3 frontiers ‘ Frontiers in Artificial Intelligence

® Check for updates

OPEN ACCESS

EDITED BY
Sumeet Sehra,
Conestoga College, Canada

REVIEWED BY

Nafees Akhter Farooqui,

Integral University, India

Silvan Mertes,

University of Augsburg, Germany
Fan Zhang,

Clemson University, United States
Dapeng Yan,

Nanjing University of Posts and
Telecommunications, China

*CORRESPONDENCE
Baokun Hu
Bourne@hznu.edu.cn

RECEIVED 07 July 2025
ACCEPTED 30 September 2025
PUBLISHED 17 October 2025

CITATION

Mao K, Hu B, Lin R, Li Z, Lu G and Zhang Z
(2025) Blueprint2Code: a multi-agent pipeline
for reliable code generation via blueprint
planning and repair.

Front. Artif. Intell. 8:1660912.

doi: 10.3389/frai.2025.1660912

COPYRIGHT

© 2025 Mao, Hu, Lin, Li, Lu and Zhang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Artificial Intelligence

TYPE Original Research
PUBLISHED 17 October 2025
pol 10.3389/frai.2025.1660912

Blueprint2Code: a multi-agent
pipeline for reliable code
generation via blueprint planning
and repair

Kehao Mao, Baokun Hu*, Ruixin Lin, Zewen Li, Guanyu Lu and
Zhengyu Zhang

School of Information Science and Technology, Hangzhou Normal University, Hangzhou, China

Automated programming has become a powerful tool for solving real-world
problems. Code generation, in particular, plays a key role in improving developer
productivity and reducing the entry barrier to software development. Recent
advances in large language models (LLMs) have significantly improved program
synthesis, enabling high-quality code generation from natural language.
However, LLMs still struggle with complex tasks, especially in understanding
problem intent, conducting multi-step reasoning, and producing code that
passes all test cases. As task difficulty increases, existing models often fail to
devise complete and reliable generation strategies, leading to reduced accuracy
and robustness. To address these limitations, we propose Blueprint2Code,
an innovative multi-agent framework for code generation. It emulates
the human programming workflow through the coordinated interaction
of four agents—Previewing, Blueprint, Coding, and Debugging—forming a
closed-loop system from task comprehension to planning, implementation,
and iterative refinement. Compared to existing methods, Blueprint2Code
shows superior performance on complex programming tasks. Extensive
experiments on benchmark datasets—HumanEval, MBPP, their extended versions
(HumanEval-ET, MBPP-ET), and the APPS competition dataset—demonstrated its
effectiveness, achieving strong pass@l results: HumanEval 96.3%, MBPP 88.4%,
HumanEval-ET 86.5%, MBPP-ET 59.4%, and APPS 24.6%. The related code is
available at https://github.com/MKH99918/Blueprint2Code.

KEYWORDS

code generation, large language models, multi-agent systems, program synthesis,
automated debugging, blueprint planning

1 Introduction

Automated code generation is a pivotal area within computer science, aiming to
reduce human intervention by automatically producing computer code and demonstrating
significant practical value in various real-world scenarios (Barone and Sennrich, 2017;
Li et al, 2022; Parvez et al., 2018). With the rapid development of large language
models (LLMs) (Naveed et al., 2023; Chang et al., 2024; Rillig et al., 2023), researchers
have achieved remarkable progress in code generation. However, existing methodologies
still face substantial limitations when confronted with complex programming tasks,
particularly in terms of comprehending problem requirements, performing multi-step
reasoning, and generating function code capable of passing complete test suites (Islam
etal., 2023, 2022).

01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2025.1660912
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2025.1660912&domain=pdf&date_stamp=2025-10-17
mailto:Bourne@hznu.edu.cn
https://doi.org/10.3389/frai.2025.1660912
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2025.1660912/full
https://github.com/MKH99918/Blueprint2Code
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Mao et al.

Although LLMs have shown formidable capabilities in code
generation (Naveed et al, 2023; Chang et al, 2024; Rillig
et al., 2023), especially in function completion and simple task
generation, notable deficiencies persist when dealing with complex
tasks. Currently, mainstream approaches can be broadly classified
into two categories: The first category encompasses prompt-based
direct generation methods, such as Direct, Chain-of-Thought
(CoT), and Self-Planning (Wei et al., 2022; Jiang et al.,, 2024),
which generate code through static reasoning but often lack global
planning and controllability. The second category introduces self-
feedback mechanisms, such as Reflexion and MapCoder (Islam
et al, 2024; Shinn et al, 2023), which enhance generation
quality by guiding models to self-check or self-plan; however,
these processes predominantly rely on closed-loop reasoning
within a single model, lacking explicit modular structures and
interstage collaboration, thus struggling to simulate the complete
process of “preview-planning-coding-debugging” in real-world
development workflows.

This limitation is particularly pronounced in programming
competition datasets like APPS (Hendrycks et al., 2021), where
tasks impose stringent requirements on input-output formats
and involve complex algorithms, multi-step logic, boundary
handling, and performance optimization, serving as critical test
scenarios for evaluating the comprehensive capabilities of code
generation systems. Existing models frequently fail to generate
code that passes all test cases in a single attempt, exposing
gaps in context retention, task decomposition, and long-range
dependency modeling (Munkhdalai et al., 2024; Fountas et al,
2025). Therefore, constructing a code generation system with
clearly defined stages, information flow coordination, and error
repair capabilities remains an urgent challenge.

To address these challenges, we propose Blueprint2Code,
a multi-agent collaborative framework designed for complex
This
from the workflow of human programmers and incorporates

code generation tasks. framework draws inspiration

four key stages: task preview, blueprint planning, code
implementation, and debugging optimization, each executed
by dedicated agents that collaborate dynamically through a
unified control strategy. Compared to end-to-end methods,
Blueprint2Code offers enhanced modular controllability and
stage interpretability, significantly improving the model’s
capabilities in task decomposition, structural modeling, and
error repair. Meanwhile, this method demonstrates excellent
transferability, achieving significant improvements not only in
high-performance models such as GPT-40 and GPT-3.5-turbo
but also exhibiting stable advantages in small-scale models such
as GPT-40-mini. This indicates broader application potential and
deployment adaptability. Figure | provides an overview of the
Blueprint2Code workflow.

We conducted extensive experiments on two popular
benchmark datasets, HumanEval and MBPP (Chen et al., 2021;
Austin etal., 2021), along with their extended test sets, HumanEval-
ET and MBPP-ET, as well as the public programming competition
dataset APPS (Hendrycks et al., 2021). By utilizing ChatGPT and
GPT-4 (Achiam et al,, 2023), we demonstrated that our method
significantly enhances the problem-solving capabilities of large

language models (LLMs), outperforming current mainstream

Frontiersin Artificial Intelligence

10.3389/frai.2025.1660912

approaches such as Chain-of-Thought (CoT) and MapCoder
(Islam et al., 2024). Furthermore, in the field of code generation,
although large language models have showcased their formidable
capabilities, the practicality of smaller models remains crucial in
many real-world applications, particularly in resource-constrained
environments. On the 8B-parameter GPT-40-mini model, our
method, Blueprint2Code, still proved effective, achieving a result of
89.1% on the HumanEval dataset, surpassing MapCoder’s 88.4%,
CoT’s 87.2%, and the 84.7% achieved by direct code generation.
This provides strong support for its widespread promotion in
future applications involving small models.
The primary contributions of this paper include:

e We propose an innovative multi-agent code generation
Blueprint2Code, which
“previewing-planning-coding-debugging”

framework, simulates the
programming
process of human programmers and elaborately designs the
collaboration mechanism among four types of agents.

e We conducted extensive experiments on HumanEval, MBPP,
their extended test sets HumanEval-ET and MBPP-ET, as
well as the public programming competition dataset APPS,
systematically evaluating the performance of Blueprint2Code
in terms of code generation quality, pass rate, and adaptability
to small models.

e The experimental results demonstrate that Blueprint2Code
significantly outperforms existing methods (such as CoT,
Reflexion, MapCoder,

etc.) on mainstream evaluation

benchmarks and maintains excellent performance in
resource-constrained small model environments, showcasing

its strong versatility and practical deployment potential.

2 Materials and methods
2.1 Relate work

2.1.1 Prompt engineering

With the widespread application of large language models
(LLMs) in code generation tasks, prompt engineering has been
recognized as one of the key approaches to enhancing model
generalization capabilities and controllability (White et al., 2023;
Giray, 2023). In recent years, numerous studies have focused on
designing more instructive prompt structures to guide models
in conducting self-feedback, self-correction, and logical reasoning
during the generation process. For instance, the self-refinement
method improves semantic accuracy and structural integrity by
providing high-quality examples and recursive calls, enabling the
model to iteratively refine its own code output over consecutive
rounds. Meanwhile, the self-debugging strategy compares model
outputs with existing test cases and automatically generates
repair suggestions, even enabling error localization through
natural language explanations of the code in the absence of
test data. Additionally, some approaches, such as CodeCoT,
introduce a chain-of-thought structure (Huang et al., 2023) to
divide the generation process into multiple stages, including
“problem analysis—code generation—testing verification,” thereby

frontiersin.org

https://doi.org/10.3389/frai.2025.1660912
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Mao et al. 10.3389/frai.2025.1660912
| |
| : ‘ | s Iterative I
| | debuggin |
| Create a ‘ iy, 5 s 4 tha

.) ; ¢ - e fes with a 1
: function Use LLMs to ; e ag, IR
i sy roun
| ‘ n generate : S ounds :
| ‘ \ code 1 pass q |
| /A 1
| *f — Z/> ~>°> ﬁ :
i fail D
I 1.Example - g 1
oding ubugging 1
1 Previewing prObIemS Agent Agent I
I Agent 2.Algorithm 1
I analysis "
1 3.Technical :
1 summaries I
T I
I <problem> |
I|: <description>Check for duplicate 1
I|: strings in a list</description> H |
1 <code>def i
| has_duplicates(strings): i |
| seen = set() . n Generate k = 3 plans, rank them o
return any(s in seen or by confidence scores, and i
I|: seen.add(s) prioritize the highest-scoring plan a : i
1 -~ for code generation caenaration {
1|i..</problem> BB discarded 9 regeneratior :
L e o e = = 1
FIGURE 1

Overview of Blueprint2Code. The pipeline begins with a Preview Agent that learns relevant algorithms and techniques, followed by the generation of
a detailed blueprint plan (including technical summaries and planning examples). It then proceeds to the Coding and Debugging Agents.

strengthening the model’s reasoning pathways. However, these
methods generally rely on static generation or closed-loop
processes within a single model, making them ill-suited for
handling problems with high logical complexity and large
test spaces. Moreover, the lack of explicit stage division and
collaboration mechanisms results in significant bottlenecks in error
detection and functional alignment.

2.1.2 Large language models and code
generation

Large Language Models (LLMs) have made groundbreaking
progress
at understanding natural language task descriptions

in code generation tasks, particularly excelling
and
automatically producing executable code. Representative
models such as Codex, CodeLlama, DeepSeek Coder, and
StarCoder (Guo et al., 2024; Roziere et al., 2023; Li et al., 2023)
are trained and aligned on large-scale code corpora, enabling
them to abstract program structures from complex semantic
descriptions. These models have demonstrated high accuracy in
tasks such as code completion, function implementation, and
documentation generation, significantly improving programmers’
productivity. However, their capabilities remain limited when
faced with complex tasks involving multi-step reasoning, edge-case
handling, and algorithm design. In particular, on programming
competition datasets, these models often struggle to generate
complete solutions that pass all test cases in a single attempt. This
reveals their shortcomings in aspects such as contextual planning,
state management, and modeling of long-range dependencies.

Moreover, the inherent variability in LLM outputs further

Frontiersin Artificial Intelligence

03

exacerbates the issue of output instability, posing challenges in
safety-critical real-world applications.

2.1.3 Multi-stage prompting and multi-agent
approaches

To enhance the performance of large language models
(LLMs) on complex code generation tasks, researchers have
gradually shifted from single-pass generation to multi-stage
reasoning and multi-module collaboration (Jimenez-Romero et al.,
2025). At the prompt design level, methods such as Chain-
of-Thought (CoT), Self-Planning, and Tree-of-Thought (ToT)
guide the model to explicitly output intermediate reasoning
steps or subtask plans (Wei et al, 2022; Jiang et al., 2024),
thereby improving its capabilities in logical reasoning and
task decomposition. From a systems architecture perspective,
approaches like Reflexion, Self-Collaboration, and AlphaCodium
introduce generation workflows with feedback loops (Shinn et al.,
2023; Ridnik et al, 2024), aiming to simulate the iterative
loop of coding, testing, and debugging typically employed by
human developers. These methods often incorporate virtual roles
such as “analyzers” and “testers” to enhance error detection
coverage and the specificity of corrections. However, such
strategies still face several challenges, including the reliability
of test generation,
and the lack of explicit context-sharing among different roles.

controllability of the feedback mechanism,

Therefore, designing a structured code generation framework with
clear stage separation, shared context flow, and effective agent
collaboration remains a promising and important direction for
future research.

frontiersin.org

https://doi.org/10.3389/frai.2025.1660912
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Mao et al. 10.3389/frai.2025.1660912
Blueprint Agent]
Blueprint prompt: Confidence Score prompt:
Given a competitive programming problem, generate a Evaluate the following plan for solving the problem.
detailed, step-by-step plan to solve it. Provide a confidence score (0-100) and explain your
Example Problem: reasoning.
{example_problem}
Example Techniques:
{example_techniques}
Evaluation Criteria:
1. Completeness
Detailed Planning: 2. Correctness
Create a detailed, step-by-step plan to solve the problem. 3. Feasibility
Structure your plan as: 4. Edge Cases
1. Step 1: [...] .
5. Efficienc
2.Step 2: [...] v
n. Step n: [...]
Important: # Your Response:
- Be specific and concrete in each step <root>
- Consider edge cases and input/output handling <analysis>...</analysis>
- Include time and space complexity considerations <confidence>...</confidence>
- Do not generate code, only the planning </root>
FIGURE 2

Prompt for Blueprint Agent.

2.2 Methodology

Our goal is to develop a multi-agent code generation
framework tailored for competitive programming problems. The
framework simulates the cognitive process of human programmers
through four core agents: the Previewing Agent, Blueprint
Agent, Coding Agent, and Debugging Agent. Specifically, the
Previewing Agent retrieves relevant algorithmic patterns and
problem-solving strategies from the models internal knowledge
base to establish the technical context. Based on this information,
the Blueprint Agent constructs a hierarchical solution plan and
selects the optimal strategy through a confidence-based evaluation
mechanism. The Coding Agent then implements the solution
strictly following competitive programming conventions, while
addressing edge cases and complexity constraints. Finally, the
Debugging Agent iteratively refines the code using a test-driven
feedback mechanism, completing a closed-loop process of analysis,
planning, implementation, and verification. To enable effective
collaboration among agents, the framework adopts a structured
intermediate representation and supports multi-round iterative
optimization. This ensures that the final generated solution
meets the rigorous standards of competitive programming, while
maintaining algorithmic efficiency and robustness.

2.2.1 Previewing Agent

The Previewing Agent is designed to simulate the preliminary
understanding and information extraction process that human
programmers typically undertake before actual coding. Given a
natural language problem description along with example inputs

Frontiersin Artificial Intelligence

and outputs, the Previewing Agent generates a task summary,
suggests potentially relevant algorithm categories, and provides
key problem-solving hints to assist subsequent agents in more
effectively planning and coding. Unlike traditional retrieval-based
approaches, the Previewing Agent does not rely on external
knowledge bases; instead, it leverages structured prompts to guide
the large language model in performing self-explanation based
solely on the problem itself. Our prompt templates are designed
to cover task type identification, input/output feature extraction,
and strategy association, enabling the model to proactively
capture the essential characteristics of the task. Experimental
results show that this stage significantly enhances the quality
of the subsequent blueprint planning and the accuracy of code
generation, particularly for problems involving implicit conditions
or edge-case traps.

2.2.2 Blueprint Agent

The Blueprint Agent is responsible for generating a structured
solution plan for a given problem—essentially, a “design blueprint”
for the code. It takes as input the task summary, algorithmic
cues, and key points provided by the Previewing Agent, and
outputs a step-by-step solution strategy encompassing algorithm
logic, edge case handling, and data structure selection. As shown
in Figure2, we designed a structured prompt template that
guides the large language model to generate clear problem-
solving steps following the sequence of “task objective, key
operations, output construction.” Unlike methods such as CoT,
the Blueprint Agent produces an implementation-oriented logical
flow rather than a generic reasoning trace. To increase the

frontiersin.org

https://doi.org/10.3389/frai.2025.1660912
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Mao et al.

diversity of generated strategies, we set the number of candidate
blueprints k = 3, producing three distinct solution plans. The
system then employs a structured self-evaluation mechanism based
on the language model to assess each blueprint. Specifically,
an auxiliary prompt is issued asking the model to score the
blueprint across five dimensions: completeness, feasibility, edge-
case handling, efficiency, and overall quality. Confidence scores
are extracted and used to rank the candidate plans, with
the highest-scoring blueprint selected as the input for the
subsequent coding phase. This structured evaluation mechanism
not only improves the rationality of plan selection but also
enhances the controllability and interpretability of inter-agent
communication. Experimental results demonstrate that high-
quality blueprint planning helps the Coding Agent produce more
accurate initial code and reduces the number of debugging
iterations required.

2.2.3 Coding Agent

The Coding Agent is tasked with generating executable
program code based on the step-by-step solution provided by
the Blueprint Agent. This stage focuses on accurately mapping
the high-level algorithmic plan into concrete implementation
details in the
consistency and reliability, we constrain the agents input

target programming language. To ensure
using a structured prompt template that includes the problem
description, blueprint plan, and example input-output pairs.
Additionally, few-shot exemplars are employed to reinforce
stylistic consistency and robust handling of edge cases. After each
coding attempt, the agent automatically executes the generated
code to verify whether it passes the provided example test
cases. If the test is successful, the code is accepted as the final
output; otherwise, control is handed over to the Debugging
Agent for refinement. This automatic verification mechanism
ensures functional correctness while avoiding redundant or
ineffective generations.

2.2.4 Debugging Agent

The Debugging Agent is designed to simulate the behavior of
human programmers in repairing code based on test feedback.
When the code generated by the Coding Agent fails to pass
all example test cases, the Debugging Agent performs step-by-
step analysis and revision by leveraging the original problem
description, the blueprint plan, and the faulty code. We guide
the large language model to follow a structured reasoning
pattern of “error analysis, revision strategy, code repair, and
explicitly require it to first complete any missing logical steps
before applying modifications, thereby ensuring consistency and
controllability throughout the repair process. Unlike approaches
such as Reflexion (Shinn et al., 2023), which rely on generating
additional test cases, our method exclusively uses the original
example I/O, avoiding potential inaccuracies introduced by
synthetic samples. To limit unnecessary repair cycles, we set
5; after
five unsuccessful attempts, the system automatically reverts to

the maximum number of debugging iterations to t =

the next-best blueprint for a fresh attempt. Experimental results
show that the Debugging Agent significantly improves the overall

Frontiersin Artificial Intelligence

10.3389/frai.2025.1660912

code generation success rate, making it one of the most critical
components of the framework.

3 Experiments
3.1 Datasets

To comprehensively —evaluate the performance of
Blueprint2Code across varying levels of task complexity, we
conducted experiments on five datasets: two widely used public
benchmarks, HumanEval and MBPP; their extended versions,
HumanEval-ET and MBPP-ET; and the competitive programming
dataset APPS sourced from a public platform. HumanEval
tasks,

emphasizing the models ability to understand natural language

primarily consists of function-level implementation
descriptions and align with test cases. MBPP focuses on assessing
fundamental programming skills. HumanEval-ET and MBPP-ET
enhance the coverage and complexity of test cases, enabling more
fine-grained evaluation of model robustness. The APPS dataset
includes real-world programming problems ranging from basic to
competition-level difficulty, featuring open-ended tasks with rich
input-output examples and more natural language descriptions.
It serves as a key benchmark for assessing the comprehensive
capabilities of large language models.

3.2 Baselines

We compared Blueprint2Code against several baseline and
state-of-the-art approaches. Direct generation refers to prompting
LLMs to write code based solely on the dataset-provided problem
descriptions, relying entirely on the models internal capabilities.
Chain-of-Thought (CoT) encourages the model to reason step-
by-step before producing a solution. Self-Planning decomposes
the task into separate planning and execution stages. Reflexion
enhances code accuracy by prompting the model to recall relevant
techniques and algorithms from prior training data.

3.3 Related settings

We utilized OpenAls large language models, including
ChatGPT (based on GPT-3.5-turbo) and GPT-4 (based on GPT-
40), for all experiments. The evaluation metric adopted was Pass@k,
where a problem is considered solved if at least one of the k
enerated code samples passes all test cases. In all experiments, we
fixed the number of blueprint candidates k = 3 and the maximum
number of debugging iterations t = 5. These parameters were
selected based on commonly adopted settings in related work and
preliminary empirical analysis, balancing solution diversity, system
stability, and computational cost. While the current configuration
demonstrated consistent performance across various tasks and
model settings, future work will further explore the trade-off
between blueprint diversity and debugging overhead by varying k
and t, aiming to systematically optimize both generation quality
and efficiency.

frontiersin.org

https://doi.org/10.3389/frai.2025.1660912
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Mao et al.

10.3389/frai.2025.1660912

TABLE 1 Pass@1 accuracy (%) of different methods across five code generation benchmarks using GPT-3.5-turbo and GPT-4o0.

LLM Approach HumanEval MBPP HumanEval-ET MBPP-ET APPS

GPT-3.5-turbo Direct 48.2 49.8 43.7 36.8 6.0
CoT 68.4 54.5 54.2 40.1 7.3
Self-Planning 60.3 55.7 46.2 425 10.6
Reflexion 67.1 73.0 52.4 48.1 -
MapCoder 80.5 78.4 70.1 54.4 11.3
Blueprint2Code 90.8 (412.8) 85.4 (4+8.9) 75.6 (+7.8) 57.2 (+5.1) 12.0 (+5.8)

GPT-40 Direct 80.1 81.1 73.8 55.6 12.7
CoT 89.0 82.4 61.6 56.2 11.3
Self-Planning 85.4 75.8 62.2 52.1 14.7
Reflexion 91.0 78.3 78.7 51.9 -
MapCoder 93.9 83.1 82.9 57.7 22.0
Blueprint2Code 96.3 (+2.6) 88.4 (+6.4) 86.5 (+4.3) 59.4 (+2.9) 24.6 (+11.8)

Relative improvements over MapCoder are shown in parentheses. The bold values indicate the best results achieved on the corresponding dataset.

4 Results

To evaluate the

Blueprint2Code on code generation tasks, we compared it against

comprehensively performance of
several representative methods across five datasets, including
Direct, Chain-of-Thought (CoT), Self-Planning, Reflexion, and
MapCoder. All methods were tested under the same evaluation
protocol and deployed on two large language model platforms:
ChatGPT (based on GPT-3.5-turbo) and GPT-40 (gpt-40). In
addition, to further assess the applicability of our framework
in resource-constrained environments, we introduced GPT-4o-
mini (8B) as a lightweight model and conducted a comparative
analysis to evaluate the transferability and performance stability of
Blueprint2Code under smaller model settings.

Performance across problem types: although our evaluation
focuses on aggregate pass@l scores, the datasets themselves
cover diverse problem categories. HumanEval primarily consists
of functional programming tasks and algorithmic puzzles,
while MBPP emphasizes basic algorithmic and data structure
HumanEval-ET and MBPP-ET
challenging boundary cases, and APPS covers a wide spectrum

exercises. introduce more
from beginner-level programming to competitive-level problems
requiring multi-step reasoning. Based on qualitative inspection,
Blueprint2Code tends to achieve the largest relative gains in tasks
that require explicit boundary handling (common in MBPP-ET)
and multi-stage solution planning (frequent in APPS). For simpler
algorithmic categories (e.g., straightforward string manipulation in
MBPP), the performance gap to baselines is smaller, indicating that
our multi-agent coordination provides the most benefit in complex
reasoning scenarios.

4.1 Comparative experiments with large
models

Table 1 the Pass@1 of different
methods on five benchmark datasets—HumanEval, MBPP,
HumanEval-ET, MBPP-ET, and APPS—using two language
models: GPT-3.5-turbo and GPT-40. Overall, Blueprint2Code

presents accuracy

Frontiersin Artificial Intelligence 06

consistently achieves the best performance across all datasets and
model configurations, demonstrating strong task adaptability and
model generalization capabilities.

Under the GPT-3.5-turbo setting, Blueprint2Code achieves
Pass@1 scores of 90.8%, 85.4%, 75.6%, 57.2%, and 12.0%
on HumanEval, MBPP, HumanEval-ET, MBPP-ET, and APPS,
respectively. Compared with the Direct baseline, Blueprint2Code
demonstrates significantly improved performance across all
datasets, particularly on tasks requiring complex reasoning and
robust generalization. Moreover, when compared to the structure-
aware MapCoder framework, it achieves relative improvements
of 12.8%, 8.9%, 7.8%, 5.1%, and 5.8%, respectively. These results
confirm the effectiveness of the proposed multi-agent design in
enhancing code synthesis quality and reliability under diverse
task conditions.

Under the GPT-40 model configuration, Blueprint2Code
further improves its performance, achieving Pass@1 scores of
96.3%, 88.4%, 86.5%, 59.4%, and 24.6% on HumanEval, MBPP,
HumanEval-ET, MBPP-ET, and APPS, respectively. Compared
with the Direct baseline, Blueprint2Code demonstrates consistently
superior performance across all benchmarks. In comparison with
the structure-aware MapCoder framework, it achieves relative
improvements ranging from 2.6% to 11.8%, indicating its enhanced
effectiveness in structured reasoning, test case coverage, and robust
generalization on complex programming tasks.

Taken together, these results demonstrate that Blueprint2Code
exhibits stable performance advantages under both medium-
capacity and high-capacity models. In particular, its continued
strong performance on the extended benchmarks HumanEval-ET
and MBPP-ET—designed to include broader edge case coverage—
further validates its generalization ability and adaptability to
complex task scenarios.

4.2 Transferability experiments on
lightweight models

To further the
Blueprint2Code and its performance in resource-constrained

assess lightweight applicability of

frontiersin.org

https://doi.org/10.3389/frai.2025.1660912
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Mao et al.

10.3389/frai.2025.1660912

Accuracy(%)
a
o

Blueprint2Code MapCoder

FIGURE 3
Performance of Blueprint2Code on lightweight models.

Approach

84.7

W 4o-mini
mGPT4

CoT Direct

TABLE 2 Ablation results of Blueprint2Code framework.

Previewing Agent

Blueprint Agent

Debugging Agent

Pass@1l (%) Performance drop

X v 76.8 —15.4
' X 77.4 —14.8
' v 64.6 —28.9

v~ indicates the agent is included, x indicates it is removed.

environments, we conducted additional experiments on the
HumanEval dataset using GPT-40-mini (8B), and compared it
against MapCoder and other baseline methods. As shown in
Figure 3, although most methods (except for Direct) experienced
slight performance degradation on GPT-40-mini compared to
their results on GPT-40, Blueprint2Code maintained a clear
performance advantage over all baselines. This demonstrates
that Blueprint2Code remains effective even under small model
settings, with strong task decomposition and coordination
capabilities, indicating good transferability and practical
utility. These results further validate the complementary
role of the multi-agent architecture in enhancing model
performance—especially for LLMs with weaker reasoning
abilities, where inter-agent collaboration helps compensate
for limitations in planning and debugging. It is worth noting
that although the current experiments rely on commercial
models provided by OpenAl, the design of Blueprint2Code
is model-agnostic, with modular interfaces that can be easily
extended to local open-source models (e.g., DeepSeek Coder,
CodeGeeX2) or integrated with lightweight inference optimization
strategies (Guo et al, 2024; Bi et al, 2024; Zheng et al,
2023), paving the way for deployment on edge devices or in
low-resource scenarios. Additionally, automatically adaptive
collaboration strategies among agents—such as dynamically
adjusting the execution sequence and number of agents
based on task complexity—represent promising directions
for future research.

Frontiersin Artificial Intelligence

4.3 Ablation study

To analyze the contribution of each agent in the
Blueprint2Code framework, we conducted an ablation study
on the HumanEval dataset by selectively removing the Previewing
Agent, Blueprint Agent, and Debugging Agent, respectively,
under the GPT-3.5-turbo setting. The results are shown in
Table 2. The experiments reveal that removing any of the agents
leads to performance degradation, though the extent varies.
Specifically, removing the Debugging Agent results in the most
significant drop, with accuracy falling to 64.6%—a decrease of
28.9% compared to the full system. This highlights the critical
role of debugging in improving code correctness and test case
pass rate. Removing the Blueprint Agent and Preview Agent
results in accuracies of 77.4 and 76.8%, reflecting decreases of
14.8 and 15.4%, respectively, suggesting that structured planning
and task comprehension also play essential roles in ensuring
code quality. These findings demonstrate that the multi-agent
architecture achieves its effectiveness through the synergy of all its
components. In complex code generation tasks, early-stage task
understanding and structured planning provide a solid foundation
for high-quality initial code, while the debugging phase serves
as a vital mechanism for correctness assurance. In future work,
we plan to explore dynamic agent adaptation strategies, such as
automatically adjusting the number of stages or iteration rounds
based on task complexity, to further improve the framework’
efficiency and stability.

frontiersin.org

https://doi.org/10.3389/frai.2025.1660912
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Mao et al.

4.4 Robustness and error analysis

Robustness across models and ablations: the proposed
Blueprint2Code consistently outperforms all baselines across three
different model configurations (GPT-3.5-turbo, GPT-40, and GPT-
40-mini), indicating that its improvements are not tied to a specific
model capacity. The ablation study (Table 2) further demonstrates
that removing any agent leads to substantial performance drops
(—14.8% to —28.9% on HumanEval), confirming the robustness
of the multi-agent design.

Beyond agent removal: in addition to the “all-agents removed”
baseline, we evaluated partial configurations (e.g., removing the
Blueprint Agent while keeping Debug Agent), and the results
confirm that each component contributes positively to the overall
performance. Future work will explore dynamic agent scheduling
strategies based on problem complexity to further enhance
efficiency and robustness.

5 Conclusion and future works

This paper presents Blueprint2Code, a multi-agent code
generation framework designed for complex programming
tasks. Inspired by the cognitive workflow of human developers,
the generation process is divided into four distinct stages:
previewing, blueprint planning, code implementation, and
debugging—each handled by a dedicated agent. Through
structured prompting and modular design, the framework
enhances the capabilities of large language models in task
understanding, strategic planning, and error correction. To
validate its effectiveness, we conducted comprehensive evaluations
on five datasets: two widely used public benchmarks (HumanEval
and MBPP), (HumanEval-ET and
MBPP-ET), and the APPS competitive programming dataset.

their extended versions

Experimental results show that Blueprint2Code consistently
outperforms existing methods such as CoT, Reflexion, and
MapCoder in terms of Pass@l accuracy. Notably, it maintains
strong performance even under resource-constrained settings
with smaller models, demonstrating excellent generality and
practical value. Overall, by introducing an explicit multi-
stage
Blueprint2Code improves the stability, interpretability, and

collaboration mechanism and agent specialization,

scalability of code generation systems, offering a novel
approach to building reliable and generalizable automated
programming frameworks.

Despite the strong performance of Blueprint2Code, there
remain several promising directions for future research. First,
the current agent collaboration follows a fixed execution order;
future work may explore more flexible strategies, such as
dynamically adjusting the sequence and frequency of agent
invocation based on task complexity. Second, adapting the
framework to local open-source models—such as DeepSeek
Coder step

toward real-world deployment. Finally, we plan to extend

and CodeGeeX2—represents an important

Blueprint2Codes capabilities to support multilingual and
multitask scenarios, such as debugging document generation
and cross-language translation, further enhancing its practicality

and extensibility.

Frontiersin Artificial Intelligence

10.3389/frai.2025.1660912

Data availability statement

Publicly available datasets were analyzed in this study. This
data can be found at: https://github.com/openai/human-eval,
https://github.com/google-research/google-research/tree/master/
mbpp, and https://github.com/hendrycks/apps.

Author contributions

KM: Data curation, Methodology, Conceptualization, Writing
- review & editing, Writing - original draft, Software, Formal
analysis. BH: Formal analysis, Writing - review & editing, Software,
Data curation, Methodology, Conceptualization, Writing - original
draft. RL: Writing - original draft, Methodology, Visualization.
ZL: Methodology, Visualization, Writing — review & editing. GL:
Writing - review & editing, Methodology, Visualization. ZZ:
Writing - review & editing, Methodology, Visualization.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The authors express their gratitude to the School of
Information Science and Technology at Hangzhou Normal
University and the AI Laboratory for providing the necessary
computer facilities that enabled the conduct of this research.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

frontiersin.org

https://doi.org/10.3389/frai.2025.1660912
https://github.com/openai/human-eval
https://github.com/google-research/google-research/tree/master/mbpp
https://github.com/google-research/google-research/tree/master/mbpp
https://github.com/hendrycks/apps
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Mao et al.

References

Achiam, J., Adler, S., Agarwal, S, Ahmad, L., Akkaya, I, Aleman, F.
L., et al. (2023). Gpt-4 technical report. arXiv [preprint]. arXiv:2303.08774.
doi: 10.48550/arXiv:2303.08774

Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., et al. (2021).
Program synthesis with large language models. arXiv [preprint]. arXiv:2108.07732.
doi: 10.48550/arXiv.2108.07732

Barone, A. V. M., and Sennrich, R. (2017). A parallel corpus of python functions
and documentation strings for automated code documentation and code generation.
arXiv [preprint]. arXiv:1707.02275. doi: 10.48550/arXiv.1707.02275

Bi, X., Chen, D., Chen, G., Chen, S., Dai, D., Deng, C,, et al. (2024). Deepseek
Ilm: Scaling open-source language models with longtermism. arXiv [preprint].
arXiv:2401.02954. doi: 10.48550/arXiv.2401.02954

Chang, Y., Wang, X, Wang, ., Wu, Y., Yang, L., Zhu, K,, et al. (2024). A survey
on evaluation of large language models. ACM Trans. Intell. Syst. Technol. 15, 1-45.
doi: 10.1145/3641289

Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. D. O., Kaplan, J., et al. (2021).
Evaluating large language models trained on code. arXiv [preprint]. arXiv:2107.03374.
doi: 10.48550/arXiv.2107.03374

Fountas, Z., Benfeghoul, M., Oomerjee, A., Christopoulou, F., Lampouras, G.,
Ammar, H. B, et al. (2025). “Human-inspired episodic memory for infinite context
LLMs, in The Thirteenth International Conference on Learning Representations
(Singapore).

Giray, L. (2023). Prompt engineering with chatgpt: a guide for academic writers.
Ann. Biomed. Eng. 51, 2629-2633. doi: 10.1007/s10439-023-03272-4

Guo, D., Zhu, Q. Yang, D., Xie, Z, Dong, K, Zhang, W., et al. (2024).

Deepseek-coder: When the large language model meets programming-the rise of code
intelligence. arXiv [preprint]. arXiv:2401.14196. doi: 10.48550/arXiv.2401.14196

Hendrycks, D., Basart, S., Kadavath, S., Mazeika, M., Arora, A., Guo, E., et al. (2021).
Measuring coding challenge competence with apps. arXiv [preprint]. arXiv:2105.09938.
doi: 10.48550/arXiv.2105.09938

Huang, D., Bu, Q., Qing, Y., and Cui, H. (2023). Codecot: tackling code syntax
errors in cot reasoning for code generation. arXiv [preprint]. arXiv:2308.08784.
doi: 10.48550/arXiv.2308.08784

Islam, M., Farooqui, N. A., Haleem, M., and Zaidi, S. A. M. (2023). An efficient
framework for software maintenance cost estimation using genetic hybrid algorithm:
oops prospective. Int. J. Comput. Digit. Syst. 14, 933-943. doi: 10.12785/ijcds/140172

Islam, M., Farooqui, N. A., Zaidi, S. A. M., and Shafeeq, M. (2022). “Cost estimation
model using fifth generation language technique for software maintenance project,” in

The International Conference on Recent Innovations in Computing (Cham: Springer),
521-532. doi: 10.1007/978-981-99-0601-7_40

Islam, M. A., Ali, M. E.,, and Parvez, M. R. (2024). Mapcoder: multi-agent
code generation for competitive problem solving. arXiv [preprint]. arXiv:2405.11403.
doi: 10.48550/arXiv.2405.11403

Frontiersin Artificial Intelligence

09

10.3389/frai.2025.1660912

Jiang, X., Dong, Y., Wang, L., Fang, Z., Shang, Q., Li, G,, et al. (2024). Self-planning
code generation with large language models. ACM Trans. Softw. Eng. Methodol. 33,
1-30. doi: 10.1145/3672456

Jimenez-Romero, C., Yegenoglu, A., and Blum, C. (2025). Multi-agent systems
powered by large language models: applications in swarm intelligence. Front. Artif.
Intell. 8:1593017. doi: 10.3389/frai.2025.1593017

Li, R, Allal, L. B, Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., et al
(2023). Starcoder: may the source be with you! arXiv [preprint]. arXiv:2305.06161.
doi: 10.48550/arXiv.2305.06161

Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., et al.
(2022). Competition-level code generation with alphacode. Science 378, 1092-1097.
doi: 10.1126/science.abq1158

Munkhdalai, T., Faruqui, M., and Gopal, S. (2024). Leave no context behind:
Efficient infinite context transformers with infini-attention. arXiv [preprint].
arXiv:2404.07143. doi: 10.48550/arXiv.2404.07143

Naveed, H., Khan, A. U,, Qiu, S., Sagib, M., Anwar, S., Usman, M., et al. (2023). A
comprehensive overview of large language models. ACM Trans. Intell. Syst. Technol.
16:106. doi: 10.1145/3744746

Parvez, M. R, Chakraborty, S., Ray, B., and Chang, K.-W. (2018). Building
language models for text with named entities. arXiv [preprint]. arXiv:1805.04836.
doi: 10.48550/arXiv.1805.04836

Ridnik, T., Kredo, D., and Friedman, 1. (2024). Code generation with alphacodium:
from prompt engineering to flow engineering. arXiv [preprint]. arXiv:2401.08500.
doi: 10.48550/arXiv.2401.08500

Rillig, M. C,, Agerstrand, M., Bi, M., Gould, K. A., and Sauerland, U. (2023). Risks
and benefits of large language models for the environment. Environ. Sci. Technol. 57,
3464-3466. doi: 10.1021/acs.est.3c01106

Roziere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, L, Tan, X. E,, et al. (2023).
Code llama: open foundation models for code. arXiv [preprint]. arXiv:2308.12950.
doi: 10.48550/arXiv.2308.12950

Shinn, N,, Cassano, F., Gopinath, A., Narasimhan, K., and Yao, S. (2023). Reflexion:
language agents with verbal reinforcement learning. Adv. Neural Inf. Process. Syst. 36,
8634-8652. doi: 10.48550/arXiv.2303.11366

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., et al. (2022). Chain-
of-thought prompting elicits reasoning in large language models. Adv. Neural Inf.
Process. Syst. 36 35, 24824-24837. doi: 10.5555/3600270.3602070

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., et al. (2023). A
prompt pattern catalog to enhance prompt engineering with chatgpt. arXiv [preprint].
arXiv:2302.11382. doi: 10.48550/arXiv.2302.11382

Zheng, Q., Xia, X., Zou, X., Dong, Y., Wang, S., Xue, Y., et al. (2023). “Codegeex: a
pre-trained model for code generation with multilingual benchmarking on humaneval-
x,” in Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining (New York, NY: ACM), 5673-5684. doi: 10.1145/3580305.3599790

frontiersin.org

https://doi.org/10.3389/frai.2025.1660912
https://doi.org/10.48550/arXiv:2303.08774
https://doi.org/10.48550/arXiv.2108.07732
https://doi.org/10.48550/arXiv.1707.02275
https://doi.org/10.48550/arXiv.2401.02954
https://doi.org/10.1145/3641289
https://doi.org/10.48550/arXiv.2107.03374
https://doi.org/10.1007/s10439-023-03272-4
https://doi.org/10.48550/arXiv.2401.14196
https://doi.org/10.48550/arXiv.2105.09938
https://doi.org/10.48550/arXiv.2308.08784
https://doi.org/10.12785/ijcds/140172
https://doi.org/10.1007/978-981-99-0601-7_40
https://doi.org/10.48550/arXiv.2405.11403
https://doi.org/10.1145/3672456
https://doi.org/10.3389/frai.2025.1593017
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.1126/science.abq1158
https://doi.org/10.48550/arXiv.2404.07143
https://doi.org/10.1145/3744746
https://doi.org/10.48550/arXiv.1805.04836
https://doi.org/10.48550/arXiv.2401.08500
https://doi.org/10.1021/acs.est.3c01106
https://doi.org/10.48550/arXiv.2308.12950
https://doi.org/10.48550/arXiv.2303.11366
https://doi.org/10.5555/3600270.3602070
https://doi.org/10.48550/arXiv.2302.11382
https://doi.org/10.1145/3580305.3599790
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Blueprint2Code: a multi-agent pipeline for reliable code generation via blueprint planning and repair
	1 Introduction
	2 Materials and methods
	2.1 Relate work
	2.1.1 Prompt engineering
	2.1.2 Large language models and code generation
	2.1.3 Multi-stage prompting and multi-agent approaches

	2.2 Methodology
	2.2.1 Previewing Agent
	2.2.2 Blueprint Agent
	2.2.3 Coding Agent
	2.2.4 Debugging Agent

	3 Experiments
	3.1 Datasets
	3.2 Baselines
	3.3 Related settings

	4 Results
	4.1 Comparative experiments with large models
	4.2 Transferability experiments on lightweight models
	4.3 Ablation study
	4.4 Robustness and error analysis

	5 Conclusion and future works
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	References

	Figure1:
	Figure2:
	Figure3:

