:' frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY

Jize Zhang,

Hong Kong University of Science and
Technology, Hong Kong SAR, China

REVIEWED BY

Datao Xu,

Ningbo University, China

Zihao Song,

The Hong Kong University of Science and
Technology, Hong Kong SAR, China

*CORRESPONDENCE
Elisa Harumi Kozasa
ehkozasa@gmail.com

These authors share last authorship

RECEIVED 06 July 2025
ACCEPTED 30 September 2025
PUBLISHED 21 October 2025

CITATION

Garotti JER, Speciali DS, de Azevedo

Neto RM, Aguiar PMC, Thomaz RB,
Sowmy TAS, Brech GC, Bazan PR and
Kozasa EH (2025) Classification of patients
with early-stage multiple sclerosis and
healthy controls using kinematic analysis
during a dual-task.

Front. Artif. Intell. 8:1660801.

doi: 10.3389/frai.2025.1660801

COPYRIGHT

© 2025 Garotti, Speciali, de Azevedo Neto,
Aguiar, Thomaz, Sowmy, Brech, Bazan and
Kozasa. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Artificial Intelligence

TYPE Brief Research Report
PUBLISHED 21 October 2025
pol 10.3389/frai.2025.1660801

Classification of patients with
early-stage multiple sclerosis and
healthy controls using kinematic
analysis during a dual-task
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Carvalho Aguiar?, Rodrigo Barbosa Thomaz?,
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Paulo Rodrigo Bazan'' and Elisa Harumi Kozasa'*'

'Hospital Israelita Albert Einstein, S&o Paulo, Brazil, ?Graduate Program in Aging Sciences at
Universidade Sao Judas Tadeu, Sdo Paulo, Brazil

Multiple sclerosis (MS) is the disabling neurological disease that currently most
affects young people. Changes in gait significantly impact the functionality and
independence of these individuals. This study aimed to differentiate between
patients in the early stages of MS and healthy controls using machine learning
in angular gait variables. This cross-sectional observational study included 38
participants, 19 with MS and 19 in the healthy control group (without neurological
or orthopedic diseases). For movement analysis, a three-dimensional gait
examination was conducted on patients with EDSS (Expanded Disability Status
Scale) scores below 3.5 and healthy volunteers during normal gait and while
performing a dual task (walking and performing a working memory task). An elastic
net regression model was utilized to classify patients and healthy controls based
on the kinematic variables. Our model achieved an AUC (area under the curve)
of the ROC plot = 0.77 + 0.21 using the average, an AUC of 0.94 + 0.09 using the
average and standard deviation, and AUC = 0.95 + 0.09 when incorporating only
the standard deviation of kinematic variables. The study suggests that utilizing
angular gait analysis with machine learning methods is an effective approach to
categorizing individuals with early-stage multiple sclerosis and healthy controls.
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Introduction

Multiple sclerosis (MS) is a long-lasting, immune-mediated and progressive disease, which
affects the central nervous system in different ways (Moreira et al., 2022; Kuhlmann et al.,
2002). Global estimates indicate around 2.8 million cases worldwide (Lakin et al., 2021; Harris,
2013) and generally present as periods of crisis followed by remissions (Rommer et al., 2020;
Goodin et al,, 2016). The majority of affected individuals are generally between 20 and 40 years
of age (Moreira et al., 2022). This diagnosis during a professional peak results in increased
unemployment and often requires specialized care, leading to significant social expenses
(Ransohoff et al., 2015; Rotstein et al., 2006).

The main way to assess the severity and progression of multiple sclerosis is the Expanded
Disability Status Scale (EDSS). This scale varies from 0 to 10 with increments of 0.5 points. A
score of 0 means a normal neurological exam, while a score of 10 means death due to
complications related to MS (Kurtzke, 1983).
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Although the EDSS is clinically important, it has some limitations,
as this scale is based on subjective assessments that lack sensitivity to
small changes. This highlights the need to use more advanced methods
to accurately evaluate gait characteristics in individuals with MS (van
and Uitdehaag, 2017; Hobart et al., 2000). More sensitive methods could
be used for early detection of gait deviations, leading to more efficient
preventive measures, through physical therapy and other relevant
treatments (van and Uitdehaag, 2017; Hobart et al., 2000). Furthermore,
recent advancements in machine learning have significantly expanded
the capabilities of gait analysis for pattern recognition and classification
across various clinical and sport contexts, demonstrating its potential
for identifying subtle functional differences (Ramirez and Gutiérrez,
2021; (")zgtu' et al., 2024; Friedman et al., 2010; Xu et al., 2024; Xu et al.,
2022). These developments often leverage statistical features, such as
means and standard deviations of kinematic variables, for robust data
representation and pattern discrimination (Pan et al., 2017).

Human gait is composed of two main phases: support and swing.
The support stage covers about 60% of the walking cycle, starting with
the initial heel strike and ending with toe off. The remaining, 40% of the
cycle, begins with toe off and ends with foot strike (Socie et al., 2013).

Studies during walking tasks that cover short and long distances
have shown that walking control involves multiple neural processes and
coordination (Socie et al, 2013). The challenge becomes more
pronounced in the early stages of the disease, as highlighted in a study
by Morel et al. (2017). Individuals with MS, when compared to healthy
individuals, present a reduction in speed, stride length, cadence and
joint disability, indicating that angular details could also offer deeper
insights into gait abnormalities in MS (Martin et al., 2006; Cameron and
Lord, 2010).

A frequent result is cognitive impairment, observed in 43 to 70% of
people with MS (Rao et al., 1991; Benedict et al., 2006). Although there
is no direct link between cognitive differences and underlying problems,
key areas such as processing speed and memory can draw on mental
resources similar to those of gait (Chiaravalloti and DeLuca, 2008;
Woollacott and Shumway-Cook, 2002; Demnitz et al., 2016).

Evaluating how these individuals walk while completing a second
task adds more relevance to research in the real world (Lakin et al., 2021;
Chiaravalloti and DeLuca, 2008; Woollacott and Shumway-Cook, 2002;
Demnitz et al., 2016; Wajda et al., 2013). Research on walking associated
with a cognitive task in people with minor functional limitations has not
shown a significant decline in walking during dual-task situations,
however, results may differ based on the complexity of the additional
task (Woollacott and Shumway-Cook, 2002; Leone et al., 2015; Huxham
etal,, 2001; Hamilton et al., 2009; Liparoti et al., 2019).

The angular impacts of major joints during walking have not been
extensively studied, especially in double-phase scenarios (Kurtzke, 1983;
Woollacott and Shumway-Cook, 2002; Demnitz et al., 2016; Wajda
et al., 2013; Leone et al., 2015; Huxham et al., 2001; Hamilton et al.,
2009; Liparoti et al., 2019). However, we did not find a comprehensive
joint assessment of these factors used for categorization in the existing
literature (Martin et al., 2006; Woollacott and Shumway-Cook, 2002;
Corradini et al., 1997).

While kinematic gait analysis and dual-task paradigms (Socie et al.,
2013) have been increasingly utilized to investigate motor impairments in
MS, a significant gap remains in studies specifically targeting early-stage
MS patients and their subtle gait deviations (Morel et al., 2017; Martin
et al,, 2006). Moreover, although mean kinematic values are commonly
analyzed (Martin et al., 2006; Cameron and Lord, 2010), the potential of
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variability metrics, such as standard deviation (SD), and their combination
with mean values in classifying early MS based on gait patterns using
machine learning has been largely overlooked. This study addresses these
specific gaps by incorporating both mean and standard deviation of
angular gait variables, offering a possible more nuanced and accurate
approach to differentiate early-stage MS patients from healthy controls,
which is often challenging in routine clinical assessment.

The aim of this study was to verify whether it is possible to classify
patients in the early stages of multiple sclerosis and healthy controls into
different groups, using angular gait data, both during normal gait and
during dual-task; we also checked the most relevant variables for this
classification and their relationship with the expanded scale of
disability status.

Methods

The study was performed at the Movement Study Laboratory of
Hospital Israelita Albert Einstein (HIAE), with approval granted by
the Ethics Committee of the HIAE (number 57428416.2.0000.0071).

Participants

The sample of this study consisted of 38 participants, with 19
individuals diagnosed with multiple sclerosis (MS group) and 19
healthy controls (control group). The average aget s.d. in the MS
group was 35.95 years (+ 5.79), while in the control group it was
33.22 years (£ 6.76), with no statistically significant difference between
the groups (p = 0.264; Mann-Whitney test). Regarding body mass
index (BMI), the MS group had an average of 25.22 kg/m”* (+ 3.99),
and the control group averaged 24.42 kg/m” (+ 8.40), also showing no
significant difference (p = 0.889; Mann-Whitney test). The average
years of education were 17.5 (£ 3.26) in the MS group and 20.0 (+
3.76) in the control group, with no statistical difference between the
groups (p = 0.083; Mann-Whitney test). Both groups showed a
predominance of females (84% in the MS group and 79% in the
control group), with a similar distribution between the groups
(p =1.000; Fisher’s exact test). The demographic characteristics
demonstrate a relatively homogeneous sample, enhancing the
comparability of the groups in subsequent analyses.

This cross-sectional observational study included 38 individuals,
with 19 diagnosed with MS and EDSS scores between 0 and 3.5, and
19 forming the healthy control group (without neurological or
orthopedic diagnosis). During the entire period, treatments had to
be continued and no evidence of active disease was found. All
participants were previously diagnosed MS according to McDonald’s
diagnostic criteria (Polman et al., 2011) and recruited from the MS
Center of the Integrated Neurology Program at HIAE.

As inclusion criteria we considered being aged 18 to 60 years old. In
the specific case of the MS group, the disease was stabled for at least
6 months. The exclusion criteria were having cognitive limitations that
make it difficult to understand the informed consent form.

Gait data from 75 volunteers were collected over a 2-year interval,
38 of which were matched into the control groups and the MS group
according to age (with a variation of plus or minus 3 years), gender
and education. This rigorous matching was crucial to ensure the
highest possible comparability between the groups, thus enhancing
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the reliability of our analysis despite the limited sample size inherent
to this specific patient cohort.

Experimental task

Gait data were collected using the Vicon® system composed of 10
infrared cameras, generating three-dimensional data on the movement
of the lower limbs from reflectors attached to the individuals’ skin.
Figure 1 provides an illustrative overview of the data collection setup,
detailing the polystyrene spherical reflective markers (A), the infrared
camera system (B), and the schematic representation of anatomical
regions demarcated by reflective markers adhered to the volunteers’ skin,
selected based on the plug-in gait protocol (C). One hundred and fifty
angular kinematic data were collected. All gait acquisitions were
performed at the Einstein Movement Study Laboratory at HIAE. This
high-precision optoelectronic system was specifically chosen for its
capacity to accurately capture subtle kinematic variations, which are
critical for identifying early gait impairments often not detectable by
conventional clinical assessments in individuals with early-stage MS
(Morel et al., 2017; Martin et al., 2006). For comprehensive details
regarding specific equipment models, calibration procedures, and the
exactdata collection protocols, please refer to the Supplementary material.

Cognitive performance was assessed using the n-back task (Hastie
etal,, 2009), which evaluates working memory (Friedman et al., 20105
Rooney et al., 2020; Shanahan et al., 2018) by asking participants to
remember the number presented in audio form 2 positions ago. This
task was chosen due to the high prevalence of working memory deficits
in individuals with Multiple Sclerosis, even in early stages of the disease,
which significantly impact their daily functioning (Rao et al.,, 1991;
Benedict et al., 2006; Chiaravalloti and DeLuca, 2008). The inclusion of
two n-back conditions (0-back and 2-back) allowed for a graded
assessment of cognitive load during gait. The 0-back task served as a
low-demand condition, primarily assessing sustained attention and basic
auditory processing. Conversely, the 2-back task presented a higher
cognitive load, requiring continuous updating, monitoring, and
inhibition of irrelevant information within working memory.
Additionally, the ‘Click-Walk’ task was incorporated to serve as a motor-
attentional control, isolating the effect of auditory stimulus processing
during walking with minimal working memory engagement. This
comprehensive selection of tasks enables a nuanced investigation into
the interplay between cognitive demands and motor control, which is
critical for identifying subtle gait impairments in MS patients under real-
world conditions (Woollacott and Shumway-Cook, 2002; Wajda et al.,
2013; Rooney et al,, 2020). The experimental design of the paradigm was
in blocks adopting the following instructions:

1 Free walk: carried out to collect baseline gait parameters. The
participant was instructed to walk at a comfortable speed for at
least 1 min.

2 Dual task: While walking at a comfortable speed, the
participant had to perform n-back tasks. The dual task
condition consisted of three distinct blocks lasting 20 s and
interspersed with pauses (15 s) to collect the baseline:

a 0-back block: upon listening to a sequence from 0 to 9, the
participant should have pressed a response button whenever
they heard the number 0.
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b 2-back block: upon listening to a sequence from 1 to 9, the
participant should press a response button whenever the
current number was the same as the one mentioned 2
previous positions.
¢ Click-Walk block: the participant had to press a response
button whenever they listened to the ‘click command.
Participants walked at a comfortable speed. The average time for
data collection at the Einstein Movement Study Laboratory was 1 h
and 40 min.

Statistical methods

Descriptive statistics were used to identify the absolute and
relative angular frequencies obtained, in addition to reporting
average, medians and standard deviations (Rooney et al., 2020).
The variables involved, in each body segment, were average (AVG)
and range of motion (Range). These data were applied to a
classification model, seeking to evaluate the ability to classify
between controls and patients. Elastic Net regression models were
used (Friedman et al., 2010; Shanahan et al., 2018). Elastic Net
(Ramirez and Gutiérrez, 2021) is a regularization technique widely
used in linear regression models within the field of Machine
Learning, especially in contexts with many variables and high
multicollinearity between them (Rooney et al., 2020). This method
was specifically chosen for its ability to perform automatic feature
selection and handle correlated variables. It also provides a more
interpretable outcome, which was crucial for identifying the most
discriminating gait parameters from our high-dimensional
kinematic dataset, aligning with our study’s primary objective.
The model parameters were optimized using Machine Learning
methodology (Ramirez and Gutiérrez, 2021; Hamilton et al,
2009). As implemented in the glmnet package, version 4.1-8
(Friedman et al., 2010), two main parameters are optimized: alpha,
a value from 0 to 1 which defines the balance between Ridge
(when alpha is 0) and Lasso (when alpha is 1) regression; and
lambda, a positive number which is the weight of the penalty
correction. The models were trained using a 5-fold cross validation
with 5 repetitions and parameter tuning was performed with alpha
ranging from 0 to 1 (in 0.01 intervals) and lambda ranging from
0 to 50 (in 0.05 intervals). A fixed seed was defined for
(see  the
Supplementary material). The performance metric is the cross-
validated area under the curve (AUC) of the ROC plot. Because
the sample size is small, we did not create a separate test set, only

reproducibility analysis code in  the

validation sets for the cross-validation procedure. The gait
variables were standardized by subtracting the mean and dividing
by the standard deviation to allow using the relation between the
weights of the different gait variables in the model as indicator of
the relative importance of the variables for the classification. The
classification models were generated using 5 subsets of the
variables: one with all the data in all phases of the experiment, and
another with data from each experimental condition separately
(Click-Walk, 0-back, 2-back and the Free walk condition).
Additionally, models were estimated using only average gait
metric values, only standard deviation gait metric values, and
including both average and standard deviation of the metrics.
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ROC curves of elastic net models
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FIGURE 1

Average ROC curves generated through threshold averaging across 25 cross-validation folds (5-fold X 5 repeats) for each of the models. The blue line
represents the mean true positive rate at each false positive rate threshold, while the light blue band indicates the variability (+1 SD) in model
performance across different data splits. The dashed red line represents random classification performance. On the left side the models using only the
mean metrics; in the middle, the models using both mean and SD variables; on the right the ROC curve for models which only used the SD variables.

Results
Classification using the average

Using the average the best model achieved AUC = 0.77 + 0.21
(average = SD). These results indicate that when using 600 gait

kinematic variables (150 variables, 75 on the right side of the
body and 75 on the left side of the body, for each of

Frontiers in Artificial Intelligence

the 4 conditions), it was possible to classify above chance
which participants are patients with MS and which are controls.
The AUC for each of the models of the separate conditions
was: “Free walk”=0.71+0.17;" Click-Walk” =0.71 + 0.14;
“0-back” = 0.76 + 0.15; “2-back” = 0.76 + 0.14. Figure 1 shows the
ROC curves of these models.

The 15 most relevant variables are presented in a relative
importance table (Table 1).
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TABLE 1 Values of the 15 most relevant variables for distinguishing groups of patients with multiple sclerosis (EDSS 0 to 3.5) and controls without the

diagnosis using the average.

Variable Control (N = 19) MS (N = 19)
L_Mean_Right_Knee FO
Average (SD) 43.7 (3.45) 39.5 (4.25)
Median (Min, Max) 44.1 (38.2,51.2) 39.7 (284, 45.7)

C_Mean_Right_TrunkRotationRange

Average (SD) 7.10 (2.92) 9.53 (2.86)

Median (Min, Max) 7.41(0,11.9) 9.14 (6.28,17.3)
F_Mean_Right_Pelvic rotation in stance

Average (SD) 46.0 (19.0) 57.6 (13.9)

Median (Min, Max) 46.7 (17.3,83.7) 59.3 (34.7, 80.0)

F_Mean_Left_TrunkRotationFO

Average (SD)

2.44 (2.76)

-2.45 (8.53)

Median (Min, Max)

243 (-1.59,7.14)

0.0226 (—29.1, 6.29)

F_Mean_Left _Peak dorsi

Average (SD)

43.6 (4.33)

46.9 (3.74)

Median (Min, Max)

443 (31.1,48.2)

48.1 (39.8,51.8)

C_Mean_Right_PelvicObliquityRange

Average (SD)

11.4 (2.34)

9.63 (2.42)

Median (Min, Max)

11.7 (6.56, 15.8)

9.10 (5.94, 13.6)

A_Mean_Right_Knee terminal stance

Average (SD)

38.1(17.3)

50.0 (11.4)

Median (Min, Max)

43.0 (1.25,62.3)

53.5(20.8, 65.0)

L_Mean_Left_DorsiPlanFlexTMN

Average (SD)

64.3 (1.42)

62.1(6.79)

Median (Min, Max)

64.1 (61.1.67.1)

64.6 (46.2, 69.5)

L_Mean_Right_Dorsi in stance

Average (SD) 13.7 (2.61) 12.1 (3.35)

Median (Min, Max) 13.5(8.88,18.1) 12.7 (3.90, 17.8)
C_Mean_Right_Dorsi FO

Average (SD) —20.8 (5.66) —16.3 (5.64)

Median (Min, Max) —20.4 (-31.0, —11.3) —17.1 (—26.3, —=5.37)

L_Mean_Left_Knee FO

Average (SD)

42.6 (4.89)

39.5 (4.01)

Median (Min, Max)

42.1 (33.6,49.9)

39.9 (28.0, 46.2)

A_Mean_Right_TrunkRotationRange

Average (SD) 7.28 (2.97) 9.19 (2.17)

Median (Min, Max) 7.15 (0, 12.4) 8.73 (6.48, 13.6)
A_Mean_Left_TrunkRotationRange

Average (SD) 7.25(2.75) 9.16 (2.27)

Median (Min, Max) 6.90 (0, 12.5) 8.47 (6.60, 13.7)
L_Mean_Left_OppositeFootContact

Average (SD) 50.1 (0.640) 50.4 (0.840)

Median (Min, Max) 50.1 (49.0, 51.2) 50.5 (49.0, 52.1)
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TABLE 1 (Continued)

10.3389/frai.2025.1660801

Variable Control (N = 19) MS (N = 19)
C_Mean_Left_Pelvic Rotation in stance
Average (SD) 50.8 (9.34) 58.6 (12.0)

Median (Min, Max)

49.7 (33.2,71.8) 58.6 (38.7, 85.8)

C_Mean_Right_TrunkObliquityRange

Average (SD)

3.07 (1.22) 3.96 (1.46)

Median (Min, Max)

3.01(0,5.32) 3.84 (2.12,7.32)

C—click walk; L—2-back; A—0-back; F—free walk; FO—foot off (the moment the foot leaves the ground); TMX—maximum peak; AVG—range of movement; IC—initial contact; MNS—
minimum peak; TMN—terminal phase of medium support; TMNAFP—position or alignment of the foot and ankle during the terminal phase of mid-stance; PKD—peak dorsiflexion

(maximum point of ankle dorsiflexion during the gait cycle).

Classification using average and standard
deviation

Using the average and standard deviation variables the best model
achieved AUC = 0.94 + 0.09 (average + SD). This means that using
1,200 gait kinematic variables (300 in each of the 4 conditions)
we were able to classify above chance who is a patient with Multiple
Sclerosis and who is a control participant.

The AUC for each of the models of the separate conditions
was: “Free walk”=0.94+0.09;” Click-Walk”=0.89 +0.11;
“0-back” =0.83 £ 0.14; “2-back” =0.81 £ 0.15. Table 2 shows the
relative importance of the 20 most relevant variables.

Classification using standard deviation

Using the standard deviation variables the best model achieved
AUC = 0.95 + 0.09 (average + SD). This means that using 600 gait
kinematic variables in each of the 4 conditions we were able to classify
above chance who is a patient with Multiple Sclerosis and who is a
control participant.

The AUC for each of the models of the separate conditions
was: “Free walk”=0.95+0.09;" Click-Walk”=0.89 +0.11;
“0-back” =0.83 £ 0.12; “2-back” =0.78 £ 0.14. Table 3 the relative
importance of the 20 most relevant variables.

As summarized in Figure 1, the Elastic Net model demonstrates
notable improvements when incorporating standard deviation of
kinematic variables, either alone or in combination with average
values. This visual representation underscores the superior
performance achieved with variability measures compared to using
only average values across all task conditions (Overall, Free Walk,
Click-Walk, 0-Back, and 2-Back). The visualization shows that models
incorporating standard deviation, either alone or in combination with
mean values, generally achieve significantly higher classification using
AUC compared to those relying solely on average kinematic variables.
This highlights the importance of variability in gait parameters for
distinguishing between individuals with early-stage Multiple Sclerosis
and healthy controls.

Discussion

The aim of this study was to verify whether it is possible to
classify patients in the early stages of multiple sclerosis and healthy
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controls into different groups, using angular gait data, both during
normal gait (free walk) and during dual-task (click-walk, 0-back
and 2-back).

When considering only the average gait data for classification
analysis, the best model achieved AUC=0.77 £0.21 in cross-
validation, suggesting an ability to differentiate between groups above
the level of chance.

When the average and standard deviation of kinematic variables
were considered, there was a notable improvement in the model’s
performance, reaching an AUC of 0.94 + 0.09. These results indicate
that the incorporation of gait data measured by standard deviation
improves the model, enhancing its ability to distinguish between
patients with MS multiple sclerosis and healthy individuals. We even
carried out an analysis using only the standard deviation data, but the
results were very similar to those of standard deviation with average.

Recent research indicates that variables related to walking, especially
in dual-task conditions, may reveal early motor impairments in patients
with MS. The study highlights the importance of using kinematic
analysis to identify specific walking problems (Shanahan et al., 2018).
Our study suggests that machine-learning algorithms can detect changes
in walking patterns, even in the early stages of multiple sclerosis,
during walking.

The specific kinematic variables identified as most relevant for
classification in our models offer valuable insights into the subtle yet
distinct gait alterations in early-stage MS. For instance, the increased
variability (standard deviation) observed across numerous parameters—
including foot progression, pelvic rotation, stride time, and cadence
(Tables 2, 3)—is a critical indicator of compromised motor control and
reduced gait stability in neurological conditions (Socie et al., 2013;
Demnitz et al., 2016). This heightened variability suggests a less
automatic and more cognitively effortful walking pattern, even in
individuals with low EDSS scores, as their central nervous system
struggles to maintain consistent movement patterns (Woollacott and
Shumway-Cook, 2002). The automaticity of the impaired free walking
may be masked by more self controlled movements during dual task
which probably requires cognitive control for both the task and the
walking. Furthermore, changes in average angular ranges such as altered
knee angles at foot off or in terminal stance, and increased trunk and
pelvic rotation ranges (Table 1), likely represent compensatory strategies
for underlying weakness or spasticity, common in MS, affecting shock
absorption, propulsion, and overall gait efficiency (Martin et al., 2006;
Cameron and Lord, 2010). These findings underscore that while overt
disability may be minimal, quantifiable kinematic deviations are present,
serving as early markers of the disease’s impact on mobility and
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TABLE 2 Values of the 15 most relevant variables for distinguishing groups of patients with multiple sclerosis (EDSS 0 to 3.5) and controls without the

diagnosis using the mean and standard deviation.

Variable Control (N = 19) MS (N = 19)
F_SD_Left_FootProgression
Average (SD) 1.34 (0.418) 2.10 (0.586)

Median (Min, Max)

1.22(0.676, 2.15)

2.01 (1.08, 3.47)

F_SD_Right_PelvicRotation

Average (SD)

0.916 (0.277)

1.42 (0.400)

Median (Min, Max)

0.956 (0.374, 1.32)

1.32 (0.826, 2.16)

F_SD_Right_PelvicRotationMNS

Average (SD)

1.21(0.326)

1.88 (0.500)

Median (Min, Max)

1.23 (0.546, 1.63)

1.76 (0.800, 3.02)

A_SD_Right_HipFlexExtIC

Average (SD)

1.18 (0.349)

1.77 (0.554)

Median (Min, Max)

1.13 (0.529, 1.91)

1.64 (0.471, 2.87)

F_SD_Right_Cadence

Average (SD) 2.04 (0.714) 3.21(1.09)

Median (Min, Max) 1.92 (0.931, 3.49) 3.25 (1.82, 6.10)
F_SD_Right_StrideTime

Average (SD) 0.0196 (0.00743) 0.0328 (0.0118)

Median (Min, Max) 0.0171 (0.00878, 0.0355) 0.0300 (0.0157, 0.0552)
C_SD_Left_StrideLength

Average (SD) 0.0238 (0.00856) 0.0343 (0.00943)

Median (Min, Max) 0.0232 (0.0105, 0.0411) 0.0315 (0.0221, 0.0568)
C_SD_Right_PelvicRotation

Average (SD) 1.58 (0.456) 2.17 (0.556)

Median (Min, Max)

1.58 (0.721, 2.35)

2.30 (0.905, 2.96)

C_SD_Right_HipFlexRange

Average (SD)

1.41 (0.462)

1.99 (0.488)

Median (Min, Max)

1.52(0.625. 2.19)

2.06 (1.15,2.67)

F_SD_Left_PelvicRotationMAX

Average (SD)

1.08 (0.367)

1.64 (0.490)

Median (Min, Max)

1.03 (0.466, 1.72)

1.53 (1.01, 2.72)

L_SD_Right_TrunkObliquityRange

Average (SD)

0.569 (0.283)

1.44 (0.515)

Median (Min, Max)

0.530 (0, 1.07)

0.952 (0.350, 1.25)

C_SD_Right_HipRotationMIN

Average (SD)

1.01 (0.309)

1.44 (0.515)

Median (Min, Max)

0.950 (0.563, 1.90)

1.30 (0.794, 2.60)

L_Mean_Right_KneeFLexExtFO

Average (SD)

43.7 (3.45)

39.5 (4.25)

Median (Min, Max)

44.1 (38.2,51.2)

39.7 (28.4,45.7)

A_SD_Left_PelvicTiltAVG

Average (SD) 0.550 (0.177) 0.837 (0.260)
Median (Min, Max) 0.482 (0.202, 0.942) 0.900 (0.456, 1.34)
(Continued)
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TABLE 2 (Continued)
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Variable Control (N = 19) MS (N =19)
F_SD_Right_PelvicRotationMIN
Average (SD) 1.20 (0.325) 1.73 (0.493)

Median (Min, Max)

1.23(0.672, 1.63)

1.73 (0.791, 2.52)

C_SD_Right_FootProgressionAVG

Average (SD)

1.64 (0.782)

2.56 (0.830)

Median (Min, Max)

1.68 (0.414, 3.63)

2.36 (1.56, 5.31)

C_SD_Right_KneeFlexExtPKSW

Average (SD)

1.10 (0.429)

1.77 (0.720)

Median (Min, Max)

1.01 (0.439, 1.90)

1.54 (0.966, 3.33)

F_Mean_Right_PelvicRotationTMX

Average (SD)

46.0 (19.0)

57.6 (13.9)

Median (Min, Max)

46.7 (17.3, 83.7)

59.3 (34.7, 80.0)

F_SD_Left_PelvicRotationAVGST

Average (SD)

0.929 (0.289)

1.40 (0.503)

Median (Min, Max)

0.898 (0.529, 1.57)

1.50 (0.579, 2.15)

A_Mean_Right_KneeFlexExtTMNAFP

Average (SD)

38.1(17.3)

50.0 (11.4)

Median (Min, Max)

43.0 (1.25,62.3)

53.5(20.8, 65.0)

C—click walk; L—0-back; A—2-back; F—free walk; FO—foot off (the moment the foot leaves the ground); TMX—maximum peak; AVG—range of movement; IC—initial contact; MNS—
minimum peak; TMN—terminal phase of medium support; TMNAFP—position or alignment of the foot and ankle during the terminal phase of mid-stance; PKD—peak dorsiflexion

(maximum point of ankle dorsiflexion during the gait cycle).

potentially contributing to an increased risk of falls and reduced
functional independence over time (Shanahan et al., 2018). The ability
of machine learning to discern these specific and often subtle patterns
reinforces its potential as a sensitive tool for early detection and objective
assessment in clinical settings.

The efficacy of machine learning in discerning subtle gait patterns,
as suggested in our study, is further supported by recent advancements
in the field. For instance, new methodologies in human gait pattern
recognition, particularly those with applications in clinical settings,
underscore the power of computational approaches in identifying
nuanced differences not readily apparent through conventional
assessments (Xu et al.,, 2024). Similarly, studies employing machine
learning to differentiate gait patterns even in high-performance contexts,
such as between runners with varying mileage, reinforce the robustness
and sensitivity of these techniques in capturing subtle biomechanical
distinctions (Xu et al., 2022). While the general approach of utilizing and
combining statistical features like average and standard deviation for gait
analysis is present in the broader field of human movement analysis, as
exemplified by works such as Pan et al. (2017) on gait recognition using
sensor data, our specific contribution lies in systematically demonstrating
its efficacy and, more importantly, highlighting the superior
discriminatory power of variability metrics (standard deviation) over
average values in the challenging context of early-stage Multiple Sclerosis
(MS) with low disability (EDSS scores 0-3.5). This insight, suggesting
that machine learning models using gait variability may detect subtle gait
impairments in early MS, was not applied in previous studies within this
specific clinical population. The Elastic Net model, chosen for its robust
feature selection capabilities in high-dimensional datasets, allowed us to
identify these relevant kinematic variability parameters that contribute
most effectively to the classification. These external validations highlight
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the potential of our Elastic Net model not only for classifying early-stage
MS but also for contributing to a broader understanding of pathological
gait characteristics, thereby offering more comprehensive and effective
insights into neurological conditions.

The study by Ozgiir et al. (2024) emphasizes that gait changes in
patients with MS may involve a reduction in speed, cadence and step
length factors associated with an increased risk of falls and decreased
independence. The study indicates that the comparison between patients
and controls shows an AUC of 0.84 + 0.12. This suggests that this method
is useful in detecting minor motor problems, which aligns with the belief
that movement pattern analysis can help detect early signs of changes in
walking patterns.

A study by Ramirez and Gutiérrez (2021) emphasize how supervised
learning methods such as Elastic Net improve the accuracy of analysis
and provide important information about the progression of MS. This
helps with early detection and interventions.

In previous research, the results indicate similarities and noticeable
differences. Research conducted by Rooney et al. (2020) points to the
worsening of dual-task gait impairment in people with MS due to the
increase in cognitive demands that exacerbate motor deficits.

Furthermore, the effectiveness of the model is improved by
incorporating regularization methods such as Elastic Net, which present
practical benefits for clinical environments. Recent research indicates
that Elastic Net stands out in the selection of variables in scenarios with
many dimensions and variable correlations, surpassing the conventional
dimension reduction technique, such as Principal Component Analysis
(Hastie et al., 2009).

To improve the understanding of gait changes related to MS,
future research should adopt a multidimensional approach that
integrates kinematic data with clinical assessments. Detecting
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TABLE 3 Values of the 20 most relevant variables for distinguishing groups of patients with multiple sclerosis (EDSS 0 to 3.5) and controls without the

diagnosis using the standard deviation.

Variable Control (N = 19) MS (N = 19)
F_SD_Left_FootProgression
Average (SD) 1.34 (0.418) 2.10 (0.586)

Median (Min, Max)

1.22 (0.676, 2.15)

2.01(1.08, 3.47)

F_SD_Right_PelvicRotationAVGST

Average (SD)

0.916 (0.277)

1.42 (0.400)

Median (Min, Max)

0.956 (0.374, 1.32)

1.32(0.826, 2.16)

F_SD_Right_PelvicRotationMNS

Average (SD)

1.21 (0.326)

1.88 (0.500)

Median (Min, Max) 1.23 (0.546, 1.63) 1.76 (0.800, 3.02)
A_SD_Right_HipIC
Average (SD) 1.18 (0.349) 1.77 (0.554)

Median (Min, Max)

1.13 (0.529, 1.91)

1.64 (0.471, 2.87)

C_SD_Left_StrideLength

Average (SD) 0.0238 (0.00856) 0.0343 (0.00943)

Median (Min, Max) 0.0232 (0.0105, 0.0411) 0.0315 (0.0221, 0.0568)
F_SD_Right_StrideTime

Average (SD) 0.0196 (0.00743) 0.0328 (0.0118)

Median (Min, Max)

0.0171 (0.00878, 0.0355)

0.0300 (0.0157, 0.0552)

F_SD_Right_Cadence

Average (SD)

2.04 (0.714)

3.21(1.09)

Median (Min, Max)

1.92 (0.931, 3.49)

3.25(1.82,6.10)

C_SD_Right_HipFlexExtRange

Average (SD)

1.41 (0.462)

1.99 (0.488)

Median (Min, Max)

1.52 (0.625, 2.19)

2.06 (1.15, 2.67)

C_SD_Right_HipRotationMin

Average (SD)

1.01 (0.309)

1.44 (0.515)

Median (Min, Max)

0.950 (0.563, 1.90)

1.30 (0.794, 2.60)

L_SD_Right_TrunkObliquityRange

Average (SD)

0.569 (0.283)

0.853 (0.257)

Median (Min, Max)

0.530 (0, 1.07)

0.952 (0.350, 1.25)

C_SD_Right_PelvicRotationRange

Average (SD)

1.58 (0.456)

2.17 (0.556)

Median (Min, Max)

1.58 (0.721, 2.35)

2.30 (0.905, 2.96)

A_SD_Left_PelvicTil

Average (SD)

0.550 (0.177)

0.837 (0.260)

Median (Min, Max)

0.482 (0.202, 0.942)

0.900 (0.456, 1.34)

F_SD_Left_PelvicRotationMAX

Average (SD)

1.08 (0.367)

1.64 (0.490)

Median (Min, Max)

1.03 (0.466, 1.72)

1.53 (1.01, 2.72)

F_SD_Right_PelvicRotationMIN

Average (SD)

1.20 (0.325)

1.73 (0.493)

Median (Min, Max)

1.23 (0.672, 1.63)

1.73(0.791, 2.52)

C_SD_Right_KneeFlexExtPKSW

Average (SD)

1.10 (0.429)

1.77 (0.720)

Median (Min, Max)

1.01 (0.439, 1.90)

1.54 (0.966, 3.33)
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TABLE 3 (Continued)

Variable
A_SD_Left_SingleSupport

Control (N = 19)

10.3389/frai.2025.1660801

MS (N = 19)

Average (SD)

0.0128 (0.00411)

0.0181 (0.00672)

Median (Min, Max)

0.0132 (0.00653, 0.0212)

0.0156 (0.0106, 0.0376)

F_SD_Left_PelvicRotationAVGST

Average (SD)

0.929 (0.289)

1.40 (0.503)

Median (Min, Max)

0.898 (0.529, 1.57)

1.50 (0.579, 2.15)

C_SD_Left_TrunkObliquityRange

Average (SD)

0.594 (0.191)

1.01 (0.502)

Median (Min, Max)

0.609 (0, 0.914)

0.929 (0.444, 2.81)

F_SD_Right_StePTime

Average (SD)

0.0152 (0.00444)

0.0234 (0.00868)

Median (Min, Max)

0.0145 (0.00694, 0.0245)

0.0217 (0.0113, 0.0454)

C_SD_Right_FootProgressionAVG

Average (SD)

1.64 (0.782)

2.56 (0.830)

Median (Min, Max)

1.68 (0.414, 3.63)

2.36 (1.56, 5.31)

C—click walk; L—0-back; A—2-back; F—free walk; FO—foot off (the moment the foot leaves the ground); TMX—maximum peak; AVG—range of movement; IC—initial contact; MNS—

minimum peak; TMN—terminal phase of medium support; TMNAFP—position or alignment of the foot and ankle during the terminal phase of mid-stance; PKD—peak dorsiflexion

(maximum point of ankle dorsiflexion during the gait cycle).

changes in motor skills, such as difficulty walking quickly, is vital to
improving treatments and slowing down the progression of
disabilities (Shanahan et al., 2018).

While our study provides valuable insights into the classification
of early-stage MS patients using gait kinematics and machine
learning, it is important to acknowledge some limitations. Firstly,
the relatively small sample size (19 participants per group)
represents a convenience sample. Despite rigorous matching for
demographic variables, this size precluded a formal power analysis
to ascertain definitive statistical power, meaning our promising
findings should be considered preliminary and exploratory.
Furthermore, our study specifically focused on individuals with
early-stage MS and mild disability (EDSS scores between 0 and 3.5).
While this specific focus allowed us to detect subtle gait deviations
in a population where clinical assessment is often challenging, the
generalizability of these findings to patients with more advanced
stages of MS or higher levels of disability requires further
investigation. Secondly, the cross-sectional nature of the study
prevents the assessment of longitudinal changes in gait patterns or
the long-term predictive power of our model. A further
consideration is that while we meticulously controlled for disease
activity by including only patients with stable MS for at least
6 months, we did not explicitly account for disease duration or the
specific types and regimens of treatments used by the MS
participants. These factors are known to influence disease
progression and symptomatology, including gait; however, their
direct inclusion as covariates was challenging due to their exclusive
presence in the MS group and the inherent heterogeneity of
medication types within our sample. Lastly, although the Elastic Net
model proved highly effective for our specific objective of
classification and feature identification in this high-dimensional
dataset, a direct comparative analysis with other machine learning
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algorithms (e.g., Support Vector Machines, Random Forests) was
beyond the scope of this preliminary report. Addressing these
points, future research is crucial. This includes conducting larger,
multi-center, and longitudinal studies to enhance generalizability
and validate findings across a broader spectrum of early MS
presentations, including those with varying levels of disability. Such
studies should also investigate the specific impact of disease
duration and different pharmacological interventions on kinematic
gait variables, and comprehensively compare the performance of
various machine learning models to further optimize classification
accuracy and generalize findings.

In conclusion, this study suggests that using angular gait analysis
with machine learning methods is a successful way to categorize
individuals with early-stage multiple sclerosis and those who are
otherwise healthy. The research also provides a substantial contribution
to the existing literature by introducing a viable method for detecting
early signs of motor changes related to multiple sclerosis.
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