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High-dimensional data often contain noisy and redundant features, posing challenges
for accurate and efficient feature selection. To address this, a dynamic multitask
learning framework is proposed, which integrates competitive learning and knowledge
transfer within an evolutionary optimization setting. The framework begins by
generating two complementary tasks through a multi-criteria strategy that combines
multiple feature relevance indicators, ensuring both global comprehensiveness
and local focus. These tasks are optimized in parallel using a competitive particle
swarm optimization algorithm enhanced with hierarchical elite learning, where
each particle learns from both winners and elite individuals to avoid premature
convergence. To further improve optimization efficiency and diversity, a probabilistic
elite-based knowledge transfer mechanism is introduced, allowing particles to
selectively learn from elite solutions across tasks. Experimental results on 13
high-dimensional benchmark datasets demonstrate that the proposed algorithm
achieves superior classification accuracy with fewer selected features compared
to several state-of-the-art methods. Across 13 benchmarks, the proposed method
achieves the highest accuracy on 11 out of 13 datasets and the fewest features on
eight out of 13, with an average accuracy of 87.24% and an average dimensionality
reduction of 96.2% (median 200 selected features), clearly validating its effectiveness
in balancing exploration, exploitation, and knowledge sharing for robust feature
selection.

KEYWORDS

feature selection, evolutionary multitask optimization, elite competition, knowledge
transfer, high-dimensional data, tobacco data analytics

1 Introduction

Feature selection has long been recognized as a critical step in machine learning and data
mining, particularly when dealing with high-dimensional datasets. By identifying the most
informative and non-redundant subset of features, feature selection not only improves model
performance and interpretability but also significantly reduces computational costs. However,
in high-dimensional spaces, the feature selection process becomes increasingly challenging
due to the curse of dimensionality, feature redundancy, and complex interactions
among variables.
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Existing feature selection methods are broadly categorized into
filter-based and wrapper-based approaches based on whether they rely
on classifiers for subset evaluation. Filter methods assess features
independently of any learning model, offering high efficiency and
scalability, making them suitable for large-scale datasets (Kamalov
et al., 2025). Despite these advantages, their inability to consider
interactions with learning algorithms often limits their performance
in downstream classification tasks. In contrast, wrapper methods
evaluate feature subsets by training predictive models, leading to
better classification accuracy but incurring high computational costs,
especially in high-dimensional settings (Sadeghian et al., 2025).

Swarm intelligence algorithms, such as particle swarm
optimization (PSO) and competitive swarm optimizer (CSO), have
demonstrated strong potential in handling complex feature selection
tasks (Huda and Banka, 2019; Tran et al., 2019; Swesi and Bakar, 2019;
Song et al., 2021; Too et al,, 2019). These methods mimic social
behaviors to search for optimal feature subsets by balancing
exploration and exploitation. However, standard PSO- and CSO-based
algorithms often face issues such as slow convergence or premature
stagnation when applied to datasets with thousands of features (Ding
et al., 2020; Tran et al., 2018; Pichai et al., 2020; Li et al., 2023). To
address these challenges, recent studies have turned to Evolutionary
Multitasking (EMT), which leverages the latent synergy among
multiple tasks to accelerate search efficiency and improve
generalization performance (Chen et al., 2020; Chen et al., 2021; Li
et al., 2023). However, most existing EMT-based feature selection
methods still rely on fixed task definitions and lack adaptive
mechanisms to dynamically construct tasks, evaluate task relevance,
and selectively transfer knowledge. As a result, they are prone to
negative transfer and limited scalability when applied to ultra-high-
dimensional problems. Moreover, they rarely incorporate explicit
competition mechanisms to maintain population diversity, which
increases the risk of premature convergence.

To address these challenges, a novel dual-task multitask learning
with competitive elites (DMLC-MTO) framework is proposed for
high-dimensional feature selection. The core idea is to co-optimize a
global task that retains the full feature space and an auxiliary task that
operates on a reduced subset of features generated by multi-indicator
integration. The optimization is driven by a competitive particle
swarm mechanism with hierarchical elite learning and inter-task
knowledge transfer. This approach aims to balance global exploration
and local exploitation while leveraging the shared knowledge across
tasks to escape local optima and boost search efficiency. The main
contributions of this work are summarized as follows:

1 A novel Dual-Task Evolutionary Multitasking Optimization
(DMLC-MTO) framework is proposed. It balances global
exploration and local exploitation to address redundant
features and improve search efficiency in high-
dimensional spaces.

2 A dynamic multi-indicator evaluation strategy is introduced
for auxiliary task construction. It combines Relief-F and Fisher
Score with adaptive thresholding to resolve indicator conflicts
and select informative features.

3 A hierarchical

mechanism is designed. It enables intra- and inter-task

elite-driven competitive ~optimization

knowledge transfer to enhance convergence stability and
solution quality.
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The remainder of this paper is organized as follows. Section 2
reviews related work on high-dimensional feature selection and multi-
task optimization. Section 3 introduces the proposed dynamic
multitask learning framework, including the task generation strategy,
competitive particle swarm optimization with hierarchical elite
learning, and the knowledge transfer mechanism. Section 4 presents
experimental results and analysis on benchmark datasets. Finally,
Section 5 concludes the paper and discusses future research directions.

2 Related work
2.1 Problem formulation

Feature selection aims to identify a subset of informative features
from a high-dimensional feature space while removing redundant or
irrelevant ones. Formally, given a dataset D € {(x, Yi )} i=1-n,
where x; € R%s a feature vector and y; is the corresponding label, the
objective is to find a binary selection vector z € {O,I}d such that the
selected subset S= { jlzj= l} maximizes model performance with
minimal feature count. This problem is inherently combinatorial and
becomes more challenging as dimensionality increases, especially
when feature relevance is sparse or context-dependent.

Due to the exponential number of possible feature subsets, feature
selection is considered an NP-hard problem. In high-dimensional
scenarios, especially when the number of features greatly exceeds the
number of samples, the presence of redundant, noisy, or irrelevant
features can severely degrade model performance and increase
computational cost. Therefore, effective feature selection is critical for
improving model generalization, enhancing interpretability, and
reducing overfitting risks in complex learning tasks.

2.2 Related work

Over the past decades, numerous FS algorithms have been
developed, which can be broadly categorized into filter, wrapper, and
evolutionary-based methods.

Filter methods select features based on their intrinsic properties
such as correlation, information entropy, or discriminative power,
independent of any classifier. Common approaches include
correlation-based feature selection (CFS) (Hall, 1999), mutual
information (Vergara and Estévez, 2014), and Gini Index (Solorio
et al., 2020). Relief-F (Kononenko, 1994), one of the earliest and most
influential methods, ranks features by assessing how well they
distinguish between instances of different classes. It demonstrates
strong robustness to noise and applicability across different learning
models. To alleviate feature redundancy, CFS (Hall, 1999) evaluates
feature subsets by considering both individual relevance and pairwise
correlations. The fast correlation-based filter (FCBF) (Senliol et al.,
2008) further improves efliciency by rapidly removing redundant
features based on entropy-based measures. In more complex scenarios
involving mixed-type data, hybrid methods such as SFSDFC (Yan
et al.,, 2021) and UFS (Solorio et al., 2024) have been proposed to
integrate density-based clustering and spectral analysis for robust
feature evaluation. Nevertheless, filter methods often suffer from
suboptimal feature subset selection due to the lack of interaction with
model performance.
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Wrapper methods evaluate subsets of features using specific
learning algorithms, offering better performance in classification
tasks. Sequential forward selection (Guan et al., 2004), sequential
backward selection (SBS) (Fernandez-Diego and Gonzélez-Ladron-
de-Guevara, 2018), and recursive feature elimination (RFE) (Paul and
Dupont, 2015) are classical examples. RFE, in particular, uses
classifiers such as support vector machines to recursively remove the
least important features, delivering high accuracy but with high
computational cost. Hybrid and heuristic wrappers have emerged to
improve efficiency, including mixed forward selection (MFS) (Tang
and Mao, 2007), binomial cuckoo search (Pandey et al., 2020), and
binary Jaya with TOPSIS decision logic (Chaudhuri and Sahu, 2021).
Metaheuristic-based methods, such as Firefly Algorithm and Hyena
Optimization (Lohitha and Pounambal, 2022), have also been used to
balance search quality and complexity. Although wrapper methods
provide better feature subsets, they often become infeasible on large-
scale or high-dimensional data due to their high time complexity.

Evolutionary algorithm such as PSO and CSO have been widely
adopted for feature selection due to their capability in handling large
search spaces (Huda and Banka, 2019; Tran et al., 2019; Swesi and
Bakar, 2019; Song et al., 2021; Too et al,, 2019). PSO variants have been
enhanced with rough sets (Huda and Banka, 2019), adaptive
subpopulation strategies (Tran et al., 2019), and feature clustering
(Swesi and Bakar, 2019). Meanwhile, CSO has been improved with
binary encoding (Too et al., 2019), genetic operators (Ding et al.,
2020), and chaotic functions (Pichai et al., 2020) to increase diversity
and convergence speed. In addition, PSO and other metaheuristic-
based algorithms have also shown strong adaptability in broader
application domains, such as cloud resource forecasting (Salb et al.,
2024), software defect prediction (Villoth et al., 2025), sentiment
classification (Mladenovic et al., 2024), and intrusion detection in IoT
systems (Dakic et al., 2024).

However, these methods still suffer from premature
convergence and inefficient exploration in ultra-high-dimensional
settings. As a response, evolutionary multitasking (EMT) strategies
have been introduced to feature selection problems. Chen
proposed multitask PSO methods (Chen et al., 2020; Chen et al.,
2021) that convert high-dimensional feature selection into
correlated subtasks and facilitate knowledge transfer between
them. More recently, Li extended this idea by integrating filter-
based indicators to generate diverse auxiliary tasks (Li et al., 2023),
further improving optimization performance on high-dimensional
datasets. However, most existing MTL or transfer-based FS
methods still rely on fixed task definitions and lack adaptive
mechanisms for dynamic task construction, relevance evaluation,
and selective transfer.

In addition, few works consider integrating multiple
evaluation criteria to construct feature relevance measures
dynamically. The conflict between different indicators (e.g.,
Relief-F vs. Fisher Score) often leads to inconsistent selection
results. Furthermore, evolutionary optimization in multitask FS
scenarios still faces challenges such as inefficient exploration,
insufficient exploitation of inter-task knowledge, and the risk of
negative transfer.

Despite the progress made, several challenges in high-
dimensional feature selection remain insufficiently addressed.
These include how to construct auxiliary tasks in a data-driven
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manner using multiple relevance indicators, how to facilitate
effective yet selective knowledge transfer between tasks, and how to
improve search efficiency without compromising solution quality.
This work explores these aspects by proposing a multitask
optimization framework that incorporates multi-criteria based task
construction, competitive learning with hierarchical elites and elite-
based knowledge transfer strategy to enhance the feature
selection process.

3 The proposed algorithm

3.1 Main framework of the proposed
algorithm

To address the challenges of high-dimensional feature
selection, we propose a novel evolutionary multitasking
optimization framework, DMLC-MTO (dynamic multitask
learning via competitive elites) is proposed. The core idea is to
jointly explore the global feature space and exploit locally
informative subsets through a dual-task structure, enhanced by
elite-guided search.

As illustrated in Figure 1, DMLC-MTO operates on two
complementary tasks. The primary task performs global feature
optimization in the full feature space, while the auxiliary task focuses
on a reduced subspace constructed via a Multi-Criteria based Task
Generation Strategy. This task division allows the algorithm to
simultaneously capture broad feature relevance and fine-grained
local discriminability.

Both tasks evolve independently through competitive particle
swarm optimization but interact dynamically via an elite-based
knowledge sharing mechanism. High-quality solutions from one task
can influence the search direction of the other, enabling mutual
reinforcement and improving convergence behavior. The overall
workflow of DMLC-MTO is outlined in Algorithm 1.

3.2 Multi-criteria based task generation
strategy

In high-dimensional feature selection, designing an effective
auxiliary task is a key challenge for multitask optimization. Naively
increasing the number of tasks often leads to unnecessary
computational overhead and increases the risk of negative transfer.
To address this, DMLC-MTO adopts a two-task paradigm: the
primary task operates on the full feature space to ensure global
exploration, while the auxiliary task focuses on a compact subset of
features to enable refined local optimization. A critical factor in the
success of this paradigm is how the auxiliary feature subset
is constructed.

Traditional evaluation methods, such as Relief-F and Fisher
Score, offer different perspectives on feature importance. Relief-F
emphasizes neighborhood-based instance discrimination, while
Fisher Score captures between-class variance. However, these
approaches often produce inconsistent feature rankings when used
independently, particularly in high-dimensional settings where
feature redundancy and noise are common. To mitigate these
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FIGURE 1
The framework of the proposed DMLC-MTO.
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4: Evolve P1 and P2 using Competitive Learning with Hierarchical Elites and
Elite-Based Knowledge Transfer Strategy

5: end while

6: Return the best-performing feature subset

ALGORITHM 1
DMLC-MTO optimization framework.

inconsistencies, this work proposes a Multi-Criteria Based Task w; =a-w,~RF + ﬂ.wfs

Generation Strategy that integrates both metrics into a unified

scoring framework.

As shown in Equation 1 the strategy begins by independently
computing the importance weights of each feature using both
Relief-F and Fisher Score. These two score vectors are then fused

using a weighted linear combination. feature relevance score for each feature.

1

Where w; denotes the combined weight of the i-th feature, @ and
P control the relative contribution of each metric, allowing flexible
adjustment based on data characteristics. This yields a comprehensive
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Instead of arbitrarily selecting a fixed number of features (e.g., top-k),
the proposed strategy employs knee point detection to adaptively
determine the weight threshold for feature selection, ensuring both focus
and relevance. As illustrated in Figure 2, each feature’s score is first
calculated and ranked in descending order. A curve is plotted based on
these scores, and a straight line is drawn connecting the highest and
lowest points. The feature corresponding to the maximum perpendicular
distance between the curve and the line, which is the knee point and
marked as the red point in Figure 2, is identified as the selection threshold.
Features with scores above this threshold are considered the most
significant and are subsequently selected for Task 2.

This adaptive thresholding technique ensures that the selected
features are statistically meaningful and tailored to the data
distribution, avoiding arbitrary cutoffs and improving robustness. As
a result, Task 2 is constructed using only the features above the knee
point, while Task 1 retains the full feature set. This design ensures that
the auxiliary task remains focused and efficient, while the primary task
provides broader coverage, allowing the multitask optimization
process to benefit from both global and fine-grained representations.

3.3 Elite-guided competitive particle
swarm optimization

High-dimensional feature selection presents two key challenges
for evolutionary algorithms: premature convergence and inefficient
exploration. Standard PSO often struggles in such settings, especially
when the feature space is sparse or the objective landscape is complex
and multimodal. To overcome these limitations, the proposed
DMLC-MTO framework incorporates an enhanced optimization
strategy called elite-guided competitive PSO (EC-PSO), which
integrates competitive learning with hierarchical elites and cross-task
knowledge transfer.

3.3.1 Competitive learning with hierarchical elites

The EC-PSO builds upon the CSO, which introduces pairwise
competitions among particles. As shown in Figure 3, in each
generation, particles are randomly grouped into pairs. Within each
pair, the particle with superior fitness is marked as the winner, and the
other as the loser. The loser updates its velocity and position by
learning from the winner and the population centroid, according to
Equations 2, 3:

Vi (¢ +1)=rx Vi (6)+ 12 x (Xow (£) = X1 (1)) @)
+ X1y ><(Jif(t)—XL (t))

Xp(t+1)=Xp(t)+ V(£ +1) (3)

where r,,7,,7,€[0,1] are random coefficients, Xy (t)is the winner’s
position, X (t) is the average position of all particles, and V. (t), X (t)
denote the velocity and position of the loser, respectively, gcontrols
the influence of X (t) This formulation ensures convergence toward
both local optima (through direct winner imitation) and the
population mean (to maintain diversity).
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FIGURE 2
Feature score curve and knee point detection for adaptive
thresholding.

However, standard CSO lacks global guidance and can stagnate
when the winner’s solution quality plateaus. To enhance the
convergence performance in high-dimensional feature selection,
DMLC-MTO incorporates an elite-driven competitive learning
mechanism. As shown in Figure 4, in each optimization iteration, the
algorithm identifies the top-K best-performing particles in each task
to form a task-specific elite pool. After applying the pairwise
competition strategy, each loser particle is given a probability Pk to
learn from a randomly selected particle in the elite pool instead of the
winner in its own pair. This elite-level guidance introduces a long-
term memory mechanism that directs losers toward globally
promising solutions, helping the swarm avoid local stagnation.

3.3.2 Elite-based knowledge transfer strategy

In multitask optimization, knowledge transfer between tasks plays
a vital role in improving overall search performance by sharing
successful patterns. To this end, DMLC-MTO introduces a
hierarchical elite-based transfer strategy. Specifically, for each loser
particle, a random number is generated and compared with a
predefined transfer probability Ptrans. If the transfer condition is
satisfied, the particle is allowed to learn from elite solutions of another
task, rather than only relying on intra-task updates.

Furthermore, within both intra-task and cross-task settings, the
algorithm checks whether another random value exceeds the elite
learning threshold Pk. If so, the particle learns from an elite particle;
otherwise, it learns from the average position of all particles or elites
in the corresponding task. The update strategy thus includes four
distinct modes as Equations 4-7:

vi (t+1):r1va(t)+r2x(xg;;nd(t)_xg(t))

@
+13 x(XEmnd(t)—XL(t)) !
VE(E+1) =V (1) XEF (0) - XL (1)) (5)

+13 % Xyprana (£) = X1 (t))

frontiersin.org


https://doi.org/10.3389/frai.2025.1667167
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Tieetal.

10.3389/frai.2025.1667167

FIGURE 3
Competition among particles in classical CSO.
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FIGURE 4
Competitive learning with hierarchical elites.
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©)
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task
Where X Erand

within the current task, while X g4 (t)is randomly chosen from the elite

pool of other tasks, X{,{’}Sk

(t)a particle randomly selected from the elite pool

(t)denotes the winner particle within the same
task, Xyprand (t )is arandomly selected winner from other tasks, represents
the average position of elites in the current task, X ( t)denotes the average
position of all particles in the current population, gserves as a control
factor to regulate the influence of the corresponding learning component.
From Equations 4-7, it can be observed that each particle updates its
position by simultaneously learning from two types of sources. By
incorporating knowledge from the winner in the same task, the winner
from another task, the average position of elite particles within the current
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task, and the overall population mean, the particle significantly enhances
its search capability. This design helps maintain population diversity and
improves optimization efficiency.

3.4 Fitness function

An effective fitness function plays a vital role in guiding the
evolutionary search toward an optimal feature subset. In this study,
we adopt an evaluation strategy that considers both classification
performance and feature compactness is adopted. The overall fitness
function is defined as Equations 8, 9:

. IS
ﬁtness=af*7R(D)+(l_af)*m ©
1 C
rr(D)-1-L S ”

i=1

Where ;/R(D)denotes the probability of classification error. The
term| S lindicates the number of selected features used to construct the
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model, whilel N lcorresponds to the total number of available features
in the dataset. The parameter ¢ 7, ranging between 0 and 1, controls
the trade-off between classification accuracy and feature sparsity.
Following the recommendation in Chen et al. (2019), a is set as
0.999999 to place a stronger emphasis on classification performance.
The number of classes C reflects the total distinct categories involved
in the classification task. For each class 7, the true positive rate TPR;is
computed as the proportion of correctly predicted instances within
that class relative to the total number of samples in the same class
(Patterson and Zhang, 2007). Using the balanced error metric
mitigates the influence of class imbalance, ensuring that all classes
contribute equally to the evaluation. This is particularly important in
feature selection, where biased evaluation can lead to overfitting to
majority classes and suboptimal feature subsets.

4 Experimental results and analysis
4.1 Experimental setup

To comprehensively evaluate the performance of the proposed
algorithm, experiments were conducted on 13 high-dimensional real-
world datasets drawn from various application domains. These datasets
exhibit a wide range of feature dimensions, varying from 2,000 to over
13,000, making them suitable for assessing the algorithm’s effectiveness
under diverse and complex conditions. Detailed characteristics of each
dataset—including the dataset name, number of features, number of
samples, and number of classes—are summarized in Table 1.

To evaluate the effectiveness of the proposed DMLC-MTO
algorithm, comprehensive comparisons were conducted with four
competitive evolutionary algorithm EA-based feature selection
methods: PSO (Ansari et al., 2019), CSO-ES (Tian et al., 2019),
PSO-EMT (Chen et al., 2020), and MT-PSO (Chen et al., 2021).
PSO serves as a baseline representing standard EA strategies, while
CSO-FS incorporates the traditional CSO search mechanism
specifically designed for feature selection. PSO-EMT and MT-PSO
both adopt multitask learning paradigms to better address the
challenges of high-dimensional feature spaces, and have

TABLE 1 Dataset.

Dataset  Feature no. Instance no. Class no.
1 SRBCT 2,308 83 4
2 warpPIE10P 2,420 210 10
3 Lymphoma 5,026 62 3
4 Nci 5,244 61 8
5 Leukemia 1 5,327 72 3
6 DLBCL 5,469 77 2
7 Prostate6033 6,033 102 2
8 ALLAML 7,129 72 2
9 Nci9 9,712 60 9
10 Orlraws10P 10,304 100 10
11 Prostate 10,509 102 2
12 Leukemia 2 11,225 72 3
13 Lung cancer 12,600 203 5
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demonstrated competitive performance in previous studies. All
experiments were implemented in MATLAB R2020a and executed
on a Windows 10 machine with a 2.6 GHz Intel Core i5 processor
and 16GB RAM, ensuring a consistent computational environment
across all methods. To prevent feature selection bias and ensure an
unbiased evaluation, feature selection was performed separately
within each training fold during cross-validation. Specifically, for
each fold, the training data was used to generate tasks and perform
feature selection, and the resulting selected features were then
applied to the held-out test fold for performance evaluation. This
nested-like procedure ensures that no information from the test set
is used during feature selection, thereby providing a reliable
estimate of the algorithm’s generalization performance.

In addition to these methods, this work included a baseline
classifier without any feature selection (referred to as FULL) to
highlight the improvements achieved by each FS approach in terms
of classification accuracy and dimensionality reduction. All
experimental results were obtained from 30 independent runs to
account for algorithmic stochasticity. For statistical validation, the
Wilcoxon signed-rank test was applied at a significance level of 0.05.
In the analysis, the symbols “+” “—” and “=” denote that a
comparison method performs significantly better, worse, or
comparable to the proposed DMLC-MTO, respectively.

To ensure fair and consistent comparisons, all algorithms were
evaluated under standardized experimental settings. Each task was
executed with a population size of 70 and a maximum of 100
iterations. Additionally, the proposed algorithm is model-agnostic
and compatible with various classifiers, making it adaptable to
different application scenarios without restricting the choice of
classification models. The complete parameter configurations for all
methods are summarized in Table 2 to support reproducibility and
facilitate future implementation.

4.2 Comparison with the state-of-the-art
algorithms

4.2.1 Classification accuracy comparison

Table 3 presents the classification accuracy of DMLC-MTO
compared to four baseline algorithms across multiple datasets. Among
65 comparisons, DMLC-MTO outperforms the other methods in 56
cases, achieves comparable results in 8, and underperforms in only 1
case. These results demonstrate the overall superiority and robustness
of the proposed method. A detailed analysis is as follows:

Compared with FULL: DMLC-MTO consistently outperforms
the baseline classifier without feature selection (FULL) on all 13
datasets, highlighting the necessity and effectiveness of feature
selection. For example, on the NCI9 dataset, DMLC-MTO achieves
an accuracy of 68.98%, improving upon FULLs 66.46% by 3.8%. On
the high-dimensional Prostate6033 dataset, DMLC-MTO reaches
86.66%, surpassing FULLs 82.11% by 5.54%. These improvements
suggest that assigning discriminative weights to features effectively
mitigates the curse of dimensionality and enhances
classification performance.

Compared with PSO: DMLC-MTO significantly outperforms
standard PSO on 12 out of 13 datasets, with the only tie occurring on
the SRBCT dataset (95.3% vs. 95.27%). On the Lymphoma dataset,

DMLC-MTO achieves 99.22%, markedly higher than PSO’s 81.35%,
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a relative improvement of 21.97%. Similarly, it reaches 98.2% on the
Orlraws10P dataset, outperforming PSO’s 90.84% by 7.5%.

Compared with CSO-FS: DMLC-MTO exhibits clear advantages
over CSO-FS, achieving better performance on 11 out of 16 datasets,
with only one dataset where it performs slightly worse and the rest
showing comparable results. On average, DMLC-MTO improves
classification accuracy by 11.55 percentage points over CSO-FS. This
gain underscores the effectiveness of the multitask framework and the
embedded elite-driven competition mechanism in improving
feature selection.

Compared with PSO-EMT: DMLC-MTO outperforms PSO-EMT
on 10 out of 13 datasets, with equivalent performance on NCI9,
Prostate6033, and one additional dataset. For example, it achieves
99.22% accuracy on Lymphoma, exceeding PSO-EMT’s 93.26% by
6.4%, and obtains 89.78% on DLBCL, outperforming PSO-EMT’s
85.17% by 5.4%. These improvements are largely attributed to the
hierarchical elite learning strategy, which dynamically guides the
search towards more informative feature subsets.

TABLE 2 Algorithms parameters setting.

Algorithms = Parameters

. 1 =Cp =c3 =1.49445
w =0.9-0.5x(iter / njtgr )

CSO-FS m,m,m3 €[01]

PSO-EMT ¢y =cp =03 =1.49445,p =0.05,rmp = 0.6,m =10
w =0.9-0.5x(iter / niger )

MT-PSO c1=0p =3 =1.49445,p = 0.05,rmp = 0.6,G = 6
w =0.9-0.5x(iter / nitgr )
A2.r3 €[01]

pmic-mro | =06
Pk=06
af =0.999999

10.3389/frai.2025.1667167

Compared with MT-PSO: DMLC-MTO achieves superior
accuracy on 10 out of 13 datasets compared to MT-PSO, with tied
performance on NCI9, Prostate6033, and one other dataset. On
the ALLAML dataset, DMLC-MTO reaches 94.1%, improving
upon MT-PSO’s 91.16% by 3.2%. On Lung Cancer, it records
87.22% versus 84.75% by MT-PSO, a relative gain of 2.9%. These
results validate the advantage of DMLC-MTO’s multi-indicator-
based task generation strategy, which constructs complementary
tasks than MT-PSO’s task
allocation approach.

more effectively random

4.2.2 Analysis of selected feature subsets

Table 4 reports the number of features selected by different
algorithms across all datasets. Reducing the number of selected
features often leads to simpler models and improved computational
efficiency. The experimental results show that DMLC-MTO
consistently selects fewer features than other methods. Among 65
comparisons, it outperforms its competitors in 59 cases, ties in 4, and
underperforms in only 3, demonstrating its strong capability in
identifying compact and informative feature subsets.

On high-dimensional datasets such as Orlraws10P and Lung
Cancer (with over 10,000 dimensions), DMLC-MTO achieves
significant dimensionality reduction while maintaining high
classification accuracy. This demonstrates not only its effectiveness
in compressing features, but also its ability to filter out redundant
or irrelevant attributes and retain the most discriminative ones.
Such compact representations are particularly beneficial in
practical scenarios where computational resources are limited or
real-time decision-making is required. Moreover, reducing the
number of features improves model interpretability, which is
critical in domains like healthcare and bioinformatics.

Although DMLC-MTO performs well on most datasets, there
are a few cases where its classification accuracy is slightly lower
than that of CSO-FS. For instance, on the Prostate dataset,
DMLC-MTO selects an average of 132.13 features compared to
1305.4 selected by CSO-FS. Despite selecting far fewer features,

TABLE 3 Classification accuracy of the compared algorithms on multiple datasets.

Dataset FULL PSO CSO-FS PSO-EMT MT-PSO DMLC-MTO
SRBCT 80 (=) 9527 (=) 95.13 (=) 95.12 (=) 95.21 (=) 95.3
warpPIE10P 83.58 (—) 98.17 (=) 51.54 (=) 99.12 (=) 99.21 (=) 99.13
Lymphoma 99.08 (—) 81.35 (—) 55.14 () 93.26 (—) 96.51 (—) 99.22
Nci 66.46 (—) 65.36 (—) 64.12 () 59.32 (-) 63.87 (—) 68.98
Leukemia 1 78.74 () 80.47 (—) 81.27 (-) 86.08 (—) 86.12 (—) 87.86
DLBCL 82.79 (-) 83.72 (-) 83.92 (-) 85.17 (—) 87.67 (—) 89.78
Prostate6033 82.11 (-) 84.07 (—) 83.68 (—) 80.57 (—) 84.07 (-) 86.66
ALLAML 78.06 (—) 79.44 (-) 82.02 (-) 89.9 (-) 91.16 (—) 94.1
Nci9 41.3 (-) 47.32(-) 43.34 (—-) 51.11 (=) 51.21 (=) 51.15
Orlraws10P 78.32 (—) 90.84 () 92.09 (-) 93.37 (-) 93.18 (-) 98.2
Prostate 84.34 (—) 82.65 (—) 88.36 (=) 81.68 (—) 84.17 (-) 88.38
Leukemia 2 87.68 (—) 87.15 (—) 85.46 (—) 87.16 (—) 86.45 (—) 88.12
Lung cancer 77.65 (—) 78.41 (—) 78.47 (—) 83.47 (—) 84.75 (—) 87.22
+/=1= 0/13/0 0/12/1 1/11/1 0/10/3 0/10/3

Best results are highlighted in bold.
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TABLE 4 Number of features selected by different algorithms on multiple datasets.

10.3389/frai.2025.1667167

Dataset FULL PSO CSO-FS PSO-EMT MT-PSO DMLC-MTO
SRCBT 2,308 295.25 (—) 150.2 () 122.4 (-) 452.6 () 47.18
warpPIE10P 2,420 1185.5 (—) 8.5 (+) 155.67 (—) 288.6 (—) 32.52
Lymphoma 4,026 2155.1 () 3.5(+) 12.52 (+) 21.99 (-) 56.39
Nci 5,244 2064.8 (—) 412.8 (—) 316.74 () 1203.47 (—) 282.12
Leukemia 1 5,327 2953.4 (—) 435.2 (—) 282.5(-) 842.56 (—) 230.22
DLBCL 5,469 2154.7 () 332.25(—) 194.4 (=) 1025.27 (—) 200.22
Prostate6033 6,033 31584 (—) 780.54 (—) 462.36 (—) 1451.12 (-) 113.82
ALLAML 7,129 3834.1 (—) 392.5(-) 162.82 (—) 1852.22 (—) 79.93
Nci9 9,712 4426.1 (—) 618.4 (+) 1932.7 (=) 613.28 (+) 1947.22
Orlraws10P 10,304 4834.9 (-) 65.4 (=) 932.86 (—) 1208.04 (—) 63.28
Prostate 10,509 5675.5 (—) 1305.4 () 185.12 (—) 2759.71 (-) 231.32
Leukemia 2 11,225 3548.1 (—) 1057.6 (—) 298.3 (=) 1587.2 (-) 285.58
Lung cancer 12,600 6923.8 (—) 1168.4 () 753.38 (=) 832.4 (—) 322.48
+/=/= 0/13/0 2/9/2 1/11/1 0/12/1
Best results are highlighted in bold.
Average CPU Running Time
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FIGURE 5
Average CPU running time.

DMLC-MTO’s accuracy is marginally lower. This may be attributed
to its limited ability to capture complex nonlinear dependencies
between features when relying on filter-based metrics like Fisher
Score. Furthermore, the competitive learning mechanism may
occasionally introduce negative transfer, where informative
features are prematurely discarded in early stages of optimization,
slightly affecting final performance.

Nonetheless, the global search capability of DMLC-MTO ensures
that it can still find effective solutions with fewer features. On datasets
such as warpPIE10P and Lymphoma, where CSO-FS selects fewer
features (8.5 and 3.5, respectively), it achieves only 51.54% and 55.14%
accuracy. In contrast, DMLC-MTO selects slightly more features (34.57
and 86.74, respectively), yet reaches significantly higher accuracies of
99.56% and 99.36%. These results highlight the strength of DMLC-MTO’s

Frontiers in Artificial Intelligence

dual-task and elite-guided learning mechanisms in discovering high-
quality feature combinations that lead to better overall performance.

In summary, DMLC-MTO shows great potential for high-
dimensional feature selection, especially in tasks that require a minimal
number of features without sacrificing classification performance. By
significantly reducing dimensionality while maintaining or improving
predictive accuracy, DMLC-MTO demonstrates an effective trade-off
between model simplicity and discriminative power. These findings
further confirm the algorithn’s suitability for practical applications and
provide a solid foundation for future research.

4.2.3 Training time comparison

Figure 5 presents the training time comparison among all
algorithms, highlighting the computational efficiency of

frontiersin.org


https://doi.org/10.3389/frai.2025.1667167
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org

Tieetal.

DMLC-MTO. Benefiting from its integrated multitask mechanism
and efficient search dynamics, DMLC-MTO significantly
reduces redundant computations while maintaining solution
quality, leading to superior runtime performance across
all datasets.

4.3 Mechanism analysis of DMLC-DTO

4.3.1 Evaluation of multi-criteria task generation
strategy

To assess the effectiveness of the proposed multi-criteria task
generation strategy, it is compared against three widely used feature
evaluation methods: Relief-F, Pearson Correlation Coefhicient (PCC),
and Total Variance (TV). The comparison was conducted across 13
datasets of varying dimensionality, evaluating both the size of the
selected feature subset and the resulting classification accuracy. The
detailed results are presented in Table 5.

Overall, the proposed strategy demonstrates competitive or
superior performance across most datasets. In terms of
classification accuracy, the multi-criteria approach achieves the
highest score in seven out of 13 datasets, and performs comparably
in five others. For instance, on the warpPIE10P dataset, it achieves
99.13% accuracy using only 32.52 features, outperforming all
baseline methods in both accuracy and feature compactness.
Similarly, on Lymphoma, it reaches 99.33% accuracy while
reducing the feature subset size to 56.39, significantly lower than
Relief-F’s 97.2 features.

In high-dimensional datasets such as Orlraws10P and DLBCL, the
multi-criteria strategy also shows clear advantages. On Orlraws10P, it
achieves the highest accuracy (98.2%) with the smallest feature subset
(63.28), illustrating the effectiveness of combining multiple relevance
indicators to filter redundant features. In DLBCL, it selects fewer
features (158.33) than most methods while maintaining high accuracy
(89.56%), nearly matching PCC’s best performance (89.83%) with
improved compactness.

It is worth noting that in some datasets like Nci9 and Leukemia
2, the proposed method selects a relatively larger number of
features. In Nci9, although the feature count increases to 1947.22,
the classification accuracy (51.12%) remains competitive with PCC
(51.14%) and higher than Relief-F (46.22%). This suggests that, in
certain cases, the adaptive thresholding mechanism may favor
retaining more features to ensure sufficient representation,
especially when the informative features are not well distinguished
by individual metrics alone.

Another observation lies in the Prostate6033 and Prostate
datasets, where the proposed method outperforms baseline
methods in accuracy (e.g., 86.66% and 88.38%, respectively) while
also maintaining relatively small feature subsets compared to TV
or PCC. This highlights its capacity to balance global relevance and
local refinement through dynamic integration of multiple
scoring criteria.

In conclusion, the multi-criteria task generation strategy
shows strong robustness and adaptability across various datasets.
It consistently strikes a favorable trade-off between feature subset
size and

classification performance. By leveraging the

complementary strengths of Relief-F and Fisher Score, and
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incorporating adaptive knee-point detection, the proposed
approach enhances the reliability of feature relevance estimation
and improves the initialization of auxiliary tasks in the multitask
framework. These results demonstrate that the proposed task
construction mechanism is an effective foundation for the
DMLC-MTO algorithm.

4.3.2 Elite-guided competitive particle swarm
optimization

To further evaluate the effectiveness of the proposed knowledge
transfer strategy, three variants of the algorithm is considered for
comparison: (1) CSO, which relies solely on traditional pairwise
competition without elite or task-level interaction; (2) EC-PSO, which
introduces elite-based competition but performs optimization
independently within each task; and (3) EC-PSO + knowledge transfer,
which enhances EC-PSO with inter-task knowledge exchange via elite
guidance. The corresponding results are visualized in Figures 6, 7, where
the bar charts provide an intuitive comparison of classification accuracy
and the number of selected features across different methods. As shown
in Table 6, the inclusion of knowledge transfer consistently improves
both classification accuracy and feature compactness across
most datasets.

While EC-PSO already improves upon CSO by leveraging elite-
driven intra-task learning (e.g., on DLBCL and ALLAML datasets),
the incorporation of cross-task knowledge sharing in
EC-PSO + Knowledge Transfer brings further benefits. It achieves the
best performance on nearly all datasets in terms of accuracy, while
selecting fewer features in most cases. These results suggest that cross-
task learning enables more effective exploration of the search space
and promotes better generalization. Therefore, the proposed transfer
mechanism not only enhances the performance of individual tasks but
also facilitates collaboration between tasks to address the challenges
of high-dimensional feature selection.

5 Conclusion

This paper presents DMLC-MTO, a dynamic multitask evolutionary
feature selection algorithm that integrates multi-indicator task
generation, elite competition learning, and spatially-aware knowledge
transfer. The framework effectively addresses the challenges of high-
dimensional data by enabling precise evaluation of feature subsets and
improving optimization efficiency through adaptive inter-task
collaboration. Extensive experiments on 13 benchmark datasets
demonstrate that DMLC-MTO consistently achieves superior
classification accuracy with more compact feature sets compared to
existing evolutionary feature selection methods. The combination of
complementary filter-based indicators with competitive and transfer
mechanisms guides the search toward informative and less redundant
features, highlighting the framework’s practical value in applications
such as tobacco leaf grading, quality assessment, and agricultural
phenotype analysis.

While the results validate the method’s effectiveness, limitations
remain. The reliance on filter-based indicators may not fully
capture complex nonlinear feature dependencies, some
hyperparameters are fixed, and evaluation has been restricted to
high-dimensional gene and datasets.

expression image
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TABLE 5 Comparison of the different task generation methods.

10.3389/frai.2025.1667167

Dataset Method Subset no. Accuracy
Relief-F 54.4 95.23
PCC 70.5 94.58
SRBCT
TV 87.1 88.33
Multi-criteria task generation 47.18 95.3
Relief-F 43.7 98.5
PCC 42.3 98.2
warpPIE10P
TV 70.8 97.3
Multi-criteria task generation 32.52 99.13
Relief-F 97.2 99.16
PCC 83.2 98.9
Lymphoma
vV 81.6 98.5
Multi-criteria task generation 56.39 99.33
Relief-F 133.2 60.57
PCC 160.8 70.04
Nci
TV 184 66.02
Multi-criteria task generation 28212 68.98
Relief-F 122.7 87.77
PCC 156.8 88.35
Leukemia 1
TV 120.6 88.11
Multi-criteria task generation 230.22 87.86
Relief-F 307.8 86.5
PCC 179.2 89.83
DLBCL
TV 524.4 85.33
Multi-criteria task generation 158.33 89.56
Relief-F 191.2 86.16
PCC 133.5 86.33
Prostate6033
TV 251.5 85.5
Multi-criteria task generation 113.82 86.66
Relief-F 95.4 88.41
PCC 111.8 93.16
ALLAML
TV 152.7 91.16
Multi-criteria task generation 79.93 94.10
Relief-F 1438.2 46.22
PCC 1194.1 51.14
Nci9
TV 1074.4 52.09
Multi-criteria task generation 1947.22 51.12
Relief-F 136.9 94.2
PCC 305.5 92.5
Orlraws10P
TV 100.8 96.1
Multi-criteria task generation 63.28 98.2
Relief-F 174.8 82.16
PCC 185.3 84.5
Prostate
TV 524.4 85.33
Multi-criteria task generation 231.32 88.38
(Continued)
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TABLE 5 (Continued)

10.3389/frai.2025.1667167

Dataset Method Subset no. Accuracy
Relief-F 354.9 91.66
PCC 387 88.33
Leukemia 2
TV 298.3 88.33
Multi-criteria task generation 285.58 88.12
Relief-F 222.7 79.13
PCC 434.4 86.08
Lung cancer
TV 126.9 82.71
Multi-criteria task generation 322.48 87.22
Best results are highlighted in bold.
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Comparison of accuracy obtained by different optimization and knowledge transfer strategies.

Furthermore, qualitative interpretability of the selected features
and more rigorous statistical analyses have yet to be explored.
Future work will focus on addressing these limitations by
incorporating adaptive hyperparameter tuning, evaluating broader
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and more diverse datasets, enhancing interpretability, and
extending the framework to handle multi-label and unsupervised
scenarios, thereby strengthening its robustness and broadening
its applicability.
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TABLE 6 Comparison of the different optimization and knowledge transfer strategies.

10.3389/frai.2025.1667167

Dataset Method Subset no. Accuracy
CSO 50.8 94.16
SRBCT EC-PSO 62.32 95.11
EC-PSO + knowledge transfer 47.18 95.3
CSO 37.86 98.63
warpPIE10P EC-PSO 42.31 97.82
EC-PSO + knowledge transfer 32.52 99.13
CSO 89.42 98.11
Lymphoma EC-PSO 7213 97.32
EC-PSO + knowledge transfer 56.39 99.33
CSO 323.86 67.13
Nci EC-PSO 352.12 66.92
EC-PSO + knowledge transfer 282.12 68.98
CSO 212.25 85.23
Leukemia 1 EC-PSO 301.63 87.6
EC-PSO + knowledge transfer 230.22 87.86
CSO 237.36 86.46
DLBCL EC-PSO 322.12 87.81
EC-PSO + knowledge transfer 200.22 89.78
CSO 118.76 85.93
Prostate6033 EC-PSO 142.12 86.2
EC-PSO + knowledge transfer 113.82 86.66
CSO 86.43 91.22
ALLAML EC-PSO 92.11 93.32
EC-PSO + knowledge transfer 79.93 94.10
CSO 2032.12 49.24
Nci9 EC-PSO 1323.11 46.23
EC-PSO + knowledge transfer 1947.22 51.12
CSO 87.2 97.2
Orlraws10P EC-PSO 99.2 96.2
EC-PSO + knowledge transfer 63.28 98.2
CSO 206.4 87.96
Prostate EC-PSO 261.2 86.91
EC-PSO + knowledge transfer 231.32 88.38
CSO 300.32 86.22
Leukemia 2 EC-PSO 321.42 85.11
EC-PSO + knowledge transfer 285.58 88.12
CSO 412.12 86.54
Lung cancer EC-PSO 362.42 86.23
EC-PSO + knowledge transfer 322.48 87.22

Best results are highlighted in bold.
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