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Introduction: As person–job recommendation systems (PJRS) increasingly 
mediate hiring decisions, concerns over their “black box” opacity have sparked 
demand for explainable AI (XAI) solutions.
Methods: This systematic review examines 85 studies on explainable PJRS 
methods published between 2019 and August 2025, selected from 150 screened 
articles across Google Scholar, Web of Science, and CNKI, following PRISMA 
2020 guidelines.
Results: Guided by a PICOS-formulated review question, we categorize 
explainability techniques into three layers—data (e.g., feature attribution, causal 
diagrams), model (e.g., attention mechanisms, knowledge graphs), and output 
(e.g., SHAP, counterfactuals)—and summarize their objectives, trade-offs, and 
practical applications. We further synthesize these into an integrated end-to-
end framework that addresses opacity across layers and supports traceable 
recommendations. Quantitative benchmarking of six representative methods 
(e.g., LIME, attention-based, KG-GNN) reveals performance–explainability 
trade-offs, with counterfactual approaches achieving the highest Explainability-
Performance (E‑P) score (0.95).
Discussion: This review provides a taxonomy, cross-layer framework, and 
comparative evidence to inform the design of transparent and trustworthy 
PJRS systems. Future directions include multimodal causal inference, feedback-
driven adaptation, and efficient explainability tools.
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1 Introduction

Person–job recommendation systems (PJRS) are data- and algorithm-based tools that 
are designed to match and recommend the most suitable jobs to jobseekers by analyzing their 
resources, skills, experiences, and interests (Brek and Boufaida, 2023; Kokkodis and Ipeirotis, 
2023; Marin and Amel, 2023). These systems are widely used in online recruitment platforms, 
professional social networking platforms, and human resource management systems, to help 
companies quickly find suitable candidates and simultaneously assist jobseekers in finding 
ideal jobs (Wang et al., 2023).

Although PJRS have advanced rapidly, many of these systems are typically considered 
“black box” systems (Chazette and Schneider, 2020; Sadeghi et al., 2024; Deters et al., 2025) as 
their internal decision-making processes remain opaque to users. This limited transparency 
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can result in distrust and skepticism among users. Therefore, novel 
methods should be devised to improve the explainability of these 
systems and address these problems.

Defining Explainability and Black Box Issues: To provide a 
clear framework for our discussion, we  first define the following 
key terms:

	 1.	 Black Box: Opaque model internals in PJRS that obscure 
input–output mappings, reducing trust (Fan et  al., 2023; 
Phadnis, 2024).

	 2.	 Explainability: The extent to which humans understand a 
model’s decision rationale, critical for jobseeker/recruiter trust 
(Linardatos et al., 2021; Ertugrul and Bitirim, 2025).

	 3.	 Transparency: The visibility of internal PJRS processes, 
enabling bias detection and fairness (Jency and Kumar, 2025; 
Ngo, 2025).

In this study, we  consistently use these terms to discuss the 
challenges and solutions related to rendering person–job 
recommendation systems explainable.

Research Question: To ensure methodological rigor in this 
systematic review, we formulate the primary research question using 
the PICOS framework(Page et  al., 2021): What explainability 
methods (Intervention) improve transparency, fairness, and user 
trust (Outcome) in Person-Job Recommendation Systems 
(Population) compared to black-box approaches (Comparison), 
based on empirical studies, reviews, and theoretical works from 
2019–2025 (Study Design). Population (P): Studies and users of 
PJRS, including jobseekers, recruiters, and systems focused on 
bilateral job matching. Intervention (I): Explainability techniques, 
such as feature importance analysis, attention mechanisms, 
knowledge graph reasoning, and counterfactual explanations. 
Comparison (C): Traditional black-box PJRS models (e.g., opaque 
deep neural networks) versus explainable alternatives. Outcome (O): 
Enhanced transparency (e.g., understandable decision processes), 
reduced bias and unfairness, and increased user trust. Study Design 
(S): Peer-reviewed empirical studies, systematic reviews, and 
theoretical papers published between 2019 and 2025, selected from 
85 included works.

Role of Explainability in Recommendation Systems: PJRS play 
a crucial role in filtering information and matching jobs online. 
Although explainable recommendations have been studied 
extensively, few studies have comprehensively reviewed black box 
problems and explainability techniques for person–job 
recommendations. Explainability is vital for improving user 
experience, trust, system optimization, and fairness (Wu et al., 2023). 
First, it enhances jobseekers’ and recruiters’ trust in and satisfaction 
with recommendation results. When the system explains the reasons 
for recommendations, users can better understand the decision logic, 
improving recruitment efficiency (Choi et al., 2023; Haque et al., 
2025). Second, explainability can help identify and optimize system 
problems. Explaining the decision-making process can help 
developers identify problems and defects in recommendation 
algorithms accurately to perform targeted optimization and 
improvement (Zhou et  al., 2021; Zhao et  al., 2023b). Finally, 
explainability promotes fairness and reduces bias. If the algorithm is 
biased or discriminatory, then recommendation results could 
be unfair to certain groups of jobseekers or recruiters (Liu et al., 

2024; Tsung-Yu et  al., 2024). Enhancing system explainability 
renders identification and correction of these biases easy, ensuring 
algorithm fairness and equity (Minh et al., 2022). Multiple aspects, 
such as jobseekers’ resumes, interests, and preferences should 
be considered to achieve high-quality explanations. Moreover, job 
characteristics should be  combined for precise job matching 
and recommendations.

Differences between PJRS and Conventional Recommendation 
Systems: Conventional recommendation systems typically focus on 
e-commerce, review display styles, and algorithmic mechanisms for 
generating explainable recommendations (Cho et al. 2023; Tao et al., 
2024). Compared with black box issues in other tasks, black box issues 
in the PJRS exhibit unique characteristics, which necessitates 
consideration of inclusive reviews and summaries. Therefore, because 
of the complexity of PJRS recommendation objects, the match 
between jobs and jobseekers and the requirements and preferences of 
recruiters should be  considered. This involves addressing the 
behaviors and preferences of both jobseekers and recruiters, with 
parsing and matching resumes and job descriptions being crucial (Qin 
et  al., 2020; Bobek et  al., 2025). By contrast, conventional 
recommendation systems typically target a single user group, such as 
product recommendations, which focus on users’ purchase histories 
and interests (Wu et  al., 2024). Furthermore, PJRS require a 
comprehensive consideration of various features from jobseekers’ 
resumes, interests, and preferences, resulting in complex data types 
and sources (Chou and Yu, 2020; Saito and Sugiyama, 2022). 
Conventional recommendation systems primarily rely on user 
behavior data and product characteristics, with simple data structures 
(Song et al., 2017).

Distinction of this Study from Existing Research: To the best 
of our knowledge, no comprehensive survey exists specifically for 
explainable PJRS. This study distinguishes itself from prior surveys 
on explainable recommendation systems in several concrete ways. 
First, Gurrapu et al. reviewed black box issues in natural language 
processing (Gurrapu et al., 2023), and Kong et al. reviewed methods 
for explaining black box models and evaluating these methods 
(Kong et  al., 2021). Studies have investigated black boxes and 
explainability issues in general machine learning (ML) and AI 
systems (Carvalho et al., 2019; Mi et al., 2020; Brasse et al., 2023; 
Marcinkevics and Vogt, 2023; Hassija et  al., 2024). However, 
person–job recommendation tasks are yet to be  studied 
comprehensively. Second, existed studies focus on unilateral user-
item interactions and overlook the bilateral dynamics unique to 
PJRS, such as matching jobseekers’ resumes with recruiters’ 
preferences and handling biases in labor market data. Our survey 
improves upon this by tailoring the analysis to PJRS-specific “black 
box” challenges, including opacity in feature extraction from 
resumes and job descriptions, which can lead to unfair 
hiring outcomes.

Contributions of this Study: We summarized the black box 
issues in PJRS and their characteristics. Second, we conducted a 
comprehensive review and categorized the existing explainability 
methods and discussed their advantages and disadvantages. The 
proposed integrated framework, derived from synthesizing 85 
studies (e.g., layer structure from Qin et al., 2020), comprises data 
(feature extraction), model (processing with explainability), and 
output (user-facing explanations) layers, extended with cross-layer 
hybrids for end-to-end transparency. Finally, we identified current 
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challenges and discussed future directions for stimulating research 
on this topic.

Methodology of This Study: This systematic review adheres to 
the PRISMA 2020 guidelines (Page et  al., 2021) to ensure 
transparency, reproducibility, and methodological rigor 
(Supplementary Figure S1). While the protocol was not 
pre-registered (common in retrospective AI literature syntheses), it 
was retrospectively aligned with PRISMA, including a 
comprehensive search, screening, and synthesis process. The 
methodology addresses the PICOS-for we searched three databases 
for broad coverage: Google Scholar (for comprehensive, open-
access indexing), Web of Science (for high-quality, peer-reviewed 
articles), and CNKI (for Chinese-language studies, balancing 
Western bias in AI recruitment research). Figure 1 reveals that since 
2019, the number of studies focusing on PJRS has increased 
considerably. The timeframe was January 1, 2019, to August 2, 2025, 
focusing on recent advancements in explainable AI while capturing 
post-2018 deep learning surges in PJRS. Exact search strings used 
Boolean logic for precision (“explainable recommendation” OR 
“interpretable recommendation” OR “explainable AI” OR “XAI”) 
AND (“person-job recommendation” OR “PJRS” OR “talent 
recruitment” OR “intelligent hiring” OR “job matching”) AND 
-(“e-commerce” OR “movie recommendation”) to exclude unrelated 
domains. Variations included Chinese equivalents on CNKI: (“可
解释推荐” OR “解释性人工智能”) AND (“人岗匹配” OR “智能
招聘”). These terms target PJRS-specific explainability, with 
negation operators reducing noise (e.g., excluding 40% irrelevant 
e-commerce hits). Inclusion and Exclusion Criteria: Peer-reviewed 
articles, conference papers, or theses (2019–2025) focused on 
explainability in PJRS (e.g., methods addressing black-box issues in 
job matching); empirical evaluations or reviews; English or Chinese 
language. Non-AI/RS studies; pre-2019 publications; unrelated 

domains (e.g., general RS without PJRS application); duplicates or 
inaccessible full-texts. Criteria ensured relevance to bilateral PJRS 
dynamics, yielding 85 included studies from 150 screened.

To ensure conceptual rigor and reproducibility, we followed a 
multi-stage procedure to derive the taxonomy of explainability 
methods in PJRS. Open coding: Two authors independently coded 
85 studies for recurring explainability techniques, outcomes, and 
architectural targets (e.g., input transformation, model internals, post 
hoc output). Axial coding and thematic grouping: Coded items were 
grouped into broader themes (e.g., “attention-based explainability,” 
“knowledge-path reasoning,” “counterfactual rationales”) using 
affinity mapping. Layer mapping: Each method was then aligned to 
the most affected stage in the PJRS pipeline (input processing → 
model inference → user-facing output), forming the three-layer 
taxonomy (Data / Model / Output). Expert panel validation: Three 
domain experts reviewed the draft taxonomy; inter-rater agreement 
(Krippendorff ’s α) was 0.87. Disagreements were resolved through 
discussion and adjustments. Final validation: We  compared our 
classification with existing XAI taxonomies and refined the 
boundaries accordingly.

Audience and Organization of this Study: This paper will benefit 
PJRS researchers and practitioners who (1) are new to the field and 
seek a quick understanding of black box issues, (2) require clarification 
of different explainability approaches in the literature and require a 
systematic study, (3) want to understand the most advanced 
explainability methods in PJRS, and (4) encounter black box issues 
when building PJRS and require suitable explainability solutions. The 
remainder of the survey is organized as follows: Section 2 introduces 
existing person–job recommendation models. Section 3 details 
interpretability challenges in person–job recommendation. Section 4 
provides explanatory methods for person–job recommendations. 
Section 5 analyzes and compares explainability methods from the 

FIGURE 1

Statistics of publications related to explanation in intelligent recruitment.
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perspectives of performance and application. Section 6 discusses 
current challenges and future directions.

2 Person–job recommendation 
models

PJRS can be categorized into three layers, namely data, model, 
and output (Figure 2) (Qin et al., 2020; Bobek et al., 2025). The data 
layer primarily includes resumes and job collections. The data 
originate from online recruitment platforms in which jobseekers 
submit their resumes and recruiters post job openings (Meurs et al., 
2024; Bolte et al., 2025). The model layer is the core of a person–job 
recommendation system. In this layer, big data technology is used to 
thoroughly analyze the features of resumes and job postings to 
evaluate the match between jobseekers and job positions (Hanna 
et al., 2025). Unlike conventional recommendation systems that focus 
on products or movies and primarily consider user preferences, 
person–job matching is a bilateral scenario in which both jobseekers 
and job positions have active behaviors and preferences. Jobseekers 
have specific target positions, and job positions have specific 
requirements for candidates (Fu et al., 2021; Fu et al., 2022). The 
focus is on text matching between resumes and job descriptions and 
extracting preference information from historical interactions (Lee 
et al., 2021; Zhang et al., 2021c; Hou et al., 2022; Shen et al., 2022). 
This section introduces the primary models and methods for person–
job recommendations from three perspectives, namely content-
based, collaborative filtering-based, and hybrid approaches.

2.1 Content-based person–job 
recommendations

Content-based person–job recommendations incorporate 
descriptive content from job postings and candidate resumes to match 
suitable candidates with open positions (Kumar et al., 2025; Tran and 
Lee, 2025). Extracting keywords and other relevant features such as 
skills, experience, and job requirements enables systems to calculate 
similarity scores between jobseekers and positions.

Early text-matching methods created vector representations of text 
in an unsupervised manner and calculated similarity. For instance, 
Almalis et al. proposed a four-dimensional recommendation algorithm 
that quantifies the suitability of jobseekers for a position flexibly by 
extending the Minkowski distance and using structured representations 

from unstructured job descriptions and resumes (Almalis et al., 2015). 
Additionally, Alghieth et al. proposed a content-based approach by using 
cosine similarity to recommend jobs and help jobseekers find desired 
jobs through an interactive map (Alghieth and Shargabi, 2019). Qinglong 
et  al. (2021) improved recommendation performance by detailing 
qualitative preference information using latent Dirichlet allocation for 
topic modeling to extract qualitative preferences from job content.

With the rapid development of natural language processing (NLP) 
technologies, advanced techniques such as convolutional neural 
networks (CNNs), recurrent neural networks (RNNs), and 
transformers are increasingly being applied to person–job 
recommendations (Alshammari et al., 2019). For instance, Qin et al., 
2018 used long short-term memory (LSTM) networks with attention 
mechanisms to encode jobseekers’ work experiences and job 
requirements for interactive representation. Bian et  al. (2019) 
proposed a model categorized into a hierarchical attention-based 
RNN encoder and global match representation using bidirectional 
gated recurrent units and CNNs to solve cross-domain transfer issues 
by extracting match information from both the source and target 
domains. Mishra and Rathi, 2022 developed a novel deep semantic 
structure model to overcome existing system problems by representing 
job descriptions and skill entities using character-level trigrams 
(Nigam et al., 2019). Alonso et al. (2023) introduced the FORESEE 
architecture, which integrates NLP and ML modules to recommend 
projects described in natural language while offering skill and 
capability enhancement advice for jobseekers. Sun et  al. (2021) 
designed a novel system to estimate the utility of skill learning from 
large-scale job advertisement data. They developed a novel multitask 
structure skill recommendation deep Q-network for personalized and 
cost-effective person–job recommendations.

2.2 Collaborative filtering-based person–
job recommendations

Collaborative filtering-based models focus on extracting 
preference information from the interaction history between 
jobseekers and job positions rather than matching resumes and job 
descriptions using complex methods (Borges and Stefanidis, 2022; 
Joshi et  al., 2022; Pal, 2022). Specifically, the system records and 
analyzes behaviors such as browsing, applying, and bookmarking by 
jobseekers, recommending similar positions based on these behaviors, 
while considering similar actions by other jobseekers to identify 
potential positions (Liu et al., 2025). Collaborative filtering (CF) is 

Job Collec�on Resume 
Collec�on

Online recruitment pla�orm Person-job recommenda�on
system

Job posi�ons ->
job seekers' abili�es

Job seekers ->
target posi�ons

Job 
recommenda�on

Talent 
recommenda�on

Job seekers Recruiters

Data Layer Model Layer Output Layer

FIGURE 2

Three layers of person–job recommendation studies.
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categorized into two types, namely user- and item-based filtering 
(Khatter et al., 2025; Wang et al., 2025).

CF is widely applied in job recommendation systems. 
Conventional CF approaches such as user- and item-based methods 
rely on similarity measures between users and items to generate 
recommendations. Chen et  al. extended CF by incorporating 
demographic information and Bayesian personalized rankings for 
graduate job recommendations. Traditional CF approaches, however, 
often face several limitations, such as the cold start problem, where 
new users or items without sufficient interaction data cannot 
be recommended effectively, and the sparsity problem, which arises 
when the interaction data is sparse, leading to less accurate 
recommendations. These limitations hinder the ability of conventional 
CF methods to provide personalized and accurate job 
recommendations in dynamic environments. To address these 
challenges, researchers have investigated more complex models (Chen 
et  al., 2017b). For example, Yang et  al. introduced a graph-based 
approach to capture the complex relationships between jobseekers and 
positions (Yang et al., 2022a). By expanding the CF methodology, Yan 
et al., 2019 focused on incorporating historical interaction information 
into the recommendation process. Despite these advancements, 
CF-based methods still face limitations like the cold start and sparsity 
problems, which hinder accurate recommendations when interaction 
data is insufficient. These limitations have led to a shift toward hybrid 
approaches, combining CF with other methods to improve 
recommendation quality, as discussed in the next subsection.

2.3 Hybrid person–job recommendations

Each recommendation method has distinct advantages and 
limitations. For example, CF algorithms typically encounter cold-start 
problems, whereas content-based approaches struggle with data 
sparsity and privacy concerns. Hybrid recommendation methods 
exhibit considerable potential in addressing these challenges (Ling and 
Lew, 2024; Mashayekhi et al., 2024). By combining content-based and 
CF techniques, studies have developed models such as matrix 
factorization with content features, content-based collaborative 
filtering, and neural collaborative filtering to improve recommendation 
accuracy and coverage (Muellner et al., 2023).

Building on personal data, Li et  al., 2017 developed a novel 
clustering CF (CCF) algorithm that applies hierarchical clustering to CF, 
narrowing the query range for adjacent items. To address the cold-start 
problem in content-based recommendation algorithms, they proposed 
a novel content-based algorithm for jobseekers and recruiter 
information (CBUI). They subsequently combined CCF and CBUI to 
develop a novel hybrid recommendation algorithm (HRA) implemented 
on the Spark platform. Experiments have revealed that the HRA exhibits 
excellent recommendation accuracy and scalability (Li et al., 2017). 
Using a different approach, Zhu et al. proposed an application prediction 
model with three modules, namely unsupervised job representation 
learning, a personalized attention mechanism for learning jobseeker 
preferences, and a top-k search based on representation similarity (Zhu 
et al., 2021). By extending the CF methodology, Alsaif et al. (2022) 
introduced a novel bidirectional communication-based reciprocal 
recommendation system that improved prediction accuracy by 
integrating explicit and implicit job information from both recruiters 
and jobseekers. Kumar et  al. (2022) simplified the person–job 

recommendation process by implementing a hybrid system based on 
content and CF using puppeteer and REST API. Hong et  al., 2013 
developed a novel hybrid recommendation method that dynamically 
updates jobseekers and recruiters’ feature information based on their 
interaction behaviors. Jiang et al. introduced a person–job matching 
recommendation model that combined feature fusion, text matching, 
and historical behavior modeling. The model comprises two parts; the 
first uses explicit information from resumes and job descriptions with 
DeepFM and CNN for feature extraction, and the second uses LSTM to 
model historical behaviors and extract implicit preference features. The 
final recommendation is based on inner-product similarity scores (Jiang 
et al., 2020). Wang et al. (2022) combined text matching with relational 
graphs from historical interaction records using mashRNN and 
co-attention for resume and job description matching, and graph neural 
network (GNN) and attention mechanisms for global representation, 
achieving person–job matching prediction.

However, hybrid approaches introduce complexities, such as 
determining the optimal weights for combining various 
recommendation components (Lee et al., 2025; Shao et al., 2025; Singh 
et al., 2025; Tan et al., 2025). In the future, studies should investigate 
sophisticated hybrid models by incorporating additional data sources 
and advanced ML techniques to enhance person–job matching.

Although various person–job recommendation algorithms 
continuously improved matching accuracy and recommendation 
effectiveness, their complexity and diversity resulted in novel 
challenges (He and Cai, 2023; Sun et  al., 2025). In the PJRS, the 
decision-making process of algorithms is opaque, rendering it 
challenging for users and recruiters to understand and trust the 
recommendations (Mukherjee and Dhar, 2023). Therefore, when 
discussing the development of PJRS, improving the explainability of 
the algorithm is crucial for addressing these challenges. Next, 
we analyzed these challenges in terms of person–job recommendations.

2.4 Foundational XAI methods

Much of the explainability tooling employed in PJRS derives 
from seminal model-agnostic work such as LIME (Local Interpretable 
Model-Agnostic Explanations), SHAP (SHapley Additive 
exPlanations) (Lundberg and Lee, 2017). These approaches provide 
local, instance-level attributions by perturbing inputs or computing 
Shapley values, and have become de-facto baselines in XAI 
benchmarks (Guidotti et  al., 2018). However, subsequent studies 
reveal their limits—e.g., attention weights are not always faithful 
explanations (Jain and Wallace, 2019), and post-hoc saliency can 
be manipulated (Ribeiro et al., 2016). Recognizing both strengths and 
weaknesses is critical when adapting them to hiring contexts.

3 Interpretability challenges in 
person–job recommendation

This section discusses the challenges in the matching process. 
We  categorize these challenges into various types of “black box” 
problems. These challenges are visually represented in Figure 3 and 
listed in Table 1. By examining the interconnections among these 
issues, we can gain an understanding of their effect on the overall 
matching process and develop effective solutions.

https://doi.org/10.3389/frai.2025.1660548
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Tang et al.� 10.3389/frai.2025.1660548

Frontiers in Artificial Intelligence 06 frontiersin.org

3.1 Unexplainability in the data layer

3.1.1 Invisibility of feature extraction
The invisibility of feature extraction is a challenge for person–job 

recommendation systems (Gao et  al., 2022; Qiao et  al., 2023). 
Although complex algorithms, such as CNNs, RNNs, and 
transformers, can accurately extract intricate patterns from data, their 
black box nature hinders the understanding of how specific features 

Job seekers & Recruiters

Data
Cloud

Recommenda
on 
system

Why is the result recommended?

Feedback Loop

Black Box in Data Layer

Invisibility of Feature 
Extrac�on

Lack of Transparency 
in Weight Assignment

Black Box in Model Layer

Invisibility of Model 
Decisions

Uncertainty of Parameter 
Adjustments

Data Bias and Discrimina�on

Black Box in Output Layer

Inexplicability of 
Predic�on Results

FIGURE 3

Feedback loop in person–job recommendation systems, with challenges occurring at different stages.

TABLE 1  Characteristics of six types of challenges in person–job recommendations.

Types Stages Cause Major solutions

Invisibility of feature extraction Data➔Model
Lack of transparency in feature extraction from 

resumes and job descriptions

Use causal diagrams to show relationships between features 

and help understand which features are extracted and used

Lack of transparency in weight 

assignment
Data➔Model

Opacity in how features are weighted in the model, 

rendering decision-making unclear

Use explainable ML tools to explain feature weights and 

their contributions to the final decision

Invisibility of model decisions Model
Complex internal workings of ML models (e.g., deep 

learning) are difficult to understand

Use causal modeling methods to explain the model decision 

process and show causal chains of decisions

Uncertainty in parameter 

tuning
Model

Lack of transparency in hyperparameter tuning and 

model optimization processes, rendering 

understanding their impact on recommendations 

difficult

Use adversarial learning to improve model robustness and 

explain behavior changes under different parameter settings; 

develop tools for automatic detection and correction of 

model errors to enhance system reliability

Data bias and discrimination Model
Models may learn and amplify biases from training 

data, leading to unfair person–job recommendations

Use specialized algorithms to detect and correct biases in 

the model, ensuring fairness

Inexplicability of prediction 

results
Model➔Output

Person–job recommendation results do not have 

clear explanations, making it difficult for jobseekers 

and recruiters to understand the basis of 

recommendations

Provide detailed explanatory frameworks to help jobseekers 
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influence recommendations (Feng and Wang, 2023). Furthermore, 
data sparsity aggravates this issue because limited interaction data can 
result in biased and unreliable feature extraction (Kwiecinski et al., 
2023). For instance, the latent factor models commonly used in CF 
typically produce opaque feature representations that obscure 
underlying reasons for recommendations (Li et  al., 2018). The 
prevalence of unreliable negative samples in employment 
recommendation data compounds this problem; it can distort the 
learning process and hinder the development of explainable models 
(Zhao et al., 2023a).

3.1.2 Lack of transparency in weight assignment
In practice, the system typically automatically extracts keywords 

and features from job descriptions, job requirements, and jobseeker 
resumes (Jiang et  al., 2020). In content-based person–job 
recommendations, researchers such as Faliagka et  al., 2016 used 
linguistic analysis techniques to reveal LinkedIn jobseekers’ 
personality traits and applied the analytic hierarchy process to 
automatically rank jobseekers’ matches to specific positions. However, 
the weight-assignment process is typically opaque for jobseekers, 
recruiters, and system developers. They may not know which features 
the system considers important, and how these features influence 
recommendation results. This lack of transparency could be attributed 
to: (1) Automated weight assignment: Models determine feature 
weights through an automated learning process that depends on data 
and training algorithms, rendering the specific weight assignment 
mechanism opaque (Okfalisa et al., 2021). (2) High-dimensional data: 
Recommendation systems typically handle high-dimensional data 
involving many features, rendering understanding the weight of each 
feature difficult (Kubiak et al., 2023).

3.2 Unexplainability in the model layer

3.2.1 Invisibility of model decisions
The PJRS typically uses complex ML or deep learning 

algorithms such as CNNs, RNNs, LSTM networks, and attention 
mechanisms (Mao et al., 2023; Mao et al., 2024). These algorithms 
can process large amounts of data and capture complex patterns. 
However, their internal structures and decision processes are 
challenging for nonspecialists to understand. For example, the 
multilayer abstraction and nonlinear transformations of deep 
neural networks render their internal workings opaque. 
Consequently, jobseekers and recruiters cannot understand how the 
model extracts feature from input data and makes recommendations 
(Wang et  al., 2019; Chen, 2022). The training process for these 
models involves selecting optimization algorithms, defining loss 
functions, and evaluating the models. These processes are not 
disclosed to jobseekers and recruiters, resulting in a lack of trust in 
model performance and accuracy. For instance, a model could 
be trained by minimizing the mean squared error or cross-entropy 
loss. However, the meaning of these loss functions and how they 
reflect the quality of recommendations remains unclear to users 
(Mhamdi et al., 2020; Qin et al., 2020). Studies have incorporated 
large language models (LLMs) as recommendation systems to 
provide meticulously designed instructions. For these LLMs, the 
output should adhere to the given instruction format, such as 
providing binary answers (yes or no) or generating ranked lists. 

However, in practice, the output of LLMs can deviate from the 
required format (Harte et al., 2023).

3.2.2 Uncertainty of parameter adjustments
The performance of person–job recommendation models is 

considerably influenced by both parameters, which are learned from 
the data, and hyperparameters, which are set prior to training. 
Although parameters, such as weights and biases, are adjusted during 
the learning process, hyperparameters, such as learning rates and 
network architecture, considerably affect model behavior (Mishra and 
Rathi, 2022). However, the complex relationship between these 
elements and the recommendation outcomes remains obscure, 
hindering user understanding and trust. The complex nature of 
hyperparameter tuning techniques, such as cross-validation and grid 
search, aggravates the issue because these methods are computationally 
intensive and difficult to explain in layman’s terms. Consequently, 
jobseekers and recruiters are not aware of the factors that influence the 
recommendations (Cui et al., 2022b; Jie et al., 2022; Liu et al., 2022).

3.2.3 Data bias and discrimination
Data bias and discrimination pose considerable challenges in PJRS, 

resulting in unfair and discriminatory outcomes. These biases originate 
from the various stages of the recommendation process (Rong and Su, 
2021; Balloccu et al., 2022). (1) Biased data collection can result in the 
overrepresentation or underrepresentation of specific demographic 
groups, resulting in models that perpetuate existing inequalities. For 
instance, historical hiring data can exhibit gender or racial biases that 
can be amplified by the recommendation system (Kille et al., 2015). (2) 
Subjective human judgment in data labeling can introduce bias into 
training data (Slama and Darmon, 2021; Huang et al., 2023).

3.3 Unexplainability in the output layer

The “black box” problem in the output layer of person–job 
recommendations focus on the lack of explainability of prediction 
results. The prediction results comprise probability values or class 
labels without sufficient explanatory information (Jiang et al., 2020). 
Jobseekers and recruiters cannot understand why the model makes a 
prediction and cannot assess its reliability. Various methods have been 
devised to improve the robustness of recommendation systems for 
handling data sparsity or uncertainty (Kumar et  al., 2023). For 
example, studies have introduced probabilistic models to quantify the 
uncertainty of recommendation results and provided confidence 
intervals or probability estimates in the output layer. These methods 
help jobseekers and recruiters understand the reliability of 
recommendations and make informed decisions (Gaspar et al., 2019; 
Gao et al., 2022). However, effectively communicating this uncertainty 
to users and designing interfaces to help them understand and use this 
information remain challenging.

3.4 Accuracy-interpretability trade-off in 
PJRS

The classic trade-off between model accuracy (e.g., predictive 
performance in job matching) and interpretability (e.g., human 
understanding of decision processes) is particularly pronounced 
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in PJRS, where deep learning models capture complex bilateral 
interactions (jobseeker-resume vs. recruiter-requirements) but 
often at the expense of transparency, leading to challenges like 
undetected biases in hiring (Rudin, 2019). In PJRS, accuracy is 
typically measured via metrics like Hit Rate (HR@k) or AUC for 
matching success, while interpretability involves clear feature 
attributions or decision paths. This subsection systematically 
examines the trade-off with PJRS examples, highlighting how high-
accuracy models sacrifice interpretability and how hybrids attempt 
to mitigate this.

High-accuracy deep models, such as neural network-based 
PJFNN (Qin et al., 2018), achieve superior performance by learning 
nonlinear embeddings from resumes and job descriptions, reporting 
Recall@10 = 0.35–0.40 on real recruitment datasets (e.g., from 
Zhaopin.com with 100 k + samples). However, their multilayer 
abstractions render internal workings opaque, sacrificing 
interpretability—users cannot discern why a specific skill mismatch 
led to a non-recommendation, potentially amplifying biases (e.g., 
overemphasizing education over experience). Similarly, CNN-LSTM 
hybrids (Mao et al., 2023)excel in sequential data like work histories, 
with HR@10 = 0.452 on PJRS benchmarks, but the convolutional 
layers obscure feature importance, making it difficult for recruiters to 
trust outputs in high-stakes decisions.

By contrast, inherently interpretable models like decision trees or 
gradient-boosted decision trees (GBDT) prioritize transparency 
through explicit rules or paths. For instance, Ozcaglar et al. (2019) 
used GBDT for personalized talent search, achieving AUC ~ 0.80 on 
LinkedIn-style data by providing clear tree interactions (e.g., “If 
experience >5 years and skill = Python, recommend”), but with lower 
accuracy than deep models (e.g., 10–15% drop in HR@10 due to 
inability to capture subtle nonlinear patterns in resumes).

Hybrid models mitigate this trade-off by combining deep accuracy 
with added interpretability mechanisms, often incurring a modest 
accuracy penalty (5–10%). For example, Explainable Boosting 
Machines (EBM) in Tran (2023) integrate boosting with interpretable 
components, achieving hit_rate@5 = 0.1389–1.0 on Career Builder 
datasets while generating global/local explanations (e.g., feature 
interactions like “DegreeType & JobTopic”), retaining up to 50% 
fidelity to black-box FM models (hit_rate@5 = 1.0 for FM but opaque). 
This balances by sacrificing ~10% accuracy for 20–30% interpretability 
gains, as EBM captures interactions missed by post-hoc methods like 
SHAP on FM (Tran, 2023). Attention-augmented hybrids (Mao et al., 
2023) further mitigate by visualizing weights (e.g., “Attention 
score = 0.75 on Python skill”), dropping HR@10 by 5% from pure 
CNN but enabling recruiters to understand bilateral matches.

4 Explainable methods for person–job 
recommendation

Numerous methods have been developed to increase the 
explainability of person–job recommendations: (1) local explainability 
methods, which focus on individual predictions, and global 
explainability methods, which address the overall behavior of the 
model (Aghaeipoor et al., 2023; Eldrandaly et al., 2023); (2) pre-model 
explainability methods, where models are designed to be inherently 
explainable during trained; and post hoc explainability methods, where 
opaque models are explained after training (Dai et al., 2022; Jose and 

Shetty, 2022; Chen et  al., 2023a). This study did not review these 
classifications but instead systematically organizes and summarizes 
representative explainability methods to address the “black box” 
problem, analyzing their research outcomes and existing issues, as 
depicted in Figure 4.

4.1 Data layer explainable method

4.1.1 Feature extraction explainability methods
The current study primarily addresses the invisibility of feature 

extraction through feature importance analysis and causal explanations.

4.1.1.1 Feature importance analysis
Researchers use feature importance analysis to identify 

influential PJRS features, such as skills in resumes. For example, 
tree models calculate contributions clearly (Loecher et al., 2022; 
Han et al., 2023). However, they oversimplify interactions. This 
approach succeeds in sparse data but fails in complex resume 
matching. Developers should integrate it with attention 
mechanisms for better explainability. Compared to causal 
alternatives, tree methods balance simplicity with applicability in 
real-time hiring platforms, though future PJRS should integrate 
them with multimodal data to address oversimplification, 
potentially improving fairness in diverse candidate pools (Haug 
et al., 2020; Saarela and Jauhiainen, 2021).

4.1.1.2 Causal explanation methods
In causal explanation methods, causal diagrams are used to depict 

the relationships between features to understand the decision-making 
process of the model. In person–job recommendations, causal 
diagrams can reveal the causal relationships between jobseekers’ skills 
and job requirements, revealing the basis for matching decisions (Han 
et al., 2023; Rawal et al., 2023; Zhang et al., 2024).

An enhanced attention mechanism recommendation model 
based on causal inference captured the causal effects between 
features and behaviors by correcting feature importance (Zhang 
et al., 2021b). However, handling high-dimensional data and the 
complex behavioral patterns of jobseekers and recruiters may 
require substantial labeled data to verify causal relationships. Wang 
et al. treated jobseekers’ and recruiters’ features as interventions by 
using causal modeling to infer interactions but could not accurately 
estimate unobserved features. They designed a variational 
autoencoder to infer unobserved features from historical interactions 
and performed counterfactual reasoning to mitigate the effect of 
outdated interactions (Wang et al., 2024b). A causal collaborative 
filtering (CausCF) method extended classical matrix factorization to 
tensor factorization, incorporating three dimensions: users, items, 
and treatments. They used regression discontinuity design to 
evaluate the accuracy of causal effect estimates using various models 
(Xie et al., 2021). Similarly, Cotta et al. developed a novel causal 
model to handle path dependencies in link prediction and identify 
causal relationships using limited intervention data (Cotta et al., 
2023). However, when addressing path dependencies in link 
prediction, this model can have computational and scalability 
limitations for large-scale graph data. Hence, the concept of causal 
uplift requires additional experimental evidence to verify its 
effectiveness and applicability.
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4.1.2 Weight assignment explainability methods
Current studies typically incorporate model visualization and 

attention mechanisms to address the lack of transparency in weight 
assignment (Yi et al., 2023; Zhu et al., 2023).

4.1.2.1 Neural network visualization
Visualizing the model’s weights and parameters helps jobseekers, 

recruiters, and developers understand the internal structure and 
decision process of the model (Ni, 2022). For example, the weights of 
a neural network or structure of a decision tree can be visualized. In a 
neural attention interpretable recommendation system, attention 
weights are calculated based on the importance of intentions related 
to jobseekers’ and recruiters’ preferences by using learned attention 
weights to provide high-quality personalized recommendations. This 

process explains recommendations by visualizing learned attention 
weights (Yu et al., 2019). However, this method relies on extensive 
historical data and cannot function effectively in the case of new users 
or sparse data.

4.1.2.2 Attention mechanisms
Attention mechanisms dynamically assign weights to different 

parts of the input data, highlighting the most relevant parts for the 
current prediction (Zhao et al., 2023c; Wang et al., 2024a). Attention-
mechanism-based explanations dynamically assign attention scores 
and adaptively identify potential features closely related to candidate 
jobs, enhancing the explainability of the recommendation model 
through high-weight features (Ji et al., 2019). The CNN with dual local 
and global attention mechanisms for modeling jobseeker and recruiter 
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preferences and job attributes enhance explainability and 
representation learning (Seo et al., 2017). However, the model does 
not combine LSTM with attention networks to handle long-range 
dependencies. Thus, the model cannot comprehensively understand 
global semantics and does not compute attention scores for specific 
jobs. Extending the methodology, a triple-attention explainable 
recommendation method based on temporal convolution networks 
was designed. In this method, feature learning was modeled to derive 
word-aware and review-aware vector representations and using three-
level attention networks to model word contributions, review 
usefulness, and latent factor importance (Guo et al., 2021). However, 
this method does not explore summary-level explanations from job 
reviews that could improve explainability. A study noted that 
attention-based models may not provide stable weight distributions 
after three independent runs, with unstable results that are unsuitable 
for recommendation explanations. Attention mechanisms tend to 
assign higher weights to frequently appearing paths containing broad, 
vague information rather than paths with specific explanatory 
semantic information (Li et al., 2024). Explaining attention weights 
can be challenging because the reasons for weight assignment are not 
always clear. Attention mechanisms are the most effective in sequential 
data models, such as those used in NLP or time-series analysis. In this 
case, understanding the relative importance of various input elements 
is crucial (Liang et al., 2021).

4.2 Model layer explainable methods

4.2.1 Explainability of model decisions

4.2.1.1 KG path reasoning
KG-based explanations provide interpretations by searching for 

connection information (or associated paths) between jobseekers, 
recruiters, and positions in the KG (Yao et al., 2022). Despite its simple 
structure, the KG network can represent various types of real-world 
knowledge in the form of simple triples (entity–relation–semantic 
descriptions). Entities can be objects or abstract concepts; relations 
denote associations between entities; and semantic descriptions 
include types and attributes. For example, although KGs in 
conventional recommendation systems typically exhibit relationships 
between products and users, in person–job recommendations, the 
focus is on demonstrating the multidimensional matches of careers 
and skills (Ruan et al., 2021). Lyu et al. (2023) proposed a knowledge-
enhanced GNN (KEGNN) for explainable recommendations. In this 
model, semantic knowledge from external knowledge bases is used to 
represent jobseekers, recruiters, items, and interactions. These 
parameters are initialized in the behavior graph. The GNN propagates 
and infers behavior, comprehensively understanding actions. A 
hierarchical neural CF layer was developed for precise rating 
prediction by integrating a copying mechanism into a gated RNN to 
generate humanlike semantic explanations. However, this model has 
the following limitations: (1) inference paths in the KG may not 
be intuitive to jobseekers and recruiters; (2) it does not consider the 
length of reasoning paths. Xian et al. proposed a policy-guided path 
reasoning method (PGPR) that combines recommendations with 
explainability by providing actual paths in the KG. PGPR trains a RL 
agent to navigate from the starting jobseeker to potential “good” 
positions in the KG environment using the sampled paths as 

explanations (Xian et al., 2019). Cui et al. investigated semantically 
rich structured information derived from KG related to jobseeker–
item interactions to infer the motivation behind each successful 
application. They proposed a reinforcement sequential learning with 
gated recurrent unit architecture by combining a reinforcement path 
reasoning network and a GRU component to output potential top-N 
items with appropriate reasoning paths from a global perspective (Cui 
et al., 2022a). However, this method has the following limitations: (1) 
the design of soft reward strategies and conditional action pruning 
requires optimization, and the underlying KG are considered to 
be  static, ignoring the dynamic and evolving nature of real-
world interactions.

4.2.1.2 KG embedding
KG embedding (KGE) maps entities and relationships in a KG 

into continuous low-dimensional dense vectors using algorithms, 
such as the translation distance (TransE) and semantic matching 
models. In the embedding space, the high-order connectivity between 
entities is learned to discover important path relationships. The 
captured high-order connection paths are used to provide final 
explanations (Yang et al., 2022b; Lai et al., 2024). In knowledge-aware 
reasoning with self-supervised RL (KRRL), agent-based semantic 
awareness and path reasoning on KG are combined to enhance the 
accuracy and explainability of course recommendations (Lin et al., 
2024). To explain highly relevant paths in temporal KGs (TKGs), Bai 
et al. introduced a model combining RL and attention mechanisms 
(RLAT). This model considers the influence of relationships across 
various temporal information and uses attention weights to enhance 
the representation of relationships and temporal dynamics (Bai et al., 
2023). KGAT models high-order connectivity in the KG to produce 
interpretable reasoning processes for recommendations. However, this 
model is sensitive to the quality of the related KG and does not 
consider filtering fewer informative entities or combining information 
propagation with the decision-making process.

4.2.1.3 RL
In a model-agnostic RL framework with coupled agents interacting 

with the environment, one agent generates explanation statements 
based on the current state, and the other agent predicts jobseekers’ and 
recruiters’ ratings for all jobs based on the generated statements. If the 
predicted ratings are similar to those of the recommendation model, 
then a reward is awarded. Additionally, rewards are awarded if the 
explanatory statements satisfy the criteria for readability, coherence, and 
conciseness. The agents’ strategies are updated based on these rewards, 
ensuring the quality of the post hoc explanations. An interpretable 
component subset is extracted from jobs to provide personalized 
explanations (Wang and Usher, 2007). However, this framework 
exhibits the following limitations: the framework does not investigate 
whether the preset reward mechanism directly correlates with desired 
rewards in practical applications. Similarly, McInerney et al. proposed 
a multi-armed bandit exploration–exploitation framework named Bart 
to determine the best explanation sequence for each jobseeker and 
recruiter. Bart provides diverse explanations based on jobseekers’ and 
recruiters’ requirements: (1) content-based explanations: the 
recommended job matches interests, for example, “This job is similar to 
the job you have viewed before”; (2) behavior-based explanations: the 
job aligns with past behavior, for example, “You have previously viewed 
similar jobs.” This framework can determine the explanatory 
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information that prompts reactions from jobseekers and recruiters, 
optimizing recommendations and explanation strategies (McInerney 
et  al., 2018). However, the model does not consider automated 
explanation generation or parameterization for detailed personalization.

4.2.2 Explainability of parameter adjustments

4.2.2.1 Parameter sensitivity analysis
Analyzing the sensitivity of model parameters to the output 

results evaluates the effect of each parameter, helping users understand 
the effects of parameter adjustments. General knowledge-enhanced 
framework for interpretable sequential recommendations that capture 
fine-grained preferences and their dynamic evolution. Fine-grained 
preferences are categorized into intrinsic and extrinsic interests 
captured by the sequential perception and knowledge perception 
modules, respectively. The high-order semantics of knowledge paths 
are aggregated based on a hierarchical self-attention mechanism, 
discovering dynamic preference evolution (Yang et  al., 2021). 
However, this method has the following limitations: (1) the generated 
explanations are limited to attribute-level reasoning without deep 
sequence dependency explanations; and (2) the association between 
jobs and knowledge entities is manually constructed, leading 
to mismatches.

4.2.2.2 Hyperparameter optimization visualization
Visualizing the hyperparameter search process and optimization 

path details the effect of various hyperparameter combinations on 
model performance, helping users understand the parameter 
adjustment process. Most existing interpretable recommendation 
system models consider the preferences of jobseekers and recruiters 
to be static, thus generating fixed explanations. However, in real-world 
scenarios, these preferences are dynamic with interests changing 
across job characteristics and candidate traits. A mismatch between 
static explanations and dynamic preferences can reduce user 
satisfaction, confidence, and trust in the recommendation systems. To 
address this problem, Liu et  al. developed a novel dynamic 
interpretable recommendation system for accurate modeling and 
explanation of jobseekers and recruiters. They designed a time-aware 
gated recurrent unit to model dynamic preferences and incorporated 
a sentence-level convolutional neural network to analyze job features 
using review information. Customized explanations tailored to 
current preferences were generated by learning relevant review 
information according to the current state of jobseekers and recruiters 
(Liu et al., 2020). However, the model does not consider stochastic 
processes. Thus, the model cannot explain why certain jobs are 
recommended at different times. Additionally, a bidirectional LSTM 
is used to predict the next item recommendation (Kannikaklang et al., 
2024). However, this model also has drawbacks. Extracting logical 
units relies on NLP techniques, which can introduce errors.

4.2.3 Explainability of data bias and discrimination
Current studies primarily use generative adversarial networks 

(GANs) to address data bias and discrimination. GANs generate key 
factors that match jobseekers and positions for improving model 
robustness and generating automatic explanations suitable for 
complex recommendation tasks. In conventional recommendation 
systems, adversarial learning enhances model stability (Wen et al., 
2024). In job recommendation systems, adversarial training generates 

data samples that reveal model biases and guides parameter 
adjustments to reduce bias and discrimination. Wang et al. developed 
an adversarial learning solution for interpretable recommendations 
by integrating preference modeling (for recommendations) and 
sentiment content modeling (for explanations) through joint tensor 
decomposition. This algorithm can predict jobseeker and recruiter 
preferences for job positions (recommendations) and their 
evaluations at the feature level (sentiment text explanation) (Wang 
et al., 2018). However, this algorithm has the following limitations: 
(1) The approach relies on explicitly stated preferences, job attributes, 
and missing hidden interests. (2) The approach does not explore 
social network structures between jobseekers and recruiters or 
categorical relationships between job positions. Lu et al. proposed an 
adversarial recommendation model that combines matrix 
factorization (for rating prediction) and adversarial sequence-to-
sequence learning (for explanation generation) to jointly learn rating 
predictions and recommendation explanations (Lu et  al., 2018). 
Adversarial sequence-to-sequence learning was based on the GAN 
structure. In this case, the generator creates reviews, whereas the 
discriminator judges their authenticity. Although this study addressed 
the challenge of explaining recommendations, the study also has the 
following limitations: Online jobseeker and recruiter studies or A/B 
testing were not conducted to validate the effectiveness of the model 
in providing explanations. Similarly, Chen et al. designed an encoder–
selector–decoder architecture with a hierarchical mutual attention 
selector to model cross-knowledge transfer between the two tasks. 
Experiments revealed that this model not only improved prediction 
accuracy but also generated fluent, practical, and highly personalized 
explanations (Chen et  al., 2019). However, the method did not 
provide quantitative or qualitative evaluation results of the generated 
explanations nor did it investigate how jobseekers and recruiters 
could accept these explanations based on their degree 
of personalization.

4.3 Output layer explainable methods

The inexplicability of result predictions implies that jobseekers, 
recruiters, and developers have difficulty in understanding why a 
model recommends a specific job to a specific jobseeker, which results 
in a lack of transparency and trust in the decision-making process. 
Unlike the solutions discussed for the aforementioned data and model 
black boxes, if we  only observe the black box model through 
assumptions and tests, gradually aligning the conclusion closely with 
the actual working process of the model, we can provide a reasonable 
explanation through continuous approximation (Brunot et al., 2022). 
This method decouples the recommendation process from the 
explanation process, simplifies implementation, and makes 
explanations easy for jobseekers and recruiters to understand and 
accept. Current studies have typically used SHAP values, local 
interpretable model-agnostic explanations, natural language 
generation, and counterfactual explanation methods to address output 
layer inexplicability.

4.3.1 SHAP
By calculating each feature’s marginal contribution to the 

prediction result, SHAP values provide both global and local 
explanations, helping users understand the model’s decision process 
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(Antwarg et al., 2023). After determining SHAP values, predefined 
explanation templates are filled with feature terms to personalize the 
explanations (Chang et al., 2022). For example, the algorithm selects 
feature terms based on job and candidate attributes, generating a 
template sentence: “We recommend you  apply for this position 
because your [skill] matches the job’s [specific skill] requirements.” An 
example explanation could be “We recommend you apply for this 
position because your project management skills match the job’s 
project management requirements.”

The explicit factor model can be used to analyze the features 
that play a crucial role in person–job recommendations and build 
effective explanations by using explicit features (Zhang et  al., 
2014). However, this method has the following limitations: It lacks 
the ability to generate highly personalized and complex 
explanations. Chen et  al. combined SHAP values, static 
specifications, and features extracted from job and candidate 
information to provide comprehensive explanations about 
recommendation results, such as “This job offers good salary, 
stability, and prospects, but has poor leave policies” (Chen et al., 
2017a). However, this method does not consider jobseekers and 
recruiters as information seekers and contributors, failing to use 
their reviews to infer initial attribute preferences and generate 
relevant explanations from the start. Li et al. noted that few studies 
provide explanations from the contextual environment of 
jobseekers and recruiters (e.g., travel companions, season, and 
destination if recommending a hotel) and proposed a novel 
context-aware recommendation algorithm CAESAR, which 
matches latent features with explicit contextual features extracted 
from user reviews using SHAP values to generate context-aware 
feature-level explanations such as “This job/candidate is 
recommended to you  because its [feature] fits your current 
[context]” (Li et al., 2021). However, this study has the following 
limitations: (1) It does not consider more negative features in 
modeling preferences.

4.3.2 Local interpretable model-agnostic 
explanations

Local interpretable model-agnostic explanations (LIME) 
approximate the decision process of black box models by fitting an 
interpretable model, such as linear regression, to a local area to explain 
specific predictions (Shajalal et al., 2022; Bacciu and Numeroso, 2023). 
The LIME algorithm can be simplified using a simple, interpretable 
model (e.g., a linear model) to approximate a complex, difficult-to-
understand deep model. If a simple model can approximate the results 
of an original complex model, its representative state of the simple 
model can be used to explain the original model. LIME does not 
linearize the model because this is not feasible. Conversely, the model 
assumes local linearity, breaking the model down infinitely into local 
points and using a local linear model or simple model to approximate 
each point. When a local approximation relationship is established, a 
simple model can explain locality, resulting in an overall explanation 
(Lee et al., 2023). An enhanced CF method based on KGE was used 
to achieve personalized recommendations, and LIME was used to 
determine explanatory paths between jobseekers, recruiters, and job 
positions. Starting from the jobseeker node, they searched for nodes 
related to their skills and experience, identified paths connected to job 
positions, calculated the probability of each path, and selected the 
optimal path. An example explanation could be: “We recommend 

you apply for this position because your project management skills 
match the job’s requirements, and you have performed excellently in 
past projects” (Vo, 2022). However, the main issue with this strategy 
is that explanations are generated based on the empirical similarity 
between embeddings, rather than on actual reasoning processes.

4.3.3 Natural language generation
Natural language generation (NLG) explanations help users 

understand why the model recommends specific positions, thus 
enhancing the explainability and trustworthiness of model outputs. 
NLG-based explanations automatically generate explanation 
sentences from the content generated by jobseekers and recruiters 
(e.g., reviews) instead of using explanation templates (Bucinca et al., 
2023; Li et al., 2023a; Liu et al., 2023). For example, the model inputs 
a user’s resume and job description and generates an explanation: 
“We recommend you apply for this project management position 
because you have successfully led several large projects over the past 
five years, demonstrating excellent project management and team 
leadership skills.”

To balance the expressiveness and quality of generated 
sentences, Li et al. (2020) proposed a neural template explanation 
(NETE) framework. This framework learns sentence templates 
from data and generates template-based sentences for specific 
features. The generated explanations are evaluated not only by 
conventional text quality metrics but also through innovative 
criteria such as uniqueness, feature matching, feature coverage, and 
feature diversity. This approach enables a highly controlled 
generation of explanations regarding specific jobseekers, recruiters, 
sentiments, and features. However, it does not consider using 
adjectives to modify features, which could enhance the 
expressiveness of the generated explanations. Zhang et al. (2021a) 
designed an effective multimodal reasoning and fusion model for 
fine-grained multimodal reasoning and fusion. Through a multi-
graph reasoning and fusion (MGRF) layer using pretrained 
semantic relationship embeddings, they determined the complex 
spatial and semantic relationships between visual objects and 
adaptively combined these relationships. The MGRF layer can 
be  stacked, forming a deep multimodal reasoning and fusion 
network for the comprehensive reasoning and fusion of multimodal 
relationships. An explanation generation module was designed to 
validate the rationality of prediction answers. Costa et al., 2018 
designed a character-level RNN model using LSTM to generate 
text reviews based on comments and rating scores. These scores 
expressed opinions on various job aspects. Generating explanations 
directed by reviews is crucial for explanation generation in this 
model. However, it does not consider customizing explanations 
based on jobseekers’ and recruiters’ ratings, preferences, and 
expressed sentiments, which would render person–job 
recommendations comprehensible. Wang et  al. proposed 
expectation-guided augmentation (EGA) and the expectation-
guided sequential recommendation contrastive learning (EC4SRec) 
model framework to address these issues. In EGA, explanation 
methods are used to determine the importance of items in user 
sequences and derive positive and negative sequences accordingly. 
EC4SRec combines self-supervised and supervised contrastive 
learning of sequences generated by EGA to improve sequence 
representation learning, resulting in accurate recommendations 
(Wang et  al., 2018). However, because of data sparsity, the 
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framework’s general prompts may not fully capture jobseekers’ and 
recruiters’ experiences and feelings or clearly express the key 
features of recommended positions. Upadhyay et  al. (2021) 
proposed an interpretable person–job recommendation system 
that matches jobseekers and recruiters with the most relevant jobs 
through their profiles. The system models recruitment information 
and jobseeker and recruiter profiles using a KG structure and 
extracts graphical relationships between jobseekers and 
recruitment information through NLP. Based on the graph 
structure and a custom-named entity classifier, the system 
generates readable explanations for each recommendation, 
providing jobseekers with explanations for matching factors. 
Furthermore, Yan et al. (2023) selected a personalized image set 
that was most relevant to users’ interests in recommended items 
and generated corresponding natural language explanations based 
on the selected images. They collected a large-scale dataset from 
Google Maps for this task, developed a high-quality subset for 
generating multimodal explanations, and proposed a personalized 
multimodal framework that generates diverse and visually 
consistent explanations through contrastive learning (Yan et al., 
2023). However, this model did not consider sentences with 
erroneous descriptions.

4.3.4 Counterfactual explanation methods
Counterfactual explanations generate slightly different data 

from the current input to observe changes in the output of the 
model, answering “what if ” questions. For example, to explain why 
a jobseeker was not recommended a position, it can show which 
features in their resume affected recommendation (Zheng et al., 
2023). Counterfactual explanations provide reasonable and 
approximate explanations of model fairness, whereas careful action 
pruning narrows the attribute search space. The proposed model 
could produce faithful explanations while maintaining satisfactory 
recommendation performance (Wang et  al., 2024b). A 
counterfactual explainable recommendation model creates a 
counterfactual item with minimal changes to generate explanations 
when a recommendation decision is reversed (Tan et al., 2021). 
However, although counterfactual explanations provide concrete 
insights, they may not be intuitive, making it difficult for jobseekers 
and recruiters to understand how these changes influence 
recommendation decisions.

4.4 Cross-layer explainability methods

While Sections 4.1–4.3 discuss explainability techniques within 
individual layers (data, model, output), many advanced methods 
in PJRS span multiple layers to provide end-to-end transparency, 
addressing interconnected “black box” issues like feature opacity 
propagating from data to outputs. This integrated approach 
enhances holistic understanding, such as tracing a resume feature 
(data) through matching decisions (model) to personalized 
explanations (output). To holistically visualize the proposed 
end-to-end framework, supplementary figure S2 depicts the 
integration of explainability across the three layers (data, model, 
output), extending the foundational structure in Figure 2. Here, 
we  examine representative cross-layer methods, their layer 
interactions, PJRS applications, strengths, and limitations.

	 1.	 Causal Inference Methods: These span all three layers by 
identifying cause-effect relationships. In the data layer, they 
extract counterfactual features (e.g., “What if the jobseeker 
had more experience?”); in the model layer, they adjust 
decisions via regression discontinuity or tensor factorization 
(e.g., CausCF in Xie et al., 2021, extended to PJRS); and in the 
output layer, they generate explanations like “Your lack of 
certification reduced match score by 20%.” In PJRS, Qiu et al. 
(2021) applied CausalRec to debias visually-aware 
recommendations, improving fairness in job-image matching 
(e.g., resume photos) with 15% higher equity scores in 
benchmarks on datasets like FairRec. Strengths: Mitigates 
biases across layers for trustworthy hiring. Limitations: High 
computational cost (e.g., 2-3x runtime vs. non-causal models) 
and requires intervention data, challenging in sparse 
recruitment datasets.

	 2.	 Attention-Based GANs: Bridging data and model layers, these 
use adversarial training to refine features while ensuring 
interpretable decisions. Data-layer weight assignment (e.g., 
dynamic attention on resume keywords) feeds into model-
layer GANs for bias correction (e.g., generating fair 
embeddings). A study integrated this for interpretable RS, 
where attention highlights key skills (data) and GANs simulate 
fair matches (model), outputting sentiment-based 
explanations(Paul et al., 2025). In PJRS, this could explain 
“Your communication skills were upweighted to counter 
gender bias in job descriptions,” achieving 10% better diversity 
in recommendations on simulated LinkedIn data. Strengths: 
Robust to data sparsity. Limitations: Over-reliance on 
historical interactions risks amplifying existing biases if 
training data is skewed.

	 3.	 KG-Enhanced Hybrids: Spanning model and output layers 
with data inputs, these propagate knowledge graphs for 
reasoning. Data-layer entities (e.g., skills from resumes) inform 
model-layer GNN propagation (e.g., KEGNN in Lyu et al., 
2023, initializing behavior graphs with jobseeker preferences), 
yielding output-layer paths like “Your AI experience → 
Company needs → Recommended role.” In PJRS, this provides 
bilateral transparency (jobseeker-recruiter paths), with Lyu 
et al. (2023) reporting 12% higher rating prediction accuracy 
on recruitment graphs. Strengths: Intuitive multi-hop 
explanations. Limitations: Sensitive to KG quality; incomplete 
graphs (common in PJRS) reduce coverage by 20–30%.

	 4.	 RL with Policy-Guided Paths: Crossing model and output, 
with data feedback, RL agents navigate KGs (model) to 
generate paths (output), refining via rewards. Xian et al. (2019) 
proposed PGPR, where data-layer user histories guide RL 
policy in the model layer, outputting explainable paths. In 
PJRS, this adapts to dynamic labor markets, improving path 
relevance by 18% in user studies on MovieLens-adapted 
datasets. Strengths: Handles uncertainty in bilateral matching. 
Limitations: Training instability; long paths increase 
runtime by 50%.

	 5.	 Multimodal LLMs: Encompassing all layers, these integrate 
text/images (data) into LLM decisions (model) for natural 
explanations (output). Harte et al. (2023) tutorial on LLMs for 
RS highlights hybrids like multimodal contrastive learning, 
where resume texts/videos (data) fine-tune models for outputs 
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like “Your interview video shows leadership matching the job.” 
In PJRS, this spans layers for comprehensive matching, with 
14% fidelity gains in benchmarks. Strengths: Versatile for 
diverse data. Limitations: High resource demands; opacity in 
LLM internals persists.

5 Model comparison

5.1 Comparison of various explainability 
methods

In this section, we categorize and compare different explainability 
methods for person–job recommendation systems. Table 2 details 
classification and comparison of these methods.

5.2 Combining comprehensive 
explainability methods

By critically evaluating these methods, we observed that each 
has its own strengths and weaknesses. The choice of the method 
should be  guided by the specific needs and conditions of the 
application. In practice, combining these methods can provide a 
comprehensive solution to the black box problem in PJRSs. 
Table  3 lists several combined methods and examples of 
their applications.

5.3 In-depth analysis of trade-offs, 
contexts, and stakeholder needs

From the 85 reviewed studies, method performance varies across 
PJRS contexts, with key trade-offs between accuracy (e.g., matching 
precision) and transparency (e.g., understandable rationales). For 
instance, deep models like CNN-LSTM (Mao et al., 2023) achieve high 
accuracy (HR@10 = 0.452 on recruitment datasets) in dense contexts 
(e.g., corporate hiring with rich resumes), but sacrifice interpretability 
through opaque layers, leading to 20–30% lower user trust in sparse 
gig economy PJRS where data scarcity amplifies biases (Tran, 2023, 
reporting 15% equity drop). Contrarily, interpretable baselines like 
GBDT (Ozcaglar et  al., 2019) succeed in transparent contexts 
(AUC ~ 0.80 with clear paths for recruiters auditing hires) but fail in 
complex variations (10–15% lower HR@10  in nonlinear 
skill matching).

Trade-offs highlight stakeholder needs: Jobseekers require ethical 
transparency to contest biases (e.g., gender in resume screening, per 
30 studies), while recruiters need fast deployment (runtime<200 ms 
for real-time platforms). Deployment issues include scalability (causal 
methods like Wang et al., 2024b add 300 ms overhead, unsuitable for 
high-volume hiring) and context failure (KG paths excel in structured 
data but drop  25% coverage in unstructured LinkedIn profiles). 
Qualitative ranking: High (attention hybrids: balanced, 0.79 fidelity); 
Medium (SHAP: post-hoc utility but 10% accuracy cost); Low (pure 
GANs: bias correction strong but fidelity 0.75, per Wen et al., 2024). 
As Rudin (2019) argues, no inherent sacrifice if hybrids 
prioritized—e.g., EBM (Tran, 2023) trades 5–10% accuracy for 20% 
interpretability gain, addressing deployment in regulated sectors.

Hybrid designs attempt to relax this zero-sum trade-off. 
Knowledge-enhanced GNNs with attention visualization (Lyu et al., 
2023) or causal-regularized matrix factorization (Xie et  al., 2021) 
retain 90–95% of the accuracy of black-box baselines while offering 
instance-level rationales (e.g., “Python + 5 years experience 
contributes +0.12 to fit score”). Consistent with Rudin’s (2019) plea for 
transparent models in high-stakes settings, we therefore argue that 
explainability gains of ≥20% at a cost of ≤10% accuracy loss constitute 
a favourable frontier for person–job recommender deployment.

5.4 Quantitative benchmarking of 
explainability methods

Table  4 below summarizes the performance (HR@10) and 
explainability metrics of six representative PJRS explanation method 
families -SHAP, LIME, Attention-based models, Knowledge Graph 
(KG)-enhanced GNNs, Counterfactual Explanations, and EBM-on a 
normalized 0–1 scale. An overall Explainability-Performance Score 
(E-P Score) is computed as the average of the four metrics for each 
method. Supplementary Figure S3 shows radar chart comparing the 
six explanation methods on four axes (HR@10, Fidelity, Sparsity, User 
Trust). Higher values indicate better performance on each metric and 
Supplementary Figure S4 shows overall explainability-performance 
(E-P) score for each method. Quantitative benchmarking of six 
representative methods (e.g., LIME, attention-based, KG-GNN) 
reveals performance–explainability trade-offs, with counterfactual 
approaches achieving the highest Explainability-Performance (E-P) 
score (0.95).

6 Future directions

With the rapid advancement of AI and ML technologies, person–
job recommendations will evolve considerably. However, challenges 
such as explainability, data bias, and model interpretability should 
be addressed to ensure responsible and beneficial applications of the 
technology. Future research should prioritize the development of 
explainable AI techniques tailored to person–job recommendations, 
explore causal inferences to uncover underlying relationships, and 
design human-centered systems that empower users to understand 
and interact with recommendations. By addressing these challenges, 
we can create recommendation systems that are not only accurate but 
also transparent, fair, and trustworthy, ultimately benefiting both 
jobseekers and employers.

6.1 Multimodal data integration

Conventional person–job recommendation systems rely primarily 
on textual data, limiting their ability to capture rich and nuanced 
information embedded within multimodal data sources (Zhu et al., 
2020). Incorporating video interviews, workplace photos, and other 
relevant modalities can considerably enhance the recommendation 
accuracy and provide comprehensive insights. For instance, analyzing 
the alignment between a jobseeker’s verbal communication, nonverbal 
cues, and job requirements can provide a holistic assessment of their 
suitability for a position.
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TABLE 2  Comparison of person–job recommendation explainability methods.

Method Quantitative 
Indicators

Applicable 
Scenarios

Advantages Disadvantages Citations

A: Data layer

Feature importance 

analysis

Feature contribution, 

accuracy, F1 score

Jobseekers identifying 

influential resume features 

(e.g., skills impacting 

recommendations).

Easy to understand; 

quickly identifies key 

features.

Limited in high-dimensional 

data; ignores feature 

interactions.

Grover et al. (2017) 

and Ozcaglar et al., 

(2019)

Causal explanation 

methods

Causal effect accuracy, 

robustness

Developers analyzing 

feature causes on outputs 

(e.g., experience effect on 

job fit).

Reveals causal 

relationships; deeper 

insights.

Needs labeled data; poor in 

high-dimensional PJRS.

Xie et al. (2021); 

Wang et al. (2024b)

Neural network 

visualization

Visualization effectiveness, 

user understanding

Developers debugging 

models (e.g., weight 

distribution in resume 

processing).

Intuitive internal views; 

improves transparency.

Relies on historical data; 

ineffective for sparse/new 

users.

Yu et al. (2019)

Attention mechanisms
Attention weights, model 

performance

Real-time feature 

identification (e.g., 

dynamic skill weighting in 

matching).

Enhances deep model 

explainability via weights.

Ignores time dependency; 

varying interaction 

importance.

Zhao et al. (2023c) 

and Vaswani et al. 

(2017)

B: Model layer

KG path reasoning
Path quality, inference 

accuracy

Recruiters viewing multi-

aspect matches (e.g., skill 

paths).

Inferential KG 

characteristics; connects 

users/jobs.

Hard to update real-time; 

sensitive to KG quality.

Lyu et al. (2023); 

Xian et al. (2019)

KG embedding
Embedding vector quality, 

recommendation accuracy

Capturing semantic 

correlations (e.g., high-

order jobseeker-position 

links).

Improves accuracy/

explainability via 

semantics.

Sensitive to KG quality; data-

intensive.
Lyu et al. (2023)

RL
Convergence speed, 

explanation quality

Dynamic strategy 

adjustment (e.g., feedback-

based explanations).

Adapts via rewards; 

generates high-quality 

outputs.

Complex exploration; needs 

many interactions.

Xian et al. (2019) and 

McInerney et al. 

(2018)

Parameter sensitivity 

analysis

Parameter sensitivity, 

model performance

Evaluating adjustments 

(e.g., hyperparameter 

impacts on matching).

Reveals internal 

mechanisms.

Ignores unstructured text 

knowledge.
Mishra and Rathi 

(2022)

Hyperparameter 

optimization 

visualization

Visualization effectiveness, 

optimization paths

Understanding tuning (e.g., 

paths in model 

optimization).

Displays adjustment 

intuitively.

Overlooks stochastic 

processes. Cui et al. (2022b)

Adversarial fairness 

training

Fairness indicators, model 

robustness

Reducing bias (e.g., fair 

recommendations).

Generates explanations; 

suits complex tasks.

Relies on explicit preferences.
Wen et al. (2024)

C: Output layer

SHAP values
Feature contribution, 

accuracy, F1 score

Global/local explanations 

(e.g., understanding 

decisions).

Comprehensive insights.
Hard for personalized 

complexity.

Lundberg and Lee 

(2017)

LIME
Local model fit, 

explanation quality

Individual results (e.g., 

specific recommendation 

reasons).

Easy-to-understand 

approximations.
Empirical, not true reasoning. Ribeiro et al. (2016)

NLG
Explanation quality, user 

satisfaction

Natural text (e.g., 

understandable 

explanations).

Enhances trust via 

readability.

Limited diversity; 

grammatical errors.
Li et al. (2023a)

Counterfactual 

explanation methods

Quality of generated 

counterfactual samples, 

explanation effectiveness

Feature change impacts 

(e.g., “what-if ” scenarios).

Specific, revealing 

insights.

Hard for users to grasp 

changes.
Tan et al. (2021)
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Although the potential benefits of multimodal integration are 
evident, the following challenges should be  addressed. Data 
heterogeneity: The integration of data from diverse sources into 
different formats and structures can be  complex. Computational 
efficiency: Processing and analyzing multimodal data are 
computationally demanding. Privacy concerns: Handling sensitive data 
such as video interviews requires robust privacy measures. To overcome 
these challenges, future studies should focus on developing efficient and 
scalable multimodal fusion techniques, exploring privacy-preserving 
methods, and investigating the ethical implications of using multimodal 
data in recommendation systems. Liu et  al. (2020) MetaMMF 

framework represents a promising step toward multimodal fusion in 
recommendation systems. However, the integration of additional 
modalities, such as audio, text, and image data should be studied in the 
future to create comprehensive and informative recommendations.

6.2 Causal inference and counterfactual 
explanations

Understanding the causal relationships between jobseekers, job 
characteristics, and recommendation outcomes is crucial for developing 

TABLE 3  Combination methods for person–job recommendation explainability.

Combination 
method

Logical 
approach

Application 
example

Advantages Disadvantages Citations

Feature importance analysis 

+ SHAP values + NLG

Feature importance 

identifies key features; 

SHAP quantifies 

contributions; NLG 

generates explanations.

Resume skills weighted; 

SHAP explains match 

score; NLG outputs: “Your 

project management skills 

drive this 

recommendation.”

Clear feature 

identification; global/

local explanations; user-

readable outputs.

Limited in high-dimensional 

data; template diversity 

restricts personalization.

Lundberg and Lee 

(2017) and Li et al. 

(2023a)

Attention mechanisms + 

KG path reasoning + 

counterfactual explanations

Attention weights 

features; KG shows 

paths; counterfactuals 

explain alternatives.

Attention highlights 

resume skills; KG links to 

job needs; counterfactuals: 

“More experience 

increases fit by 10%.”

Dynamic weighting; 

multidimensional paths; 

specific “what-if ” 

insights.

High complexity; data-

intensive training.

Xian et al. (2019) and 

Wang et al. (2024b)

RL + NLG + KG embedding RL adjusts strategies; 

KG captures semantics; 

NLG generates 

explanations.

RL optimizes based on 

feedback; KG links skills-

jobs; NLG: “Your 

leadership aligns with this 

role’s needs.”

Adaptive strategies; 

semantic depth; user-

friendly outputs.

Complex RL training; high 

data needs.

Xian et al. (2019) and 

Li et al. (2023a)

Parameter sensitivity 

analysis + SHAP values + 

NLG

Sensitivity evaluates 

parameter impacts; 

SHAP explains 

adjustments; NLG 

communicates.

Sensitivity adjusts 

hyperparameters; SHAP 

details: “Experience 

weight increased fit”; NLG 

explains.

Clarifies parameter 

effects; global/local 

insights; readable outputs.

Complex process; resource-

heavy.

Lundberg and Lee 

(2017) and Mishra 

and Rathi (2022)

KG path reasoning + feature 

importance analysis + NLG

KG shows paths; 

feature importance 

quantifies 

contributions; NLG 

explains.

KG links skills to jobs; 

feature analysis weights 

experience; NLG: “Your 

leadership drives this 

match.”

Multidimensional paths; 

clear contributions; user-

readable.

Complex implementation; 

resource-intensive.

Lyu et al. (2023) and 

Grover et al. (2017)

KG embedding + feature 

importance analysis + 

SHAP values

KG captures semantics; 

feature importance 

weights; SHAP explains 

contributions.

KG links education-skills; 

importance scores 

experience; SHAP: “Skills 

contribute 60% to match.”

Semantic depth; clear 

weights; global/local 

explanations.

Complex KG setup; data 

quality needs.

Lyu et al. (2023) and 

Lundberg and Lee 

(2017)

TABLE 4  Quantitative benchmarking of explainability methods.

Method HR@10 Fidelity Sparsity User Trust E-P Score

SHAP 0.95 1.00 0.50 0.70 0.79

LIME 0.95 0.80 0.90 1.00 0.91

Attention-based 0.90 0.85 0.80 0.80 0.84

KG-enhanced GNN 1.00 0.90 0.80 0.90 0.90

Counterfactual 0.95 0.95 1.00 0.90 0.95

EBM 0.85 1.00 0.70 0.95 0.88
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effective and fair recommendation systems (Chou et al., 2022; Li, 2023). 
Causal inference provides an excellent framework for disentangling 
complex interactions and identifying the factors that drive job 
placement success. By constructing causal graphs and conducting 
counterfactual reasoning, researchers can identify hidden biases, 
evaluate the effect of interventions, and provide actionable insights. Qiu 
et al., 2021 work on identifying visual biases through causal graphs 
highlights the potential of this approach. However, challenges such as 
data availability, model complexity, and difficulty of estimating causal 
effects remain. To address these challenges, future studies should focus 
on developing efficient causal inference methods specific to the unique 
characteristics of person–job recommendation data. In addition, 
exploring the integration of causal inference with ML algorithms can 
result in the development of robust and interpretable models.

Counterfactual explanations provide insights into the factors that 
influence recommendation outcomes by answering “what if ” 
questions. For example, by determining the effect of acquiring a 
specific skill on job placement probability, jobseekers can make 
informed decisions regarding their career development. Wang et al. 
(2024b) studied fairness counterfactual explanations and 
demonstrated the potential of this approach to address biases in 
recommendation systems. However, generating high-quality 
counterfactual explanations is computationally expensive and 
requires consideration of ethical implications.

6.3 Dynamic preference modeling

Jobseekers’ career aspirations and employers’ hiring requirements 
have evolved over time, which has necessitated the development of 
recommendation systems that can adapt to these dynamic preferences. 
Capturing and modeling temporal changes in user and item 
preferences can help deliver relevant and personalized 
recommendations (Curmei et al., 2022). Liu et al. (2021) investigated 
group recommendations based on coevolutionary preferences and 
developed a promising approach for modeling dynamic group 
behavior. However, challenges such as data sparsity, concept drift, and 
computational efficiency should be addressed to effectively capture 
and use dynamic preferences in large-scale recommendation systems. 
Future studies should focus on developing advanced techniques for 
modeling complex preference changes, such as incorporating temporal 
dependencies, handling concept drift, and incorporating real-time 
feedback. Furthermore, the integration of RL to optimize 
recommendation strategies based on user interactions can enhance 
the adaptability of the system.

6.4 Computational efficiencies

The computational expense of explainability methods hinders 
their widespread adoption in large-scale person–job 
recommendation systems.

Although techniques such as LIME and SHAP are effective, they 
are computationally prohibitive, which limits their applicability in 
real-time scenarios (Zhong et  al., 2022; Roberts et  al., 2023). To 
address these challenges, future studies should prioritize the 
development of efficient approximation algorithms, parallel-
computing techniques, and hardware-acceleration methods. 

Additionally, devising alternative explainability approaches that can 
balance interpretability and computational efficiency is essential. A 
tradeoff often exists between explainability and computational 
efficiency. However, simplifying complex models to improve efficiency 
can result in a loss of interpretability. Determining the optimal balance 
between these two factors is crucial for the development of practical 
and effective explanatory solutions.

6.5 Addressing data sparsity

Data sparsity is a challenge in PJRSs because many jobseekers 
and positions have a limited interaction history. This sparsity hinders 
the ability of recommendation models to accurately capture user 
preferences and item similarities (Chen et  al., 2023b). Various 
techniques, including CF with implicit feedback, matrix factorization 
with regularization, and context-aware recommendation models, 
have been proposed to mitigate the effect of data sparsity. However, 
these methods typically rely on strong assumptions about data 
distribution and may not be sufficient to address the complex nature 
of person–job recommendations (Wang and Li, 2022). Future studies 
should investigate advanced techniques such as transfer learning, 
meta-learning, and generative models to incorporate knowledge from 
related domains or generate synthetic data to augment existing 
datasets. Furthermore, combining data sparsity reduction techniques 
with explainability methods can improve the accuracy and 
interpretability of recommendation systems.

6.6 User interaction and feedback 
mechanisms

User interaction and feedback are essential for improving the 
effectiveness and relevance of PJRSs (Goan, 2018; Zhou et  al., 
2019). By capturing user behaviors and preferences, systems can 
adapt to changing needs and provide personalized 
recommendations. Li et al. investigated jointly modeling user and 
item preferences and demonstrated the potential of incorporating 
interaction frequency and attention mechanisms to enhance 
recommendation accuracy. However, effectively capturing and 
utilizing user feedback can be challenging because of factors such 
as the sparsity of explicit feedback, noise in implicit feedback, and 
the diversity of user preferences (Li et al., 2023b). Future studies 
should focus on developing innovative feedback mechanisms that 
encourage user engagement, such as interactive recommendation 
interfaces and personalized feedback prompts. Furthermore, 
investigating techniques for combining different types of feedback, 
including explicit ratings, implicit clicks, and natural language 
comments, can provide a comprehensive understanding of 
user preferences.

6.7 Visualization tools

Effective visualization tools are crucial to bridge the gap between 
complex recommendation models and human understanding. 
Visualization tools can enhance transparency, trust, and user engagement 
by providing visual representations of recommendation processes, 
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feature importance, and user preferences. Techniques such as heat maps, 
parallel coordinates, and force-directed layouts can be used to visualize 
feature contributions, decision boundaries, and relationships between 
entities. However, designing intuitive and informative visualizations that 
cater to diverse user requirements remains challenging. Future studies 
should focus on developing interactive and adaptive visualization tools 
that enable users to explore the recommendation results at different 
levels of detail. Furthermore, incorporating explainable AI techniques 
into visualization tools can provide insights into the underlying decision-
making process. By combining visualization with interactive exploration, 
users can gain an understanding of recommendation systems and make 
informed decisions.

Effective visualization tools are crucial for bridging the gap between 
complex recommendation models and human understanding (Podo 
et al., 2024). Visualization tools can enhance transparency, trust, and user 
engagement by providing visual representations of the recommendation 
processes, feature importance, and user preferences. Techniques such as 
heat maps, parallel coordinates, and force-directed layouts can be used 
to visualize feature contributions, decision boundaries, and relationships 
between entities. However, designing intuitive and informative 
visualizations that cater to diverse user requirements is challenging 
(Harris et al., 2023). Future studies should focus on developing interactive 
and adaptive visualization tools that enable users to explore the 
recommendation results at different levels of detail. In addition, 
incorporating explainable AI techniques into visualization tools can 
provide insights into the underlying decision-making process. By 
combining visualization with interactive exploration, users can gain an 
understanding of recommendation systems and make 
informed decisions.

Addressing the challenges outlined in this section is crucial for 
advancing the field of person–job recommendations. Intelligent, 
trustworthy, and user-centric recommendation systems can be created 
by integrating multimodal data, leveraging causal inference, modeling 
dynamic preferences, optimizing computational efficiency, mitigating 
data sparsity, enhancing user interaction, and developing effective 
visualization tools. These measures will not only improve job-matching 
outcomes but also contribute to achieving societal goals such as equity 
and economic growth.

6.8 Adaptive explanation systems via user 
feedback loops

The current PJRS framework primarily employs static explanations, 
such as SHAP attributions or KG paths, which are generated once and 
do not incorporate post-deployment refinements, potentially leading to 
persistent user distrust when explanations misalign with individual 
contexts (e.g., a jobseeker perceiving bias in skill-focused rationales). To 
address this, future PJRS should integrate user feedback into closed-loop 
mechanisms for explanation refinement, creating adaptive systems that 
evolve explanations dynamically based on interaction data and 
complement static model-based approaches.

A key integration strategy involves a human-in-the-loop pipeline: 
(1) Generate an initial explanation (e.g., “Recommended due to 85% skill 
match” from the output layer); (2) Collect feedback via explicit interfaces 
(e.g., thumbs-up/down buttons or text comments like “Emphasize 
experience more”) or implicit signals (e.g., acceptance rate of the job 
recommendation); (3) Refine the explanation using algorithms like 

pairwise learning or RL to update model parameters (e.g., reweighting 
features in attention mechanisms). For instance, the ELIXIR framework 
learns from user preferences on explanation pairs (e.g., preferring one 
rationale over another), achieving 12–15% improvements in 
recommendation precision and user satisfaction in e-commerce RS user 
studies (Ghazimatin et  al., 2021). In PJRS, this could be  applied 
bilaterally: A jobseeker rates an explanation low for undervaluing soft 
skills, while a recruiter flags mismatches in candidate experience, 
triggering refinements that adjust data-layer feature extraction (e.g., 
boosting tenure weights) for subsequent recommendations.

6.9 Prioritisation and feasibility

Short-term progress is most feasible in areas that leverage existing 
interfaces—e.g., integrating real-time user-feedback loops to refine 
explanations [see Wang et al. (2024b)]—because they require only 
incremental UI work and lightweight model fine-tuning. Medium-
term gains can come from causal inference pipelines for bias diagnosis, 
provided suitable counterfactual data are collected (Xie et al., 2021). 
Fully multimodal résumé-video-audio integration, while promising 
for holistic fit assessment, remains a long-horizon goal due to privacy 
constraints and compute cost. We therefore encourage researchers to 
tackle feedback-driven explainability first, while establishing 
benchmark datasets that will eventually enable multimodal 
causal modelling.

7 Limitations

As a systematic review of explainable methods in PJRS, this 
study adheres to established guidelines for literature synthesis (Page 
et al., 2021), but several limitations inherent to the process should 
be  acknowledged to contextualize its findings and guide 
future research.

7.1 Search and scope limitations

The literature search was confined to publications from 2019 to 
2025 across databases like Google Scholar, Web of Science, and CNKI, 
using specific keywords (e.g., “explainable recommendation” and 
“intelligent recruitment”). This temporal restriction may overlook 
foundational pre-2019 works, such as early PJRS models without 
explainability focus, potentially underrepresenting evolutionary trends. 
Additionally, the emphasis on English and Chinese-language sources 
(to capture global but primarily Western/Asian perspectives) likely 
misses non-English studies from regions like Latin America or Africa, 
where PJRS address unique labor market challenges (e.g., informal 
economies). For instance, a search expansion per Siddaway et al. (2019) 
could reveal 15–20% more diverse papers, including those on culturally 
biased hiring algorithms in underrepresented contexts.

7.2 Bias and generalizability issues

This survey was conducted in accordance with PRISMA 2020 
guidelines (Page et  al., 2021), yet several constraints must 
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be  acknowledged. Language & database scope. Our search 
covered English and Chinese literature in Google Scholar, Web of 
Science and CNKI from 2019–2025; relevant works in other 
languages or grey literature (e.g., industry white papers) may 
be missing, limiting generalisability. Publication bias. Positive-
result papers are more likely to be published, a well-known risk 
in systematic reviews (Siddaway et al., 2019). Protocol. Because 
the review protocol was not pre-registered, unintentional 
selection bias cannot be fully excluded. Risk-of-bias assessment. 
While we  qualitatively appraised study quality, no formal 
statistical tool (e.g., ROBIS) was applied. Future updates should 
(i) broaden database and language coverage, (ii) include industry 
reports, and (iii) pre-register the protocol with explicit risk-of-
bias scoring.

7.3 Implications and mitigation

These limitations may inflate the perceived maturity of 
explainable PJRS, particularly in biased datasets. Future reviews 
should adopt broader PRISMA-compliant searches (Page et al., 
2021), including multilingual databases and industry 
collaborations, to incorporate meta-analyses where feasible (e.g., 
standardizing fidelity scores across 50+ studies). Additionally, 
preregistering review protocols could mitigate bias. Despite these 
constraints, this synthesis provides a foundational PJRS-specific 
overview, with limitations highlighting opportunities for more 
inclusive, quantitative follow-ups.

8 Actionable recommendations for 
stakeholders

Based on synthesizing 85 studies, we provide explicit, actionable 
recommendations as a distinct section, tailored to stakeholders for 
practical PJRS implementation.

For recruiters and HR managers: Deploy AI screening tools that 
surface feature-level rationales (e.g., “skill X matched requirement Y”), 
as empirical evidence shows transparent explanations increase 
recruiter decision speed and trust(Haque et al., 2025).

For platform designers: Implement an explanation-feedback 
widget and stream feedback into model retraining; Wang et al. (2024b) 
demonstrate that such loops boost acceptance.

For AI developers: When candidate data are incomplete, prefer 
attention + knowledge-graph hybrids (Lyu et al., 2023) that maintain 
90% accuracy yet give traceable multi-hop paths; avoid purely opaque 
deep encoders in high-stakes hiring as cautioned by Rudin (2019).

For policymakers: Mandate post-hoc bias audits using 
counterfactual tests (Xie et al., 2021) before deployment of large-scale 
hiring recommender systems; publish audit reports to foster 
public trust.
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