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Prompt engineering for accurate
statistical reasoning with large
language models in medical
research

Sifiso Vilakati*

Department of Biostatistics, University of the Free State, Bloemfontein, South Africa

Background: The integration of generative artificial intelligence (AI), particularly
large language models (LLMs), into medical statistics o�ers transformative
potential. However, it also introduces risks of erroneous responses, especially
in tasks requiring statistical rigor.
Objective: To evaluate the e�ectiveness of various prompt engineering
strategies in guiding LLMs toward accurate and interpretable statistical reasoning
in biomedical research.
Methods: Four prompting strategies: zero-shot, explicit instruction, chain-
of-thought, and hybrid were assessed using artificial datasets involving
descriptive and inferential statistical tasks. Outputs from GPT-4.1 and Claude
3.7 Sonnet were evaluated using Microsoft Copilot as an LLM-as-a-judge, with
human oversight.
Results: Zero-shot prompting was su�cient for basic descriptive tasks but
failed in inferential contexts due to lack of assumption checking. Hybrid
prompting, which combines explicit instructions, reasoning sca�olds, and format
constraints, consistently produced the most accurate and interpretable results.
Evaluation scores across four criteria–assumption checking, test selection,
output completeness, and interpretive quality confirmed the superiority of
structured prompts.
Conclusion: Prompt design is a critical determinant of output quality in AI-
assisted statistical analysis. Hybrid prompting strategies should be adopted
as best practice in medical research to ensure methodological rigor and
reproducibility. Additional testing with newermodels, including Claude 4 Sonnet,
Claude 4 Opus, o3 mini, and o4 mini, confirmed the consistency of results,
supporting the generalizability of findings across both Anthropic and OpenAI
model families. This study highlights prompt engineering as a core competency
in AI-assisted medical research and calls for the development of standardized
prompt templates, evaluation rubrics, and further studies across diverse statistical
domains to support robust and reproducible scientific inquiry.
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1 Introduction

The rapid evolution of generative artificial intelligence (AI) has ushered in a new era

for scientific research and knowledge production. From the early days of rule-based natural

language processing to the advent of large language models (LLMs) such as OpenAI’s

GPT series, generative AI has demonstrated remarkable capabilities in understanding,
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generating, and analyzing human language. These models, trained

on vast amount of data, can now summarize complex literature, and

even generate code for statistical analysis, tasks that once required

years of specialized training (He et al., 2025; Akhtar, 2024).

The history of generative AI is marked by exponential

progress. Early systems relied on hand-crafted rules and

limited datasets, producing outputs that were often rigid and

contextually shallow (Schmidhuber, 2015; Norvig and Stuart,

2021). The introduction of neural networks and, later, transformer

architectures revolutionized the field, enabling models to capture

nuanced relationships in language and context (Munro, 1984).

Today’s LLMs, with billions of parameters and access to diverse

knowledge domains, are increasingly being integrated into the

workflows of medical researchers, clinicians, and statisticians

(Singhal et al., 2023; Jiang et al., 2017).

Yet, as generative AI becomes more deeply embedded in the

fabric of medical research (Singhal et al., 2023), it is essential

to reflect on the longstanding challenges that have shaped the

field, and chief among them is the misuse of statistics. The

integrity of medical science depends on the correct application and

interpretation of statistical methods. However, a substantial body

of evidence has shown that statistical errors are both common and

consequential in the biomedical literature.

A series of landmark investigations have illuminated the scope

and persistence of statistical misapplication in biomedical research.

In 1994, Douglas Altman’s influential editorial in the BMJ exposed

the widespread prevalence of basic statistical errors in published

studies, even in leading journals, and underscored the urgent need

for better statistical education and more rigorous peer review

(Altman, 1994). A decade later, John Ioannidis’s seminal paper

in PLOS Medicine fundamentally challenged the credibility of

the biomedical literature, demonstrating that a confluence of

factors such as small sample sizes, selective reporting, flexible

study designs, and, crucially, statistical misapplication rendersmost

published research findings likely to be false (Ioannidis, 2005).

More recent systematic reviews have confirmed that issues like p-

hacking, selective reporting, and the misuse of p-values remain

stubbornly prevalent in scientific literature (Nuijten et al., 2016;

Chavalarias et al., 2016; Strasak et al., 2007).

As generative AI becomes an important tool in medical

research, there is a genuine risk that these longstanding issues may

not only persist but be amplified. The automation of statistical

analysis and interpretation by AI models, if guided by poorly

constructed prompts or used by individuals lacking statistical

expertise, could lead to the rapid and widespread dissemination of

erroneous results. AI-generated outputs, often presented with an air

of authority and fluency, may make it even more difficult to detect

subtle errors or misinterpretations. In this context, the responsible

design and use of prompts, prompt engineering, emerges as a

critical safeguard.

This paper critically examines the intersection of prompt

engineering, generative AI, and medical statistics, with a focus

on minimizing the risk of erroneous outputs that may exacerbate

the longstanding issue of statistical misuse in biomedical research.

By situating this discussion within the well-documented history

of statistical errors, the paper underscores the importance of

understanding and applying prompt engineering to guide AI

models toward accurate and reliable results. Particular attention is

given to the challenge of preventing AI-generated hallucinations

and ensuring that outputs support, rather than undermine, sound

statistical practice. To address these concerns, this study provides

practical suggestions and general guidelines for avoiding erroneous

responses when conducting basic statistical analyses and statistical

inference using generative AI. In doing so, the paper aims to

equip researchers with strategies that promote the responsible and

effective integration of AI into medical research, safeguarding the

integrity of scientific discovery. To the best of our knowledge,

no prior study has systematically examined the role of prompt

engineering in mitigating statistical errors within the context

of generative AI applications in medical research. Given the

increasing reliance on AI for statistical analysis, this oversight

represents a critical gap in the literature. This paper seeks to bridge

that gap by offering a structured evaluation of prompting strategies

and their implications for statistical validity and interpretability.

2 Materials and methods

2.1 Prompt engineering

As generative AI systems become increasingly sophisticated,

the art and science of “prompt engineering” has emerged as

a central discipline for harnessing their capabilities. Prompt

engineering refers to the deliberate design and formulation of

input queries, prompts, to guide LLMs toward producing accurate,

relevant, and contextually appropriate outputs (Liu et al., 2023).

In essence, prompt engineering is the interface between human

intent and machine intelligence, shaping how AI interprets and

responds to complex tasks. A well-crafted prompt is more than

a simple question; it is a structured communication that encodes

the user’s objectives, constraints, and expectations. The quality of

a prompt can dramatically influence the reliability and utility of

AI-generated responses, particularly in high-stakes domains such

as medical statistics. As such, prompt engineering is not merely

a technical exercise, but a critical component of responsible AI

deployment (Brown et al., 2020; Reynolds and McDonell, 2021).

2.2 Guidelines and structure for e�ective
prompts

The literature on prompt engineering has converged on

several key guidelines for constructing effective prompts. Clarity

is paramount: prompts should be unambiguous, specific, and free

from unnecessary complexity. Contextual information such as the

desired format of the output, relevant background, or explicit

instructions should be included to minimize misinterpretation.

Additionally, prompts should anticipate potential sources of

confusion, such as ambiguous terminology or multiple possible

interpretations, and address them directly (Zhou K. et al., 2022).

Structurally, effective prompts often include:

• A clear statement of the task or question.

• Any necessary context or background information.
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• Explicit instructions regarding the format or style of the

output.

• Stepwise guidance for multi-part or complex tasks.

These elements help ensure that the model’s output aligns with

the user’s expectations and the requirements of the task at hand.

2.3 Approaches to prompt engineering

Prompt engineering encompasses a spectrum of strategies, each

with distinct strengths and limitations. The choice of approach

depends on the complexity of the task, the desired level of control,

and the context in which the AI is deployed. Understanding these

methods is essential for leveraging generative AI effectively in

medical statistics.

2.3.1 Zero-shot prompting
Zero-shot prompting is a foundational approach for

interacting with LLMs, where the model is given a single,

direct instruction without any examples. For instance, a prompt

might read, “Summarize the results of this clinical trial.”

In this setting, the model relies entirely on its pre-trained

knowledge and generalization abilities to interpret and respond

to the task (Kojima et al., 2022; Brown et al., 2020; Wei et al.,

2022a).

The primary advantage of zero-shot prompting is its simplicity

and efficiency. It requires minimal effort from the user and

can be effective for well-defined, common tasks. However, its

major limitation is unpredictability: without examples or additional

context, the model may misinterpret the intent or produce outputs

that lack the necessary specificity or rigor, especially in specialized

domains like medical statistics (Brown et al., 2020; Wei et al.,

2022a).

2.3.2 Few-shot prompting
Few-shot prompting extends the zero-shot approach by

supplying the model with a small number of examples that

demonstrate the desired input-output relationship. For instance,

a prompt might present two or three sample statistical analyses,

each paired with its corresponding summary or interpretation,

followed by a new case for the model to address in the same

manner. By explicitly showing the model how to perform the

task, few-shot prompting helps guide its responses toward the

expected format and content (Brown et al., 2020; Wei et al.,

2022a).

This method offers greater control over the model’s output

and can substantially enhance both the relevance and accuracy

of responses, particularly for tasks that are less common or more

complex. The inclusion of well-chosen examples allows the model

to better understand the nuances of the task and adapt its output

accordingly. However, the effectiveness of few-shot prompting

depends heavily on the quality and representativeness of the

examples provided. If the examples are ambiguous or not closely

aligned with the intended task, the model’s performancemay suffer.

Additionally, this approach may not scale efficiently to tasks with

high variability, as it becomes challenging to provide examples that

cover all possible scenarios (Brown et al., 2020; Wei et al., 2022a).

2.3.3 Explicit, instruction-based prompting
Explicit, instruction-based prompting takes a more structured

approach by providing the model with clear, detailed, and stepwise

instructions. This method not only specifies the task but also

outlines the sequence of actions and any necessary checks or

conditions. For example, a prompt might state:

“First, check whether the data meet the assumptions for

a t-test (normality and equal variances). If the assumptions

are met, perform the t-test. If not, select and perform an

appropriate alternative test. Report the results, including the

test statistic, degrees of freedom, and p-value.”

By breaking down the workflow into explicit steps, this

approach reduces ambiguity and guides the model through

complex analytical processes. It helps ensure that critical steps

such as verifying statistical assumptions are not overlooked, which

is particularly important in medical and health research where

methodological rigor is essential.

The primary advantage of explicit, instruction-based

prompting is its ability to minimize errors of omission and

misinterpretation. By clearly delineating each step, the model is

less likely to skip important procedures or misapply statistical

methods. However, this approach does require the user to have

a solid understanding of the statistical process, as the quality

and completeness of the instructions directly influence the

reliability of the model’s output (Ouyang et al., 2022; Naveed

et al., 2023). This method is especially valuable in domains

where precision and adherence to methodological standards

are critical, supporting more reliable and transparent statistical

analysis.

2.3.4 Chain-of-thought prompting
Chain-of-thought (CoT) prompting is a technique that

encourages the model to articulate its reasoning process step

by step, making each intermediate stage of analysis explicit. For

example, a prompt might instruct:

“Explain your reasoning step by step before giving the final

answer.”

This approach is particularly effective for complex analytical

tasks, as it reveals the model’s logic and allows users to trace the

sequence of decisions or calculations that lead to the final output

(Wei et al., 2022b; Kojima et al., 2022). By surfacing the model’s

reasoning, CoT prompting can help identify errors or gaps in logic,

supporting more robust and transparent analyses.

The primary advantage of chain-of-thought prompting is

the increased transparency and reliability it brings to multi-step

problems. Users can review each stage of the model’s reasoning,

making it easier to spot mistakes or misunderstandings. However,

this method can result in verbose outputs and does not guarantee
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that every reasoning step is correct; the model may still make errors

in logic or interpretation.

2.3.5 Format-constrained prompting
Format-constrained prompting directs the model to present its

output in a specific structure, such as a table, list, or code block. For

instance, a prompt might state:

“Present the results in a table with headings: test statistic,

df, p-value.”

This approach is especially valuable in medical statistics, where

standardized reporting is essential for clarity and reproducibility.

By specifying the desired format, format-constrained prompting

minimizes the risk of unstructured or incomplete outputs and helps

ensure that all relevant information is included. Nevertheless, the

effectiveness of this method still depends on the model’s underlying

knowledge and its ability to follow formatting instructions (Ouyang

et al., 2022; Naveed et al., 2023).

We summarize the different prompting approaches in Table 1.

2.4 Variants and hybrids in prompt
engineering

As the field of prompt engineering has matured, practitioners

have developed a range of variants and hybrid strategies that

blend the strengths of multiple approaches (Giray, 2023). These

innovations are particularly relevant in medical statistics, where

both methodological rigor and clarity of communication are

paramount (Wang and Zhang, 2024).

One important variant is zero-shot chain-of-thought

prompting. Here, the user asks the model to “think step by

step” even without providing examples. This simple instruction

can significantly improve the model’s reasoning, especially for

complex statistical tasks. Another variant is zero-shot with context,

where the prompt includes relevant background information or

definitions to anchor the model’s response more effectively (Kojima

et al., 2022).

Few-shot prompting has also evolved. In contextual calibration,

the examples provided are carefully selected to match the difficulty

or style of the target task, ensuring the model’s output is both

relevant and accurate. Dynamic few-shot prompting adapts the set

of examples in real time based on the model’s previous outputs,

allowing for a more responsive and tailored interaction (Zhang

et al., 2025; Kojima et al., 2022).

Chain-of-thought prompting can be combined with few-

shot learning to create few-shot chain-of-thought prompts. In

this approach, the model is shown several examples of stepwise

reasoning, which helps it internalize the logic and structure

required for complex analyses. Format-constrained prompting can

also be hybridized. For instance, a prompt might combine explicit

instructions, a required output format (such as a table), and a

few illustrative examples. This multi-layered approach maximizes

clarity and minimizes the risk of misinterpretation (Wang and

Zhou, 2024).

2.5 Limitations of prompt engineering

While the evolution of prompt engineering has introduced

powerful variants and hybrid strategies, several limitations remain

that constrain its broader applicability and reliability. These

limitations are particularly salient in domains likemedical statistics,

where precision, reproducibility, and interpretability are essential

(Lu et al., 2021).

One key limitation is the lack of generalizability. Prompts

that perform well in one context may fail in another, especially

when transferred across models or domains. This brittleness is

compounded by the sensitivity of LLMs to minor changes in

phrasing, formatting, or context (Bommasani et al., 2021).

Prompt engineering also relies heavily on trial-and-error.

Designing effective prompts often requires iterative tuning, domain

expertise, and manual curation of examples. This process can

be time-consuming and may not scale efficiently for complex or

evolving tasks (Liu et al., 2023).

Another challenge is the opacity of model behavior. Even

with carefully crafted prompts, the internal reasoning of the

model remains largely inaccessible, making it difficult to diagnose

errors or ensure consistency. This lack of transparency can be

problematic in high-stakes applications where interpretability is

critical (Bommasani et al., 2021).

Moreover, prompt-based methods are susceptible to bias

and hallucination. Without external grounding or verification,

models may generate plausible-sounding but incorrect or biased

outputs, especially when prompts are ambiguous or under-specified

(Ouyang et al., 2022; Ji et al., 2023).

Finally, while hybrid strategies offer improved performance,

they often require more complex prompt structures and greater

user effort. This can introduce new sources of error and reduce

usability, particularly for non-expert users (Wei et al., 2022b; Zhou

D. et al., 2022).

2.6 Commonly used statistics in medical
research

Descriptive and inferential statistics form the backbone of

quantitative analysis in medical and health research. At the

most fundamental level, descriptive statistics are employed to

summarize and characterize data. Measures such as the mean,

median, and mode are routinely used to describe central tendency,

while standard deviation, interquartile range, and variance provide

insight into data dispersion (Altman, 1990). However, the choice of

summary statistic must be guided by the underlying distribution of

the data. For instance, while the mean is a widely reported measure,

it can be misleading in the presence of skewed distributions or

outliers, where the median often provides a more robust summary

(Hoaglin et al., 2000). Similarly, graphical representations such

as histograms and boxplots are essential for visualizing data

distributions and identifying anomalies.

Beyond description, inferential statistics enable researchers

to draw conclusions about populations based on sample data.

Commonly used inferential methods include hypothesis testing,

confidence intervals, and regression analysis. The t-test and analysis
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TABLE 1 Comparison of prompt engineering approaches.

Approach Description Advantages Disadvantages

Zero-shot prompting Direct instruction, no examples Simple, efficient May lack specificity, unpredictable

Explicit, instruction-based Clear, stepwise instructions Reduces ambiguity, minimizes errors of

omission

Requires user expertise, can be verbose

Few-shot prompting Provides a few examples Greater control, improved relevance Sensitive to example quality, may not scale

Chain-of-thought prompting Encourages stepwise reasoning Transparent, better for complex tasks Verbose, reasoning may not always be correct

Format-constrained prompting Specifies output structure Standardized, easy to interpret Still relies on model’s statistical knowledge

This table summarizes the main approaches to prompt engineering, their descriptions, advantages, and disadvantages.

of variance (ANOVA) are frequently applied to compare group

means, while non-parametric alternatives such as the Mann-

Whitney U test or Kruskal-Wallis test are appropriate when data do

not meet the assumptions of normality or homogeneity of variance

(Motulsky, 2014). Correlation and regression analyses are used to

assess relationships between variables, with linear regression being

a staple for modeling continuous outcomes and logistic regression

for binary outcomes (Hosmer et al., 2013).

Despite their ubiquity, the application of these statistical

methods is not without challenges. A common pitfall is the

inappropriate use of parametric tests, such as the t-test, on

data that violate key assumptions, leading to invalid inferences.

The misuse of p-values, that is,interpreting statistical significance

as evidence of clinical importance or failing to account for

multiple comparisons remains a persistent issue in the literature

(Wasserstein and Lazar, 2016). Additionally, selective reporting of

significant results and p-hacking can distort the scientific record

and undermine the credibility of research findings (Head et al.,

2015). Table 2 summarizes some of the most frequent statistical

pitfalls encountered in medical research.

A careful and context-aware application of statistical methods

is essential for producing valid and reproducible results in medical

research. By recognizing the strengths and limitations of commonly

used statistics, researchers can avoid common errors and contribute

to the advancement of robust scientific knowledge.

2.7 Evaluating LLMs

The increasing integration of LLMs into biomedical and

statistical workflows necessitates a rigorous and context-sensitive

approach to evaluating their outputs. As these models are

entrusted with tasks ranging from summarizing clinical findings

to performing inferential statistical analyses, the question of how

to assess their performance becomes not only technical but

epistemological. Evaluation is no longer a peripheral concern; it is

central to ensuring that LLMs function as reliable collaborators in

scientific inquiry.

Historically, the evaluation of natural language generation

(NLG) systems has relied on metrics that prioritize surface-level

similarity to reference texts, such as BLEU and ROUGE. These

metrics, while useful for tasks like translation or summarization,

operate primarily on n-gram overlap and often fail to capture

semantic correctness or contextual appropriateness (Faizullah et al.,

2024). However, the emergence of LLMs which are capable of

generating fluent, contextually rich, and often persuasive outputs

has exposed the limitations of such metrics, particularly in tasks

requiring reasoning or domain-specific accuracy (Faizullah et al.,

2024). In high-stakes domains like medical statistics, where the

correctness of an output cannot be inferred from its fluency alone,

evaluation must account for methodological rigor, interpretive

accuracy, and domain relevance. This section reviews the principal

approaches to LLM evaluation, with a focus on their applicability to

prompt engineering in statistical contexts.

2.7.1 Manual evaluation
Manual evaluation involves human experts assessing the

quality of LLM outputs based on predefined rubrics or subjective

judgment. This approach is particularly valuable in domains

requiring nuanced interpretation, such as statistical reasoning

or clinical decision-making. Human evaluators can detect subtle

errors, assess contextual appropriateness, and apply domain-

specific standards that are difficult to encode algorithmically (Liu

et al., 2023).

However, manual evaluation is inherently limited by its

subjectivity, labor intensity, and lack of scalability. Inter-rater

variability can compromise reliability, and the process is often too

slow for iterative prompt development or real-time deployment

(Liu et al., 2023). Despite these limitations, manual evaluation

remains indispensable for validating automated methods and for

assessing outputs in novel or ambiguous contexts where ground

truth is unavailable or contested (Gao et al., 2025).

2.7.2 Automated evaluation
Automated evaluation methods offer scalability and

reproducibility, making them attractive for benchmarking

and continuous integration. These methods fall into two broad

categories: reference-based and reference-free.

Reference-basedmetrics such as BLEU, ROUGE, andMETEOR

compare model outputs to predefined reference texts, quantifying

lexical overlap. While these metrics are useful for tasks like

summarization or translation, they are poorly suited to evaluating

statistical reasoning. Lexical similarity does not guarantee

semantic correctness, and models may produce outputs that

are superficially similar to reference texts while misrepresenting

statistical assumptions or misapplying analytical methods (Lavie

and Denkowski, 2009).
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TABLE 2 Common statistical pitfalls in medical research.

Pitfall Description

Misuse of mean Reporting the mean for skewed data instead of the median, which can misrepresent the true central tendency.

Inappropriate test

selection

Using parametric tests (e.g., t-test, ANOVA) on data that do not meet assumptions of normality or equal variances, rather than opting for

non-parametric alternatives.

P-value

misinterpretation

Treating statistical significance as equivalent to clinical or practical significance, or misunderstanding what a p-value actually represents.

Multiple comparisons Conducting multiple hypothesis tests without proper adjustment, which increases the risk of false-positive findings.

Selective reporting Only presenting statistically significant results, leading to publication bias and an incomplete scientific record.

Reference-free methods address some of these limitations by

evaluating outputs without relying on ground truth references.

These include semantic similarity scoring using embeddingmodels,

rule-based validation of output structure, and the increasingly

prominent approach of using LLMs themselves as evaluators; a

method known as “LLM-as-a-judge” (Lavie and Denkowski, 2009).

2.7.3 LLM-as-a-judge
The LLM-as-a-judge approach involves prompting a language

model to assess the outputs of another (or the same) model based

on a rubric or set of criteria. This method is particularly well-

suited for evaluating prompt effectiveness, as it allows for rapid,

rubric-based comparison of different prompt formulations (Berti

et al., 2024). For example, an evaluator model can be instructed to

assess outputs based on assumption checking, test selection, output

completeness, and interpretive quality–criteria that are central to

statistical validity.

This approach offers several advantages. It is highly scalable,

enabling the evaluation of thousands of prompt-output pairs

without human intervention. It also allows for nuanced assessments

that align more closely with human judgment, particularly when

the evaluator model is guided by explicit instructions or chain-of-

thought reasoning (Shankar et al., 2024). Moreover, it facilitates

iterative prompt refinement by providing structured feedback on

the strengths and weaknesses of different prompt designs.

However, the method is not without limitations. A primary

concern is the potential for bias and circularity, especially when

the evaluator shares architecture or training data with the model

being evaluated. This can lead to inflated performance estimates

or the reinforcement of shared misconceptions (Berti et al., 2024).

Additionally, the internal reasoning of the evaluator model is often

opaque, making it difficult to audit or interpret its judgments,

an issue that is particularly problematic in clinical and statistical

domains where transparency is essential (Shankar et al., 2024).

Another challenge lies in domain specificity. While general-

purpose LLMs may perform well in evaluating outputs related

to everyday language tasks, their ability to assess domain-specific

outputs such as the appropriateness of a statistical test or the

validity of an inferential conclusion depends on their exposure

to relevant training data and their capacity for domain-specific

reasoning. In such cases, hybrid evaluation pipelines that combine

LLM-based and human assessments may offer a more robust

solution (Berti et al., 2024).

Recent empirical studies support the utility of LLM-as-a-judge

in scientific contexts. Gao et al. (2025) demonstrated that LLM-

based evaluators can reliably distinguish between high- and low-

quality outputs in natural language generation tasks, particularly

when guided by structured rubrics. Similarly, Kojima et al.

(2022) and Wei et al. (2022b) have shown that chain-of-thought

prompting enhances the reasoning capabilities of LLMs, both as

generators and as evaluators.

2.7.4 Hybrid evaluation: combining
LLM-as-a-judge with human oversight

As LLMs become increasingly embedded in scientific and

statistical workflows, the need for evaluation frameworks that

balance scalability with interpretive rigor has become more

urgent. While automated methods such as LLM-as-a-judge offer

efficiency and consistency, they are not immune to issues of bias,

opacity, and domain mismatch. Conversely, manual evaluation

provides depth and contextual sensitivity but lacks scalability

and reproducibility. To address these limitations, recent research

has proposed hybrid evaluation frameworks that integrate both

approaches in a complementary manner (Shahzad et al., 2025).

In a hybrid framework, the evaluation process typically

unfolds in two stages. First, an LLM is prompted to assess the

outputs of another model or the same model under different

prompt conditions using a structured rubric. This rubric may

include criteria such as assumption checking, test selection, output

completeness, and interpretive quality. The LLM’s evaluations are

recorded and scored, providing a scalable and rubric-aligned first-

pass assessment of prompt effectiveness (Kamath et al., 2024).

In the second stage, human experts review the LLM’s

evaluations. This part serves to validate the model’s judgments,

identify potential hallucinations or misinterpretations, and refine

the evaluation rubric based on observed model behavior.

This human-in-the-loop process is particularly valuable in

domains like medical statistics, where subtle errors in reasoning

or misapplication of statistical methods can have significant

consequences. The hybrid approach thus combines the breadth of

automated evaluation with the depth of expert review, enabling

both high-throughput assessment and epistemic accountability

(Kumar, 2024).

This framework has been shown to improve the reliability and

transparency of LLM evaluations, particularly when applied to tasks

involving complex reasoning or domain-specific knowledge. It also

supports iterative prompt refinement, as human reviewers can use
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the LLM’s feedback to identify patterns of failure or success across

different prompt formulations. Moreover, by documenting both

the LLM’s evaluations and the human corrections, the framework

promotes reproducibility and provides a valuable audit trail for

future research and model development (Shahzad et al., 2025). A

comparison of the LLM evaluation approaches is given in Table 3.

In this paper, we adopt a hybrid evaluation framework to

assess the effectiveness of various prompt engineering strategies for

statistical analysis. Specifically, outputs generated under different

prompting conditions were evaluated by Microsoft Copilot

and subsequently reviewed by the author. The human review

involved cross-validation using standard statistical software and

focused on four key criteria: assumption checking, test selection,

output completeness, and interpretive quality. While a single

expert reviewer was used for consistency in this study, future

research should incorporate multiple reviewers and consensus-

based evaluation methods to enhance reproducibility and reduce

bias, as recommended in recent literature on LLM evaluation

frameworks (Gao et al., 2025; Shahzad et al., 2025).

3 Results

If not prompted correctly, generative AI systems can produce

misleading or incomplete responses. The quality and reliability

of outputs from LLMs are highly dependent on the clarity

and specificity of the input prompts. As such, effective prompt

design is essential for obtaining accurate and contextually

appropriate results.

With a growing number of generative AI models available, it

is the user’s responsibility to select the most suitable model for the

task at hand. Models such as OpenAI’s GPT-4, Anthropic’s Claude,

and Microsoft Copilot have demonstrated strong capabilities in

statistical reasoning, as well as in generating code for languages

like R and Python. These models can be powerful tools for data

analysis, but their effectiveness hinges on how well they are guided

through prompting.

3.1 Descriptive statistics

Descriptive statistics are typically the first step in data analysis,

especially for numerical datasets. Measures of central tendency–

such as the mean and median–and measures of dispersion–such as

the standard deviation and interquartile range (IQR) are commonly

used to summarize data characteristics.

For these tasks, we recommend the use of zero-shot prompting.

A well-structured instruction specifying the required statistical

measures is often sufficient to elicit accurate and complete

responses from LLMs. This approach assumes that the user has a

basic understanding of statistical concepts and knows what they

intend to compute.

We also advise users to assess the distribution of the data

particularly its normality before interpreting descriptive statistics.

This can be done using a simple zero-shot prompt.

To illustrate, consider the following artificial dataset:

56.31, 361.21, 158.01, 109.55, 20.35, 20.35,

7.18, 241.35, 110.29, 147.75

This dataset is clearly right-skewed. There are multiple ways

to prompt an LLM to analyze such data. One effective zero-shot

prompt is:

Calculate the mean, median, standard
deviation and the interquartile range for
the data: 56.31, 361.21, 158.01, 109.55,
20.35, 20.35, 7.18, 241.35, 110.29, 147.75.
Is the data skewed?

This prompt is explicit and comprehensive. It instructs the

model to compute all relevant statistics and includes a final question

to guide interpretation specifically whether the mean or median is

more appropriate to report.

Alternatively, a more abstract yet effective prompt is:

Describe the data using measures of central
tendency and dispersion. Looking at the
distribution of the data, which measures
should I report?

We prefer this formulation. It is specific in its request for

descriptive statistics but does not require the user to name

individual metrics. This makes it accessible to users with limited

statistical background. Moreover, it leverages the model’s reasoning

capabilities to recommend appropriate measures based on the

data distribution. This prompt was tested across multiple LLMs,

including Claude 3.7 Sonnet, GPT-4.1, and Microsoft Copilot, and

consistently produced accurate and context-aware responses.

Other descriptive measures such as range, variance, skewness,

and kurtosis can also be computed using similar zero-shot prompts.

We recommend the use of zero-shot prompting for generating

descriptive statistics, as it is both efficient and reliable when

the instructions are clearly formulated. Providing explicit and

unambiguous instructions minimizes the risk of erroneous outputs

and ensures that the statistics generated are appropriate for the

intended context, whether for academic research, reporting, or

exploratory data analysis.

The overarching goal is to avoid misleading interpretations and

to ensure that the statistical summaries produced by the language

model are both accurate and contextually relevant.

3.2 Inferential statistics

Caution is warranted when using generative AI for statistical

inference in medical research. While LLMs can assist with

data analysis, they are prone to producing erroneous outputs,

particularly in inferential contexts. A key limitation lies in their

handling of statistical assumptions, a foundational aspect of most

inferential procedures.

Nearly all statistical models used for inference rely on

specific assumptions (e.g., normality, homogeneity of variance,

independence). When these assumptions are violated, alternative

methods such as data transformation or non-parametric tests

should be employed. For instance, the independent samples

Student’s t-test assumes normality and equal variances; if these are
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TABLE 3 Comparison of LLM evaluation approaches.

Evaluation
approach

Description Advantages Disadvantages

Manual evaluation Human experts assess the quality of LLM outputs

based on predefined rubrics or subjective

judgment.

Provides depth and contextual

sensitivity; can detect subtle errors and

apply domain-specific standards.

Subjective, labor-intensive, and lacks

scalability; inter-rater variability can

compromise reliability.

Reference-based

evaluation

Metrics such as BLEU, ROUGE, and METEOR

compare model outputs to predefined reference

texts, quantifying lexical overlap.

Objective and reproducible; suitable for

benchmarking and regression testing.

Poorly suited to evaluating statistical

reasoning; lexical similarity does not

guarantee semantic correctness.

Reference-free

evaluation

Evaluates outputs without relying on ground truth

references, using techniques like semantic

similarity scoring, rule-based checks, or LLMs as

evaluators.

Flexible and adaptable to real-world use

cases; enables continuous monitoring

and quality control.

Challenges related to reliability,

interpretability, and standardization;

embedding-based measures can be

opaque.

LLM-as-a-judge An LLM is prompted to assess the outputs of

another (or the same) model based on a rubric or

set of criteria.

Highly scalable; allows for nuanced,

rubric-based assessments; facilitates

iterative prompt refinement.

Potential for bias and circularity;

internal reasoning is often opaque;

effectiveness varies across domains.

Hybrid evaluation Combines LLM-as-a-Judge with human oversight,

where LLMs provide initial evaluations and

human experts review and refine these

assessments.

Balances scalability with interpretive

rigor; supports high-throughput

assessment and epistemic

accountability.

Requires more complex prompt

structures and greater user effort;

potential for new sources of error.

This table summarizes the main approaches to evaluating large language models, including their descriptions, advantages, and disadvantages.

not met, a non-parametric alternative like the Mann-Whitney U

test is more appropriate. Generative AI models may overlook or

misinterpret these assumptions unless explicitly guided.

3.2.1 Prompt evaluation for statistical inference
To assess the effectiveness of the various prompting strategies,

we employed a hybrid evaluation framework. Two illustrative case

studies are presented. In the first scenario, the assumption of

equal variances is violated, necessitating the use of a t-test that

accommodates unequal variances. In the second example, both

the assumptions of normality and homogeneity of variances are

breached, thereby warranting the application of a non-parametric

alternative to the t-test. Table 4 outlines the specific prompts

utilized in the first case.

3.2.2 Illustrations
3.2.2.1 Illustration I

Artificial data are generated for a blood pressure clinical trial

where 40 patients were assigned between a new drug and a control

treatment in the ratio 1:1. The data generation process is as follows:

control_bp <- rnorm(n_control, mean=150, sd=10)

treatment_bp <- rnorm(n_treat, mean=140, sd=20)

and the generated data is:

control_bp = c(142.9, 152.6, 147.5, 146.5,

140.5, 149.5, 142.2, 133.3,

146.2, 159.2, 144.2, 156.1,133.8,

149.4, 155.2, 153.0, 151.1,

143.6, 141.5, 139.8)

treatment_bp = c(122.4, 101.1, 110.2, 114.9,

156.9, 107.0, 124.7, 121.6,

100.8, 118.6, 148.9, 129.0,

120.8, 111.6, 78.9, 142.6,

90.8, 134.8, 158.2, 91.1)

3.2.2.2 Illustration II

We further demonstrate the impact of prompt engineering

using some artificial BMI data from a 12-week randomized

controlled trial comparing a plant-based diet intervention to

standard care among primary school children with elevated BMI.

The data are as follows:

control_bmi = c(22.3, 23.3, 31.2, 24.2, 24.4,

29.1, 33.8, 20.2, 21.9, 22.7, 27.7, 25.1,

25.2, 24.3, 52.3)

treatment_bmi = c(23.1, 21.3, 24.2, 24.2, 24.1,

23.7, 23.4, 21.8, 21.2, 21, 20.3, 21.5, 18.8,

27.4, 25)

Table 5 shows the different prompts used in the second

case study.

The evaluation results presented in Table 6 provide a

comparative analysis of how different prompting strategies

influence the performance of LLMs in conducting inferential

statistical analyses. These tables summarize the outputs of two

LLMs; GPT-4.1, and Claude 3.7 Sonnet. Microsoft Copilot

was used as a judge to evaluate the outputs from GPT-4.1,

and Claude 3.7 Sonnet. The two AI models were tasked with

analyzing two artificial datasets using four distinct prompting

strategies: zero-shot, explicit instruction-based, chain-of-thought,

and hybrid prompting. The evaluation was conducted using a

structured rubric that assessed four key dimensions of statistical

reasoning: assumption checking, test selection accuracy, output

completeness, and interpretive quality. The rubric is shown in

Table A1.

In both case studies, the zero-shot prompting strategy

consistently yielded the lowest scores across all models. For the

blood pressure dataset (second part of Table 6), zero-shot prompts

failed to elicit any assumption checking from the models, resulting

in a score of 0.0 for that criterion. Test selection was partially

correct in some instances, with scores ranging from 0.6 to 1.0, but

the absence of diagnostic checks undermined the methodological
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TABLE 4 Prompts used for illustration I.

Prompt type Prompt

Zero-shot Perform a t-test on the following blood pressure data from a clinical trial [data].

Explicit instruction I want to compare blood pressure between two groups [data]. Step 1: test for normality in each group. Step 2: test for equality of variances. Step 3:

based on the results, choose the appropriate t-test. Step 4: perform the test and report the test statistic, degrees of freedom, and p-value. Step 5:

interpret the result in plain language.

CoT Consider the following blood pressure data [data]. Think step by step: • Are the data normally distributed? • Are variances equal? •Which test

should be used? •What are the results? •What do they mean?

Hybrid Analyze the following blood pressure data from a clinical trial [data]. Please: • Test for normality and equal variances. • Choose the correct test

(Student’s or Welch’s t-test). • Report results in a table with columns: test statistic, df, p-value. • Provide a plain-language interpretation of the

findings.

This table summarizes the approaches and the actual prompts used in analyzing the artificial blood pressure data. [data] indicates where the data should be placed.

TABLE 5 Prompts used for illustration II.

Prompt type Prompt

Zero-shot Analyze the following BMI data from a randomized controlled trial [data].

Explicit instruction I want to compare BMI between two groups [data]. Step 1: Test for normality in each group. Step 2: Test for equality of variances. Step 3: If

assumptions are violated, use a non-parametric test . Step 4: Report the test statistic and p-value. Step 5: Interpret the result in plain language.

CoT Consider the following BMI data [data]. Think step by step: • Are the data normally distributed? • Are variances equal? •Which test should be used?

•What are the results? •What do they mean?

Hybrid Analyze the following BMI data from a 12-week dietary intervention trial [data]. Please: • Test for normality and equal variances. • Can a t-test be

used? • Perform an appropriate test. • Present results in a table with: test name, test statistic, p-value. • Provide a plain-language interpretation.

This table summarizes the approaches and the actual prompts used in analyzing the artificial BMI data. The data was left out from the prompts. [data] indicates where the data should be placed.

TABLE 6 Evaluation summary by prompt type and model for illustration I and illustration II.

Criterion Zero-shot Explicit instruction Chain-of-thought Hybrid

GPT-4.1 Claude
3.7

Sonnet

GPT-4.1 Claude
3.7

Sonnet

GPT-4.1 Claude
3.7

Sonnet

GPT-4.1 Claude
3.7

Sonnet

Illustration I

Assumption

checking

0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0

Test selection 0.6 0.6 1.0 1.0 1.0 1.0 1.0 1.0

Output

completeness

1.0 1.0 1.0 1.0 0.8 0.8 0.8 0.8

Interpretive

quality

0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Total ccore 2.4 2.6 4.0 4.0 3.8 3.8 3.8 3.8

Illustration II

Assumption

checking

0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Test selection 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Output

completeness

0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Interpretive

quality

0.6 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Total score 1.2 4.0 4.0 4.0 4.0 4.0 4.0 4.0

soundness of the analyses. Output completeness and interpretive

quality were somewhat better, with scores ranging from 0.8 to

1.0, indicating that while the models could produce fluent and

structured outputs, these outputs were not always grounded in

appropriate statistical reasoning.

In contrast, the explicit instruction-based, chain-of-thought,

and hybrid prompting strategies consistently achieved higher

scores across all criteria. These strategies prompted the models

to perform assumption checks, select appropriate statistical

tests based on those checks, and provide comprehensive and
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contextually relevant interpretations. For instance, in the BMI

dataset (Table 6), all three models correctly identified the non-

normal distribution in the control group and the unequal variances

between groups when guided by explicit or hybrid prompts.

Consequently, they selected the Mann-Whitney U test, a non-

parametric alternative appropriate for the data structure. These

prompts resulted in perfect scores (4.0) across all evaluation

dimensions, demonstrating the effectiveness of structured and

context-rich prompting in eliciting statistically valid outputs from

LLMs.

Not shown here are the results obtained using Claude 4 Sonnet

and Claude 4 Opus, which were consistent with those of Claude

3.7 Sonnet across all prompting strategies and evaluation criteria.

Similarly, OpenAI’s o3 mini and o4 mini models produced outputs

that matched those of GPT-4.1 in both descriptive and inferential

tasks. These findings suggest that the observed improvements in

statistical reasoning are not limited to specific model versions but

are generalizable across newer iterations of both Anthropic’s Claude

and OpenAI’s GPT families. This consistency reinforces the central

conclusion that prompt design, rather than model architecture

alone, is the primary determinant of output quality in statistical

contexts.

Table 7 provides the summary of assumption checks and

statistical test results for BMI data.

3.2.3 A prompting strategy for inferential
problems

We propose a structured prompting strategy to guide the use

of generative AI in statistical inference, particularly in sensitive

domains such as medical research. The goal is to minimize errors

and ensure that statistical procedures are applied appropriately.

The following steps outline a recommended workflow:

• Upload the dataset to the chosen AI assistant or LLM interface,

provide context.

• Select the appropriate statistical test for the research question.

If uncertain, the user may prompt the AI for guidance on test

selection.

• Test the assumptions underlying the selected statistical

procedure (e.g., normality, homogeneity of variance,

independence).

• If assumptions are met, proceed with the selected test.

• If assumptions are violated, prompt the AI to suggest and

evaluate alternative procedures (e.g., non-parametric tests).

• If the alternative test’s assumptions are met, perform the

alternative test.

• Specify the desired output format, such as summary tables,

p-values, confidence intervals, or effect sizes.

• Request an interpretation of the results in plain language,

suitable for the intended audience.

• Validate the results by cross-checking with statistical software

or consulting a domain expert.

The above workflow is summarized in the Table 8. The process

begins with a clear definition of the research question or analytical

objective. This foundational step ensures that all subsequent actions

are aligned with the intended goal. Once the objective is established,

the next step is to select a candidate statistical model or analytical

approach that is appropriate for the data and the research question

at hand.

After selecting a model, it is essential to rigorously test its

underlying assumptions. This step acts as a critical checkpoint:

if the assumptions are satisfied, the process moves forward to

constructing a precise and context-rich prompt for the AI. This

prompt should clearly specify the statistical method, the expected

output format, and any relevant contextual details to guide the

AI’s response.

If, however, the model’s assumptions are not met, the process

does not proceed. Instead, an alternative model is sought, and its

assumptions are tested in turn. This iterative process continues

until a suitable model is identified.

Once a suitable model is confirmed and the prompt is

constructed, the prompt is submitted to the generative AI system.

The output generated by the AI is then carefully evaluated for

accuracy, completeness, and adherence to the specified format. If

the output meets the required standards, it is incorporated into the

research workflow. If not, the prompt may be revised for greater

clarity or specificity, and the process is repeated as necessary.

This structured approach ensures methodological rigor and

effective communication with generative AI systems, supporting

robust and transparent scientific analysis.

4 Discussion

The results of the two illustrative case studies underscore a

critical insight: zero-shot prompting is insufficient for conducting

inferential statistical analyses using generative AI. While zero-

shot prompts may be adequate for basic descriptive tasks, as

demonstrated in earlier sections of this paper, they fall short

when applied to more complex analytical workflows that require

methodological rigor. The absence of assumption checking in

almost all zero-shot outputs is particularly concerning, as it reflects

a fundamental gap in the models’ ability to autonomously initiate

diagnostic procedures without explicit instruction. This limitation

aligns with findings from Kojima et al. (2022), who observed that

LLMs often default to surface-level heuristics in the absence of

structured guidance, leading to shallow or incorrect reasoning in

complex tasks.

The superior performance of explicit instruction-based, chain-

of-thought, and hybrid prompting strategies highlights the

importance of prompt specificity and structure in guiding LLMs

toward valid statistical reasoning. These strategies not only

improved the accuracy of test selection but also enhanced the

completeness and interpretive quality of the outputs. The inclusion

of stepwise instructions and reasoning cues enabled the models

to navigate the analytical process more transparently, mirroring

the benefits of chain-of-thought prompting reported by Wei

et al. (2022b), who demonstrated that such prompts significantly

enhance the reasoning capabilities of LLMs across a range of

tasks. Moreover, the hybrid prompting strategy, which combines

elements of explicit instruction, reasoning scaffolds, and format

constraints, emerged as particularly effective. This approach

ensured that the models adhered to methodological standards
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TABLE 7 Summary of assumption ahecks and statistical test results for BMI data.

Test Data Statistic p-value Interpretation

Shapiro-Wilk (Control) Original W = 0.701 0.00025 Not normal

Shapiro-Wilk (Treatment) Original W = 0.970 0.853 Normal

F-test for variances Original F = 13.127 2.09× 10−5 Variances unequal

Mann-Whitney U Original W = 171 0.0161 Significant

TABLE 8 Summary of the prompt engineering steps for inferential problems.

Step Description Decision/next action

1 Define research question or analytical objective and upload data into AI assistant —

2 Select candidate statistical model or analytical approach —

3 Test assumptions of the selected model Are assumptions satisfied?

4 If yes: formulate precise, context-rich prompt for the AI Proceed to prompt construction

5 If no: search for alternative model and repeat assumption testing Iterate until suitable model is found

6 Submit prompt to generative AI system —

7 Evaluate AI output for accuracy, completeness, and format adherence Is output satisfactory?

If yes: incorporate output into research workflow —

9 If no: revise prompt and resubmit Repeat as necessary

while also producing outputs that were interpretable and aligned

with clinical relevance. The robustness of this strategy across both

case studies suggests that hybrid prompting may serve as a best-

practice framework for integrating LLMs into medical statistical

workflows. This finding is consistent with recent work byWang and

Zhang (2024), who advocate for multi-layered prompting strategies

to maximize the reliability and interpretability of AI-generated

outputs in healthcare contexts (Wang et al., 2022).

Few-shot prompting was excluded from the evaluation due

to its reliance on curated examples, which introduces variability

and complicates standardization. Although it has demonstrated

effectiveness in other domains, its utility in medical statistics is

highly dependent on the quality and relevance of the examples

provided. These constraints make it less suitable for the structured

and reproducible evaluation framework adopted in this study.

The consistency of results across different LLMs further

reinforces the generalizability of these findings. Although some

models, such as Claude 3.7 Sonnet, demonstrated slightly more

comprehensive outputs under minimal prompting, all models

benefited significantly from structured prompts. This suggests that

the observed improvements are not model-specific but rather a

function of prompt design, a conclusion that echoes the broader

literature on prompt engineering as a critical interface between

human intent and machine intelligence (Liu et al., 2023).

The evaluation results provide compelling evidence that

prompt engineering is not merely a technical convenience but a

methodological necessity in the application of generative AI to

medical statistics. The ability of LLMs to produce valid, complete,

and contextually appropriate analyses is highly dependent on the

clarity, specificity, and structure of the prompts they receive. As

such, researchers and practitioners must approach prompt design

with the same rigor as they would any other component of the

analytical process, particularly in high-stakes domains where the

consequences of statistical error are profound.

In this study, the outputs generated by GPT-4.1 and Claude

3.7 Sonnet were evaluated using Microsoft Copilot as the LLM-

as-a-judge. These evaluations were subsequently reviewed by the

author. Notably, there was complete agreement between the human

assessments and those generated by Copilot across all evaluation

criteria. This alignment reinforces the reliability of the LLM-

as-a-judge approach in this context and supports its use as a

scalable yet accurate evaluation method for prompt engineering in

statistical tasks. The observed concordance may be attributed to

the inherently objective nature of statistical reasoning, where tasks

such as assumption checking, test selection, and interpretation

follow well-defined rules and diagnostic criteria. In such domains,

where procedural clarity is high and ambiguity is minimal, LLMs

are more likely to replicate expert-level judgment. This suggests

that LLM-as-a-judge frameworks may be particularly effective in

evaluating outputs in structured analytical domains like medical

statistics, where correctness can be assessed against established

methodological standards.

While this study demonstrates the potential of prompt

engineering to improve statistical reasoning in LLMs, several

limitations warrant attention. First, the reliance on artificial

datasets, while methodologically convenient, may not fully reflect

the complexity and variability of real-world medical data. Second,

prompt brittleness remains a challenge, minor changes in phrasing

can lead to divergent outputs, undermining reproducibility.

Third, LLMs are prone to hallucinations, generating plausible

but incorrect results, especially when prompts are underspecified

or ambiguous. These risks are amplified in medical contexts,

where statistical misinterpretation can have serious implications for

clinical decision-making and public health.
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Importantly, there is a growing concern about blind trust

in AI-generated outputs. The fluency and confidence with

which LLMs present information may obscure underlying

errors, leading users to accept results without adequate scrutiny.

As highlighted by Ji et al. (2023) and Shankar et al. (2024)

embedding human oversight and promoting transparency

are essential safeguards. Researchers must treat LLMs as

assistive tools, not authoritative sources, and validate outputs

using domain expertise and statistical software. Future work

should explore ethical frameworks and governance models

for responsible AI deployment in medical research, ensuring

that technological innovation does not compromise scientific

integrity.

5 Conclusion

This paper has situated the integration of generative AI within

the broader context of medical statistics, emphasizing the dual

potential of LLMs to either enhance or undermine statistical rigor

depending on the quality of prompt design. As the biomedical

research community increasingly turns to LLMs for assistance with

data analysis, the findings presented here underscore the critical

importance of prompt engineering as a methodological safeguard

against statistical misinterpretation.

Among the prompting strategies evaluated, hybrid prompting;

defined as the combination of explicit instruction, chain of

thought reasoning, and format constraints proved to be the

most effective approach for inferential statistical tasks. This

strategy consistently guided LLMs to perform assumption checks,

select appropriate tests, and produce outputs that were both

methodologically sound and interpretively coherent. In contrast,

zero shot prompting, while adequate for basic descriptive

statistics, was insufficient for tasks requiring analytical nuance and

diagnostic rigor.

The evaluation also revealed that while different LLMs such as

GPT 4.1, and Claude 3.7 Sonnet varied slightly in their baseline

performance, all models demonstrated substantial improvements

when guided by structured prompts. This suggests that the quality

of prompt design, rather than model architecture alone, is the

primary determinant of output reliability in statistical contexts.

Building on the findings of this study, future research should

explore the application of prompt engineering strategies in more

complex statistical domains such as survival analysis, regression

modeling, longitudinal data analysis, and meta-analysis. These

areas present additional challenges in assumption checking,

model selection, and interpretation, and would provide a more

rigorous test of LLM capabilities. A dedicated investigation

into these advanced methods would help determine whether

the benefits of structured prompting generalize beyond basic

inferential procedures.

Additionally, future work should incorporate real-world

clinical or epidemiological datasets to assess how LLMs handle

the variability, noise, and missingness typical of medical data.

The integration of few-shot prompting strategies particularly when

high-quality exemplars are available also warrants investigation,

despite the practical challenges of prompt length and variability.

To enhance reproducibility and reduce bias, future studies

should involve multiple expert reviewers and consensus-based

evaluation methods. Finally, the development of standardized

prompt templates, automated prompt-generation tools, and

domain-specific evaluation rubrics will be essential to support

reproducibility, usability, and ethical deployment of LLMs in

medical research. These efforts should be accompanied by robust

human oversight frameworks to mitigate risks associated with

hallucinations, prompt brittleness, and over-reliance on AI-

generated outputs.
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Appendix

TABLE A1 LLM evaluation scoring rubric.

Criterion Score Description

Assumption checking 1.0 Correctly identifies and tests all relevant assumptions (e.g., normality, variance)

Assumption checking 0.8 Tests most assumptions but misses one minor check

Assumption checking 0.6 Tests some assumptions but overlooks key ones

Assumption checking 0.4 Mentions assumptions but does not test them

Assumption checking 0.2 Incorrectly assumes assumptions are met or ignores them entirely

Assumption checking 0.0 No mention or testing of assumptions

Test selection accuracy 1.0 Selects the correct statistical test based on data type and assumptions

Test selection accuracy 0.8 Selects a mostly appropriate test with minor justification issues

Test selection accuracy 0.6 Selects a plausible but suboptimal test

Test selection accuracy 0.4 Selects an incorrect test but explains reasoning

Test selection accuracy 0.2 Selects an incorrect test with no justification

Test selection accuracy 0.0 No test selected or completely irrelevant test

Output completeness 1.0 Provides all key outputs (e.g., test statistic, p-value, CI, group means)

Output completeness 0.8 Provides most outputs but omits one or two minor elements

Output completeness 0.6 Provides partial output with some missing key elements

Output completeness 0.4 Output is vague or lacks structure

Output completeness 0.2 Output is incomplete and unclear

Output completeness 0.0 No usable output provided

Interpretive quality 1.0 Interpretation is accurate, context-aware, and clinically relevant

Interpretive quality 0.8 Interpretation is mostly accurate with minor contextual gaps

Interpretive quality 0.6 Interpretation is generic or lacks depth

Interpretive quality 0.4 Interpretation is partially incorrect or misleading

Interpretive quality 0.2 Interpretation is mostly incorrect or irrelevant

Interpretive quality 0.0 No interpretation provided
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