 
controller maps recent reward-prediction error δ to an updated 
sampling temperature T₍g₎ for the next generation step (see Section 
4 for definitions and bounds). This single-backbone design enables 
shared representations while keeping roles separable for ablations.

5.1.2 Training the critic
Collect paired or graded preferences for task outputs using a 

rubric aligned with usefulness (e.g., goal fit, coherence, constraint 
satisfaction). Train the critic with supervised regression to predict 
human utility or with a preference model trained on pairwise 
comparisons, as in established human-feedback pipelines and surveys 
of feedback integration (Casper et al., 2024; Fernandes et al., 2023). 
Keep evaluation sets disjoint from critic training data.

5.1.3 Controller policy
Implement the bounded logistic gain policy described in Section 

4 as the default; include linear and exponential variants in 
preregistered sensitivity analyses with clipped δ and bounded T₍g₎. 
Preregister hyperparameter ranges and stopping rules.

5.1.4 Baselines
Include three baselines: (a) pure prediction at multiple fixed 

temperatures; (b) regulated generation with beam search and 
temperature sweeps (Holtzman et  al., 2020); and (c) reflective 
prompting (e.g., chain-of-thought) without an internal learned critic, 
using a recent survey as the canonical reference (Chu et al., 2024). 
Optional augmented baselines include retrieval-augmented generation 
using a published retrieval-and-generation pipeline (Izacard and 
Grave, 2021) and iterative self-refinement (Ding et al., 2024; see also 
the self-correction survey, Kamoi et al., 2024).

5.2 Tasks and datasets

5.2.1 Divergent thinking
Adapt the Alternate Uses Test (AUT) to text prompts (e.g., 

“unusual uses for a paperclip”), as used in neuroimaging work on 
creative switching, to allow comparison with network findings (Chen 
et al., 2025). Score usefulness with a task rubric (plausibility under 
physical constraints), and compute novelty and diversity as in Section 4.

5.2.2 Constrained creation
Short-form tasks, such as product names or headlines with explicit 

constraints (length, audience, and semantic cues), probe the critic’s 
ability to trade novelty for goal fit. Retrieval-augmented variants test 
whether GS-3 maintains benefits when external knowledge is available 
(Izacard and Grave, 2021).

5.2.3 Long-horizon composition
Multi-paragraph story or concept-expansion tasks assess 

maintenance of adaptive priors and coherence over extended contexts. 
Include checkpoints for mid-course critique and revision.

5.2.4 Human–AI co-creation
Writer-in-the-loop tasks mirror professional workflows and 

enable analysis of fluency–variety trade-offs (Chen and Chan, 2024; 
Chakrabarty et al., 2024).
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5.2.5 Population-scale dispersion
To test homogenization risk, elicit many outputs per prompt and 

quantify across-run diversity and mode collapse, following concerns 
documented at scale (Doshi and Hauser, 2024).

5.3 Metrics, reliability, and statistical 
analysis

5.3.1 Primary metrics
Use the operational definitions from Section 4: novelty N 

(embedding distance from a baseline corpus), usefulness U₍task₎ 
(rubric or held-out reward model), and diversity D (mean pairwise 
distance across runs). Report within-run novelty and 
across-run diversity.

5.3.2 Behavioral signatures
Compute associative-distance density (ADD) within runs, 

analytic-verification ratio (AVR; critic veto rate with resampling), and 
convergence latency (CL; cycles to reach a preregistered usefulness 
threshold). Assess periodicity in ADD to detect expansion–
verification alternation.

5.3.3 Reliability
For human scoring, report inter-rater reliability (e.g., 

Krippendorff ’s alpha) and provide rater training materials. For model-
based utility, validate the reward model against human judgments on 
a held-out set.

5.3.4 Statistical plan
Preregister hypotheses, metrics, and analysis. Use hierarchical 

models or mixed-effects regressions to account for 
prompt and rater as random factors. Report effect sizes 
with confidence intervals and correct for multiple comparisons 
where applicable. Provide power analyses for planned 
contrasts (e.g., GS-3 vs. regulated baseline on usefulness at 
matched novelty).

5.4 Ablations and sensitivity

5.4.1 Critic removal (H1)
Replace U with random or constant scores and re-run; predict 

collapse of usefulness at matched novelty.

5.4.2 Controller freeze (H2)
Hold T₍g₎ constant; predict reduced across-run diversity and loss 

of ADD alternation.

5.4.3 Policy comparison (H3)
Swap logistic (default), linear, and exponential policies while 

holding other components fixed; predict distinct novelty–
usefulness–diversity trade-offs and fewer T₍g₎ saturations 
for logistic.

5.4.4 Memory horizon (H4)
Vary β in the baseline Ū; predict improved long-horizon 

coherence at higher β but slower adaptation to shifts.

5.4.5 Prompt perturbations
Vary prompt structure, length, and constraints to test robustness 

of gains. Include retrieval toggles to assess interaction with external 
knowledge (Izacard and Grave, 2021).

5.5 Reproducibility kit

Release code, model checkpoints (where licensing permits), exact 
prompts, rubrics, and analysis scripts. Fix random seeds; log T₍g₎, δ, 
U₍best₎, and Ū at each cycle for every run. Provide an audit sheet 
documenting compute budgets, training data used for the critic, and any 
human-in-the-loop procedures. For closed models, supply reproducible 
API settings and a synthetic variant using an open backbone.

5.6 Risk controls and fairness checks

5.6.1 Homogenization audits
Track across-run diversity as a function of controller policy and 

dataset domain; include plural critics trained on diverse preference 
data to reduce mode collapse (Doshi and Hauser, 2024).

5.6.2 Bias and equity
Stratify usefulness and novelty by dialect, register, or cultural 

domain. If disparities emerge, retrain or reweight critic data and re-test.

5.6.3 Overfitting to graders
When using reward or preference models, separate training, 

validation, and evaluation distributions; periodically cross-check with 
human ratings to prevent exploitation of grader idiosyncrasies (Casper 
et al., 2024; Fernandes et al., 2023).

5.6.4 Safety valves
Bound T₍g₎, clip δ, and cap cumulative entropy increases per 

session to prevent runaway exploration, consistent with concerns 
about degeneration under unbounded sampling (Holtzman 
et al., 2020).

5.7 Decision rule

Declare GS-3 support only if, on preregistered tasks, the system 
(a) dominates regulated and reflective baselines on usefulness at 
matched novelty, (b) achieves higher across-run diversity without 
external temperature sweeps, and (c) exhibits cycling signatures in 
ADD and AVR consistent with alternating expansion and 
verification. Otherwise, the framework is falsified for that task 
setting, and ablations should identify which component failed 
to contribute.

6 Positioning current systems on the 
predictive → generative continuum

This section locates prominent families of large language model 
(LLM) systems on a continuum from fluent prediction to partially 
reflective pipelines, and clarifies what each already achieves relative to 
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Generative System 3 (GS-3). The emphasis is on the presence or 
absence of three ingredients that GS-3 treats as necessary for Artificial 
Creativity: (i) a generator capable of associative expansion, (ii) a 
learned, task-conditioned critic active during inference, and (iii) an 
endogenous gain controller that adaptively regulates sampling entropy 
during generation.

6.1 Pure prediction (decoder-only; no 
internal evaluation)

Autoregressive models trained for next-token prediction excel at 
fluent continuation but have no internal judge or regulator; behavior 
is largely governed by external decoding hyperparameters (e.g., 
temperature, top-p) (Sutskever et al., 2014). Regulated decoding can 
mitigate repetition or dullness but remains an external knob rather 
than an internalized policy (Holtzman et al., 2020). In GS-3 terms, this 
family has a generator but lacks an internal critic and lacks an 
endogenous gain controller.

6.2 Prompt-scaffolded reflectivity

Prompting can scaffold brief internal critique—e.g., chain-of-
thought styles that elicit intermediate reasoning steps (Chu et  al., 
2024). These strategies often improve reliability on structured tasks yet 
remain scaffold-dependent: the “critic” is effectively encoded in the 
prompt template, not learned as a task-conditioned utility model. 
Exploration–exploitation is therefore not endogenously regulated, and 
adaptation across steps depends on the fixed script. In GS-3 terms, this 
family has a generator; the critic is externalized to prompts rather than 
learned and active during inference; there is no endogenous 
gain controller.

6.3 Retrieval-augmented generation

Coupling generation to a retriever injects external knowledge and 
improves factual grounding on knowledge-intensive tasks (Izacard 
and Grave, 2021). Standard retrieval-augmented generation (RAG) 
pipelines still lack a learned internal critic that scores candidate 
continuations for task utility and a gain policy that adapts search 
breadth in real time. Breadth is set by retrieval depth and decoding 
parameters rather than updated by a live utility signal. In GS-3 terms, 
this family has a generator but lacks an internal critic and an 
endogenous gain controller.

6.4 Plug-and-play steering at decoding 
time

Decoding-time “plug-and-play” controls can up- or down-weight 
attributes (e.g., sentiment, toxicity) on the fly without retraining the 
backbone (Pascual et al., 2021). Steering nudges the generator but 
does not maintain a persistent, task-conditioned evaluator nor an 
endogenous entropy controller tied to performance feedback. In GS-3 
terms, this family has a generator but lacks an internal critic and an 
endogenous gain controller.

6.5 Instruction-following with human 
feedback

Instruction-tuned models align behavior with human preferences 
via feedback pipelines. Surveys and analyses detail data collection, 
objectives, and limitations of feedback-integrated NLG (Fernandes et al., 
2023; Casper et  al., 2024). These pipelines primarily externalize 
evaluation into the training data or reward modeling; at inference, most 
systems continue to rely on fixed decoding settings rather than a live 
gain policy tied to moment-to-moment utility. In GS-3 terms, this 
family has a generator; the critic is effectively baked in via training rather 
than active during inference; there is no endogenous gain controller.

6.6 Self-correction and iterative refinement

Test-time self-correction mechanisms iteratively propose, critique, 
and revise drafts. A recent survey maps when such loops help or fail 
across tasks (Kamoi et  al., 2024), and domain-specific controllers 
demonstrate gains in code generation with explicit revise-and-retry 
cycles (Ding et al., 2024). However, loop structure and revision depth 
are typically hand-designed; the exploration–verification balance is 
not governed by an internal, learned gain signal that adapts step-to-
step. In GS-3 terms, this family has a generator; the critic is scripted/
self-referential rather than learned and general; there is no endogenous 
gain controller.

6.7 Multi-agent orchestration

Agentic set-ups coordinate multiple LLMs (planner/critic/worker 
roles), sometimes with memory and tools, to simulate social feedback 
dynamics (Park et al., 2023). While this can approximate a multi-
perspective critique, policies are usually scripted; there is no single 
controller that adapts sampling entropy from reward-prediction error 
within a run. In GS-3 terms, this family has a generator; the critic role 
is scripted; there is no endogenous gain controller.

6.8 Human–AI co-creation and workflow 
integration

In professional settings, LLM support tends to increase throughput 
and fluency; without structured protocols, it can also reduce variety 
or drift from constraints (Chen and Chan, 2024; Chakrabarty et al., 
2024). Effective workflows, therefore, need explicit mechanisms to 
preserve diversity while maintaining task fit—precisely the trade-off 
that GS-3 formalizes via a learned critic and adaptive gain.

6.9 Population-level effects and 
homogenization risk

At scale, generative assistance can raise individual originality 
while lowering collective diversity, indicating homogenization 
pressure when many users draw from similarly tuned models and 
prompts (Doshi and Hauser, 2024). GS-3’s evaluation emphasizes not 
only artifact-level usefulness and novelty but also across-run 
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dispersion, making homogenization an explicit quantity to measure 
and manage via the gain policy and plural critics.

6.10 Conceptual status of LLM creativity

Debates continue on whether contemporary LLMs meet criteria 
for creativity, where limits remain, and how to evaluate claims 
(Franceschelli and Musolesi, 2024). GS-3 is positioned as a control-
theoretic addition: it does not claim that steering, prompting, or 
retrieval alone are insufficient, but that creative competence requires 
an internalized evaluator and an adaptive regulator with falsifiable 
process-level signatures (e.g., alternating associative-distance density 
and adaptive verification rates).

6.11 What is still missing (gap analysis)

Across these families, three ingredients remain only 
partially addressed:

	 1	 A learned, task-conditioned critic active during generation (not 
only at training time or via prompts).

	 2	 An adaptive gain controller that smoothly adjusts sampling 
entropy from a simple learning signal within the session.

	 3	 Process-level signatures (cycling in associative-distance density; 
adaptive verification rates) that make the mechanism auditable.

	 4	 GS-3 contributes exactly these pieces while remaining 
architecture-agnostic and compatible with standard 
comparators (Holtzman et al., 2020; Izacard and Grave, 2021; 
Pascual et al., 2021; Chu et al., 2024).

6.12 Summary

Current systems achieve parts of the creative loop—fluent 
expansion, external steering, retrieval grounding, scripted reflection—
but lack an endogenous, learned mechanism that coordinates 
expansion with evaluation under adaptive gain. GS-3 specifies that 
mechanism and its signatures, providing clear ablations and pass–fail 
criteria for empirical tests in Section 5.

7 Ethics, governance, and responsible 
deployment

GS-3 aims to operationalize creative generation while minimizing 
societal risk. This section outlines risks, design safeguards, reporting 
standards, and governance practices that make GS-3 auditable and 
alignable in real use.

7.1 Risk landscape

7.1.1 Bias and preference overfitting
Training or validating critics on narrow rater groups can encode 

majority preferences and crowd out minority aesthetics. Surveys and 
analyses of feedback-driven NLG document how data collection, rater 

instructions, objective choice, and optimization targets shape model 
behavior and can entrench unwanted preferences (Fernandes et al., 
2023; Casper et al., 2024).

7.1.2 Homogenization
At the population level, assistance can raise individual originality 

while reducing collective diversity—consistent with convergent styles 
and “mode collapse” at scale (Doshi and Hauser, 2024). This risk is 
directly relevant to GS-3’s diversity objective.

7.1.3 Scaffold dependence
Prompted self-reflection (e.g., chain-of-thought styles) can improve 

reliability on some tasks yet remains externally scaffolded and can fail 
outside its design envelope (Chu et al., 2024). GS-3 treats such reflectivity 
as a baseline, not a substitute for an internal critic and gain policy.

7.1.4 Attribution and provenance
Use of external knowledge without source tracking can blur 

accountability. Retrieval-augmented generation highlights the need 
for explicit provenance trails (Izacard and Grave, 2021).

7.1.5 Manipulation and reward gaming
Systems optimizing proxy rewards may learn to exploit 

engagement-like signals rather than usefulness; this motivates 
transparent utility functions, plural critics, and caps on entropy 
changes per cycle (Casper et al., 2024).

7.2 Design safeguards

7.2.1 Plural critics and counterfactual scoring
Train multiple critics with diverse rater pools and aggregate via 

robust methods; monitor divergence to detect preference drift 
(Fernandes et al., 2023; Casper et al., 2024).

7.2.2 Telemetry for audit
Log candidate sets, critic scores, temperature trajectory, retrieval 

queries and sources, and rationale snippets. Release redacted logs for 
external auditing subject to privacy constraints.

7.2.3 Entropy governance
Enforce bounded-logistic gain (Section 4) with rate-limiters on 

temperature change per cycle; preregister T₍min₎, T₍max₎, and 
learning-rate bounds.

7.2.4 Attribute controls with disclosure
When using decoding-time steering, employ plug-and-play 

controls that nudge attributes without retraining, and disclose active 
controls in outputs (Pascual et al., 2021).

7.2.5 Knowledge provenance
For any grounded claim, attach sources returned by the retriever 

and prefer evidence-linked output modes (Izacard and Grave, 2021).

7.2.6 Co-creation protocols
In collaborative settings, use structured prompts and rubrics to 

preserve variety and constraint adherence (Chen and Chan, 2024; 
Chakrabarty et al., 2024).
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7.3 Reporting standards

7.3.1 Preregistration
Publish prompts, success criteria, decoding budgets, and 

ablation plans.

7.3.2 Human evaluation
Provide rater training materials and report inter-rater reliability; 

define task-conditioned rubrics. If using learned reward models, 
document data provenance, validation against held-out human 
judgments, and failure analyses (Fernandes et  al., 2023; Casper 
et al., 2024).

7.3.3 Process-level signatures
Report associative-distance density, analytic-verification ratio, 

and convergence latency with confidence intervals, plus spectral/auto-
correlation analyses evidencing cycling.

7.3.4 Release materials
Share code for metrics, ablation toggles, seeds and decoding 

settings, and (where possible) a minimal GS-3 implementation to 
reproduce tables and figures.

7.4 Governance and oversight

7.4.1 Principle-guided constraints
Where high-stakes governance is required, adopt constitution-

style rule sets derived from public input, and bind the critic’s utility 
and admissible entropy range to these principles (Huang et al., 2024). 
This layer is complementary to, not a replacement for, GS-3’s 
endogenous regulation.

7.4.2 Independent review
Establish review boards to audit data governance, preference 

diversity, impact on stakeholders, and telemetry practices; publish 
periodic system cards summarizing risks and mitigations.

7.4.3 User agency and consent
Provide clear affordances to decline data use for feedback, select 

preference profiles, and request provenance for retrieved evidence.

7.5 Boundary conditions

GS-3 is a control-theoretic proposal for creative generation, not a 
normative theory of cultural value. It does not by itself resolve questions 
of authorship or intellectual property; rather, it supplies the mechanisms 
and measurements by which such policies can be evaluated.

8 Discussion and open problems

This section synthesizes the argument, states boundary conditions, 
and outlines priority experiments that could support or falsify 
Generative System 3 (GS-3). Emphasis is on what the framework adds 
beyond existing accounts, where it may fail, and how to test it with 
published, auditable methods.

8.1 What GS-3 adds

GS-3 contributes a concrete control story for moving beyond fluent 
prediction and scaffolded reflectivity: a generator for associative 
expansion, a learned critic for task-conditioned appraisal, and an 
endogenous gain controller that adjusts sampling entropy online from a 
reward-prediction error. In contrast to externally tuned decoding (e.g., 
temperature sweeps, beam width), the exploration–exploitation balance 
becomes a learned, auditable policy with measurable signatures (Sections 
4–5). This reorients evaluation from static artifacts to process-level 
observables and ablation tests using preregistered metrics and baselines 
(Holtzman et al., 2020; Chu et al., 2024; Izacard and Grave, 2021).

8.2 Boundary conditions and limitations

8.2.1 Non-isomorphism
The DMN–CEN–dopamine mapping is a functional analogy, not 

a claim of biological identity. Neuromodulators shape integration/
segregation and effort allocation in flexible cognition, but their roles 
are contextual and multifaceted (Shine, 2019; Westbrook et al., 2021). 
Temperature and related decoding controls are only rough proxies for 
gain in artificial systems.

8.2.2 Task domain and priors
Gains from an endogenous controller will depend on task 

structure. Problems with tight constraints may benefit more from 
strong critics and narrower entropy; open-ended ideation may require 
wider entropy and more permissive critics. Long-horizon composition 
introduces additional stability–adaptation trade-offs (Section 4).

8.3 Proxy risks and evaluation pitfalls

8.3.1 Preference models
Utility models trained from narrow rater pools can encode 

unwanted biases or collapse diversity; the literature on feedback-
integrated NLG documents these risks and recommended safeguards 
(Fernandes et  al., 2023; Casper et  al., 2024). Accordingly, GS-3 
advocates plural critics, provenance for feedback data, and validation 
of reward models against held-out human judgments.

8.3.2 Measurement sensitivity
Novelty measured as embedding distance depends on the encoder 

and baseline corpus; conclusions should be cross-checked with human 
judgments and alternative encoders. Usefulness scores must report 
rater training and reliability; when model-based, they require external 
validation (Fernandes et al., 2023; Casper et al., 2024).

8.4 Decoding pathologies and controller 
claims

High temperature can increase diversity at the expense of 
coherence; low temperature can induce repetition and dullness—well-
characterized failure modes under standard decoding (Holtzman 
et al., 2020). GS-3 does not claim these trade-offs disappear, but rather 
that an online gain policy can steer them adaptively within a run; this 
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remains an empirical question addressed by the pass–fail criteria in 
Section 5.

8.5 Priority experiments

Minimal single-backbone implementations should be compared 
against regulated and reflective baselines under matched compute, 
prompts, and retrieval settings (Holtzman et al., 2020; Chu et al., 2024; 
Izacard and Grave, 2021). Divergent-thinking tasks (e.g., alternative 
uses), constrained creation (e.g., headlines with requirements), and 
long-horizon composition provide complementary stress tests. Writer-
in-the-loop tasks probe fluency–variety trade-offs in professional 
workflows (Chen and Chan, 2024; Chakrabarty et  al., 2024). At 
population scale, audits should test for homogenization (increases in 
individual usefulness/originality alongside decreases in collective 
diversity) and whether plural critics and gain policies mitigate it 
(Doshi and Hauser, 2024). Preregistration should include hypotheses, 
ablations (remove critic; freeze gain; swap policies), stopping rules, 
and telemetry (candidate sets, critic scores, reward-prediction error, 
temperature trajectory) to support external audit.

8.6 Open problems

8.6.1 Multimodal and embodied extensions
Extending the generator–critic–gain loop to vision, audio, and 

action raises questions about shared versus modality-specific critics 
and controllers, especially for agents that learn from interaction.

8.6.2 Memory and priors
How should the running baseline of expected utility be maintained 

across chapters, sessions, or projects without inducing inertia or 
overfitting to early successes?

8.6.3 Plural critics and value alignment
Aggregating diverse preference models may preserve diversity 

while maintaining task fit, but it complicates optimization and 
governance (Fernandes et  al., 2023; Casper et  al., 2024). What 
aggregation rules best handle disagreement without masking 
minority values? Can constitution-style, publicly derived 
principles provide guardrails without collapsing variety (Huang 
et al., 2024)?

8.6.4 Interaction with external tools
Retrieval and plug-and-play steering provide complementary 

control surfaces; their interaction with an internal gain policy requires 
systematic mapping to avoid redundant or destabilizing effects 
(Izacard and Grave, 2021; Pascual et al., 2021).

8.7 Summary

GS-3 is a proposal to turn a functional analogy into a testable 
engineering target. Its value hinges on rigorous comparisons to strong 
baselines, preregistered metrics and ablations, and transparent 
reporting. If its predictions fail, that outcome is informative—favoring 
alternative accounts such as scaffolded reflectivity or purely external 

regulation. If they succeed, they mark a step toward artificial systems 
that manage the tension between novelty, usefulness, and diversity by 
learning to regulate their own creative process (Holtzman et al., 2020; 
Chu et al., 2024; Izacard and Grave, 2021; Chen and Chan, 2024; Doshi 
and Hauser, 2024).
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