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Background: Heart failure (HF), with its distinct phenotypes, poses significant 
public health challenges. Early diagnosis of specific HF phenotypes is crucial for 
timely therapeutic intervention.
Objectives: We employed random forests to predict acute HF (AHF) phenotypes 
(HFrEF, HFmrEF, and HFpEF) during admission, using structured and unstructured 
data types while blinded to left ventricular ejection fraction (LVEF) information.
Methods: We investigated the predictive performance of integrated natural 
language processing (NLP) and machine learning (ML)-based models in AHF 
phenotype classification by random forests, leveraging clinical text and 
laboratory data from the MIMIC-III database. Feature selection for unstructured 
textual data and biochemical test data was performed using the LASSO method, 
with selected textual features converted into structured data using one-hot 
encoding. The areas under the ROC and PRC curves (AUROC and AUPRC) 
assessed overall performance.
Results: Our final study cohort comprised 1,192 training datasets and 513 
independent validating datasets with primary data types and LVEF information 
available. The overall model from the training dataset showed the best 
performance with combined datasets (accuracy: 0.70 ± 0.03, AUROC: 
0.76 ± 0.02) compared to the textual or laboratory dataset  alone, which was 
replicated in the independent validating dataset. Our model achieved optimal 
performance by selecting up to 100 combined features from both textual and 
laboratory data. Reducing features to 20 did not substantially attenuate the 
overall model performance until only 10 features were selected.
Conclusion: Our study enhances HF phenotype classification and underscores 
the value of multifaceted data analysis in clinical informatics, enabling more 
personalized heart failure treatment. Early identification of AHF phenotypes 
may support timely, phenotype-specific management and inform treatment 
decisions.
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1 Introduction

Heart failure (HF) is a global pandemic, affecting an estimated 64 
million individuals and posing a significant public health challenge 
owing to its high prevalence (2.3% of adults), alarming mortality rates 
(approximately 10% annually), and substantial healthcare costs 
(exceeding $300 billion annually) (Savarese et  al., 2022). HF is a 
complex cardiac condition characterized by a diminished heart 
capacity to pump sufficient blood or relax under normal left ventricle 
filling conditions, leading to symptoms of breathlessness, fatigue, and 
edema (McDonagh et  al., 2021). It is classified into three clinical 
phenotypes according to left ventricular ejection fraction (LVEF) as 
reduced LVEF HF (HFrEF, LVEF≤40%), HFmrEF (LVEF between 
40% and 49%), and preserved LVEF HF (HFpEF, LVEF≥50%) 
(McDonagh et al., 2021). Each phenotype requires specific treatment 
strategies, highlighting the importance of early and accurate diagnosis 
of HF phenotypes (McDonagh et al., 2021; McDonagh et al., 2024). 
For example, therapeutic strategies for HFrEF typically incorporate 
major classes of foundational therapies targeting specific mechanisms 
of action, such as renin-angiotensin system inhibitors [RASi, such as 
angiotensin-converting enzyme inhibitors (ACEIs), angiotensin II 
receptor blockers (ARBs), and angiotensin receptor-neprilysin 
inhibitors (ARNIs)], beta-blockers, mineralocorticoid receptor 
antagonists, and sodium-glucose transporter 2 (SGLT2) inhibitors as 
foundational therapies. In contrast, the approach for HFpEF is more 
conservative, focusing primarily on the management of symptoms 
with diuretics and comorbid conditions and the selective use of SGLT2 
inhibitors, given their emerging evidence of benefit in this subgroup 
(McDonagh et al., 2024; Heidenreich et al., 2022). More importantly, 
early initiation and accelerated up-titration of HF therapy in the acute 
phase are associated with improved patient outcomes, and these 
benefits are likely to extend over longer-term clinical follow-up 
(Mebazaa et al., 2022; DeVore et al., 2020).

Cardiac ultrasonography is an essential tool for bedside LVEF 
assessment, though precise phenotypic classification from 
comprehensive echocardiography study is often performed late in the 
admission process (Bennett et al., 2022). This may delay the timely 
initiation of appropriate treatments specific to each HF phenotype and 
further limit the optimization and selection of pharmacological 
approaches under certain scenarios, for example, the intensive use of 
ARNI in AHF patients manifesting borderline hypotension. Recently, 
advancements in machine learning (ML) have led to significant 
progress in HF prediction models (Alotaibi, 2019; Toumpourleka 
et al., 2021; Tripoliti et al., 2016; Gallagher et al., 2019). Among these, 
random forests have been effective in the prediction of HF using a 
limited set of features (Ambale-Venkatesh et  al., 2017), and the 
integration of diverse data types through recurrent neural networks 
and logistic regression has enhanced predictive accuracy (Chen et al., 
2019). Nevertheless, most studies have focused on binary classification, 
primarily differentiating between HFrEF and HFpEF, with limited 
attention paid to comprehensive multiclass HF prediction, including 
HFmrEF (Ho et al., 2016; Mathis et al., 2020; Cherukupalli et al., 2022; 
Zhao et al., 2022). Additionally, the application of natural language 
processing (NLP) to HF prediction has been explored, demonstrating 
its effectiveness in extracting meaningful information from 
unstructured medical text records (Evans et  al., 2016). These 
techniques have substantially improved the sensitivity of HF diagnosis 
and identification. Recent studies have also applied transformer-based 

NLP methods to EHR phenotyping with promising results (Shickel 
et al., 2022; Zhou et al., 2023; Zandbiglari et al., 2025). However, these 
approaches typically require very large training corpora and 
computational resources, which may limit their immediate 
applicability in many clinical settings.

Despite these advancements, a significant gap remains in providing 
a comprehensive HF prediction model encompassing all HF 
phenotypes, particularly when using data available early on hospital 
admission. Further, despite the high HF prevalence, the accurate 
diagnosis of AHF, particularly its clinical phenotypes, remains 
challenging. This study aimed to address this gap by developing an ML 
model that integrates both clinical narratives and laboratory test results 
obtained at the onset of hospital admission. While deep learning 
models such as CNNs and transformers have recently been applied to 
EHR phenotyping with promising results, these methods often require 
large-scale training data, substantial computational resources, and their 
interpretability in clinical practice remains limited. In contrast, 
we adopted a random forest-based approach to balance predictive 
performance with practicality. Random forest is computationally 
efficient, parallelizable, and cost-effective, while offering interpretable 
outputs through feature importance analysis. Although it may not 
always outperform deep learning models, our results demonstrate that 
it provides clinically acceptable accuracy for the multimodal prediction 
of acute HF phenotypes. By combining the NLP and ML techniques, 
we sought to facilitate the early prediction of HF phenotypes.

2 Methods

2.1 Data source

The Medical Information Mart for Intensive Care III (MIMIC-III) 
is a publicly available medical database that includes de-identified 
health-related data associated with over 40,000 patients who stayed 
in the intensive care units (ICUs) of the Beth Israel Deaconess 
Medical Center between 2001 and 2012 (Johnson et  al., 2016). 
Despite its focus on ICU patients, the MIMIC-III database is suitable 
for HF research because of its extensive and diverse collection of 
critical care data encompassing a wide range of patient demographics 
and clinical details, which are essential for an in-depth analysis of HF 
phenotypes. It contains information, such as demographics, vital sign 
measurements over time, laboratory test results, procedures, 
medications, caregiver notes, imaging reports, and survival data 
(including dates and times).

2.2 Participants

The primary objective of this study was to predict HF phenotypes 
using the information available during the early stages of hospital 
admission. Patient data were retrospectively retrieved from the 
MIMIC-III database (original patient number = 58,976), focusing on 
those diagnosed with HF (original number = 2,509 patients), as 
indicated by relevant ICD-9 codes (Yancy et al., 2013). To ensure a 
focus on early prediction, only data from the first admission at which 
HF was diagnosed were included. Subsequent admissions of the same 
patient were excluded, with 1,954 non-repeated HF patient numbers, 
aligning with our objective of early phenotype detection.
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2.3 Data types

This study utilizes two primary data types from the MIMIC-III 
database: structured and unstructured. The structured data 
encompassed a variety of biochemical test items, represented in 
tabular formats, with rows corresponding to individual patients and 
columns corresponding to various biochemical values, including 
blood glucose levels, cholesterol, and other laboratory test results. The 
unstructured data consisted of clinical narratives containing textual 
descriptions of patient conditions, diagnostic findings, and treatment 
plans, which were recorded in free text by medical professionals. 
Detailed data preparation, labeling, feature selection, and importance 
are provided in the Supplementary material.

2.4 LVEF labeling and HF phenotypes 
classification

Detailed LVEF data cleansing information is provided in the 
Supplementary material. In the current study, HF phenotypes as major 
outcome measures were differentiated based on LVEF values, typically 
documented in the MIMIC-III database within cardiac ultrasound 
reports or data mentioned in nursing reports and discharge 
summaries. We extracted the text records of 1,954 patients with HF to 
identify LVEF values. In cases where multiple LVEF values were 
recorded for each patient during their hospital stay, only the first 
recorded LVEF value was used. This process resulted in the 
identification of 1,707 patients (247 omitted due to missing LVEF 

values) with accurately determined LVEF values for the categorized 
HF phenotypes (Supplementary Figure  1). Our final HF study 
participants were then labeled according to their respective HF 
phenotypes: 999 as HFrEF (LVEF≤40%), 196 as HFmrEF (LVEF>40%, 
<50%), and 512 as HFpEF (LVEF≥50%) (Figure 1).

2.5 Study design

The research workflow is illustrated in Supplementary Figure 1. 
Feature selection and data structuring play critical roles in the 
development of HF phenotype prediction models. Unstructured 
textual data and biochemical test data from the training dataset 
(n = 1,192) were subject to feature selection using the LASSO method. 
The feature selection process, detailed in the “Feature Selection and 
Data Processing” subsection in Supplementary material, identified 
47 key textual features and 53 biochemical test features 
(Supplementary Tables 1, 2, Supplementary material) as the most 
relevant for our analysis. The selected textual features were converted 
into structured data using one-hot encoding. To eliminate the 
potential biased model training from cardiac ultrasound information, 
all relevant data, including those reported in the cardiac formal 
ultrasound report section or terms and any findings derived from 
ultrasound imaging reports (such as nursing reports and discharge 
summaries), were omitted from our model training. The study 
flowchart is reported in Supplementary Figure 1.

Using the prepared data, we constructed three variants of random 
forests: the first using only textual data, another using only 

FIGURE 1

The distribution of HF phenotype classification displayed from final study participants with LVEF information available.
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biochemical data, and a third combining both data types. This 
approach allowed us to compare the performance of each model type 
in classifying HF phenotypes.

2.6 Statistics

For continuous variables, since at least one of the subgroups was 
not normally distributed, the Kruskal-Wallis test was used to assess 
differences among the three HF phenotypes, and the Chi-square test 
was used to determine statistical significance for categorical variables.

To ensure robustness and address the imbalances in the dataset, 
we employed a five-fold cross-validation method to train and validate the 
models. Additionally, SMOTE was used to balance the training data, 
thereby enhancing the validity of the cross-validation process. We then 
calculated the averages and standard deviations of various performance 
metrics across the five-fold cross-validation to assess the capabilities of 
each model comprehensively. The areas under the ROC and PRC curves 
(AUROC and AUPRC, respectively) were used to outline the overall 
diagnostic yield and overall performance of a classifier by focusing on 
the minority class (assuming imbalanced datasets). Finally, an 
independent validation was performed using a separate test dataset 
(n = 513). This step was crucial to confirm the generalizability of our 
models and check for potential over-fitting issues, ensuring that our 
models were reliable and applicable in real-world clinical settings.

All analyses were conducted using Python 3.9.13. Machine learning 
models, including random forest classifiers and LASSO feature 
selection, were implemented with scikit-learn version 1.2.2. Data 
balancing was performed using the SMOTE implementation from the 
imbalanced-learn package (version 0.10.1). Model interpretability 
analyses were performed using the shap package (version 0.41.0).

3 Results

The demographic characteristics of the patients by 3 HF 
phenotypes are shown in Table 1. The median age for patients with 
HFrEF was significantly younger, with male sex predominance 
(63.2%) compared with those with HFpEF and HFmrEF phenotypes 
(p = 0.04 and <0.01, respectively). Patients with the HFpEF phenotype 
had the highest systolic blood pressure and heart rate, followed by 
those with the HFmrEF and HFrEF phenotypes (p < 0.01). Racial 
distribution was not significantly different among the three groups. 
Ischemic cardiomyopathy was more prevalent in patients with HFrEF 
(21.66%) than in those with HFpEF (6.05%) or HFmrEF (12.76%) 
(p < 0.01). History of myocardial infarction and coronary artery 
disease was also more common in patients with HFrEF and HFmrEF 
than in patients with HFpEF (both p < 0.01). Conversely, valvular 
heart disease was more frequent in patients with HFpEF (66.02%) 
than in those with HFmrEF (60.71%) or HFrEF (54.76%) (p < 0.01).

Laboratory investigations revealed higher hemoglobin levels in 
patients with HFrEF (median 11,800 mg/dL) than in patients with 
HFpEF and HFmrEF (p < 0.01). Drug treatment patterns indicated 
that ACEIs or ARBs and beta-blockers were significantly more 
commonly used in patients with HFrEF and HFmrEF than in those 
with HFpEF (p = 0.04), whereas loop diuretics were most frequently 
prescribed to patients with HFrEF (62.09%) compared to HFpEF and 
HFmrEF (p < 0.01).

3.1 Performance of HF phenotype 
prediction models using different data 
configurations

Table  2 outlines the performance across different data 
configurations, including the accuracy, precision, recall, F1-score, and 
AUROCs, for models trained on textual data, laboratory data, and a 
combination of both. The training performance, as detailed in Table 2A, 
indicates that models using combined data achieved the highest 
performance, with an accuracy of 0.70 ± 0.03 and an AUROC of 
0.76 ± 0.02. Models relying on textual data alone also performed well, 
demonstrating an accuracy of 0.69 ± 0.04 and an AUROC of 0.77 ± 0.03. 
In contrast, models based solely on laboratory data had lower accuracy 
and AUROC values of 0.50 ± 0.02 and 0.55 ± 0.02, respectively.

Independent test performance replicated these findings 
(Table 2B). The combined data models sustained their lead with an 
accuracy of 0.73 and an AUROC of 0.80. Textual data models followed 
closely with an accuracy of 0.71 and an AUROC of 0.78. Laboratory 
data models remained the least effective in this independent 
evaluation, with an accuracy of 0.55 and an AUROC of 0.55.

Figure 2 complements these results by presenting ROC and PRC 
curves for the binary classification of each HF phenotype. Figure 2A 
shows that models using textual data with 47 features had an AUROC 
of 0.68 for HFmrEF, 0.83 for HFpEF, and 0.85 for HFrEF, with 
corresponding AUPRCs as 0.24 for HFmrEF, 0.66 for HFpEF, and 0.89 
for HFrEF, indicating a respectable performance, particularly for 
HFpEF and HFrEF phenotypes. Figure 2B represents models using 
laboratory data with 53 features and revealed lower performance, with 
AUROCs ranging from 0.54 to 0.56 and AUPRCs from 0.13 to 0.67. 
Figure 2C illustrates that models utilizing combined data with 100 
features performed best, with AUROCs of 0.70 for HFmrEF, 0.84 for 
HFpEF, and 0.86 for HFrEF; corresponding AUPRCs were 0.24 for 
HFmrEF, 0.68 for HFpEF, and 0.90 for HFrEF, suggesting that the 
integration of data types enhanced the model’s predictive capabilities.

3.2 Performance of HF phenotype 
prediction models with reduced features

To assess the impact of feature reduction on the model 
performance, the models were streamlined to use subsets of the 
original features: 23 textual features, 26 laboratory test features, and a 
combination of both, totaling 50 features (32 textual and 18 test items).

Table 3 presents the performances of these reconfigured models 
in both the training and independent testing scenarios. Table  3A 
shows models utilizing the combined reduced features demonstrated 
superior performance from the training dataset, achieving an accuracy 
of 0.70 ± 0.04 and an AUROC of 0.76 ± 0.02. Models trained using 
only textual data also exhibited commendable performance, whereas 
those based solely on laboratory data had comparatively lower metrics.

The independent test dataset results shown in Table 3B further 
substantiated these outcomes. Combined data models retained their 
lead in performance, with an accuracy of 0.73 and an AUROC of 0.80. 
The performance of models using textual data was closely followed, 
and laboratory data models, although least effective, showed results 
consistent with their training performance.

The binary classification performance of these models for the 
HF phenotypes was shown in Supplementary Figure  2. 
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TABLE 1  Comparison of characteristics among HF patients with preserved, mildly-reduced, and reduced ejection fraction.

Characteristic HFpEF (n = 512) HFmrEF (n = 196) HFrEF (n = 997) p-value

Age (years) 71.00 (58.00–80.00) 71.00 (57.00–80.00) 68.00 (56.00–78.00) 0.04

Male gender (%) 48.83% 63.27% 63.19% <0.01

Systolic blood pressure (mmHg) 128.00 (110.00–147.00) 126.00 (110.00–140.00) 116.00 (103.00–134.00) <0.01

Diastolic blood pressure (mmHg) 68.00 (58.00–80.00) 70.00 (57.00–80.25) 67.00 (58.00–77.00) 0.26

Heart rate (beats/min) 80.00 (66.00–92.00) 80.00 (65.00–96.00) 84.00 (70.00–100.00) <0.01

Race/ethnicity 0.39

  Non-Hispanic White (%) 70.70% 65.31% 67.10% 0.25

  Non-Hispanic Black (%) 13.67% 11.73% 14.04% 0.69

  Hispanic (%) 3.52% 5.10% 3.51% 0.54

  Asian (%) 0.98% 3.06% 2.01% 0.14

  Other (%) 11.13% 14.80% 13.34% 0.33

Etiology

  Ischemic cardiomyopathy (%) 6.05% 12.76% 21.66% <0.01

  Hypertensive heart disease (%) 7.03% 7.14% 7.42% 0.96

  Dilated cardiomyopathy (%) 6.05% 9.69% 26.38% <0.01

  Valvular heart disease (%) 66.02% 60.71% 54.76% <0.01

  Arrhythmias (%) 87.89% 89.29% 86.66% 0.54

Comorbidities

  Hypertension (%) 56.64% 52.55% 55.97% 0.61

  Hyperlipidemia (%) 34.96% 41.33% 35.51% 0.25

  Diabetes (%) 23.05% 23.47% 27.28% 0.16

  Prior myocardial infarction (%) 21.29% 31.63% 33.10% <0.01

  Peripheral vascular disease (%) 9.18% 10.71% 11.33% 0.44

  Coronary artery disease (%) 39.06% 51.53% 49.65% <0.01

  Atrial fibrillation/flutter (%) 65.63% 71.94% 66.70 0.27

  COPD or Asthma (%) 20.12% 18.88% 16.65% 0.24

  Stroke/transient ischemic attack (%) 8.59% 7.65% 9.13% 0.79

  Renal insufficiency (%) 22.85% 26.02% 20.66% 0.21

  Chronic dialysis (%) 3.91% 5.61% 3.61% 0.42

  CRT (%) 1.17% 1.02% 3.51% <0.01

  ICD (%) 6.25% 8.67% 19.96% <0.01

  Anemia (%) 19.73% 19.39% 16.15% 0.18

Symptoms and signs

  Dyspnea on exertion (%) 66.60% 63.78% 68.61% 0.37

  Orthopnea (%) 8.20% 7.14% 11.94% 0.02

  PND (%) 2.73% 3.06% 5.72% 0.02

  Ankle edema (%) 43.36% 38.78% 43.33% 0.48

  Rales (%) 22.07% 25.51% 25.78% 0.27

  Third heart sound gallop (%) 1.37% 2.04% 2.41% 0.40

  Neck vein distension (%) 9.77% 9.18% 12.64% 0.15

CXR findings

  Pulmonary edema (%) 29.04% (97/334) 26.06% (37/142) 28.53% (196/687) 0.80

  Cardiomegaly (%) 45.81% (153/334) 54.23% (77/142) 60.55% (416/687) <0.01

  Pleural effusion (%) 40.12% (134/334) 45.77% (65/142) 42.50% (292/687) 0.51

(Continued)
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Supplementary Figure  2A shows the substantial capacity for 
phenotype differentiation using textual data, particularly for 
HFpEF (AUROC of 0.80 and of AUPRC 0.61) and HFrEF (AUROC 
of 0.83 and of AUPRC 0.87). Supplementary Figure 2B shows that 
models with laboratory data exhibit lower performance across all 
HF phenotypes, with AUROCs ranging from 0.53 to 0.57 and 
AUPRCs from 0.12 to 0.67. Supplementary Figure 2C confirms a 
balanced combination of 50 features demonstrating the best overall 
performance with the highest AUROC (ranging from 0.73 to 0.85) 
and AUPRC (ranging from 0.27 to 0.89) values for all 
HF phenotype.

3.3 Evaluating model performance with 
varying feature quantities

We observed that random forests built with the top 50 to top 20 
features exhibits comparable performance in the three-class 
classification of HF phenotypes, as shown in Table 4. The models 

maintained robustness, as evidenced by the minimal variation in 
the performance metrics during cross-validation and independent 
testing. The model with the top 20 features showed an accuracy of 
0.67 ± 0.01 and an AUROC of 0.74 ± 0.01. However, the top 10 
features model dropped to an accuracy of 0.54 ± 0.01 and an 
AUROC of 0.64 ± 0.02. The overall performances of random forests 
for each individual HF phenotype classification with varying feature 
quantities using combined data were displayed in Figure 3.

The binary classification results for individual HF phenotypes 
depicted in Figure 3 and previously in Supplementary Figure 2C 
reinforce these findings. Figures 3A–C shows a decline in the area 
under the ROC and PRC curves as the number of features decreased 
for the models with the top 30, 20, and 10 features, respectively. This 
highlights the importance of retaining a critical mass of features to 
maintain predictive accuracy down to the number of top 20 features 
yet diminishing significantly with only the top 10 features. These 
data suggest a trade-off for accurate HF phenotype classification 
using the top  20 features that balance model accuracy and 
computational efficiency.

TABLE 1  (Continued)

Characteristic HFpEF (n = 512) HFmrEF (n = 196) HFrEF (n = 997) p-value

Laboratory investigations

  Hemoglobin (mg/dl) 11,200 (9680–12,800) 11,550 (10480–12,900) 11,800 (10500–13,500) <0.01

  Serum sodium (mEq/L) 138.50 (136.00–141.00) 139.00 (136.27–141.00) 138.00 (135.50–140.00) 0.01

  Serum potassium (mEq/L) 4.20 (3.80–4.61) 4.30 (3.90–4.70) 4.20 (3.90–4.65) 0.22

  Creatinine (mg/dl) 1.19 (0.90–1.70) 1.20 (0.90–1.80) 1.20 (0.90–1.75) 0.21

Pharmacological treatment

  ACE inhibitors/ARBs (%) 17.19% 23.47% 22.57% 0.04

  Beta blockers (%) 54.69% 60.20% 61.38% 0.04

  MRA (%) 2.73% 3.06% 5.22% 0.05

  Loop diuretics (%) 52.73% 56.12% 62.09% <0.01

  Statins (%) 20.51% 22.96% 22.37% 0.66

  Antiplatelet agents (%) 19.14% 24.49% 23.17% 0.14

  Anticoagulants (%) 51.56% 62.76% 58.48% <0.01

COPD, chronic pulmonary obstructive disease; CRT, cardiac resynchronization therapy; ICD, implantable cardioverter-defibrillator; NYHA, New York heart association; PND, paroxysmal 
nocturnal dyspnea; ECG, electrocardiogram; LBBB, left bundle branch block; RBBB, right bundle branch block; CXR, chest x-ray; ACE, angiotensin-converting enzyme; ARB, angiotensin II 
receptor blocker; ARNI, angiotensin receptor-neprilysin inhibitor; MRA, mineralocorticoid receptor antagonist, SGLT2i: sodium glucose co-transporter 2 inhibitor.

TABLE 2  Performance of HF phenotype prediction models using different data configurations.

A. Training Performance

Model input Accuracy Precision Recall F1-score AUROC

Textual data 0.69 ± 0.04 0.51 ± 0.04 0.50 ± 0.03 0.49 ± 0.03 0.77 ± 0.03

Laboratory data 0.50 ± 0.02 0.39 ± 0.02 0.38 ± 0.01 0.38 ± 0.02 0.55 ± 0.02

Combined data 0.70 ± 0.03 0.55 ± 0.05 0.50 ± 0.02 0.49 ± 0.02 0.76 ± 0.02

B. Independent test performance

Model input Accuracy Precision Recall F1-score AUROC

Textual data 0.71 0.67 0.51 0.51 0.78

Laboratory data 0.55 0.31 0.34 0.31 0.55

Combined data 0.73 0.65 0.51 0.50 0.80
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3.4 Feature importance analysis in 
predictive model performance and additive 
value distributions

A detailed examination of the top 10 features across the five different 
models was conducted to analyze the impact of feature quantity on the 
performance of our HF phenotype predictive models. These models 

varied in the number of features used, ranging from the complete 100 
features to a reduced set of 10. The feature importance based on 23 
textual features, 26 laboratory test features and a balanced combination 
of 50 features (with 32 textual and 18 test items) was displayed in 
Supplementary Figures  3A–C. The SHapley Additive exPlanations 
(SHAP) value distributions and summary plot for top features based on 
100 features model were further presented in Figures 4, 5, respectively.

FIGURE 2

Performance of random forests for HF phenotype classification using different data configurations. (A) illustrates the effectiveness of random forest 
models using textual data with 47 features, (B) depicts models using laboratory test data with 53 features, and (C) shows models combining textual and 
laboratory test data with 100 features. Each subfigure includes ROC curves on the left and PRC curves on the right.
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4 Discussion

Our investigation into early AHF phenotype prediction led to the 
key finding that the integration of clinical text data and laboratory results 
significantly enhanced the accuracy of the AHF phenotype classification 
of HFrEF, HFmrEF, and HFpEF. Our approach, which employs both 
NLP and ML from clinical information and traditional laboratory data, 
underscores the value of combining diverse data sources into successful 
clinical diagnostics. By leveraging NLP alongside traditional laboratory 
analyses, our models tap into the rich narrative of clinical notes, 
capturing key messages that laboratory results alone might miss when 
distinguishing between HF phenotypes. The superior performance of 
our combined data models, particularly in terms of accuracy and 
AUROC, highlights the potential of multimodal data integration for 
improving diagnostic tools for AHF phenotypes, even with reduced 
features. This approach aligns with the growing trend in personalized 
medicine using ML models, where detailed information is vital for 
precisely predicting the AHF phenotype.

Our exploration of feature reduction and model performance 
revealed critical insights with practical implications. The models 
retained high accuracy and AUROCs, even when the feature count was 
markedly reduced. This suggests that a well-selected subset of features 
can be as effective as a complete set, thus highlighting the efficiency of 

our models. Notably, there is a critical point when reducing feature 
numbers to 10, where further reduction significantly impacts the 
model efficiency, indicating a threshold below which the model can no 
longer effectively capture the complexity of HF phenotype distinctions. 
Balancing accuracy and computational efficiency is vital for developing 
practical HF prediction tools in diverse clinical environments. Our 
findings have several significant clinical implications. The accurate and 
timely classification of HF phenotypes has the potential to revolutionize 
early patient management and to guide timely mechanism-driven 
treatment strategies balancing treatment benefits, expenditure, and 
overall adverse effects caused. For example, early initiation and more 
intensive use of RASi, MRA, or beta-blockers critical HFrEF patients 
for evidence based top priority (Class I) (McDonagh et  al., 2021; 
Heidenreich et al., 2022; DeVore et al., 2020; Velazquez et al., 2018; 
Gottlieb et al., 2002; Zannad et al., 2011) with rapid onset of efficacy on 
survival, especially when more considerations needed, compared to 
sGLT2 inhibitor alone for the HFpEF population. This precision in 
diagnosis could facilitate more targeted therapies, align treatment plans 
with individual patient profiles, and potentially alter the disease course.

In our analysis, “hypokinesis,” “dilated cardiomyopathy,” “severe 
global,” “severely depressed,” and “cardiomyopathy” emerged as 
pivotal textual features for HFrEF phenotype prediction, underpinned 
by pharmacological uses including “digoxin” and “carvedilol.” Terms 

TABLE 3  Performance of HF phenotype prediction models with reduced features using different data configurations.

A. Training performance

Model input Accuracy Precision Recall F1-score AUROC

Textual data 0.68 ± 0.02 0.52 ± 0.03 0.50 ± 0.01 0.50 ± 0.02 0.75 ± 0.01

Laboratory data 0.50 ± 0.02 0.39 ± 0.02 0.38 ± 0.01 0.38 ± 0.02 0.54 ± 0.02

Combined data 0.70 ± 0.04 0.52 ± 0.08 0.51 ± 0.04 0.50 ± 0.05 0.76 ± 0.02

B. Independent test performance

Model input Accuracy Precision Recall F1-score AUROC

Textual data 0.69 0.53 0.49 0.48 0.75

Laboratory data 0.56 0.32 0.35 0.32 0.55

Combined data 0.73 0.74 0.52 0.52 0.80

TABLE 4  Performance of HF phenotype prediction models with varying feature quantities using combined data.

A. Training performance

Feature quantity Accuracy Precision Recall F1-score AUROC

50 0.70 ± 0.04 0.52 ± 0.08 0.51 ± 0.04 0.50 ± 0.05 0.76 ± 0.02

30 0.66 ± 0.03 0.49 ± 0.05 0.49 ± 0.03 0.48 ± 0.04 0.74 ± 0.04

20 0.67 ± 0.01 0.55 ± 0.01 0.53 ± 0.01 0.53 ± 0.01 0.74 ± 0.01

10 0.54 ± 0.01 0.43 ± 0.01 0.44 ± 0.01 0.43 ± 0.01 0.64 ± 0.02

B. Independent test performance

Feature quantity Accuracy Precision Recall F1-score AUROC

50 0.73 0.74 0.52 0.52 0.80

30 0.69 0.45 0.48 0.46 0.75

20 0.69 0.45 0.48 0.46 0.75

10 0.63 0.40 0.45 0.42 0.68
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of “hypokinesis” and “severely depressed” indicative of diminished 
myocardial contractility often suggests advanced HF stage, especially 
in HFrEF (Schmidt-Ott and Ascheim, 2006; Berezin et al., 2021). 
Similarly, “cardiomyopathy,” particularly the dilated form, involves 
certain inner morphological and functional myocardial anomaly 
(Seferović et al., 2019). For example, mutations in genes encoding 
sarcomere proteins, such as the beta-myosin heavy chain, have been 
associated with the development of dilated cardiomyopathy 

(Kamisago et al., 2000), underscoring the genetic underpinnings that 
contribute to the critical textual features observed in our study. On 
the contrary, terms of “diastolic” may provide a clue to the presence 
of diastolic anomaly delineating HFpEF pathophysiology. Laboratory 
test features also delineated the physiological disturbances in HF. For 
example, alterations in hematocrit or white blood cell count may 
reflect systemic anemic status relating to iron deficiency, chronic 
kidney disease or chronic inflammation process closely linked to 

FIGURE 3

Performance of random forests for HF phenotype classification with varying feature quantities using combined data. (A) illustrates the effectiveness of 
random forest models using top 30 features, (B) depicts models using top 20 features, and (C) shows models using top 10 features. Each subfigure 
includes ROC curves on the left and PRC curves on the right.
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HFpEF pathophysiology (Melenovsky et  al., 2016; Loncar et  al., 
2021). The presence of leukocytosis (elevated white blood cells) 
indicated the pro-inflammatory status aligned with HFpEF central 
pathophysiology (Briasoulis et al., 2016; Yndestad et al., 2006). The 
constellation of these features supports the heterogeneity of HF and 
emphasizes the importance of a comprehensive approach to classify 
and manage this complex syndrome accurately.

In the realm of HF phenotype prediction, our study distinguished 
itself by integrating clinical text and laboratory data, in contrast to 
several other notable studies in the field. Alkhodari et  al. made 
significant strides by employing deep learning to predict LVEF from 
patient clinical profiles and categorized HF into different LVEF 
cutoffs (Alkhodari et al., 2021). Their innovative approach utilizes 
LVEF ranges that differ from those of most contemporary 
classifications. This distinction highlights the challenge of a direct 
comparison, although both studies underscore the growing role of 
advanced computational methods in HF diagnosis. Uijl et al. focused 
on identifying HF LVEF phenotype using logistic regression models 
with routine clinical characteristics (Uijl et al., 2020). Their results 
were particularly strong in predicting HFpEF and HFrEF but less so 
for HFmrEF. Desai et al. developed a Medicare claims-based model 
to predict LVEF classes in patients with HF by leveraging 
administrative data (Desai et  al., 2018). While valuable in health 
service research, these studies did not address the critical need for HF 
phenotype detection during the acute admission phase. Our study 
fills this gap by leveraging NLP and ML, offering a pathway for 
phenotype-specific early and precise administration of medications 
(Heidenreich et al., 2022; Velazquez et al., 2018; Voors et al., 2022). 
This is particularly crucial given the considerable time and expense 
associated with cardiac ultrasound, which is currently the standard 
for accurate HF phenotype prediction. Collectively, these prior 
studies demonstrate the growing interest in computational 

approaches for HF characterization, yet they differ substantially in 
objectives, data sources, and outcome definitions. To our knowledge, 
no existing model has sought to predict all three HF phenotypes 
simultaneously during the acute admission phase. Therefore, direct 
quantitative comparison is not possible, but our work provides an 
important benchmark in this emerging area by uniquely integrating 
both clinical text and laboratory data for early phenotype-
specific prediction.

An important observation is that the performance of our model 
was lower for HFmrEF (AUROC = 0.70) compared with HFrEF 
(AUROC = 0.86) and HFpEF (AUROC = 0.84). This finding is 
consistent with clinical experience, as HFmrEF is often regarded as a 
heterogeneous and transitional phenotype with overlapping features 
of systolic and diastolic dysfunction. The ambiguity of its 
pathophysiological profile likely contributes to its reduced 
predictability. Future refinement of prediction models, potentially 
incorporating additional biomarkers or longitudinal trajectories, will 
be necessary to improve discrimination of this intermediate phenotype.

Although our models achieved robust AUROC values across all 
feature sets (Tables 2–4), precision and recall were relatively modest. 
This likely reflects the residual effects of class imbalance, which 
remains a well-recognized challenge in multiclass heart failure 
prediction. These findings suggest that while our approach is effective 
in discriminating phenotypes overall, additional strategies for 
imbalance correction may be  needed to optimize case-level 
detection performance.

4.1 Limitations

Although our study provides valuable insights into the early 
prediction of the HF phenotype, it is important to acknowledge its 

FIGURE 4

SHAP (SHapley Additive exPlanations) value distributions for top features in predicting HF phenotype. The figure presents summary plots for HFpEF 
(left), HFmrEF (middle), and HFrEF (right) phenotypes. Each row represents a feature, and each point represents a patient. The x-axis shows the SHAP 
value, indicating the impact of the feature on the model output. Red points denote high feature values, while blue points indicate low values. Features 
are ranked by their overall importance in predicting each phenotype. This visualization reveals the complex relationships between features and their 
impact on heart failure phenotype classification, highlighting key predictors such as hypokinesis, cardiomyopathy, and severe global dysfunction across 
different phenotype.
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limitations. The extensive use of the MIMIC-III database may limit 
the generalizability of our findings across different patient 
demographics and healthcare settings. Specifically, the MIMIC-III 
database predominantly consists of patients with AHF rather than 
ambulatory or non-ICU population. This distinction is crucial 
because the dynamics and characteristics of acute HF may differ 
significantly from those of chronic HF or community-managed cases, 
potentially affecting the applicability of our predictive models. 
Therefore, future research should include external validation on 
diverse cohorts, particularly non-ICU and outpatient populations, to 
confirm the robustness and clinical utility of our approach. 
Expanding beyond MIMIC-III to incorporate a broader range of 
patient populations, additional laboratory data (e.g., natriuretic 
peptides), and multimodal sources such as imaging and physiological 
signals will further enhance prediction accuracy and generalizability. 
Additionally, exploring the implementation and impact of these 
models in real-world clinical practice is essential for assessing their 
practical utility and effectiveness in patient care.

Another limitation relates to dataset labeling: 247 patients were 
excluded due to missing LVEF values, which were necessary for 
assigning ground-truth HF phenotypes during training. Importantly, 
this issue pertains only to retrospective dataset construction and not 
to the real-world use of our prediction model. In clinical deployment, 

our model does not require LVEF as input and can operate using only 
text and laboratory features. Thus, while missing LVEF reduced the 
training sample size in this study, it does not hinder the practical 
applicability of the model in real-world settings. Moreover, the 
generalizability of our findings may be  limited by the ICU-based 
population in the MIMIC-III dataset. Validation in multicenter 
cohorts and in non-ICU and outpatient populations will be essential 
to confirm external applicability.

5 Conclusion

This study successfully developed a random forest model using 
clinical text and laboratory data from the MIMIC-III database for 
early prediction of all three HF phenotypes. Our approach, which 
combines textual features with laboratory test data, showed enhanced 
predictive accuracy, marking a significant contribution to HF 
diagnostics. By potentially initiating and guiding tailored treatment 
decisions during early admission, our AI model stands to improve 
the clinical outcomes of patients with HF markedly. The integration 
of diverse data types not only strengthens the model’s performance 
but also aligns with contemporary trends in personalized medicine. 
Furthermore, our exploration of feature reduction revealed the 
potential for efficient yet effective predictive models, emphasizing the 
balance between model complexity and clinical applicability. Future 
efforts should focus on refining the feature set, exploring additional 
data types, and integrating the model into actual clinical settings to 
broaden its utility in HF management.

5.1 Clinical perspectives

Our current work highlights the potential for early discrimination 
of diverse HF phenotype based on text and laboratory features blinded 
to imaging (such as cardiac ultrasound) information during acute 
phase with acceptable accuracy. This may facilitate timely delivery of 
treatment interventions that may balance efficacy and risk ratio for 
patients. As evidence increasingly demonstrates persistent clinical 
benefits of earlier and more intensive use of trial-proven medications 
among the AHF population, our data suggest that aggressive delivery 
of mechanism-specific foundational therapy can be initiated without 
time delay after balancing the consequences of adverse events, overall 
expense, and gain of survival (e.g., RASi or MRA among HFrEF with 
borderline hypotension). Our prediction model therefore provides an 
opportunity for precision medicine extended to a more tailored therapy 
decision among HF patients during the acute phase.
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