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reconstruction as plug-in
defenders against adversarial
perturbations
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!College of Electronic Engineering, National University of Defense Technology, Hefei, Anhui, China,
2Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, Hefei,
Anhui, China

Deep learning models are susceptible to adversarial examples. In large-scale
deployed services, plug-in defenders efficiently defend against such attacks.
Plug-in defenders take two approaches to mitigate adversarial effects: input
reconstruction and random transformations. Existing plug-in defense lacks
diversity in transformation formulation due to the inherent feature preservation
nature, which leads to vulnerability under adaptive attacks. To address this issue,
we propose a novel plug-in defense named Diversity-enhanced Reconstruction
(DeR). DeR counters adversarial attacks by frequency-aware reconstructors
with enhanced diversity. Specifically, we design the reconstructors as a U-Net
backbone with additional frequency components. The reconstructors are trained
on the proposed DeR loss, which optimizes the reconstruction and diversity
objectives jointly. Once trained, DeR can produce heterogeneous gradients and
be applied as a plug-in defense. We conduct extensive experiments on three
datasets and four classifier architectures under strict adversarial settings. The
results demonstrate the superior robustness of DeR compared to state-of-the-
art plug-in defense and the efficiency of DeR in real-time processing.
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1 Introduction

While deep learning models are adopted as core parts of various intelligent systems,
they face the threat of adversarial attacks. By adding minor perturbations to the input
images, adversaries can mislead the models without being noticed by human inspectors.
The misconduct of deep learning systems may trigger system failure and cause severe user
harm. In autonomous driving, a patch printed with adversarial perturbations on the road
sign is enough to make the intelligent system mistake it as another sign, causing the vehicle
to violate the traffic rules or even leading to crashes (Suryanto et al., 2023).

The security concerns of deep learning models have drawn the focus of researchers.
Some approaches, such as adversarial training (Zhang et al., 2019; Wang et al., 2023b; Ho
et al,, 2022) and ensemble learning (Kariyappa and Qureshi, 2019; Yang et al., 2020, 2021;
Chen et al,, 2024), enhance the model robustness during training. However, retraining
deployed models may interrupt the services and introduce considerable computational
and time overhead. Moreover, the evolution of attack techniques puts continuous demand
on developing the robustness of models. Thus, plug-in defenders that mitigate adversarial
effects without modifying pre-trained models are more plausible for large-scale deployed
intelligent systems.
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Plug-in defenders purify inputs before passing them to
downstream models, aiming to remove adversarial perturbations
while preserving benign features. Two major approaches for
achieving this goal are input reconstruction and random
transformations. Input reconstruction (Liao et al., 2018; Wang
et al., 2023a; Huang et al., 2024; Yang et al., 2019; Hill et al.,, 2021;
Yoon etal., 2021; Nie et al., 2022) utilizes the reconstruction error to
eliminate adversarial perturbations. Random transformations (Raff
et al,, 2019; Pérez et al., 2021; Chen et al,, 2022; Wang et al., 2024)
disable adversarial perturbations by common image processing
such as rotation and denoising. However, both approaches are
susceptible to adaptive attacks (Athalye et al., 2018a,b; Lee and
Kim, 2023).

Because the attack path always exists in a deterministic
inference, static plug-in defenders are easily breached by calculating
the gradients to cover both the defender and the classifier.
In the meantime, randomization introduced by the defense
module can be reduced to an ensemble of multiple deterministic
inferences with a chosen distribution at test time. Assume
there exist two primary defensive transformations f; and
, then the attack paths for the two transformations are
VL0, ti(x),y),i = 1,2. An adaptive attack utilizing the EOT
technique reduces the attack path to E;c7 [V L(6, t(x), y)]. When
the transformations share a similar attack path in the feature
space, the attack effectively induces the sample across the decision
boundary, as illustrated in the left diagram of Figure 1. If the
transformations’ attack paths are diversified, as in the right
diagram of Figure 1, the adversarial attacks are deviated, less
effective. A larger perturbation strength will be needed to fool the
defended classifier.

Out of such intuition, we propose Diversity-enhanced
Reconstruction (DeR) as a plug-in defense. DeR is composed
of two reconstructors that simultaneously reconstruct the input
samples. The reconstruction process introduces diversified
gradients and thwarts adversarial attacks. DeR’s reconstructors are
equipped with frequency-aware components, making them capable
of perceiving minor features and producing more diversity.

DeR is efficient as a plug-in defense against adversarial
attacks. First, the diversified reconstructors effectively thwart
the search for gradient-based adversarial examples. Meanwhile,
the frequency components provide sufficient gradient diversity,
averting retraining downstream classifiers, and preserving accuracy
on clean inputs. In addition, the plug-in characteristic characterizes
DeR as flexible in accommodating multiple classifier architectures
without extra training. The experiments conducted on CIFAR-
10, SVHN, and Tiny-ImageNet with four classifier architectures
(ResNet He et al., 2016, VGG Simonyan and Zisserman, 2014, Wide
ResNet Zagoruyko and Komodakis, 2016, ConvMixer Trockman
and Kolter, 2023) verify our method’s robustness promotion
and efficiency.

The main contributions of our study are as follows:

e We propose DeR as a novel plug-in defense against adversarial
attacks. The reconstructors in DeR thwart adversarial attack by
producing diversified gradients.

e We introduce frequency-aware U-Net as our backbone
of reconstructors. The frequency components enhance the
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reconstructors’ sensitivity toward minor distribution shifts,
which provides redundancy for producing diversity.

The performance of DeR is validated on three real-
world datasets and four classifier architectures. The results
demonstrate our method’s superiority under adversarial
attacks both in robustness and efficiency. Under PGD and
AutoAttack, DeR brings up the classifier accuracy from lower
than 10% to over 20% and 30%.

The remainder of this study is organized as follows. In Section 2,
we will state the problem in adversarial defense and introduce
related works in plug-in defense. Then in Section 3, the formulation
of our method is elaborated. The experimental results and analysis
are demonstrated in Section 4. Finally, in Section 5, we will
summarize the stduy.

2 Preliminaries and related works

This study focuses on defending against adversarial attacks,
which significantly threaten deployed intelligent systems. Many
works have delved into the security problem under such attacks.
From the perspective of deployment convenience and adversarial
robustness, plug-in defense is a common practice. However,
adversarial examples generated with full knowledge of the
defenders pose a critical threat to existing plug-in defenses. In
Section 2.1, we will first formulate the threats of adversarial
examples. After that, we will briefly review the progress in plug-in
defense and analyze its vulnerability under strong adversaries.

2.1 Adversarial examples

Szegedy (2013) first
vulnerability to minor perturbations. Adversarial attacks craft

identified deep learning models

adversarial examples, which are similar to natural samples but can
mislead the classifier, by imposing imperceptible perturbations
to natural inputs. When given a classifier f with weights 6, the
optimization of adversarial perturbation § based on sample x is
conducted as

8§ =38+ a-sign(ViL(D, x,y)), (1)

where « denotes the step size of each iteration, and £(-) is the loss
function depending on the task of the target model, such as cross-
entropy loss for classification models. The search can be performed
in one step (Goodfellow et al., 2015) or iteratively (Madry et al.,
2018), depending on the adversaries’ computational budget and
attack strength. The perturbations are bounded within a given
radius € to ensure invisibility.

Plug-in defense complicates the gradients computed by the
adversaries through defensive pre-processing. When the exact
parameters of the defense model are unknown, adversaries still
implement attacks according to Equation 1, which is referred
to as gray-box attacks. Otherwise if the pre-processing f(-) is
also exposed, one can implement white-box attacks according to
Equation 2,

8 =08+ a-sign(ViL(0, t(x), ). 2)
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FIGURE 1

Difference between similar transformation and diversified transformation when computing the expectation of gradients. The expectation of gradients
of diversified transformation deviates from the fastest direction of approximating the decision boundary.

However, back-propagating the transformation #(-) may be
intractable. In which cases, gray-box attacks may be more
efficient than white-box ones (Athalye et al., 2018a) due to the
feature-preserving nature of the transformation. Furthermore,
BPDA (Athalye et al., 2018a) technique can bypass the defense
by approximating the transformation as an identical mapping.
As for defense that obfuscate gradients by randomization, the
EOT (Athalye et al, 2018b) technique is often effective in
estimating optimal gradient direction under a given distribution
of transformations. By utilizing these attack techniques, the
adversaries can design more effective adversarial examples in a
white-box scenario. Thus, the white-box scenario of adversarial
defense is considered more rigorous. This study mainly considers
white-box attacks to evaluate our defense method more reliably.

2.2 Plug-in defense

The intuition behind plug-in defense is pre-processing the
inputs to deliberately disrupt adversarial perturbations while
maintaining the benign features. There are mainly two approaches
to eliminate adversarial effects, including input reconstruction and
randomized augmentation.

Early works (Meng and Chen, 2017; Liao et al, 2018;
Samangouei et al., 2018; Yoon et al., 2021) utilize the loss of details
in image reconstruction to eliminate adversarial perturbations,
which can be modeled as a denoising process. Since the
reconstruction process is fixed, the cascade of denoiser and
classifier is degraded to a deterministic target model, which white-
box attacks can easily breach. Later, randomization is introduced
to the reconstruction process (Yang et al., 2019; Dai et al., 2020;
Hill et al., 2021; Nie et al., 2022). Stochastic elements such as noise
obfuscate the search for optimal perturbations. However, to ensure
the accuracy of downstream classifiers, the reconstruction outputs
are designated to approximate the original inputs, that is, t(x) ~ x.
Thus, the gradient in Equation 2 can be approximated as

L0, t(x),y) dt(x)
0t(x) Cax

N 9L(0,x,y)

- ax .

VXE(Q’ t(x):)’) =
3)
1,
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where 1 is the all-ones tensor of the same shape as the inputs
produced by back propagating the identical mapping, ¢ is the
number of channels, and m and n represent the input image’s
shape. Equation 3 implies a shortcut for adversarial perturbations
searching that evades obfuscated gradients and is the main idea of
BPDA technique.

Other works (Raff et al., 2019; Pérez et al., 2021; Chen et al.,
2022) pave an alternative path to reduce the efficacy of adversarial
perturbations by combining conventional image augmentation as
a defensive transformation. The transformation typically includes
rotation, scaling, shifting, and blurring. Generally, assume the
number of possible transformations is N and they form a
transformation set 7 = {t1, f2, ..., ty}. In inference, the inputs are
processed by m transformations randomly or strategically selected
from 7 and the outputs of models are integrated for final prediction
F(Ts,x) = Ztieﬁ f(ti(x)), where 7; C 7. Then, gradients in
Equation 2 can be approximated by EOT technique,

E7cr[VaL(O, Ts(x): )] = EreT [V LG, 1(x), ). (4)

While this approach benefits from simple processing steps,
combining random transformations provides little diversity in
gradients and thus gains limited robustness.

Recently, Li et al. (2023) combine the above two approaches
with a transformation network that learns the optimal affine
transformation to offset adversarial effects. The transformation
network, however, is still differentiable and deterministic, making
it vulnerable to white-box attacks.

To summarize, plug-in defense faces the trade-off between
input fidelity and transformation diversity. One widely adopted
approach is input denoising, which is vulnerable to BPDA attacks.
The other approach randomly transforms the inputs susceptible
to EOT attacks. The main reason for both approaches’ failure
is that the diversity of transformations is limited, such that the
approximated or estimated gradients remain aligned with the
proper adversarial direction toward decision boundaries.

3 Methodology

To address the above problem, we propose DeR. As illustrated
in Figure2, DeR defends adversarial attacks with multiple
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Diversified Inference

Diversity-enhanced Reconstruction Defense |

FIGURE 2

Training and inference procedure of DeR (Images reproduced from: Learning Multiple Layers of Features from Tiny Images, Krizhevsky, 2009).

reconstructors that apply diversified transformations to the
inputs. The reconstructors adopt a simplified U-Net structure
with frequency processing units. The network design is detailed
in Section 3.1. To balance the trade-off between adversarial
robustness and input fidelity, we propose the DeR loss that
enables the reconstructors to learn the transformations while
producing diversified gradients, which will be formulated in
Section 3.2. The training of reconstructors is model-agnostic,
and the trained networks can be transferred to homogeneous
In the the classifier takes the
reconstructed images as inputs, respectively, and integrates

classifiers. inference step,

the outputs.

3.1 Frequency-aware U-net

U-Net (Ronneberger et al, 2015) was first proposed for
semantic segmentation and is also widely used in image
reconstruction tasks. We adopt a simplified U-Net as the backbone
of reconstructors, as shown in Figure 3. The original U-Net

Frontiersin Artificial Intelligence

structure is reduced to five layers for computational efficiency.
The shape of features in the hidden layers is identical to
preserve redundancy for diversity. The outermost layer receives
the concatenation of the input and its spectrum produced by Fast
Fourier Transformation (FFT), which results in the outermost layer
having six input channels. The frequency components enable the
network to capture the subtle features in the frequency domain and
further provide redundancy for diversity.

3.2 Diversity training

Diversity training is the key for reconstructors to produce
homogeneous gradients while preserving image features. To
provide more redundancy for gradient diversity, DeR is composed
of two reconstructors. This is also the most computationally
efficient setting for generating necessary defense deviations.
Without loss of generality, assume the input x is processed by the
paired independent reconstructors in 7 = {t1, £}, respectively, the
integrated prediction of classifier f is F(7T,x) = % Zle f(ti(x)).

frontiersin.org
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FIGURE 3

Architecture of the reconstructors. The frequency and spatial images
are jointly forwarded to the networks. There are mainly two feature
extraction blocks in the reconstructors, which are convolution layer
(Conv) and Up convolution layer (Up-conv). The features extracted
are copied and concatenated to form skip connections.

As analyzed in Section 2, enhancing gradient diversity is essential
for adversarial robustness. We will first declare the measurement
of gradient diversity in our scheme, and then, we will elaborate the
training objective and loss function for DeR.

3.2.1 Gradient diversity
For starters, we will analyze the components of gradients in
plug-in defense. The gradient of outputs w.r.t. x writes

2
V. F(T,x) = % >

i=1

of (tix)).

o (5)

Assume the reconstructed inputs still belong to original
ftix) ., 9f(x)

manifold and e S ax

with the chain rule, Equation 5 can
be rewritten as

2 2
1 af (ti(x))  9ti(x) f(x) 1 ati(x)
ViF(T,x) = = . ~ - .
<F(T,%) 2 12: 0ti(x) 0x ox 2 Z 0x
(6)
According to Equation 6, we can obfuscate the gradients by

=1 i=1

diversifying the gradients produced by reconstructors without

modifying the classifiers. An aggressive way of obfuscating the

agi") to approximate zero, which

gradients is forcing Y7
means the gradients of reconstructors offset each other. However,
this profoundly hinders the optimization of reconstruction.
Alternatively, we take the cosine similarity to measure the
gradients’ diversity following (Kariyappa and Qureshi, 2019).
Cosine similarity measures the deviation of vectors in Euclidean
space, which accords with the diversity intuition illustrated in
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Section 1. The cosine similarity of gradients produced by any two
reconstructors is defined as

< Vieti(), Viti() >

CS(Vyti(x), thj(x)) = |Veti(x)] - |vxtj(x)| :

)

Enlarging the expectation of Equation 7 on input samples is the
diversity objective in DeR.

3.2.2 DeR loss

DeR loss is comprised of reconstruction loss and diversity loss.
The reconstruction loss is based on the reconstruction objective,
which is designated as

IT(})i_nEx~D(||t£(x) — ti(0)ll2), (8)
where #/(-) is an affine transformation that the ith reconstructor
fits. For all the reconstructors, the corresponding ¢, differs from
each other to provide redundancy for gradients diversity. The
reconstruction loss writes

2
Lr =Y ltix) = )2 ©)

i=1

According to Equation 4, variant transformations do not
necessarily lead to diversified gradients. Here, we introduce the
(€0)i =

reconstructors. The diversity loss for DeR is formulated as

affine transformations 7/ = 1,2} as auxiliary

Ly=1log( Y exp(CS(Viti(x), Vitj(x)))

1<i<j<2

+ D exp(CS(Vati(x), Viti(x))),
1<ij<2

(10)

where we adopt Log-Sum-Exp (LSE) to optimize Equation 7 for
convergence stability. In Equation 10, the first term constrains the
diversity among reconstructors, and the second term diversifies
the reconstructors’ gradients from the affine transformations.
Equation 10 deviates the reconstructors’ gradients and limits the
effectiveness of perturbations generated by approximating the
process as affine transformations.

By combining reconstruction loss and transformation diversity
loss, the joint loss function of training DeR writes

Lper = Ly + A - Ly, (11)

where A is the balancing coefficient that controls the trade-oft
between input fidelity and transformation diversity. Enlarging A
forces the reconstructors to diversify more with each other but may
sacrifice the input fidelity. The quantitative analysis of A’s effect on
adversarial robustness and input fidelity will be demonstrated in
Section 4.4.

4 Experiments

This section presents the experiment results that validate
the effectiveness of DeR. The experimental setup is detailed in
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Section 4.1 in five aspects. Section 4.2 compares the robustness
of DeR and other baseline methods to verify the effectiveness of
DeR as a plug-in defense. Then in Section 4.3, we demonstrate the
efficiency of DeR in inference time. Finally, Section 4.4 analyzes the
impact of major components in the DeR scheme.

4.1 Experimental setup

4.1.1 Datasets

We validate the proposed method on CIFAR-10 (Krizhevsky,
2009), SVHN (Netzer et al, 2011), and Tiny-ImageNet (Le and
Yang, 2015), which are widely adopted real-world datasets. The
CIFAR-10 dataset consists of 60,000 images with size 32 x 32 from
10 classes of daily items. SVHN dataset is the dataset for digits
recognition in street view and also contains 10 classes. Images in
SVHN are split to training set of 73,257 samples and test set of
26,032 samples, with size of 32 x 32. Tiny-ImageNet is a subset of
ImageNet (Deng et al., 2009) consisting of 100,000 images of 200
classes (500 for each class) downsized to 64 x 64 colored images.

4.1.2 Classifiers

The experiments are conducted on four widely used classifier
architectures: ResNet, WideResNet, VGG, and ConvMixer. The
ResNet classifiers are the 32-layer version for the CIFAR-10
dataset described in the original paper (He et al, 2016) and
are abbreviated as ResNet-32. The WideResNet (Zagoruyko and
Komodakis, 2016) classifiers’ parameters are depth = 28 and k =
10, abbreviated as WRN-28-10. The VGG classifiers adopted are
the same as the 11-layer model in the paper of Simonyan and
Zisserman (2014), abbreviated as VGG-11. ConvMixer (Trockman
and Kolter, 2023; Yoshioka, 2024) classifiers are implemented based
on ConvMixerTiny training codes in the repository.!

The base classifiers are trained for 100 epochs with the initial
learning rate of 0.001, decaying to 0.0001 at the 60th epoch.
Random rotation and horizontal flip are applied to the training
samples as data augmentation. For baseline plug-in methods and
DeR, the classifiers are base classifiers.

4.1.3 Baseline methods

The
defense. The plug-in methods adopted from existing works
are HGD (Liao et al., 2018), EBMDefense (Hill et al., 2021), and
DefenseTransformer (Li et al., 2023), which cover preprocessing

baseline methods include plug-in and ensemble

approaches including denoising, randomization, and deep-
HGD denoises the inputs
with high-level representation guidance. EBMDefense utilizes

learning-based transformation.

randomization to obfuscate gradients. DefenseTransformer
trains a transformation network that imposes optimal affine
transformations to the inputs. HGD models are trained on
FGSM with € = 0.03. EBMDefense models adopt the same
configurations as the official codes.? DefenseTransformer models

are trained on PGD with € = 0.03. In addition, we compare

1 https://github.com/kentaroy47/vision-transformers-cifarl0

2 https://github.com/pointObarl/ebm-defense
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DeR with random affine transformations to elaborate that the
robustness of DeR is not attributed to the affine mapping and
that DeR gains robustness from diversity-trained reconstructors.
The adopted transformations are the same as those that the DeR
reconstructors learn.

We compare DeR with ensemble methods because DeR
involves the inference and integration of multiple outputs. In
addition, diversity enhancement is also the focus for ensemble
methods, and our gradient diversity regularizer derives from
ensemble defense. The ensemble methods are based on the
Gradient Alignment Loss (GAL) (Kariyappa and Qureshi, 2019)
and the Enhancing Adversarial Robustness through Diversity that
Supports Robustness (EADSR) (Chen et al., 2024) method. GAL
is the first method that observes and utilizes the correlation
between robustness and gradient similarity, closely related to our
work. EADSR further enhances the diversity of ensembles by
differentiated predictions. All the ensemble methods are trained
and tested with three sub-models. The balance coefficient in GAL
is 0.5, following the same setting in the paper. The parameters
of EADSR follow the same configurations as in the paper. All
the baseline methods are aligned in clean accuracy for fair
comparison.

4.1.4 Adversarial configurations

The algorithms used to generate adversarial examples are
FGSM (Goodfellow et al.,, 2015), Autoattack (Croce and Hein,
2020), PGD (Madry et al.,, 2018), and SMER (Tang et al., 2024).
FGSM, PGD, Autoattack, and SMER perturbations are constrained
within the Lo, norm 8/255. PGD attack is iterated for 30 steps with
a step size of 2/255.

We consider the white-box scenario where the adversaries
are assumed to have full knowledge of the defense methods
and the classifiers’ weights. Whitebox attacks are more reliable
in evaluating the effectiveness of defense methods since the
adversaries may take advantage of all the information about
the defender. Since some methods may gain robustness by
obfuscated gradients, the attacks are implemented in an adaptive
way that may ignore the gradients of the pre-processing steps.
We report the worst case of robustness for all the methods for
fair comparison. The worst-case attack configurations are listed
in Table 1. The attacks following Equation 2 without adaptive
attack techniques are denoted by Whitebox. Meanwhile, in the
BPDA setting, the gradients are approximated by differentiable
mappings.

4.1.5 Implementation details

The reconstructors adopt the simplified U-Net architecture
with frequency components detailed in Section 3.1. We
use two reconstructors to produce diversified gradients
trained by the DeR The

training is conducted on three datasets and iterated for

jointly loss in Equation 11.
40 epochs over the training set. The learning rate was
initially set to 0.01 and decreased by a factor of 10 in
the 20th epoch. The parameter A is set to 1.5 unless

stated otherwise.

frontiersin.org
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4.2 Adversarial robustness

We evaluate the robustness of our and baseline methods on
three datasets, taking the worst-case settings in Table 1. Specifically,
in EBMDefense, the differentiable mapping is an identical mapping.
In DeR, the differentiable mappings are corresponding affine
transformations. BPDA can be applied alongside EOT, which
estimates the expectation of gradients of transformed inputs.
We only implement the SMER attack on ensemble defense.
EBMDefense is partially incompatible with AutoAttack, so we
omit its evaluation. In addition, the assessment of ConvMixer is

TABLE 1 Worst-case attack settings for different defense methods.

‘ Method Attack settings ‘
HGD Whitebox
EBMDefense BPDA
DefenseTransformer Whitebox
GAL Whitebox
EADSR Whitebox
Affine transformations EOT
DeR (ours) BPDA + EOT

10.3389/frai.2025.1665106

only implemented for plug-in defense due to the limitations of
computing power. The robustness of defense is measured by the
accuracy of downstream classifiers on adversarial examples. We
also list the classifiers’” accuracy on clean samples to compare the
input fidelity of different defenders.

4.2.1 Robustness under gradient-based attacks

DeR thwarts the search for adversarial perturbations through
diversified gradients. Based on the analysis in Section 3, the
scattered gradients decrease the effectiveness of gradient-based
attacks. We verify these insights by evaluating the robustness
of our methods and the most recent works on plug-in defense
on FGSM, PGD, and AutoAttack. The results on CIFAR-10,
SVHN, and Tiny-ImageNet are shown in Tables 2-4, respectively.
For Tiny-ImageNet, we did not experiment with the ConvMixer
classifier due to device limitations. The U-Net structure of
DeR is altered, the kernel size and stride of Convolutional
and TransposeConvolutional layers are changed to 4 and 2 for
computational efficiency and perceptual ability, and the hidden
dimension is changed to 128. Similarly, the stride of the last down-
sampling layer of DefenseTransformer’s U-Net is changed to 2.

On CIFAR-10 dataset, DeR achieves the highest accuracy
under all the attacks except for FGSM attacks on the ConvMixer
classifier. Especially under PGD and AutoAttack, DeR exceeds the

TABLE 2 Classifier accuracy (%) with DeR and plug-in defense under gradient-based attacks on CIFAR-10.

Classifier Method Attack
AutoAttack
ResNet-32 HGD 89.2 33.1 0 0
EBMDefense 88.8 20.1 1.0 -
DefenseTransformer 84.0 113 0 0
Affine transformations 89.2 25.5 0 4.8
DeR (ours) 86.1 38.3 19.5 28.2
VGG-11 HGD 87.5 354 0 0
EBMDefense 89.8 12.8 13 -
DefenseTransformer 84.0 2.8 0 0
Affine transformations 86.0 19.0 0.3 6.4
DeR (ours) 86.2 37.7 20.1 30.8
‘WRN-28-10 HGD 85.3 23.5 0 0
EBMDefense 88.5 11.1 0.3 -
DefenseTransformer 77.0 7.6 0 0
Affine transformations 88.4 20.6 0.3 3.9
DeR (ours) 88.7 38.6 22.3 29.2
ConvMixer HGD 91.1 64.6 0 0
EBMDefense 90.6 17.3 3.6 -
DefenseTransformer 83.5 26.1 0 0
Affine transformations 90.4 14.0 0 1.2
DeR (ours) 88.5 44.0 35.9 44.8

The bold font represents the highest accuracy, and the underlined data correspond to the second highest performance.
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TABLE 3 Classifier accuracy (%) with DeR and plug-in defense under gradient-based attacks on SVHN.

Classifier Method Attack
AutoAttack
ResNet-32 HGD 95.4 92.3 0.2 0.7
EBMDefense 95.4 32.7 2.5 -
DefenseTransformer 89.2 9.6 0 0
Affine transformations 95.2 38.8 33 125
DeR (ours) 94.9 46.5 22.8 30.7
VGG-11 HGD 93.3 72.4 1.4 0.7
EBMDefense 94.0 347 5.3 -
DefenseTransformer 88.6 12.1 0 0
Affine transformations 94.7 383 4.2 15.0
DeR (ours) 94.5 52.8 27.8 35.8
‘WRN-28-10 HGD 95.2 79.1 0.2 0.4
EBMDefense 96.2 38.5 5.0 -
DefenseTransformer 88.5 14.6 0 0
Affine transformations 94.8 40.7 6.6 11.7
DeR (ours) 96.1 484 24.1 31.5
ConvMixer HGD 95.5 93.9 12 2.2
EBMDefense 96.1 459 6.2 -
DefenseTransformer 91.5 52.4 0 0
Affine transformations 95.1 55.0 8.2 16.1
DeR (ours) 95.6 57.4 27.1 344

The bold font represents the highest accuracy, and the underlined data correspond to the second highest performance.

TABLE 4 Classifier accuracy (%) with DeR and plug-in defense under gradient-based attacks on Tiny-ImageNet.

Classifier
AutoAttack
ResNet-32 HGD 47.6 57 0 0
EBMDefense 40.9 2.7 4.8 -
DefenseTransformer 26.0 0.4 0 0
Affine transformations 47.7 3.0 0 2.8
DeR (ours) 46.7 104 0.9 2.9
VGG-11 HGD 49.3 209 0 0
EBMDefense 47.7 6.3 4.6 -
DefenseTransformer 40.8 5.4 0 0
Affine transformations 53.2 7.3 0 2.8
DeR (ours) 47.8 203 9.1 5.7
‘WRN-28-10 HGD 60.2 20.5 0 0
EBMDefense 53.9 6.4 7.3 -
DefenseTransformer 49.5 33 0 0
Affine transformations 59.8 12.9 0.2 24
DeR (ours) 54.4 24.1 12.4 5.5

The bold font represents the highest accuracy, and the underlined data correspond to the second highest performance.
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baseline accuracy of lower than 0.05 with a promotion beyond
20%-40%. The robustness of HGD is not substantial since it
does not generalize to multiple attack settings. On SVHN and
Tiny-ImageNet datasets, DeR surpasses all the other baselines
under PGD and AutoAttack except for EBMDefense on ResNet-
32. Although HGD attains the best accuracy under the FGSM
attack, it fails to defend iterative attacks, with the accuracy below
0.1. Our method demonstrates comprehensive resistance to all the
tested attacks.

TABLE 5 Classifier accuracy (%) with DeR and baseline ensemble defense
under SMER attacks.

10.3389/frai.2025.1665106

By comparing DeR with other plug-in defenses, we can
conclude that DeR demonstrates better robustness under gradient-
based attacks in most cases. The results indicate that DeR benefits
from diversified transformations and degrades the effectiveness of
adversarial examples.

4.2.2 Robustness under transferable attack

Since our methods involve the combination of multiple
networks, transferable attacks designed for ensemble defense can
be applied to evaluate DeR’s robustness. We compare DeR with
ensemble defense to further demonstrate the superiority of our
method under transferable attacks. The baseline methods are

Datasets Classifier Method GAL (Kariyappa and Qureshi, 2019) and EADSR (Chen et al,
2024). In GAL, the authors also discussed the generation of
EADSR  DeR (ours) [N o Ao e s
diversified sub-models by diversity training. EADSR is a SOTA
CIFAR-10 ResNet-32 5.5 0.9 9.0 ensemble approach. We evaluate the robustness of DeR and
VGG-11 1.2 11 14.1 ensemble methods under SMER (Tang et al., 2024) attack. SMER
WRN28.10 . 102 147 utilizes the diversity in the ensemble to promote the transferability
of adversarial examples. It is based on the FGSM iteration, which
SVHN ResNet-32 20 178 158 makes it highly transferable among parallel defense models. The
VGG-11 0.8 12.4 20.4 attack settings are listed in Table 1.
WRN-28-10 0 229 197 The classifier accuracy with DeR and baseline ensemble
The bold font represents the highest accuracy. defense under SMER attacks is shown in Table 5. In most cases,
1244
12 1203 ResNet-32
11.00 11.01 s _— VGG
210 9.41 oL sree WRN-28-10
E %19 _U.\‘
e 2 -
g s e 7.73
& R 6.84
g 6 =
= | kwax
5 4 3.89 ; et
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FIGURE 4
Inference time of different defense methods tested on CIFAR-10.

TABLE 6 Throughput (image/sec) comparison of different defense methods on CIFAR-10.

Classifier Defense method
EADSR HGD DeR (ours)
ResNet-32 1 203 64 60 97 42 68 88
16 4,222 1,007 1,176 2,088 890 1,663 2,048
128 42,944 11,964 13,702 17,820 10,588 17,446 18,903
VGG-11 1 792 282 286 180 100 208 261
16 13,065 3932 4,578 2,584 1,526 3,494 3,794
128 108,147 34,155 40,425 30,406 14,059 28,692 37,512
WRN-28-10 1 301 78 76 145 77 109 136
16 4,448 1,392 1,298 2,188 1,314 2,118 2,421
128 38,814 14,838 14,238 22,269 11,932 19,467 23,176

The bold font represents the highest accuracy, and the underlined data correspond to the second highest performance.
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DeR surpasses the baseline ensemble methods with significant 4.3 Inference efficiency

improvement. In other instances, DeR achieves comparable

accuracy. The results indicate that the diversified gradients in DeR DeR is also more efficient in inference as a plug-in defense.
effectively thwart transferable attacks. Figure 4 demonstrates the inference time of different defense

TABLE 7 Memory usage (MB) comparison of different defense methods on CIFAR-10.

Classifier Defense method
EADSR HGD EBM DeR (ours)
ResNet-32 1 9.9 13.7 13.6 533 13.2 54.4 14.5
16 10.0 13.7 13.7 523 235 54.6 14.8
128 13.6 17.5 15.0 78.0 89.9 77.2 26.1
VGG-11 1 434 1153 1153 86.4 46.0 87.4 47.9
16 443 116.5 116.5 88.5 46.6 87.5 48.1
128 446 117.9 117.4 98.7 76.7 1025 64.4
WRN-28-10 1 149.4 4286 4286 191.4 150.5 191.9 153.1
16 150.1 4272 427.0 193.5 163.6 194.0 154.8
128 155.2 4403 4313 208.1 256.1 214.3 173.3

The bold font represents the highest accuracy, and the underlined data correspond to the second highest performance.
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FIGURE 5
Classifier accuracy (%) of reconstructors with and without LSE. (a) Accuracy on ResNet-32. (b) Accuracy on VGG-11. (c) Accuracy on WRN-28-10.
(d) Accuracy on ConvMixer.
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FIGURE 7

Classifier accuracy with DeR defense of A ranging from 0 to 2. The None attack represents the accuracy on clean samples. (a) Classifier accuracy on
CIFAR-10. (b) Classifier accuracy on SVHN.
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methods. The results are tested on CIFAR-10 dataset with an RTX
3050 OEM GPU and an Intel Core i7-13700. The inference time is
tested by averaging over 1,000 random samples to obtain reliable
results. In test time, the batch size is set to 1. It can be seen from the
plot that DeR takes less time in inference compared to ensemble
defense and is faster or comparable to baseline plug-in defense.
The results indicate that DeR is efficient in inference and can
reduce the time delay in real-time services while defending against
adversarial attacks.

Table 6 demonstrates the throughput of DeR and baseline
methods with batch sizes 1, 16, and 128. We test the throughput
for 100 batches for each batch size and average the results. With
batch size 1, DeR’s throughput is slightly lower than that of HGD,
but when the batch size increases, DeR’s processing speed climbs
steeply, and with batch size 128, DeR is the fastest among all
the defense methods. The results indicate that DeR is suitable for
real-time image processing.

10.3389/frai.2025.1665106

We further test the memory usage of different defense methods.
The results are shown in Table 7. The batch sizes are 1, 16,
and 128. We tested the memory usage on 100 batches for every
batch size and averaged the results. On ResNet-32, DeR uses
slightly more memory than ensemble methods. This is because
ResNet-32 is a small model, and the memory usage of defense
methods is determined by the volume of the sub-models and
the ensemble size. At the same time, DeR reconstructors have
sizes comparable to those of the classifier. However, DeR is
still the best plug-in method. On the other two models, the
memory usage gains in DeR are little. This is the benefit of
DeR’s model-agnostic training and light-weighted reconstructors.
From the data provided in Table 7, we validate DeR’s efficiency in
memory usage.

The above results show DeR’s efficiency in time delay,
throughput, and memory usage, making it an efficient plug-
in defense.
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FIGURE 8

Training losses of reconstructors with and without frequency components. (a) Training losses on CIFAR-10. (b) Training losses on SVHN.
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4.4 Ablation study

enhancement induced by DeR loss, and the impact of the hyper-
coefficient A on DeR loss. The second aspect inspects the design
In this subsection, we examine the effects of major components  of reconstructors, including frequency component efficacy of
in DeR. The first aspect concerns the design of the DeR loss  reconstructors, DeR defense with more reconstructors, and DeR

term, including the LSE process of diversity loss, the diversity — defense with different reconstructor structures.
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FIGURE 9
Clean accuracy of classifier defended by reconstructors with and without frequency components. (a) Classifier accuracy on CIFAR-10. (b) Classifier
accuracy on SVHN.

TABLE 8 Classifier accuracy (%) with different DeR reconstructor combinations on CIFAR-10.

Classifier Affine transformations
AutoAttack
ResNet-32 Baseline best 89.2 33.1 1.0 4.8
Rotation £10° 86.1 38.3 19.5 28.2
Rotation £10°, rotation —5° 85.1 35.2 8.9 1.7
Rotation 4107, shifting 0.15 86.8 36.8 11.7 21.3
Rotation 10°, scaling 0.9 86.0 37.7 8.4 15.6
VGG-11 Baseline best 89.8 35.4 1.3 6.4
Rotation £10° 86.2 37.7 20.1 30.8
Rotation £10°, rotation —5° 85.3 34.0 13.6 19.6
Rotation 310°, shifting 0.15 86.2 32.3 15.1 209
Rotation +10°, scaling 0.9 87.5 33.0 10.1 18.4
WRN-28-10 Baseline best 88.5 28.1 25 3.9
Rotation £10° 88.7 38.6 223 29.2
Rotation +10°, rotation —5° 89.0 36.1 14.2 21.7
Rotation 10°, shifting 0.15 87.8 36.8 18.3 26.5
Rotation 4107, scaling 0.9 90.2 384 10.2 19.7
ConvMixer Baseline best 91.1 64.6 3.6 1.2
Rotation £10° 88.5 44.0 35.9 44.8
Rotation 107, rotation —5° 90.2 383 22.4 313
Rotation £10°, shifting 0.15 86.7 429 29.8 38.8
Rotation 310°, scaling 0.9 88.4 39.8 28.8 37.1

The bold font represents the highest accuracy.
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4.4.1 LSE in DeR loss

In DeR loss, we utilize the LSE for the summation of
gradient similarity. The effect of this smoothness is to enhance
the reconstructors’ diversity optimization process, which is
reflected in the robustness of defense results. To demonstrate
the differences between reconstructors with and without LSE, we
train reconstructors with a non-smoothed version of DeR loss
and compare their robustness with the original design. For fair
comparison, the non-smoothed reconstructors are trained with
a = 0.1 to align with the original reconstructors on clean accuracy.
The attack results are demonstrated in Figure 5.

The results show that reconstructors trained with LSE are
more robust to adversarial attacks at the same level of clean
accuracy on most classifiers. This implies that LSE helps the
reconstructors to capture and retain image features, which is
preferred in the subsequent recognition stage of classifiers. Thus,
using LSE in DeR loss makes our method suitable for more
classifier architectures.

4.4.2 Enhanced diversity

Figure 6 shows the gradient similarity of reconstructors with
and without diversity regularizer. The results are obtained by
calculating the LSE of the gradients’ cosine similarity produced
by reconstructors on 1,000 random samples from the test set of
CIFAR-10 and SVHN datasets. In both datasets, the reconstructors
trained with diversity regularizer exhibit significantly lower

6 64 64 128 128 128
2048 256 Conv
=
Up-conv
3 64 64 128 128 =P Linear
128 2048 Reshape
FIGURE 10
Structure of AutoEncoder.

10.3389/frai.2025.1665106

gradient similarity, with an averaged reduction of approximately
0.8. The results verify the proposed diversity constraint.

4.4.3 Impact of different A

As elaborated in Section 3.2.2, the hyperparameter A controls
the balance between accuracy and robustness. We investigate
the influence of A by testing with reconstructors trained on
different values of A. Figure 7 demonstrates the impact of A on
classifier accuracy.

In most cases, as A increases, the accuracy under adversarial
attacks continuously increases and reaches a plateau or slightly
drops after A = 1.5. Meanwhile, the classifier accuracy on clean
samples (lines of the None attack) suffers slight degradation.
However, in models with sufficient parameter redundancy, such
as WRN-28-10 and ConvMixer, DeR shows potential in higher
robustness with larger A. The results confirm the relationship
between A and the accuracy-robustness trade-off. Increasing A
brings stronger resistance to adversarial attacks but sacrifices the
classifier performance on clean samples. In addition, this trend
also indicates that the loss term controlled by 2, i.e., the gradient
diversity loss, plays a significant role in adversarial robustness.

4.4.4 Impact of frequency components

DeR introduces frequency components to the reconstructors
for better convergence and performance on diversity learning. In
this section, we investigate the impact of frequency components
to verify our design. To this end, we train reconstructors
without frequency components for comparison. The compared
reconstructors take the same architecture as in Section 3.1 except
that the input layer takes only spatial information as input and has
three channels. All the reconstructors are trained with the settings
described in Section 4.1.

Figure 8 demonstrates the training losses of reconstructors with
and without frequency components. The losses of the last several
iterations are zoomed in for comparison. From the perspective
of training losses, reconstructors with frequency components
converge to a lower value, indicating better performance in
balancing reconstruction quality and gradient diversity.

Original
1Image  Rotate -10°

Rotate 10°

Reconstructed

AutoEncoder

FIGURE 11

Images reconstructed by U-Net and AutoEncoders (Images reproduced from: Learning Multiple Layers of Features from Tiny Images, Krizhevsky,

2009).
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Classifier accuracy on images reconstructed by AutoEncoders.

We also compare the accuracy of both architectures on clean
samples. The results are shown in Figure 9. The classifier accuracy
on clean samples corroborates the observation of the differences
in training losses. Reconstructors without frequency components
fail to balance conflicts of benign feature preservation and
adversarial perturbations removal, resulting in poorer classification
performance on CIFAR-10 and SVHN datasets.

From the above analysis, we can conclude that the frequency
components in DeR are essential for the reconstructors to produce
redundancy and generate diversified gradients while preserving
input fidelity.

4.4.5 DeR with more reconstructors

Although we experiment only on DeR with two reconstructors,
the DeR loss is compatible with scenarios where the number
of reconstructors N > 2. We experimentally trained three
reconstructors to fit three affine transformations, respectively. Two
transformations are fixed to rotation -10 and 10 degrees (rotation
£10°). For the third transformation, we tried out three settings,
which are rotation -5 degrees (rotation —5°), shifting along the
x-axis for 0.15 of the image width (shifting 0.15), and cropping
the central 0.9 part of the original image and resizing to the
original shape (scaling 0.9). For comparison, we list the best results
of baseline methods for each classifier in the first row. All the
reconstructor groups are trained with @ = 1.5. The experimental
results on CIFAR-10 are provided in Table 8.

With more reconstructors, DeR’s accuracy under iterative
attacks (PGD, AutoAttack) is still higher than baseline methods
in most cases. The robustness under the FGSM attack is only
slightly lower than that of baseline methods. Although a larger N
is not better than N = 2, the robustness of DeR is still plausible
compared to baseline methods, which still verifies the generality of
our method.

4.4.6 Reconstructor structure
In this section, we implement DeR with another commonly
used image reconstruction structure, AutoEncoder. The structure
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of the AutoEncoder for CIFAR-10 is depicted in Figure 10. The
AutoEncoder takes up 7.13 MB of space, larger than the U-Net
structure processor, which takes up 2.26 MB. However, the larger
parameter volume does not improve reconstruction quality, as
illustrated in Figure 11. Although the AutoEncoders are trained
with much smaller A, the fidelity of reconstructed images can not
be ensured.

We further test the classifiers’ accuracy on images reconstructed
by the AutoEncoders, and the results are shown in Figure 12.
The plots show that even when trained with a smaller A,
the AutoEncoders cannot preserve the features of input
images. Subsequently, using an AutoEncoder instead of a U-
Net to implement DeR defense will harm the classification
accuracy. These experimental results indicate that the proposed
simplified frequency-aware U-Net structure is more suitable for
DeR defense.

5 Conclusion

In this study, we propose an efficient plug-in defender, DeR,
for adversarial defense. DeR generates diversified gradients
by multiple plug-in reconstructors. The reconstructors take a
U-Net structure with additional frequency components that
generate redundancy for diversifying gradients. By training the
reconstructors with DeR loss that combines the reconstruction
objective and diversity objective, the reconstructors gain
robustness against adversarial attacks while preserving the
input fidelity. Extensive experiments under gradient-based attacks
on DeR and state-of-the-art plug-in methods demonstrate DeR’s
superiority in defending adversarial attacks while maintaining
input fidelity. The accuracy improvement in AutoAttack under
strict settings exceeds 20% on CIFAR-10 and SVHN datasets.
Moreover, DeR is simple in model architecture and efficient
in inference, which enhances the applicability of DeR in
real-time services.
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