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Multi-modal texture fusion
network for detecting
AI-generated images

Haozheng Yu and Bing Xu*

School of Public Policy and Administration, Nanchang University, Nanchang, China

With the rapid advancement of AI-generated content, detecting synthetic images
has become a critical task in digital forensics and media integrity. In this paper,
we propose a novel multi-modal fusion network that leverages complementary
texture and content information to improve the detection of AI-generated
images. Our approach integrates three input branches: the original RGB
image, a local binary pattern (LBP) map to capture micro-texture irregularities,
and a gray-level co-occurrence matrix (GLCM) representation to encode
statistical texture dependencies. These three streams are processed in parallel
through a shared-weight convolutional backbone and subsequently fused at
the feature level to enhance discrimination capability. Extensive experiments
conducted on benchmark datasets demonstrate that our method outperforms
existing single-modality baselines and achieves strong generalization across
multiple types of generative models. The proposed fusion framework offers
an interpretable and efficient solution for robust and reliable detection of
AI-synthesized imagery.
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1 Introduction

With the rapid development of generative artificial intelligence, particularly deep
generative models such as GANs and diffusion models, synthetic images that are highly
realistic and visually indistinguishable from authentic ones have become increasingly
prevalent (Fan et al., 2024). While these technologies offer significant benefits across
various industries (Zhu et al., 2024), they also pose serious security and ethical risks (Lu
et al., 2023). AI-generated images can be maliciously exploited to mislead the public,
manipulate social media narratives, impersonate individuals, or fabricate evidence in
sensitive domains such as journalism, politics, law enforcement, and financial systems. The
misuse of such content, especially in the form of deepfakes (Westerlund, 2019; Lin et al.,
2024b; Ding et al., 2024b), can erode public trust, incite social unrest, and facilitate criminal
activities, including fraud, defamation, and identity theft (Ding et al., 2024a). Therefore,
developing reliable and effective methods (Chang et al., 2021) to detect AI-generated
images has become an urgent necessity for safeguarding digital media authenticity and
ensuring public safety (Duszejko et al., 2025; Epstein et al., 2023).

In response to the growing threat of synthetic media, a wide range of AI-generated
image detection methods have been developed in recent years. Early approaches primarily
relied on hand-crafted features, such as noise inconsistencies, compression artifacts, or
frequency anomalies (Mallet et al., 2025; Liu et al., 2024; Alam et al., 2024). With the
rise of deep learning, convolutional neural networks (CNNs) have become the dominant
paradigm, enabling automatic feature extraction from spatial and frequency domains.
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More recent studies have also leveraged vision transformers, multi-
modal learning (Ramachandram and Taylor, 2017), and contrastive
training (Chuang et al., 2020) to enhance generalization across
different generative models. Despite these advancements, most
existing detectors still struggle with two key challenges: (1) limited
generalizability to unseen generative techniques and data domains,
and (2) insufficient sensitivity to subtle texture inconsistencies that
often reveal the synthetic nature of AI-generated images. These
limitations highlight the need for more robust and interpretable
detection frameworks that can effectively exploit both visual
content and underlying texture patterns.

Texture analysis has long been a fundamental technique in
image processing and digital forensics (Nailon, 2010), offering
powerful cues for identifying subtle irregularities that are often
imperceptible to the human eye. Two widely used methods for
texture representation are the Local Binary Pattern (LBP) (Ojala
et al., 2002) and the Gray-Level Co-occurrence Matrix (GLCM)
(De Siqueira et al., 2013). LBP encodes local texture by thresholding
neighborhood pixels relative to a central pixel, effectively capturing
fine-grained micro-patterns that reflect surface roughness and local
contrast. GLCM, on the other hand, models the statistical co-
occurrence of pixel intensities at specific spatial distances and
directions, providing a global measure of textural homogeneity,
correlation, and entropy. These descriptors have proven effective
in a variety of tasks, including medical image analysis, material
classification, and forgery detection. In the context of AI-generated
image detection, they offer a complementary perspective to
semantic content, enabling models to identify subtle texture
inconsistencies introduced during the image synthesis process.

Hence, we propose the multi-modal texture and content
fusion network for detecting AI-generated images in this paper.
Unlike many existing approaches that rely heavily on large-scale
datasets to train end-to-end deep networks, our work emphasizes
the importance of leveraging diverse modalities and structural
image representations to enhance detection capability. Rather than
treating the detection task as a purely data-driven classification
problem, we aim to extract and fuse complementary features from
multiple perspectives—including semantic content, local texture
patterns, and statistical dependencies—to provide a richer and
more discriminative feature space. In particular, by integrating
Local Binary Pattern (LBP) and Gray-Level Co-occurrence Matrix
(GLCM) representations alongside the raw RGB input, our
method encourages the network to focus on subtle textural
artifacts and latent semantic inconsistencies often introduced
during image synthesis. This fusion-based strategy enables more
interpretable and robust detection, especially in scenarios where
visual content alone may be insufficient to distinguish between real
and AI-generated imagery. Our design represents a shift toward
texture-aware, multi-modal learning in the field of generative
image forensics.

The main contributions of this work are summarized as follows:

• We propose a novel three-branch convolutional network
that integrates raw RGB images with Local Binary Pattern
(LBP) and Gray-Level Co-occurrence Matrix (GLCM)
representations. This design enables the model to jointly learn
from semantic content and texture-based features, facilitating

more accurate detection of AI-generated images through
multi-modal feature fusion.

• We enhance texture-based analysis by tailoring LBP and
GLCM representations for AI-generated image detection.
These refined descriptors help uncover latent semantic
artifacts embedded in the synthesis process, allowing the
network to focus on subtle but consistent textural cues
indicative of forgery.

• We conduct extensive experiments, including ablation studies,
to evaluate the effectiveness of the proposed method and the
contribution of each input modality. The results demonstrate
the robustness and interpretability of our approach, as well as
its superiority over traditional single-modality baselines.

The remainder of this paper is organized as follows. Section
2 briefly reviews related work in AI-generated image detection
and texture-based analysis. Section 3 presents our proposed
multi-modal detection framework in detail. Section 4 reports
and analyzes the experimental results, including ablation studies.
Finally, we concludes the paper and discusses potential directions
for future research.

2 Background

2.1 AI-generated image synthesis

Recent advances in generative artificial intelligence have led to
the development of powerful models capable of producing highly
realistic synthetic images. Notable architectures include Generative
Adversarial Networks (GANs) (Ding et al., 2022b), Variational
Autoencoders (VAEs) (Kingma et al., 2019), and, more recently,
diffusion models (Croitoru et al., 2023). These models can generate
high-fidelity human faces (Fan et al., 2025; Ding et al., 2021),
objects, or entire scenes that are often indistinguishable from real
photographs to the human eye. While such technologies have
enabled creative and industrial applications, they also raise serious
concerns regarding misinformation, digital impersonation, and the
erosion of media trust (Fan et al., 2023).

The task of detecting AI-generated images presents several
major challenges (Ye et al., 2024). First, many synthetic images
exhibit high visual realism, making it difficult to distinguish them
based on low-level visual cues. Second, different generative models
leave behind different and often subtle artifacts, requiring detectors
to generalize across diverse and evolving synthesis techniques.
Third, deepfake detectors may become overfitted to the training
distribution and fail on unseen generative methods (Ding et al.,
2022a). These challenges demand detection strategies that are
robust, generalizable, and capable of capturing subtle and non-
obvious visual inconsistencies.

2.2 Texture analysis in image processing
and digital forensics

Texture is a fundamental visual attribute that captures the
spatial arrangement and structural repetition of pixel intensities
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in an image. Unlike high-level semantic features, which relate
to objects or scenes, texture features often encode fine-grained
patterns such as surface roughness, regularity, and coarseness
(Humeau-Heurtier, 2019). These properties make texture analysis
a powerful tool in a wide range of applications, including medical
imaging (Lan et al., 2018), material classification, biometric
recognition, and image forensics.

Among various texture descriptors, Local Binary Pattern
(LBP) and Gray-Level Co-occurrence Matrix (GLCM) have been
widely adopted due to their simplicity and effectiveness. LBP
encodes the local structure around each pixel by thresholding
its neighbors, producing a binary pattern that is invariant to
monotonic grayscale changes and efficient at capturing micro-
textures. GLCM, on the other hand, is a statistical method
that characterizes how often pairs of pixel values occur in
specific spatial relationships, enabling the extraction of second-
order texture statistics such as contrast, homogeneity, correlation,
and energy.

In digital forensics, these texture-based descriptors have
shown promise in revealing hidden inconsistencies or artifacts
introduced by image manipulation or synthesis (Xu and Shi,
2012). For instance, forged regions may exhibit subtle textural
discontinuities or lack the natural statistical distribution of
real images. By incorporating LBP and GLCM into forensic
pipelines, researchers have been able to identify tampering traces
that are not easily captured by semantic-level detectors. These
methods provide an interpretable and complementary perspective
to data-driven deep models, especially in low-data or high-
risk scenarios.

2.3 Detecting AI-generated images

The detection of AI-generated images has attracted increasing
attention in recent years (Lin et al., 2024a; Zhou et al., 2025), leading
to a wide spectrum of proposed methods. Early techniques relied
on handcrafted features such as noise residuals, color anomalies, or
JPEG compression artifacts to identify inconsistencies introduced
during image synthesis (Grommelt et al., 2025). However, these
approaches often lacked robustness when confronted with diverse
generative models or post-processing operations.

With the rise of deep learning, end-to-end convolutional
neural networks (CNNs) have become the dominant approach
in generative image detection. These models are trained to
distinguish real from synthetic content directly from pixel-level
data, leveraging their capacity to automatically learn discriminative
features (Cozzolino et al., 2024). Recent work has further
incorporated frequency-domain analysis (e.g., FFT, DCT) to
capture spectral artifacts left by synthesis models, and transformer-
based architectures have been explored for their long-range
modeling abilities (Zhou et al., 2023).

Another active direction is multi-modal and hybrid detection,
where different representations—such as semantic features (Ye
et al., 2024), frequency cues, and residuals—are fused to
improve robustness. Some studies have also explored contrastive
learning, attention mechanisms, and domain adaptation to enhance
generalization to unseen generators.

Multi-modal detection methods often integrate complementary
features—such as spatial, frequency, and semantic information—
to better capture subtle generative artifacts. For example, Li et al.
(2022) proposed a dual-branch network that fuses spatial features
with frequency-aware attention maps to improve the detection of
GAN-generated images. Similarly, Zhao et al. (2021) incorporated
semantic embeddings from CLIP along with visual textures to
boost generalization across domains. These approaches leverage
diverse feature streams to compensate for weaknesses in any
single modality.

In parallel, frequency domain analysis has become a powerful
tool in generative content detection. GANs often introduce
abnormal frequency patterns due to upsampling and convolution
artifacts, which are not always visible in the spatial domain.
Methods such as Zhang et al. (2019) use Discrete Fourier
Transform (DFT) representations to highlight high-frequency
inconsistencies, while others apply Discrete Cosine Transform
(DCT) or Wavelet transforms to extract compact yet discriminative
features. More recently, phase-aware techniques have emerged
that analyze the phase spectrum of images, which remains more
stable under post-processing than magnitude components. For
instance, Qian et al. (2023) demonstrate that phase-based residuals
can expose subtle inconsistencies introduced by diffusion models
and face reenactment systems. In recent years, multimodal large
language models can be also adopted for detecting AI-generated
images (He et al., 2025).

Despite notable progress, several limitations remain. First, most
deep models rely heavily on large-scale labeled datasets, which
may not cover all generative techniques and domains. Second,
many detectors focus predominantly on semantic or content-level
discrepancies, while neglecting subtle textural cues that may better
reveal synthesis patterns. Third, the black-box nature of end-to-
end learning hinders interpretability and increases vulnerability to
adversarial attacks or domain shifts.

These limitations motivate the need for detection frameworks
that can integrate interpretable and complementary information
sources—such as texture semantics—alongside conventional visual
features to improve accuracy, robustness, and generalization in
real-world settings.

3 Proposed method

3.1 Overview of the framework

To effectively detect AI-generated images and uncover subtle
synthesis artifacts, we propose a multi-branch convolutional
neural network that leverages both semantic and texture-based
information. The core idea is to extract and integrate multi-
modal features from three complementary representations of the
input image:

(1) The original RGB image, which preserves semantic content
and color distribution;

(2) A Local Binary Pattern (LBP) representation, which captures
local micro-textures and structural changes, note that we apply
original LBP here that the texture features captured are in
256 dimensions;
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(3) A Gray-Level Co-occurrence Matrix (GLCM) map, which
encodes second-order statistical relationships between pixel
intensities, we do not apply any pre-processing here but the
grayscale conversion.

Each representation is fed into an individual CNN branch,
enabling the network to learn modality-specific features. The three
feature streams are subsequently fused and processed jointly to
perform the final classification.

This design encourages the network to look beyond semantic
cues and attend to hidden visual inconsistencies that are often
embedded in textural patterns—an aspect commonly overlooked
by standard end-to-end models.

3.2 Input representations and
preprocessing

In our proposed framework, we construct a tri-modal input
representation to enhance the networks ability to capture both
semantic and fine-grained texture information. Specifically, each
image is transformed into three distinct modalities: RGB, LBP,
and GLCM, which are processed in parallel by three independent
branches. The preprocessing procedures for each input channel are
as follows:

RGB channel: the original RGB image is used to preserve high-
level semantic content, including color distributions, object
boundaries, and natural context. It serves as the baseline
modality for learning visually discriminative features from
unaltered pixel intensities.
LBP channel with edge-guided enhancement: to better highlight
the structural inconsistencies often introduced in synthetic
images, we introduce an edge-guided enhancement mechanism
prior to computing Local Binary Patterns (LBP). Specifically,
we first apply a classical edge detector, the canny operator,
to locate prominent structural transitions in the image. The
resulting edge map is then used to guide the selection of
LBP regions—only pixels along or near the detected edges are
retained for LBP encoding. This selective process focuses the
LBP feature extraction on areas most likely to reveal unnatural
transitions, suppressing noise in flat or homogeneous regions
and improving the interpretability and relevance of the extracted
micro-textures.
GLCM channel: for the third modality, we compute the Gray-
Level Co-occurrence Matrix (GLCM) based on the grayscale
version of the input image. Converting color images to grayscale
ones are applied with the equation below.

Gray = 0.299 ∗ R + 0.587 ∗ G + 0.114 ∗ B, (1)

where R, G, and B are pixels values in each channels.

GLCM captures second-order statistics by measuring the
frequency of co-occurring pixel intensity pairs in a defined spatial
relationship. From the GLCM, we derive texture descriptors such
as contrast, correlation, and homogeneity. These descriptors are
normalized and assembled into a feature map that reflects spatial

texture dependencies, enriching the networks understanding of
underlying statistical patterns.

By jointly leveraging these three representations, the model
can integrate information from multiple perceptual levels—global
semantics, local structure, and statistical texture—resulting in a
more robust and explainable detection strategy.

3.3 Network architecture

The architecture of our proposed detection model is designed
to extract and integrate multi-modal features through three
parallel auto-encoder branches, followed by a unified fusion and
classification module. Each branch is dedicated to one modality—
RGB, edge-guided LBP, or GLCM—and is responsible for capturing
unique semantic or texture-based cues from the input. The overall
architecture is illustrated in Figure 1.

3.3.1 Modality-Specific feature extraction via
auto-encoders

Each input modality is processed through a dedicated auto-
encoder consisting of an encoder-decoder pair. The encoder
learns a compact, high-level representation of the input, while the
decoder is used only during training for regularization purposes
(e.g., reconstruction loss), encouraging the encoder to retain
meaningful features.

The RGB branch encoder captures global visual semantics such
as color consistency, object coherence, and scene layout.

The LBP branch, which receives an edge-enhanced LBP
map as input, focuses on local micro-textures and structural
discontinuities—particularly around image boundaries where
synthetic inconsistencies often emerge.

The GLCM branch encoder extracts statistical texture
representations based on co-occurrence patterns that are indicative
of synthetic regularities or unnatural smoothness.

Each encoder consists of a series of convolutional layers,
normalization, and non-linear activation functions. The
output from the final convolutional block in each encoder
is flattened into a feature vector representing the modality-
specific embedding.

3.3.2 Feature fusion and classification
The three modality-specific feature vectors are concatenated to

form a unified representation. It is a straightforward concatenation,
directly combine the feature of all channels together. This fused
feature vector is then fed into a multi-layer perceptron (MLP)
classifier composed of fully connected layers with ReLU activations
and dropout regularization. Finally, a softmax layer produces
the probability distribution over the binary class labels (real vs.
AI-generated).

This architecture allows each branch to learn and
preserve distinct types of forensic cues, while the joint
classifier integrates these complementary features to make
an informed prediction. The auto-encoder-based design also
facilitates future extension to unsupervised or self-supervised
training paradigms.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2025.1663292
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Yu and Xu 10.3389/frai.2025.1663292

FIGURE 1

Architecture of the proposed model. Images are AI-generated.

3.4 Feature fusion and classification

Once modality-specific features have been extracted by the
three auto-encoder branches, the next step is to effectively integrate
this multi-modal information and make a final classification.
The fusion and classification module is designed to preserve the
complementary strengths of each channel while enhancing the
overall discriminative capacity of the model.

The output feature vectors from the RGB, edge-guided LBP, and
GLCM encoders are first flattened and then concatenated along the
feature dimension to form a single joint representation. Formally,
let fRGB, fLBP, and fGLCM denote the features extracted from the
respective branches. The fused representation is obtained as:

ffusion = [fRGB ‖ fLBP ‖ fGLCM] (2)

This straightforward concatenation strategy ensures that the
network retains the full scope of information learned from
each modality. In practice, this joint vector contains both
global semantic cues and fine-grained textural features that
may independently or jointly reveal inconsistencies caused by
AI synthesis.

The fused feature vector ffusion is passed through a multi-layer
perceptron (MLP) composed of two or more fully connected (FC)
layers. Each FC layer is followed by a non-linear activation function
(e.g., ReLU) and dropout layers to prevent overfitting. The final
FC layer outputs a two-dimensional vector, which is then passed
through a softmax function to produce class probabilities:

p = softmax(W · ffusion + b) (3)

where W and b are the weights and biases of the final
classification layer, and p ∈ R

2 denotes the probability of the input
being either real or AI-generated.

An important advantage of this design is its interpretability and
modularity. Since each input modality has a dedicated branch, it

is possible to visualize and analyze the individual contributions of
semantic and texture-based features. Furthermore, this modular
structure allows future integration of additional modalities or
alternate fusion strategies, such as attention-based weighting or
gating mechanisms.

In summary, our fusion and classification design maximizes the
synergy between diverse input features, resulting in a more robust
and generalizable detection framework.

3.5 Training strategy

To effectively train the proposed multi-branch detection
network, we adopt a supervised learning framework based on cross-
entropy loss. The training process is designed to encourage each
modality-specific encoder to capture discriminative features, while
the classifier learns to make robust predictions based on fused
multi-modal information.

The primary objective is to correctly classify whether an
input image is real or AI-generated. We use the standard cross-
entropy loss:

Lcls = −
C∑

i=1

yi log(pi) (4)

where C = 2 denotes the number of classes (real vs. fake), yi
is the ground truth label (one-hot encoded), and pi is the predicted
probability output from the softmax layer.

If reconstruction supervision is used for the auto-encoders,
an auxiliary reconstruction loss Lrec can be added to the overall
objective to encourage modality-preserving feature extraction:

Lrec =
∑

m∈{RGB,LBP,GLCM}
‖Im − Îm‖2

2 (5)
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where Im and Îm denote the original and reconstructed images
in modality m, respectively.

The total loss becomes:

L = Lcls + λLrec (6)

where λ is a hyperparameter controlling the contribution of the
reconstruction loss (set to 0 if no reconstruction loss is used).

The model is trained using the Adam optimizer with the
following hyperparameters: learning rate 1 × 10−4, batch size 32,
and weight decay 5 × 10−5. Training is conducted for 50 epochs
with early stopping based on validation accuracy.

To enhance generalization, standard data augmentation
techniques such as random cropping, horizontal flipping, and
color jittering are applied to the RGB channel. For the LBP and
GLCM branches, input normalization is used instead of geometric
transformations to preserve texture fidelity.

4 Experiments

In this section, we conduct extensive experiments to evaluate
the effectiveness of our proposed multi-modal detection
framework. The experiments are designed to assess not only
the overall classification performance but also the contribution of
individual modalities and the effect of the proposed enhancements.

4.1 Experimental setup

4.1.1 Datasets
To evaluate the effectiveness and generalizability of our

proposed detection method, we conduct experiments on two
representative benchmark datasets: ForenSynths and GenImage.
The ForenSynths dataset is a large-scale benchmark specifically
curated for forensic analysis of AI-generated content. It consists
of both real and synthetically generated images across diverse
semantic categories, collected using multiple generative models
such as StyleGAN, BigGAN, and DALL·E. Each image is paired
with corresponding metadata and pixel-level annotations to
facilitate localization and classification tasks. ForenSynths is widely
used in deepfake detection and digital forensics research due to its
diversity and fine-grained annotations.

The GenImage dataset is a more recent benchmark designed
to assess the robustness of detectors against a wide spectrum
of generative models and post-processing conditions. It contains
a large number of images generated by cutting-edge diffusion
models, transformer-based generators, and text-to-image systems
like Stable Diffusion and Midjourney. GenImage emphasizes cross-
model generalization, as it includes content from over 30 generative
pipelines and simulates various real-world distortions, such as
JPEG compression, resizing, and Gaussian noise. This makes it an
ideal testbed for evaluating a detectors resilience to distribution
shifts and unseen generators.

The FaceForensics++ (FF++) dataset is one of the most
widely used benchmarks for deepfake detection, containing over
1,000 high-quality videos. It includes forged samples generated
by multiple facial manipulation techniques, such as Face2Face,

FaceSwap, DeepFakes, and NeuralTextures. FF++ also provides
both raw videos and compressed versions at different levels,
simulating distortions commonly encountered in real-world
scenarios, which makes it highly valuable for training and
benchmarking detection algorithms.

Celeb-DF is a more challenging dataset designed to address the
limitations of earlier benchmarks where synthetic artifacts were
too obvious. It contains over 5,900 high-resolution manipulated
videos, most of which target publicly known celebrities. Compared
with FF++, the forged videos in Celeb-DF are visually more
realistic with fewer artifacts, making it closer to real-world
application conditions.

WildDeepfake is collected directly from the internet,
representing “in-the-wild” cases of AI-generated content. It
consists of videos of diverse quality and sources, where forgeries
are often less regular and harder to detect. Unlike FF++ and
Celeb-DF, which are generated in controlled environments,
WildDeepfake better reflects social media and online video
platforms, providing a critical benchmark for evaluating the
generalization ability of detection models.

Together, these datasets provide a comprehensive and
challenging environment for benchmarking the robustness,
generalization, and fine-grained discriminability of AI-generated
image detection methods.

4.1.2 Evaluation metrics
We use standard binary classification metrics to evaluate

model performance:

• Accuracy (Acc): overall proportion of correctly
classified samples.

• Precision (Prec): ratio of true positives among
predicted positives.

4.1.3 Implementation details
The model is implemented in PyTorch and trained on a single

NVIDIA RTX 3090 GPU. All input images are resized to 256 ×
256. For each image, three input branches are constructed: RGB,
LBP-enhanced edge map, and GLCM-based texture representation.
Hyperparameters include:

• Optimizer: adam
• Learning rate: 1 × 10−4

• Batch size: 32
• Epochs: 50 (with early stopping)

Data augmentations applied to the RGB input include
random horizontal flipping, cropping, and color jittering. For
LBP and GLCM channels, input normalization is used to retain
texture consistency.

4.2 Overall performance

We evaluate the full version of our proposed multi-modal
detection framework on ForenSynths (Wang et al., 2020). The
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TABLE 1 Overall detection performance of accuracy and average precision on ForenSynths dataset.

Method ProGAN StyleGAN BigGAN StarGAN CycleGAN

Wang et al. (2020) 100.0/100.0 87.1/99.6 70.2/84.5 91.7/98.2 85.2/93.5

Liu et al. (2022) 99.9/100.0 92.6/99.2 88.1/95.2 100.0/100.0 79.0/89.5

Ojha et al. (2023) 100.0/100.0 91.0/98.3 94.5/91.3 97.0/99.8 98.5/99.4

Zhou et al. (2023) 100.0/100.0 95.7/98.7 94.1/93.4 98.6/99.2 95.5/96.3

Tan et al. (2024) 99.8/100.0 96.3/99.8 87.5/94.5 99.7/100.0 95.0/99.5

Deressa et al. (2025) 99.9/100.0 96.3/98.8 94.6/95.2 99.5/99.7 97.7/98.4

Ours 100.0/100.0 96.5/99.8 95.2/98.6 100.0/100.0 98.5/99.5

All models are trained with ProGAN and tested with others.

TABLE 2 Overall detection performance of AUC on ForenSynths dataset.

Method ProGAN StyleGAN BigGAN StarGAN CycleGAN

Wang et al. (2020) 99.9 88.3 71.3 92.3 87.5

Liu et al. (2022) 99.9 91.7 90.0 99.9 82.3

Ojha et al. (2023) 99.9 93.7 94.0 97.3 98.7

Zhou et al. (2023) 99.9 94.0 94.2 97.0 98.5

Tan et al. (2024) 99.8 96.9 89.9 99.8 96.45

Deressa et al. (2025) 99.9 96.5 95.9 98.7 97.6

Ours 99.9 97.2 96.1 99.9 98.8

All models are trained with ProGAN and tested with others.

TABLE 3 Overall detection performance on GenImage dataset.

Method Midjourney SDv1.4 SDv1.5 Wukong

Wang et al. (2020) 50.8/58.6/57.2 51.1/59.2/58.5 51.2/59.9 /60.1 51.0/57.0 /55.4

Liu et al. (2022) 52.0/58.2/57.7 54.2/60.1/ 59.5 65.3/68.6/66.7 58.0/68.1 /62.3

Ojha et al. (2023) 56.1/74.0 /60.2 63.7/86.1/67.7 63.5/85.8 /67.5 85.3/96.5/88.2

Zhou et al. (2023) 70.3/79.5/ 77.8 76.8/83.3/ 79.5 80.2/81.9/ 81.3 80.3/88.6/85.7

Tan et al. (2024) 78.0/85.6/79.9 78.9/84.2/81.3 79.0/84.9/79.2 76.3/80.7/77.4

Deressa et al. (2025) 87.2/87.6/ 86.0 82.1/87.1/84.1 74.6/80.3/ 80.1 83.9/82.5/ 83.3

Ours 88.2/90.1/88.9 86.5/89.3/89.0 92.1/95.4/ 93.9 86.3/88.8 /88.7

All models are trained with ProGAN and tested with others.

models are trained with the ProGAN (Karras, 2017) dataset, then
evaluated with other methods, including various GANs. Also the
models are tested with GenImage (Dhariwal and Nichol, 2021)
to evaluate the capability for discerning images generated by
diffusion models.

Several state-of-the-art methods for detecting AI-generated
images are chosen as baselines for comparison. Wang et al.
(2020) proposes to train a CNN model for general AI-generated
image detection. Liu et al. (2022) designs a noise model to
expose AI-generated images from the frequency components.
Ojha et al. (2023) adopts a pre-trained CLIP for distinguishing
images generated by AI. Zhou et al. (2023) is a method to expose
deepfakes via ViT. Tan et al. (2024) employs the neighbor pixel
relationships for capturing the traces left by upsampling in AI-
generated images. Deressa et al. (2025) detecting deepfakes using a
generative convolutional vision transformer. Tables 1–3 summarize

the classification results in terms of detection accuracy, average
precision, and AUC.

Other than these results, we also evaluate the proposed model
with deepfake datasets. Adhered from the classicial manner, all
models are trained with FF++ and tested with samples from
FF++, Celeb-DF, wilddeepfake. The generalizability can be also
examined via this design. The results are reported in Table 4.

The results demonstrate that our model achieves strong
performance across all metrics and datasets. The model effectively
distinguishes between real and AI-generated images even under
varying synthesis techniques.

Also, observed from the tables, there is a distinct performance
difference. When a detection model is trained primarily on GAN-
generated images, it may not generalize well to images generated by
diffusion models. This is because different generative architectures
introduce distinct types of artifacts and visual patterns. GANs often
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TABLE 4 Overall detection performance on deepfake dataset.

Method FF++ Celeb wilddeepfake

Wang et al. (2020) 90.5/91.2 63.2/60.7 59.7/59.0

Liu et al. (2022) 93.5/94.4 64.5/63.7 64.3/66.2

Ojha et al. (2023) 94.1/94.0 72.4/73.1 73.9/75.6

Zhou et al. (2023) 97.7/96.5 80.5/82.3 78.4/78.6

Tan et al. (2024) 97.8/97.2 78.1/76.3 79.2/77.5

Deressa et al. (2025) 98.5/97.0 80.9/82.4 83.6/84.7

Ours 99.3/99.1 83.5/84.1 85.6/84.8

All models are trained with FF++ and tested with others. The results are reported with
accuracy and AUC.

produce local texture inconsistencies or checkerboard artifacts due
to upsampling, while diffusion models tend to generate globally
coherent but subtly unnatural image structures. As a result, a model
that learns to detect the typical traces of GANs might struggle
to identify the less obvious or differently distributed artifacts
in diffusion-based images, leading to a performance gap across
generation types.

Compared to existing arts, the integration of texture-based
features through LBP and GLCM enhances the model’s sensitivity
to subtle inconsistencies in AI-generated content. The performance
on FF++, which contains multiple manipulation types, suggests
the generalization capacity of our approach. Visualizations of two
samples are displayed in Figure 2.

4.3 Ablation study

To better understand the contribution of each modality and
component in our proposed network, we conduct a set of ablation
experiments. We evaluate the following variants:

• RGB only: using only the original RGB image channel.
• RGB + LBP: combining RGB with the LBP-enhanced edge

representation.
• RGB+GLCM: combining RGB with the GLCM-based texture

representation.
• Full (RGB + LBP + GLCM): our complete proposed model

using all three modalities.
• Full w/o edge enhancement: removing the edge extraction step

before LBP in the full model.

Table 5 summarizes the performance of each variant. All
models are trained with ProGAN and tested with BigGAN.

From the results, we observe the following:

• Adding LBP or GLCM branches to RGB improves
performance, validating the utility of texture features.

• The complete model (RGB + LBP + GLCM) outperforms all
variants, confirming that the multi-modal fusion contributes
complementary discriminative features.

• Removing the edge enhancement step in LBP results in
a noticeable drop in performance, which highlights the

importance of performing LBP on semantically rich edge
regions rather than the entire image.

These findings demonstrate that carefully crafted texture
feature extraction, especially the proposed edge-guided LBP
representation, plays a crucial role in enhancing the networks
ability to detect AI-generated image artifacts.

4.4 Robustness evaluation

To further evaluate the practical applicability of our proposed
method, we conduct robustness experiments by introducing
common image perturbations that often occur during post-
processing or real-world transmission. Specifically, we assess the
model’s performance under the following distortions:

• JPEG compression: quality factor reduced to 50.
• Gaussian blur: applied with a kernel size of 5× 5 and standard

deviation of 1.5.
• Image sharpening: using a Laplacian-based kernel.
• Adversarial attack: applying the adversarial attack proposed in

Ding et al. (2021).

Table 6 presents the detection performance (Accuracy and
AUC) of the full model on the Celeb-DF v2 dataset after applying
each distortion.

The results demonstrate that while there is a modest
degradation in detection performance under perturbations,
our model maintains relatively high accuracy and AP values,
particularly under compression and sharpening. This robustness
can be attributed to the incorporation of texture-based features,
which are less sensitive to global color shifts or pixel-level noise.

Among the three perturbations, Gaussian blur causes the
largest performance drop, likely because it removes high-frequency
artifacts that are essential for forgery detection. Nevertheless, even
under this scenario, the model still achieves an accuracy of 87.6%,
which underscores the resilience of our feature extraction scheme.

These findings indicate that our method can generalize well
to real-world conditions where image degradation is inevitable,
making it suitable for practical forensic applications.

4.5 Interpretation

We observe the following:

• For real images, the model distributes its attention more
evenly across the facial region, suggesting natural texture
consistency.

• For AI-generated images, the model tends to focus on high-
frequency regions such as eyes, mouth contours, and facial
edges, which often contain subtle synthesis artifacts.

• These findings support our hypothesis that texture-based
features—especially those emphasized by LBP and GLCM—
help highlight micro-level irregularities that are not apparent
in raw RGB inputs.
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FIGURE 2

Grad-CAM visualization of samples. Images are AI-generated.

TABLE 5 Ablation study results.

Variant Accuracy Average
Precision

AUC

RGB only 88.7% 89.2% 87.1%

RGB + LBP 91.2% 91.8% 89.9%

RGB + GLCM 91.9% 92.5% 90.2%

Full (RGB + LBP + GLCM) 95.2% 98.6% 97.8%

Full w/o Edge Enhancement 92.0% 92.9% 92.1%

The bold values indicate the values of best performance for comparisons.

These qualitative results verify that each modality captures
complementary aspects of the forgery, and that the model learns to
localize regions with anomalous texture patterns, which are often
indicative of AI-generated artifacts.

5 Conclusion

In this paper, we proposed a novel multi-modal framework
for the detection of AI-generated images by incorporating texture-
aware representations into a three-branch network.

Specifically, we introduced an edge-guided LBP branch that
extracts local binary features along semantically salient boundaries,

TABLE 6 Robustness evaluation under common image distortions on
BigGAN.

Perturbation Accuracy AP AUC

Original (clean) 95.2% 98.6% 96.4%

JPEG compression (Q = 50) 89.1% 94.0% 92.1%

Gaussian blur 87.6% 92.8% 91.5%

Image sharpening 91.0% 95.3% 92.3%

Adversarial attack 83.4% 82.9% 80.8%

and a GLCM branch that models statistical texture correlations.
Each input modality is processed via an independent auto-
encoder network, and the fused feature representations are
passed through a multilayer perceptron for final classification.
Our design encourages the model to capture complementary
information across multiple input types, improving generalization
to unseen forgeries.

Extensive experiments on standard benchmarks demonstrate
the effectiveness of our approach. The proposed method
outperforms several baseline and state-of-the-art detectors.
Ablation studies confirm the individual contributions of the
LBP and GLCM modalities, as well as the importance of
edge-aware preprocessing.
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In the future, we plan to extend our work by incorporating
frequency-domain and temporal information to handle more
complex video-based forgeries. We also aim to explore lightweight
variants of our model for deployment in real-time applications.
While these extensions may require additional computational
resources—especially when integrating high-dimensional
frequency cues or long-range temporal dependencies—the
recent advances in GPU acceleration, edge AI devices, and
model compression techniques (e.g., pruning, quantization,
and knowledge distillation) provide a promising pathway for
practical deployment. Thus, we believe that with careful algorithm-
hardware co-design, our proposed framework and its future
variants are feasible to be deployed in real-world scenarios such
as financial fraud detection, digital media verification, and online
content monitoring.
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