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Background: Heart failure (HF), with its distinct phenotypes, poses significant
public health challenges. Early diagnosis of specific HF phenotypes is crucial for
timely therapeutic intervention.

Objectives: We employed random forests to predict acute HF (AHF) phenotypes
(HFrEF, HEmrEF, and HFpEF) during admission, using structured and unstructured
data types while blinded to left ventricular ejection fraction (LVEF) information.
Methods: We investigated the predictive performance of integrated natural
language processing (NLP) and machine learning (ML)-based models in AHF
phenotype classification by random forests, leveraging clinical text and
laboratory data from the MIMIC-IIl database. Feature selection for unstructured
textual data and biochemical test data was performed using the LASSO method,
with selected textual features converted into structured data using one-hot
encoding. The areas under the ROC and PRC curves (AUROC and AUPRC)
assessed overall performance.

Results: Our final study cohort comprised 1,192 training datasets and 513
independent validating datasets with primary data types and LVEF information
available. The overall model from the training dataset showed the best
performance with combined datasets (accuracy: 0.70 + 0.03, AUROC:
0.76 + 0.02) compared to the textual or laboratory dataset alone, which was
replicated in the independent validating dataset. Our model achieved optimal
performance by selecting up to 100 combined features from both textual and
laboratory data. Reducing features to 20 did not substantially attenuate the
overall model performance until only 10 features were selected.

Conclusion: Our study enhances HF phenotype classification and underscores
the value of multifaceted data analysis in clinical informatics, enabling more
personalized heart failure treatment. Early identification of AHF phenotypes
may support timely, phenotype-specific management and inform treatment
decisions.
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1 Introduction

Heart failure (HF) is a global pandemic, affecting an estimated 64
million individuals and posing a significant public health challenge
owing to its high prevalence (2.3% of adults), alarming mortality rates
(approximately 10% annually), and substantial healthcare costs
(exceeding $300 billion annually) (Savarese et al., 2022). HF is a
complex cardiac condition characterized by a diminished heart
capacity to pump sufficient blood or relax under normal left ventricle
filling conditions, leading to symptoms of breathlessness, fatigue, and
edema (McDonagh et al,, 2021). It is classified into three clinical
phenotypes according to left ventricular ejection fraction (LVEF) as
reduced LVEF HF (HFrEE, LVEF<40%), HFmrEF (LVEF between
40% and 49%), and preserved LVEF HF (HFpEF, LVEF>50%)
(McDonagh et al., 2021). Each phenotype requires specific treatment
strategies, highlighting the importance of early and accurate diagnosis
of HF phenotypes (McDonagh et al., 2021; McDonagh et al., 2024).
For example, therapeutic strategies for HFrEF typically incorporate
major classes of foundational therapies targeting specific mechanisms
of action, such as renin-angiotensin system inhibitors [RASi, such as
angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II
receptor blockers (ARBs), and angiotensin receptor-neprilysin
inhibitors (ARNIs)], beta-blockers, mineralocorticoid receptor
antagonists, and sodium-glucose transporter 2 (SGLT2) inhibitors as
foundational therapies. In contrast, the approach for HFpEF is more
conservative, focusing primarily on the management of symptoms
with diuretics and comorbid conditions and the selective use of SGLT2
inhibitors, given their emerging evidence of benefit in this subgroup
(McDonagh et al., 2024; Heidenreich et al., 2022). More importantly,
early initiation and accelerated up-titration of HF therapy in the acute
phase are associated with improved patient outcomes, and these
benefits are likely to extend over longer-term clinical follow-up
(Mebazaa et al., 2022; DeVore et al., 2020).

Cardiac ultrasonography is an essential tool for bedside LVEF
assessment, though precise phenotypic classification from
comprehensive echocardiography study is often performed late in the
admission process (Bennett et al., 2022). This may delay the timely
initiation of appropriate treatments specific to each HF phenotype and
further limit the optimization and selection of pharmacological
approaches under certain scenarios, for example, the intensive use of
ARNI in AHF patients manifesting borderline hypotension. Recently,
advancements in machine learning (ML) have led to significant
progress in HF prediction models (Alotaibi, 2019; Toumpourleka
etal, 2021; Tripoliti et al., 2016; Gallagher et al., 2019). Among these,
random forests have been effective in the prediction of HF using a
limited set of features (Ambale-Venkatesh et al., 2017), and the
integration of diverse data types through recurrent neural networks
and logistic regression has enhanced predictive accuracy (Chen et al.,
2019). Nevertheless, most studies have focused on binary classification,
primarily differentiating between HFrEF and HFpEE with limited
attention paid to comprehensive multiclass HF prediction, including
HFmrEF (Ho et al., 2016; Mathis et al., 2020; Cherukupalli et al., 2022;
Zhao et al., 2022). Additionally, the application of natural language
processing (NLP) to HF prediction has been explored, demonstrating
its effectiveness in extracting meaningful information from
unstructured medical text records (Evans et al., 2016). These
techniques have substantially improved the sensitivity of HF diagnosis
and identification. Recent studies have also applied transformer-based
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NLP methods to EHR phenotyping with promising results (Shickel
etal, 2022; Zhou et al., 2023; Zandbiglari et al., 2025). However, these
approaches typically require very large training corpora and
computational resources, which may limit their immediate
applicability in many clinical settings.

Despite these advancements, a significant gap remains in providing
a comprehensive HF prediction model encompassing all HF
phenotypes, particularly when using data available early on hospital
admission. Further, despite the high HF prevalence, the accurate
diagnosis of AHE particularly its clinical phenotypes, remains
challenging. This study aimed to address this gap by developing an ML
model that integrates both clinical narratives and laboratory test results
obtained at the onset of hospital admission. While deep learning
models such as CNNs and transformers have recently been applied to
EHR phenotyping with promising results, these methods often require
large-scale training data, substantial computational resources, and their
interpretability in clinical practice remains limited. In contrast,
we adopted a random forest-based approach to balance predictive
performance with practicality. Random forest is computationally
efficient, parallelizable, and cost-effective, while offering interpretable
outputs through feature importance analysis. Although it may not
always outperform deep learning models, our results demonstrate that
it provides clinically acceptable accuracy for the multimodal prediction
of acute HF phenotypes. By combining the NLP and ML techniques,
we sought to facilitate the early prediction of HF phenotypes.

2 Methods
2.1 Data source

The Medical Information Mart for Intensive Care III (MIMIC-III)
is a publicly available medical database that includes de-identified
health-related data associated with over 40,000 patients who stayed
in the intensive care units (ICUs) of the Beth Israel Deaconess
Medical Center between 2001 and 2012 (Johnson et al., 2016).
Despite its focus on ICU patients, the MIMIC-III database is suitable
for HF research because of its extensive and diverse collection of
critical care data encompassing a wide range of patient demographics
and clinical details, which are essential for an in-depth analysis of HF
phenotypes. It contains information, such as demographics, vital sign
measurements over time, laboratory test results, procedures,
medications, caregiver notes, imaging reports, and survival data
(including dates and times).

2.2 Participants

The primary objective of this study was to predict HF phenotypes
using the information available during the early stages of hospital
admission. Patient data were retrospectively retrieved from the
MIMIC-III database (original patient number = 58,976), focusing on
those diagnosed with HF (original number = 2,509 patients), as
indicated by relevant ICD-9 codes (Yancy et al., 2013). To ensure a
focus on early prediction, only data from the first admission at which
HF was diagnosed were included. Subsequent admissions of the same
patient were excluded, with 1,954 non-repeated HF patient numbers,
aligning with our objective of early phenotype detection.
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2.3 Data types

This study utilizes two primary data types from the MIMIC-III
database: structured and unstructured. The structured data
encompassed a variety of biochemical test items, represented in
tabular formats, with rows corresponding to individual patients and
columns corresponding to various biochemical values, including
blood glucose levels, cholesterol, and other laboratory test results. The
unstructured data consisted of clinical narratives containing textual
descriptions of patient conditions, diagnostic findings, and treatment
plans, which were recorded in free text by medical professionals.
Detailed data preparation, labeling, feature selection, and importance
are provided in the Supplementary material.

2.4 LVEF labeling and HF phenotypes
classification

Detailed LVEF data cleansing information is provided in the
Supplementary material. In the current study, HF phenotypes as major
outcome measures were differentiated based on LVEF values, typically
documented in the MIMIC-III database within cardiac ultrasound
reports or data mentioned in nursing reports and discharge
summaries. We extracted the text records of 1,954 patients with HF to
identify LVEF values. In cases where multiple LVEF values were
recorded for each patient during their hospital stay, only the first
recorded LVEF value was used. This process resulted in the
identification of 1,707 patients (247 omitted due to missing LVEF

10.3389/frai.2025.1664627

values) with accurately determined LVEF values for the categorized
HF phenotypes (Supplementary Figure 1). Our final HF study
participants were then labeled according to their respective HF
phenotypes: 999 as HFrEF (LVEF<40%), 196 as HFmrEF (LVEF>40%,
<50%), and 512 as HFpEF (LVEF>50%) (Figure 1).

2.5 Study design

The research workflow is illustrated in Supplementary Figure 1.
Feature selection and data structuring play critical roles in the
development of HF phenotype prediction models. Unstructured
textual data and biochemical test data from the training dataset
(n = 1,192) were subject to feature selection using the LASSO method.
The feature selection process, detailed in the “Feature Selection and
Data Processing” subsection in Supplementary material, identified
47 key textual features and 53 biochemical test features
(Supplementary Tables 1, 2, Supplementary material) as the most
relevant for our analysis. The selected textual features were converted
into structured data using one-hot encoding. To eliminate the
potential biased model training from cardiac ultrasound information,
all relevant data, including those reported in the cardiac formal
ultrasound report section or terms and any findings derived from
ultrasound imaging reports (such as nursing reports and discharge
summaries), were omitted from our model training. The study
flowchart is reported in Supplementary Figure 1.

Using the prepared data, we constructed three variants of random
forests: the first using only textual data, another using only

999
(58.5%)
1000

800

600

400

Number of Patients

200

HFrEF (=40%)

FIGURE 1

HFmMreF (40-49%)

Distribution of Study Participants by HF Phenotype

HFpEF (=50%)

The distribution of HF phenotype classification displayed from final study participants with LVEF information available.
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biochemical data, and a third combining both data types. This
approach allowed us to compare the performance of each model type
in classifying HF phenotypes.

2.6 Statistics

For continuous variables, since at least one of the subgroups was
not normally distributed, the Kruskal-Wallis test was used to assess
differences among the three HF phenotypes, and the Chi-square test
was used to determine statistical significance for categorical variables.

To ensure robustness and address the imbalances in the dataset,
we employed a five-fold cross-validation method to train and validate the
models. Additionally, SMOTE was used to balance the training data,
thereby enhancing the validity of the cross-validation process. We then
calculated the averages and standard deviations of various performance
metrics across the five-fold cross-validation to assess the capabilities of
each model comprehensively. The areas under the ROC and PRC curves
(AUROC and AUPRC, respectively) were used to outline the overall
diagnostic yield and overall performance of a classifier by focusing on
the minority class (assuming imbalanced datasets). Finally, an
independent validation was performed using a separate test dataset
(n =513). This step was crucial to confirm the generalizability of our
models and check for potential over-fitting issues, ensuring that our
models were reliable and applicable in real-world clinical settings.

All analyses were conducted using Python 3.9.13. Machine learning
models, including random forest classifiers and LASSO feature
selection, were implemented with scikit-learn version 1.2.2. Data
balancing was performed using the SMOTE implementation from the
imbalanced-learn package (version 0.10.1). Model interpretability
analyses were performed using the shap package (version 0.41.0).

3 Results

The demographic characteristics of the patients by 3 HF
phenotypes are shown in Table 1. The median age for patients with
HFrEF was significantly younger, with male sex predominance
(63.2%) compared with those with HFpEF and HFmrEF phenotypes
(p = 0.04 and <0.01, respectively). Patients with the HFpEF phenotype
had the highest systolic blood pressure and heart rate, followed by
those with the HFmrEF and HFrEF phenotypes (p < 0.01). Racial
distribution was not significantly different among the three groups.
Ischemic cardiomyopathy was more prevalent in patients with HFrEF
(21.66%) than in those with HFpEF (6.05%) or HFmrEF (12.76%)
(p <0.01). History of myocardial infarction and coronary artery
disease was also more common in patients with HFrEF and HFmrEF
than in patients with HFpEF (both p < 0.01). Conversely, valvular
heart disease was more frequent in patients with HFpEF (66.02%)
than in those with HFmrEF (60.71%) or HFrEF (54.76%) (p < 0.01).

Laboratory investigations revealed higher hemoglobin levels in
patients with HFrEF (median 11,800 mg/dL) than in patients with
HFpEF and HFmrEF (p < 0.01). Drug treatment patterns indicated
that ACEIs or ARBs and beta-blockers were significantly more
commonly used in patients with HFrEF and HFmrEF than in those
with HFpEF (p = 0.04), whereas loop diuretics were most frequently
prescribed to patients with HFrEF (62.09%) compared to HFpEF and
HFmrEF (p < 0.01).
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3.1 Performance of HF phenotype
prediction models using different data
configurations

Table 2 outlines the performance across different data
configurations, including the accuracy, precision, recall, F1-score, and
AUROC:s, for models trained on textual data, laboratory data, and a
combination of both. The training performance, as detailed in Table 2A,
indicates that models using combined data achieved the highest
performance, with an accuracy of 0.70 £ 0.03 and an AUROC of
0.76 £ 0.02. Models relying on textual data alone also performed well,
demonstrating an accuracy of 0.69 + 0.04 and an AUROC of 0.77 + 0.03.
In contrast, models based solely on laboratory data had lower accuracy
and AUROC values of 0.50 + 0.02 and 0.55 + 0.02, respectively.

Independent test performance replicated these findings
(Table 2B). The combined data models sustained their lead with an
accuracy of 0.73 and an AUROC of 0.80. Textual data models followed
closely with an accuracy of 0.71 and an AUROC of 0.78. Laboratory
data models remained the least effective in this independent
evaluation, with an accuracy of 0.55 and an AUROC of 0.55.

Figure 2 complements these results by presenting ROC and PRC
curves for the binary classification of each HF phenotype. Figure 2A
shows that models using textual data with 47 features had an AUROC
of 0.68 for HFmrEFE 0.83 for HFpEF, and 0.85 for HFrEF, with
corresponding AUPRC:s as 0.24 for HFmrEF, 0.66 for HFpEF, and 0.89
for HFrEF, indicating a respectable performance, particularly for
HFpEF and HFrEF phenotypes. Figure 2B represents models using
laboratory data with 53 features and revealed lower performance, with
AUROCs ranging from 0.54 to 0.56 and AUPRCs from 0.13 to 0.67.
Figure 2C illustrates that models utilizing combined data with 100
features performed best, with AUROC:s of 0.70 for HFmrEEF, 0.84 for
HFpEE and 0.86 for HFrEF; corresponding AUPRCs were 0.24 for
HFmrEEF 0.68 for HFpEE and 0.90 for HFrEF, suggesting that the
integration of data types enhanced the model’s predictive capabilities.

3.2 Performance of HF phenotype
prediction models with reduced features

To assess the impact of feature reduction on the model
performance, the models were streamlined to use subsets of the
original features: 23 textual features, 26 laboratory test features, and a
combination of both, totaling 50 features (32 textual and 18 test items).

Table 3 presents the performances of these reconfigured models
in both the training and independent testing scenarios. Table 3A
shows models utilizing the combined reduced features demonstrated
superior performance from the training dataset, achieving an accuracy
0f 0.70 + 0.04 and an AUROC of 0.76 + 0.02. Models trained using
only textual data also exhibited commendable performance, whereas
those based solely on laboratory data had comparatively lower metrics.

The independent test dataset results shown in Table 3B further
substantiated these outcomes. Combined data models retained their
lead in performance, with an accuracy of 0.73 and an AUROC of 0.80.
The performance of models using textual data was closely followed,
and laboratory data models, although least effective, showed results
consistent with their training performance.

The binary classification performance of these models for the
HF phenotypes was shown in Supplementary Figure 2.
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TABLE 1 Comparison of characteristics among HF patients with preserved, mildly-reduced, and reduced ejection fraction.

Characteristic HFpEF (n = 512) HFmrEF (n = 196) HFrEF (n = 997) p-value
Age (years) 71.00 (58.00-80.00) 71.00 (57.00-80.00) 68.00 (56.00-78.00) 0.04
Male gender (%) 48.83% 63.27% 63.19% <0.01
Systolic blood pressure (mmHg) 128.00 (110.00-147.00) 126.00 (110.00-140.00) 116.00 (103.00-134.00) <0.01
Diastolic blood pressure (mmHg) 68.00 (58.00-80.00) 70.00 (57.00-80.25) 67.00 (58.00-77.00) 0.26
Heart rate (beats/min) 80.00 (66.00-92.00) 80.00 (65.00-96.00) 84.00 (70.00-100.00) <0.01
Race/ethnicity 0.39
Non-Hispanic White (%) 70.70% 65.31% 67.10% 0.25
Non-Hispanic Black (%) 13.67% 11.73% 14.04% 0.69
Hispanic (%) 3.52% 5.10% 3.51% 0.54
Asian (%) 0.98% 3.06% 2.01% 0.14
Other (%) 11.13% 14.80% 13.34% 0.33
Etiology
Ischemic cardiomyopathy (%) 6.05% 12.76% 21.66% <0.01
Hypertensive heart disease (%) 7.03% 7.14% 7.42% 0.96
Dilated cardiomyopathy (%) 6.05% 9.69% 26.38% <0.01
Valvular heart disease (%) 66.02% 60.71% 54.76% <0.01
Arrhythmias (%) 87.89% 89.29% 86.66% 0.54
Comorbidities
Hypertension (%) 56.64% 52.55% 55.97% 0.61
Hyperlipidemia (%) 34.96% 41.33% 35.51% 0.25
Diabetes (%) 23.05% 23.47% 27.28% 0.16
Prior myocardial infarction (%) 21.29% 31.63% 33.10% <0.01
Peripheral vascular disease (%) 9.18% 10.71% 11.33% 0.44
Coronary artery disease (%) 39.06% 51.53% 49.65% <0.01
Atrial fibrillation/flutter (%) 65.63% 71.94% 66.70 0.27
COPD or Asthma (%) 20.12% 18.88% 16.65% 0.24
Stroke/transient ischemic attack (%) 8.59% 7.65% 9.13% 0.79
Renal insufficiency (%) 22.85% 26.02% 20.66% 0.21
Chronic dialysis (%) 3.91% 5.61% 3.61% 0.42
CRT (%) 1.17% 1.02% 3.51% <0.01
ICD (%) 6.25% 8.67% 19.96% <0.01
Anemia (%) 19.73% 19.39% 16.15% 0.18
Symptoms and signs
Dyspnea on exertion (%) 66.60% 63.78% 68.61% 0.37
Orthopnea (%) 8.20% 7.14% 11.94% 0.02
PND (%) 2.73% 3.06% 5.72% 0.02
Ankle edema (%) 43.36% 38.78% 43.33% 0.48
Rales (%) 22.07% 25.51% 25.78% 0.27
Third heart sound gallop (%) 1.37% 2.04% 2.41% 0.40
Neck vein distension (%) 9.77% 9.18% 12.64% 0.15
CXR findings
Pulmonary edema (%) 29.04% (97/334) 26.06% (37/142) 28.53% (196/687) 0.80
Cardiomegaly (%) 45.81% (153/334) 54.23% (77/142) 60.55% (416/687) <0.01
Pleural effusion (%) 40.12% (134/334) 45.77% (65/142) 42.50% (292/687) 0.51
(Continued)
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TABLE 1 (Continued)

Characteristic

10.3389/frai.2025.1664627

HFmrEF (n = 196) HFrEF (n = 997)

HFpEF (n = 512)

Laboratory investigations
Hemoglobin (mg/dl) 11,200 (9680-12,800) 11,550 (10480-12,900) 11,800 (10500-13,500) <0.01
Serum sodium (mEq/L) 138.50 (136.00-141.00) 139.00 (136.27-141.00) 138.00 (135.50-140.00) 0.01
Serum potassium (mEq/L) 4.20 (3.80-4.61) 4.30 (3.90-4.70) 4.20 (3.90-4.65) 0.22
Creatinine (mg/dl) 1.19 (0.90-1.70) 1.20 (0.90-1.80) 1.20 (0.90-1.75) 0.21

Pharmacological treatment
ACE inhibitors/ARBs (%) 17.19% 23.47% 22.57% 0.04
Beta blockers (%) 54.69% 60.20% 61.38% 0.04
MRA (%) 2.73% 3.06% 5.22% 0.05
Loop diuretics (%) 52.73% 56.12% 62.09% <0.01
Statins (%) 20.51% 22.96% 22.37% 0.66
Antiplatelet agents (%) 19.14% 24.49% 23.17% 0.14
Anticoagulants (%) 51.56% 62.76% 58.48% <0.01

COPD, chronic pulmonary obstructive disease; CRT, cardiac resynchronization therapy; ICD, implantable cardioverter-defibrillator; NYHA, New York heart association; PND, paroxysmal
nocturnal dyspnea; ECG, electrocardiogram; LBBB, left bundle branch block; RBBB, right bundle branch block; CXR, chest x-ray; ACE, angiotensin-converting enzyme; ARB, angiotensin IT
receptor blocker; ARNI, angiotensin receptor-neprilysin inhibitor; MRA, mineralocorticoid receptor antagonist, SGLT2i: sodium glucose co-transporter 2 inhibitor.

TABLE 2 Performance of HF phenotype prediction models using different data configurations.

A. Training Performance

Model input Accuracy Precision Recall Fl-score

Textual data 0.69 + 0.04 0.51 % 0.04 0.50 £ 0.03 0.49 £ 0.03 0.77 £ 0.03
Laboratory data 0.50 + 0.02 0.39 % 0.02 0.38 +0.01 0.38 +0.02 0.55 +0.02
Combined data 0.70 + 0.03 0.55 % 0.05 0.50 + 0.02 0.49 + 0.02 0.76 + 0.02

B. Independent test performance

Model input Accuracy Precision Recall Fl-score

Textual data 0.71 0.67 0.51 0.51 0.78
Laboratory data 0.55 0.31 0.34 0.31 0.55
Combined data 0.73 0.65 0.51 0.50 0.80

Supplementary Figure 2A shows the substantial capacity for
phenotype differentiation using textual data, particularly for
HEFpEF (AUROC of 0.80 and of AUPRC 0.61) and HFrEF (AUROC
0f 0.83 and of AUPRC 0.87). Supplementary Figure 2B shows that
models with laboratory data exhibit lower performance across all
HF phenotypes, with AUROCs ranging from 0.53 to 0.57 and
AUPRCSs from 0.12 to 0.67. Supplementary Figure 2C confirms a
balanced combination of 50 features demonstrating the best overall
performance with the highest AUROC (ranging from 0.73 to 0.85)
and AUPRC (ranging from 0.27 to 0.89) values for all
HF phenotype.

3.3 Evaluating model performance with
varying feature quantities

We observed that random forests built with the top 50 to top 20

features exhibits comparable performance in the three-class
classification of HF phenotypes, as shown in Table 4. The models
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maintained robustness, as evidenced by the minimal variation in
the performance metrics during cross-validation and independent
testing. The model with the top 20 features showed an accuracy of
0.67 £ 0.01 and an AUROC of 0.74 + 0.01. However, the top 10
features model dropped to an accuracy of 0.54 +0.01 and an
AUROC of 0.64 + 0.02. The overall performances of random forests
for each individual HF phenotype classification with varying feature
quantities using combined data were displayed in Figure 3.

The binary classification results for individual HF phenotypes
depicted in Figure 3 and previously in Supplementary Figure 2C
reinforce these findings. Figures 3A-C shows a decline in the area
under the ROC and PRC curves as the number of features decreased
for the models with the top 30, 20, and 10 features, respectively. This
highlights the importance of retaining a critical mass of features to
maintain predictive accuracy down to the number of top 20 features
yet diminishing significantly with only the top 10 features. These
data suggest a trade-off for accurate HF phenotype classification
using the top 20 features that balance model accuracy and
computational efficiency.
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FIGURE 2
laboratory test data with 100 features. Each subfigure includes ROC curves on the left and PRC curves on the right.

3.4 Feature importan

ce analysis in

predictive model performance and additive

value distributions

A detailed examination of the top 10 features across the five different

models was conducted to analyze

the impact of feature quantity on the

performance of our HF phenotype predictive models. These models
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varied in the number of features used, ranging from the complete 100
features to a reduced set of 10. The feature importance based on 23

textual features, 26 laboratory test

features and a balanced combination

of 50 features (with 32 textual and 18 test items) was displayed in
Supplementary Figures 3A-C. The SHapley Additive exPlanations

(SHAP) value distributions and summary plot for top features based on

100 features model were further presented in Figures 4, 5, respectively.
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TABLE 3 Performance of HF phenotype prediction models with reduced features using different data configurations.

A. Training performance

10.3389/frai.2025.1664627

Model input Accuracy Precision Recall Fl-score

Textual data 0.68 +0.02 0.52 +0.03 0.50 +0.01 0.50 + 0.02 0.75 +0.01
Laboratory data 0.50 + 0.02 0.39 +0.02 0.38 +0.01 0.38 +0.02 0.54 +0.02
Combined data 0.70 + 0.04 0.52 +0.08 0.51 +0.04 0.50 +0.05 0.76 + 0.02

B. Independent test performance

Model input Accuracy Precision Recall Fl-score

Textual data 0.69 0.53 0.49 0.48 0.75
Laboratory data 0.56 0.32 0.35 0.32 0.55
Combined data 0.73 0.74 0.52 0.52 0.80

TABLE 4 Performance of HF phenotype prediction models with varying feature quantities using combined data.

A. Training performance

Feature quantity Accuracy Precision Recall Fl-score

50 0.70 £ 0.04 0.52 £ 0.08 0.51 +0.04 0.50 £ 0.05 0.76 + 0.02
30 0.66 % 0.03 0.49 +0.05 0.49 +0.03 0.48 + 0.04 0.74 +0.04
20 0.67 +0.01 0.55 +0.01 0.53 +0.01 0.53 +0.01 0.74 +0.01
10 0.54%0.01 0.43 +0.01 0.44 +0.01 043 +0.01 0.64 +0.02

B. Independent test performance

Feature quantity Accuracy Precision Fl-score

50 0.73 0.74 0.52 0.52 0.80
30 0.69 045 0.48 0.46 0.75
20 0.69 0.45 0.48 0.46 0.75
10 0.63 0.40 0.45 0.42 0.68

4 Discussion

Our investigation into early AHF phenotype prediction led to the
key finding that the integration of clinical text data and laboratory results
significantly enhanced the accuracy of the AHF phenotype classification
of HFrEE, HFmrEE and HFpEE Our approach, which employs both
NLP and ML from clinical information and traditional laboratory data,
underscores the value of combining diverse data sources into successful
clinical diagnostics. By leveraging NLP alongside traditional laboratory
analyses, our models tap into the rich narrative of clinical notes,
capturing key messages that laboratory results alone might miss when
distinguishing between HF phenotypes. The superior performance of
our combined data models, particularly in terms of accuracy and
AUROC, highlights the potential of multimodal data integration for
improving diagnostic tools for AHF phenotypes, even with reduced
features. This approach aligns with the growing trend in personalized
medicine using ML models, where detailed information is vital for
precisely predicting the AHF phenotype.

Our exploration of feature reduction and model performance
revealed critical insights with practical implications. The models
retained high accuracy and AUROC:s, even when the feature count was
markedly reduced. This suggests that a well-selected subset of features
can be as effective as a complete set, thus highlighting the efficiency of
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our models. Notably, there is a critical point when reducing feature
numbers to 10, where further reduction significantly impacts the
model efficiency, indicating a threshold below which the model can no
longer effectively capture the complexity of HF phenotype distinctions.
Balancing accuracy and computational efficiency is vital for developing
practical HF prediction tools in diverse clinical environments. Our
findings have several significant clinical implications. The accurate and
timely classification of HF phenotypes has the potential to revolutionize
early patient management and to guide timely mechanism-driven
treatment strategies balancing treatment benefits, expenditure, and
overall adverse effects caused. For example, early initiation and more
intensive use of RASi, MRA, or beta-blockers critical HFrEF patients
for evidence based top priority (Class I) (McDonagh et al., 2021;
Heidenreich et al., 2022; DeVore et al., 2020; Velazquez et al., 2018;
Gottlieb et al., 2002; Zannad et al., 2011) with rapid onset of efficacy on
survival, especially when more considerations needed, compared to
sGLT?2 inhibitor alone for the HFpEF population. This precision in
diagnosis could facilitate more targeted therapies, align treatment plans
with individual patient profiles, and potentially alter the disease course.

In our analysis, “hypokinesis,” “dilated cardiomyopathy,” “severe
global,” “severely depressed,” and “cardiomyopathy” emerged as
pivotal textual features for HFrEF phenotype prediction, underpinned
by pharmacological uses including “digoxin” and “carvedilol” Terms
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FIGURE 3
includes ROC curves on the left and PRC curves on the right.

Performance of random forests for HF phenotype classification with varying feature quantities using combined data. (A) illustrates the effectiveness of
random forest models using top 30 features, (B) depicts models using top 20 features, and (C) shows models using top 10 features. Each subfigure
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of “hypokinesis” and “severely depressed” indicative of diminished
myocardial contractility often suggests advanced HF stage, especially
in HFrEF (Schmidt-Ott and Ascheim, 2006; Berezin et al., 2021).
Similarly, “cardiomyopathy;” particularly the dilated form, involves
certain inner morphological and functional myocardial anomaly
(Seferovi¢ et al., 2019). For example, mutations in genes encoding
sarcomere proteins, such as the beta-myosin heavy chain, have been
associated with the development of dilated cardiomyopathy

Frontiers in Artificial Intelligence 09

(Kamisago et al., 2000), underscoring the genetic underpinnings that
contribute to the critical textual features observed in our study. On
the contrary, terms of “diastolic” may provide a clue to the presence
of diastolic anomaly delineating HFpEF pathophysiology. Laboratory
test features also delineated the physiological disturbances in HE. For
example, alterations in hematocrit or white blood cell count may
reflect systemic anemic status relating to iron deficiency, chronic
kidney disease or chronic inflammation process closely linked to
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FIGURE 4
SHAP (SHapley Additive exPlanations) value distributions for top features in predicting HF phenotype. The figure presents summary plots for HFpEF
(left), HFmrEF (middle), and HFrEF (right) phenotypes. Each row represents a feature, and each point represents a patient. The x-axis shows the SHAP
value, indicating the impact of the feature on the model output. Red points denote high feature values, while blue points indicate low values. Features
are ranked by their overall importance in predicting each phenotype. This visualization reveals the complex relationships between features and their
impact on heart failure phenotype classification, highlighting key predictors such as hypokinesis, cardiomyopathy, and severe global dysfunction across
different phenotype.

HFpEF pathophysiology (Melenovsky et al., 2016; Loncar et al,
2021). The presence of leukocytosis (elevated white blood cells)
indicated the pro-inflammatory status aligned with HFpEF central
pathophysiology (Briasoulis et al., 2016; Yndestad et al., 2006). The
constellation of these features supports the heterogeneity of HF and
emphasizes the importance of a comprehensive approach to classify
and manage this complex syndrome accurately.

In the realm of HF phenotype prediction, our study distinguished
itself by integrating clinical text and laboratory data, in contrast to
several other notable studies in the field. Alkhodari et al. made
significant strides by employing deep learning to predict LVEF from
patient clinical profiles and categorized HF into different LVEF
cutoffs (Alkhodari et al., 2021). Their innovative approach utilizes
LVEF ranges that differ from those of most contemporary
classifications. This distinction highlights the challenge of a direct
comparison, although both studies underscore the growing role of
advanced computational methods in HF diagnosis. Uijl et al. focused
on identifying HF LVEF phenotype using logistic regression models
with routine clinical characteristics (Uijl et al., 2020). Their results
were particularly strong in predicting HFpEF and HFrEF but less so
for HFmrEE Desai et al. developed a Medicare claims-based model
to predict LVEF classes in patients with HF by leveraging
administrative data (Desai et al., 2018). While valuable in health
service research, these studies did not address the critical need for HF
phenotype detection during the acute admission phase. Our study
fills this gap by leveraging NLP and ML, offering a pathway for
phenotype-specific early and precise administration of medications
(Heidenreich et al., 2022; Velazquez et al., 2018; Voors et al., 2022).
This is particularly crucial given the considerable time and expense
associated with cardiac ultrasound, which is currently the standard
for accurate HF phenotype prediction. Collectively, these prior
studies demonstrate the growing interest in computational
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approaches for HF characterization, yet they differ substantially in
objectives, data sources, and outcome definitions. To our knowledge,
no existing model has sought to predict all three HF phenotypes
simultaneously during the acute admission phase. Therefore, direct
quantitative comparison is not possible, but our work provides an
important benchmark in this emerging area by uniquely integrating
both clinical text and laboratory data for early phenotype-
specific prediction.

An important observation is that the performance of our model
was lower for HFmrEF (AUROC = 0.70) compared with HFrEF
(AUROC =0.86) and HFpEF (AUROC =0.84). This finding is
consistent with clinical experience, as HFmrEF is often regarded as a
heterogeneous and transitional phenotype with overlapping features
of systolic and diastolic dysfunction. The ambiguity of its
pathophysiological profile likely contributes to its reduced
predictability. Future refinement of prediction models, potentially
incorporating additional biomarkers or longitudinal trajectories, will
be necessary to improve discrimination of this intermediate phenotype.

Although our models achieved robust AUROC values across all
feature sets (Tables 2-4), precision and recall were relatively modest.
This likely reflects the residual effects of class imbalance, which
remains a well-recognized challenge in multiclass heart failure
prediction. These findings suggest that while our approach is effective
in discriminating phenotypes overall, additional strategies for
imbalance correction may be needed to optimize case-level
detection performance.

4.1 Limitations

Although our study provides valuable insights into the early
prediction of the HF phenotype, it is important to acknowledge its
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FIGURE 5

Mean SHAP (SHapley Additive exPlanations) values for top features
across HF phenotype. This bar plot illustrates the average impact of
key features on model output for HFrEF (blue), HFpEF (pink), and
HFmrEF (olive) classifications. Features are ranked by their overall
importance, with hypokinesis, cardiomyopathy, and severe global
dysfunction showing the highest mean SHAP values. The x-axis
represents the mean absolute SHAP value, indicating the magnitude
of each feature's impact on model predictions. This visualization
provides a comparative view of feature importance across the three
heart failure phenotypes, highlighting the differential influence of
clinical and physiological factors in predicting each phenotype.

limitations. The extensive use of the MIMIC-III database may limit
the generalizability of our findings across different patient
demographics and healthcare settings. Specifically, the MIMIC-III
database predominantly consists of patients with AHF rather than
ambulatory or non-ICU population. This distinction is crucial
because the dynamics and characteristics of acute HF may differ
significantly from those of chronic HF or community-managed cases,
potentially affecting the applicability of our predictive models.
Therefore, future research should include external validation on
diverse cohorts, particularly non-ICU and outpatient populations, to
confirm the robustness and clinical utility of our approach.
Expanding beyond MIMIC-III to incorporate a broader range of
patient populations, additional laboratory data (e.g., natriuretic
peptides), and multimodal sources such as imaging and physiological
signals will further enhance prediction accuracy and generalizability.
Additionally, exploring the implementation and impact of these
models in real-world clinical practice is essential for assessing their
practical utility and effectiveness in patient care.

Another limitation relates to dataset labeling: 247 patients were
excluded due to missing LVEF values, which were necessary for
assigning ground-truth HF phenotypes during training. Importantly,
this issue pertains only to retrospective dataset construction and not
to the real-world use of our prediction model. In clinical deployment,
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our model does not require LVEF as input and can operate using only
text and laboratory features. Thus, while missing LVEF reduced the
training sample size in this study, it does not hinder the practical
applicability of the model in real-world settings. Moreover, the
generalizability of our findings may be limited by the ICU-based
population in the MIMIC-III dataset. Validation in multicenter
cohorts and in non-ICU and outpatient populations will be essential
to confirm external applicability.

5 Conclusion

This study successfully developed a random forest model using
clinical text and laboratory data from the MIMIC-III database for
early prediction of all three HF phenotypes. Our approach, which
combines textual features with laboratory test data, showed enhanced
predictive accuracy, marking a significant contribution to HF
diagnostics. By potentially initiating and guiding tailored treatment
decisions during early admission, our AI model stands to improve
the clinical outcomes of patients with HF markedly. The integration
of diverse data types not only strengthens the model’s performance
but also aligns with contemporary trends in personalized medicine.
Furthermore, our exploration of feature reduction revealed the
potential for efficient yet effective predictive models, emphasizing the
balance between model complexity and clinical applicability. Future
efforts should focus on refining the feature set, exploring additional
data types, and integrating the model into actual clinical settings to
broaden its utility in HF management.

5.1 Clinical perspectives

Our current work highlights the potential for early discrimination
of diverse HF phenotype based on text and laboratory features blinded
to imaging (such as cardiac ultrasound) information during acute
phase with acceptable accuracy. This may facilitate timely delivery of
treatment interventions that may balance efficacy and risk ratio for
patients. As evidence increasingly demonstrates persistent clinical
benefits of earlier and more intensive use of trial-proven medications
among the AHF population, our data suggest that aggressive delivery
of mechanism-specific foundational therapy can be initiated without
time delay after balancing the consequences of adverse events, overall
expense, and gain of survival (e.g., RASi or MRA among HFrEF with
borderline hypotension). Our prediction model therefore provides an
opportunity for precision medicine extended to a more tailored therapy
decision among HF patients during the acute phase.
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