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High-dimensional data often contain noisy and redundant features, posing challenges 
for accurate and efficient feature selection. To address this, a dynamic multitask 
learning framework is proposed, which integrates competitive learning and knowledge 
transfer within an evolutionary optimization setting. The framework begins by 
generating two complementary tasks through a multi-criteria strategy that combines 
multiple feature relevance indicators, ensuring both global comprehensiveness 
and local focus. These tasks are optimized in parallel using a competitive particle 
swarm optimization algorithm enhanced with hierarchical elite learning, where 
each particle learns from both winners and elite individuals to avoid premature 
convergence. To further improve optimization efficiency and diversity, a probabilistic 
elite-based knowledge transfer mechanism is introduced, allowing particles to 
selectively learn from elite solutions across tasks. Experimental results on 13 
high-dimensional benchmark datasets demonstrate that the proposed algorithm 
achieves superior classification accuracy with fewer selected features compared 
to several state-of-the-art methods. Across 13 benchmarks, the proposed method 
achieves the highest accuracy on 11 out of 13 datasets and the fewest features on 
eight out of 13, with an average accuracy of 87.24% and an average dimensionality 
reduction of 96.2% (median 200 selected features), clearly validating its effectiveness 
in balancing exploration, exploitation, and knowledge sharing for robust feature 
selection.
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1 Introduction

Feature selection has long been recognized as a critical step in machine learning and data 
mining, particularly when dealing with high-dimensional datasets. By identifying the most 
informative and non-redundant subset of features, feature selection not only improves model 
performance and interpretability but also significantly reduces computational costs. However, 
in high-dimensional spaces, the feature selection process becomes increasingly challenging 
due to the curse of dimensionality, feature redundancy, and complex interactions 
among variables.
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Existing feature selection methods are broadly categorized into 
filter-based and wrapper-based approaches based on whether they rely 
on classifiers for subset evaluation. Filter methods assess features 
independently of any learning model, offering high efficiency and 
scalability, making them suitable for large-scale datasets (Kamalov 
et  al., 2025). Despite these advantages, their inability to consider 
interactions with learning algorithms often limits their performance 
in downstream classification tasks. In contrast, wrapper methods 
evaluate feature subsets by training predictive models, leading to 
better classification accuracy but incurring high computational costs, 
especially in high-dimensional settings (Sadeghian et al., 2025).

Swarm intelligence algorithms, such as particle swarm 
optimization (PSO) and competitive swarm optimizer (CSO), have 
demonstrated strong potential in handling complex feature selection 
tasks (Huda and Banka, 2019; Tran et al., 2019; Swesi and Bakar, 2019; 
Song et  al., 2021; Too et  al., 2019). These methods mimic social 
behaviors to search for optimal feature subsets by balancing 
exploration and exploitation. However, standard PSO- and CSO-based 
algorithms often face issues such as slow convergence or premature 
stagnation when applied to datasets with thousands of features (Ding 
et al., 2020; Tran et al., 2018; Pichai et al., 2020; Li et al., 2023). To 
address these challenges, recent studies have turned to Evolutionary 
Multitasking (EMT), which leverages the latent synergy among 
multiple tasks to accelerate search efficiency and improve 
generalization performance (Chen et al., 2020; Chen et al., 2021; Li 
et al., 2023). However, most existing EMT-based feature selection 
methods still rely on fixed task definitions and lack adaptive 
mechanisms to dynamically construct tasks, evaluate task relevance, 
and selectively transfer knowledge. As a result, they are prone to 
negative transfer and limited scalability when applied to ultra-high-
dimensional problems. Moreover, they rarely incorporate explicit 
competition mechanisms to maintain population diversity, which 
increases the risk of premature convergence.

To address these challenges, a novel dual-task multitask learning 
with competitive elites (DMLC-MTO) framework is proposed for 
high-dimensional feature selection. The core idea is to co-optimize a 
global task that retains the full feature space and an auxiliary task that 
operates on a reduced subset of features generated by multi-indicator 
integration. The optimization is driven by a competitive particle 
swarm mechanism with hierarchical elite learning and inter-task 
knowledge transfer. This approach aims to balance global exploration 
and local exploitation while leveraging the shared knowledge across 
tasks to escape local optima and boost search efficiency. The main 
contributions of this work are summarized as follows:

	 1	 A novel Dual-Task Evolutionary Multitasking Optimization 
(DMLC-MTO) framework is proposed. It balances global 
exploration and local exploitation to address redundant 
features and improve search efficiency in high-
dimensional spaces.

	 2	 A dynamic multi-indicator evaluation strategy is introduced 
for auxiliary task construction. It combines Relief-F and Fisher 
Score with adaptive thresholding to resolve indicator conflicts 
and select informative features.

	 3	 A hierarchical elite-driven competitive optimization 
mechanism is designed. It enables intra- and inter-task 
knowledge transfer to enhance convergence stability and 
solution quality.

The remainder of this paper is organized as follows. Section 2 
reviews related work on high-dimensional feature selection and multi-
task optimization. Section 3 introduces the proposed dynamic 
multitask learning framework, including the task generation strategy, 
competitive particle swarm optimization with hierarchical elite 
learning, and the knowledge transfer mechanism. Section 4 presents 
experimental results and analysis on benchmark datasets. Finally, 
Section 5 concludes the paper and discusses future research directions.

2 Related work

2.1 Problem formulation

Feature selection aims to identify a subset of informative features 
from a high-dimensional feature space while removing redundant or 
irrelevant ones. Formally, given a dataset ( ){ }∈ x ,yi iD , = 1, ,i n, 
where ∈x d

i  is a feature vector and yi is the corresponding label, the 
objective is to find a binary selection vector { }∈z 0,1 d  such that the 
selected subset { }= =| 1jS j z maximizes model performance with 
minimal feature count. This problem is inherently combinatorial and 
becomes more challenging as dimensionality increases, especially 
when feature relevance is sparse or context-dependent.

Due to the exponential number of possible feature subsets, feature 
selection is considered an NP-hard problem. In high-dimensional 
scenarios, especially when the number of features greatly exceeds the 
number of samples, the presence of redundant, noisy, or irrelevant 
features can severely degrade model performance and increase 
computational cost. Therefore, effective feature selection is critical for 
improving model generalization, enhancing interpretability, and 
reducing overfitting risks in complex learning tasks.

2.2 Related work

Over the past decades, numerous FS algorithms have been 
developed, which can be broadly categorized into filter, wrapper, and 
evolutionary-based methods.

Filter methods select features based on their intrinsic properties 
such as correlation, information entropy, or discriminative power, 
independent of any classifier. Common approaches include 
correlation-based feature selection (CFS) (Hall, 1999), mutual 
information (Vergara and Estévez, 2014), and Gini Index (Solorio 
et al., 2020). Relief-F (Kononenko, 1994), one of the earliest and most 
influential methods, ranks features by assessing how well they 
distinguish between instances of different classes. It demonstrates 
strong robustness to noise and applicability across different learning 
models. To alleviate feature redundancy, CFS (Hall, 1999) evaluates 
feature subsets by considering both individual relevance and pairwise 
correlations. The fast correlation-based filter (FCBF) (Senliol et al., 
2008) further improves efficiency by rapidly removing redundant 
features based on entropy-based measures. In more complex scenarios 
involving mixed-type data, hybrid methods such as SFSDFC (Yan 
et al., 2021) and UFS (Solorio et al., 2024) have been proposed to 
integrate density-based clustering and spectral analysis for robust 
feature evaluation. Nevertheless, filter methods often suffer from 
suboptimal feature subset selection due to the lack of interaction with 
model performance.
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Wrapper methods evaluate subsets of features using specific 
learning algorithms, offering better performance in classification 
tasks. Sequential forward selection (Guan et  al., 2004), sequential 
backward selection (SBS) (Fernández-Diego and González-Ladrón-
de-Guevara, 2018), and recursive feature elimination (RFE) (Paul and 
Dupont, 2015) are classical examples. RFE, in particular, uses 
classifiers such as support vector machines to recursively remove the 
least important features, delivering high accuracy but with high 
computational cost. Hybrid and heuristic wrappers have emerged to 
improve efficiency, including mixed forward selection (MFS) (Tang 
and Mao, 2007), binomial cuckoo search (Pandey et al., 2020), and 
binary Jaya with TOPSIS decision logic (Chaudhuri and Sahu, 2021). 
Metaheuristic-based methods, such as Firefly Algorithm and Hyena 
Optimization (Lohitha and Pounambal, 2022), have also been used to 
balance search quality and complexity. Although wrapper methods 
provide better feature subsets, they often become infeasible on large-
scale or high-dimensional data due to their high time complexity.

Evolutionary algorithm such as PSO and CSO have been widely 
adopted for feature selection due to their capability in handling large 
search spaces (Huda and Banka, 2019; Tran et al., 2019; Swesi and 
Bakar, 2019; Song et al., 2021; Too et al., 2019). PSO variants have been 
enhanced with rough sets (Huda and Banka, 2019), adaptive 
subpopulation strategies (Tran et al., 2019), and feature clustering 
(Swesi and Bakar, 2019). Meanwhile, CSO has been improved with 
binary encoding (Too et al., 2019), genetic operators (Ding et al., 
2020), and chaotic functions (Pichai et al., 2020) to increase diversity 
and convergence speed. In addition, PSO and other metaheuristic-
based algorithms have also shown strong adaptability in broader 
application domains, such as cloud resource forecasting (Salb et al., 
2024), software defect prediction (Villoth et  al., 2025), sentiment 
classification (Mladenovic et al., 2024), and intrusion detection in IoT 
systems (Dakic et al., 2024).

However, these methods still suffer from premature 
convergence and inefficient exploration in ultra-high-dimensional 
settings. As a response, evolutionary multitasking (EMT) strategies 
have been introduced to feature selection problems. Chen 
proposed multitask PSO methods (Chen et al., 2020; Chen et al., 
2021) that convert high-dimensional feature selection into 
correlated subtasks and facilitate knowledge transfer between 
them. More recently, Li extended this idea by integrating filter-
based indicators to generate diverse auxiliary tasks (Li et al., 2023), 
further improving optimization performance on high-dimensional 
datasets. However, most existing MTL or transfer-based FS 
methods still rely on fixed task definitions and lack adaptive 
mechanisms for dynamic task construction, relevance evaluation, 
and selective transfer.

In addition, few works consider integrating multiple 
evaluation criteria to construct feature relevance measures 
dynamically. The conflict between different indicators (e.g., 
Relief-F vs. Fisher Score) often leads to inconsistent selection 
results. Furthermore, evolutionary optimization in multitask FS 
scenarios still faces challenges such as inefficient exploration, 
insufficient exploitation of inter-task knowledge, and the risk of 
negative transfer.

Despite the progress made, several challenges in high-
dimensional feature selection remain insufficiently addressed. 
These include how to construct auxiliary tasks in a data-driven 

manner using multiple relevance indicators, how to facilitate 
effective yet selective knowledge transfer between tasks, and how to 
improve search efficiency without compromising solution quality. 
This work explores these aspects by proposing a multitask 
optimization framework that incorporates multi-criteria based task 
construction, competitive learning with hierarchical elites and elite-
based knowledge transfer strategy to enhance the feature 
selection process.

3 The proposed algorithm

3.1 Main framework of the proposed 
algorithm

To address the challenges of high-dimensional feature 
selection, we  propose a novel evolutionary multitasking 
optimization framework, DMLC-MTO (dynamic multitask 
learning via competitive elites) is proposed. The core idea is to 
jointly explore the global feature space and exploit locally 
informative subsets through a dual-task structure, enhanced by 
elite-guided search.

As illustrated in Figure  1, DMLC-MTO operates on two 
complementary tasks. The primary task performs global feature 
optimization in the full feature space, while the auxiliary task focuses 
on a reduced subspace constructed via a Multi-Criteria based Task 
Generation Strategy. This task division allows the algorithm to 
simultaneously capture broad feature relevance and fine-grained 
local discriminability.

Both tasks evolve independently through competitive particle 
swarm optimization but interact dynamically via an elite-based 
knowledge sharing mechanism. High-quality solutions from one task 
can influence the search direction of the other, enabling mutual 
reinforcement and improving convergence behavior. The overall 
workflow of DMLC-MTO is outlined in Algorithm 1.

3.2 Multi-criteria based task generation 
strategy

In high-dimensional feature selection, designing an effective 
auxiliary task is a key challenge for multitask optimization. Naively 
increasing the number of tasks often leads to unnecessary 
computational overhead and increases the risk of negative transfer. 
To address this, DMLC-MTO adopts a two-task paradigm: the 
primary task operates on the full feature space to ensure global 
exploration, while the auxiliary task focuses on a compact subset of 
features to enable refined local optimization. A critical factor in the 
success of this paradigm is how the auxiliary feature subset 
is constructed.

Traditional evaluation methods, such as Relief-F and Fisher 
Score, offer different perspectives on feature importance. Relief-F 
emphasizes neighborhood-based instance discrimination, while 
Fisher Score captures between-class variance. However, these 
approaches often produce inconsistent feature rankings when used 
independently, particularly in high-dimensional settings where 
feature redundancy and noise are common. To mitigate these 

https://doi.org/10.3389/frai.2025.1667167
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Tie et al.� 10.3389/frai.2025.1667167

Frontiers in Artificial Intelligence 04 frontiersin.org

inconsistencies, this work proposes a Multi-Criteria Based Task 
Generation Strategy that integrates both metrics into a unified 
scoring framework.

As shown in Equation 1 the strategy begins by independently 
computing the importance weights of each feature using both 
Relief-F and Fisher Score. These two score vectors are then fused 
using a weighted linear combination.

	 α β= ⋅ + ⋅RF FS
i i iw w w 	 (1)

Where iw denotes the combined weight of the i-th feature, α and 
β control the relative contribution of each metric, allowing flexible 
adjustment based on data characteristics. This yields a comprehensive 
feature relevance score for each feature.

FIGURE 1

The framework of the proposed DMLC-MTO.

Input: Complete feature set
Output: Selected feature subset
1: Generate Task 1 and Task 2 using a Multi-Criteria Based Task Generation 
Strategy
2: Initialize populations for P1 (Task 1) and P2 (Task 2)
3: while stopping criterion is not met:
4:     Evolve P1 and P2 using Competitive Learning with Hierarchical Elites and
Elite-Based Knowledge Transfer Strategy
5: end while
6: Return the best-performing feature subset

ALGORITHM 1

DMLC-MTO optimization framework.
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Instead of arbitrarily selecting a fixed number of features (e.g., top-k), 
the proposed strategy employs knee point detection to adaptively 
determine the weight threshold for feature selection, ensuring both focus 
and relevance. As illustrated in Figure  2, each feature’s score is first 
calculated and ranked in descending order. A curve is plotted based on 
these scores, and a straight line is drawn connecting the highest and 
lowest points. The feature corresponding to the maximum perpendicular 
distance between the curve and the line, which is the knee point and 
marked as the red point in Figure 2, is identified as the selection threshold. 
Features with scores above this threshold are considered the most 
significant and are subsequently selected for Task 2.

This adaptive thresholding technique ensures that the selected 
features are statistically meaningful and tailored to the data 
distribution, avoiding arbitrary cutoffs and improving robustness. As 
a result, Task 2 is constructed using only the features above the knee 
point, while Task 1 retains the full feature set. This design ensures that 
the auxiliary task remains focused and efficient, while the primary task 
provides broader coverage, allowing the multitask optimization 
process to benefit from both global and fine-grained representations.

3.3 Elite-guided competitive particle 
swarm optimization

High-dimensional feature selection presents two key challenges 
for evolutionary algorithms: premature convergence and inefficient 
exploration. Standard PSO often struggles in such settings, especially 
when the feature space is sparse or the objective landscape is complex 
and multimodal. To overcome these limitations, the proposed 
DMLC-MTO framework incorporates an enhanced optimization 
strategy called elite-guided competitive PSO (EC-PSO), which 
integrates competitive learning with hierarchical elites and cross-task 
knowledge transfer.

3.3.1 Competitive learning with hierarchical elites
The EC-PSO builds upon the CSO, which introduces pairwise 

competitions among particles. As shown in Figure  3, in each 
generation, particles are randomly grouped into pairs. Within each 
pair, the particle with superior fitness is marked as the winner, and the 
other as the loser. The loser updates its velocity and position by 
learning from the winner and the population centroid, according to 
Equations 2, 3:

	

( ) ( ) ( ) ( )( )
( ) ( )( )ϕ

+ = × + × −

+ × × −
1 2

3

V 1

r
L L W L

L

t r V t r X t X t

X t X t 	
(2)

	 ( ) ( ) ( )+ = + +1 1L L LX t X t V t 	 (3)

where r1,r2,r3∈[0,1] are random coefficients, ( )WX t is the winner’s 
position, ( )X t  is the average position of all particles, and ( )LV t , ( )LX t  
denote the velocity and position of the loser, respectively, ϕcontrols 
the influence of ( )X t . This formulation ensures convergence toward 
both local optima (through direct winner imitation) and the 
population mean (to maintain diversity).

However, standard CSO lacks global guidance and can stagnate 
when the winner’s solution quality plateaus. To enhance the 
convergence performance in high-dimensional feature selection, 
DMLC-MTO incorporates an elite-driven competitive learning 
mechanism. As shown in Figure 4, in each optimization iteration, the 
algorithm identifies the top-K best-performing particles in each task 
to form a task-specific elite pool. After applying the pairwise 
competition strategy, each loser particle is given a probability 𝑃𝑘 to 
learn from a randomly selected particle in the elite pool instead of the 
winner in its own pair. This elite-level guidance introduces a long-
term memory mechanism that directs losers toward globally 
promising solutions, helping the swarm avoid local stagnation.

3.3.2 Elite-based knowledge transfer strategy
In multitask optimization, knowledge transfer between tasks plays 

a vital role in improving overall search performance by sharing 
successful patterns. To this end, DMLC-MTO introduces a 
hierarchical elite-based transfer strategy. Specifically, for each loser 
particle, a random number is generated and compared with a 
predefined transfer probability 𝑃trans. If the transfer condition is 
satisfied, the particle is allowed to learn from elite solutions of another 
task, rather than only relying on intra-task updates.

Furthermore, within both intra-task and cross-task settings, the 
algorithm checks whether another random value exceeds the elite 
learning threshold 𝑃𝑘. If so, the particle learns from an elite particle; 
otherwise, it learns from the average position of all particles or elites 
in the corresponding task. The update strategy thus includes four 
distinct modes as Equations 4–7:

	

( ) ( ) ( ) ( )( )
( ) ( )( )

+ = × + × −

+ × −

1 2

3

V 1

r

i task i
L L LErand

Erand L

t r V t r X t X t

X t X t 	
(4)

	

( ) ( ) ( ) ( )( )
( ) ( )( )

+ = × + × −

+ × −

1 2

3

V 1

r

i task i
L L W L

wrand L

t r V t r X t X t

X t X t 	
(5)

FIGURE 2

Feature score curve and knee point detection for adaptive 
thresholding.
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( ) ( ) ( ) ( )( )
( ) ( )( )

1 2

3

V 1

r

i task i
L L LErand

task
E L

t r V t r X t X t

X t X tϕ

+ = × + × −

+ × × −

	
(6)

	

( ) ( ) ( ) ( )( )
( ) ( )( )

1 2

3

V 1

r

i task i
L L W L

L

t r V t r X t X t

X t X tϕ

+ = × + × −

+ × × −
	

(7)

Where ( )task
ErandX t a particle randomly selected from the elite pool 

within the current task, while ( )ErandX t is randomly chosen from the elite 
pool of other tasks, ( )task

WX t denotes the winner particle within the same 
task, ( )wrandX t is a randomly selected winner from other tasks, represents 
the average position of elites in the current task, ( )X t denotes the average 
position of all particles in the current population, ϕserves as a control 
factor to regulate the influence of the corresponding learning component. 
From Equations 4–7, it can be observed that each particle updates its 
position by simultaneously learning from two types of sources. By 
incorporating knowledge from the winner in the same task, the winner 
from another task, the average position of elite particles within the current 

task, and the overall population mean, the particle significantly enhances 
its search capability. This design helps maintain population diversity and 
improves optimization efficiency.

3.4 Fitness function

An effective fitness function plays a vital role in guiding the 
evolutionary search toward an optimal feature subset. In this study, 
we  adopt an evaluation strategy that considers both classification 
performance and feature compactness is adopted. The overall fitness 
function is defined as Equations 8, 9:

	
( ) ( )α γ α= ∗ + − ∗1f f

Sfitness R D
N
∣∣
∣∣	

(8)

	
( )γ

=
= − ∗∑

1

11
C

i
i

R D TPR
C 	

(9)

Where ( )γR D denotes the probability of classification error. The 
term S∣∣indicates the number of selected features used to construct the 

FIGURE 3

Competition among particles in classical CSO.

FIGURE 4

Competitive learning with hierarchical elites.
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model, while N∣∣corresponds to the total number of available features 
in the dataset. The parameter α f , ranging between 0 and 1, controls 
the trade-off between classification accuracy and feature sparsity. 
Following the recommendation in Chen et  al. (2019), α is set as 
0.999999 to place a stronger emphasis on classification performance. 
The number of classes C reflects the total distinct categories involved 
in the classification task. For each class i, the true positive rate iTPR is 
computed as the proportion of correctly predicted instances within 
that class relative to the total number of samples in the same class 
(Patterson and Zhang, 2007). Using the balanced error metric 
mitigates the influence of class imbalance, ensuring that all classes 
contribute equally to the evaluation. This is particularly important in 
feature selection, where biased evaluation can lead to overfitting to 
majority classes and suboptimal feature subsets.

4 Experimental results and analysis

4.1 Experimental setup

To comprehensively evaluate the performance of the proposed 
algorithm, experiments were conducted on 13 high-dimensional real-
world datasets drawn from various application domains. These datasets 
exhibit a wide range of feature dimensions, varying from 2,000 to over 
13,000, making them suitable for assessing the algorithm’s effectiveness 
under diverse and complex conditions. Detailed characteristics of each 
dataset—including the dataset name, number of features, number of 
samples, and number of classes—are summarized in Table 1.

To evaluate the effectiveness of the proposed DMLC-MTO 
algorithm, comprehensive comparisons were conducted with four 
competitive evolutionary algorithm EA-based feature selection 
methods: PSO (Ansari et al., 2019), CSO-FS (Tian et al., 2019), 
PSO-EMT (Chen et al., 2020), and MT-PSO (Chen et al., 2021). 
PSO serves as a baseline representing standard EA strategies, while 
CSO-FS incorporates the traditional CSO search mechanism 
specifically designed for feature selection. PSO-EMT and MT-PSO 
both adopt multitask learning paradigms to better address the 
challenges of high-dimensional feature spaces, and have 

demonstrated competitive performance in previous studies. All 
experiments were implemented in MATLAB R2020a and executed 
on a Windows 10 machine with a 2.6 GHz Intel Core i5 processor 
and 16GB RAM, ensuring a consistent computational environment 
across all methods. To prevent feature selection bias and ensure an 
unbiased evaluation, feature selection was performed separately 
within each training fold during cross-validation. Specifically, for 
each fold, the training data was used to generate tasks and perform 
feature selection, and the resulting selected features were then 
applied to the held-out test fold for performance evaluation. This 
nested-like procedure ensures that no information from the test set 
is used during feature selection, thereby providing a reliable 
estimate of the algorithm’s generalization performance.

In addition to these methods, this work included a baseline 
classifier without any feature selection (referred to as FULL) to 
highlight the improvements achieved by each FS approach in terms 
of classification accuracy and dimensionality reduction. All 
experimental results were obtained from 30 independent runs to 
account for algorithmic stochasticity. For statistical validation, the 
Wilcoxon signed-rank test was applied at a significance level of 0.05. 
In the analysis, the symbols “+,” “−,” and “=” denote that a 
comparison method performs significantly better, worse, or 
comparable to the proposed DMLC-MTO, respectively.

To ensure fair and consistent comparisons, all algorithms were 
evaluated under standardized experimental settings. Each task was 
executed with a population size of 70 and a maximum of 100 
iterations. Additionally, the proposed algorithm is model-agnostic 
and compatible with various classifiers, making it adaptable to 
different application scenarios without restricting the choice of 
classification models. The complete parameter configurations for all 
methods are summarized in Table 2 to support reproducibility and 
facilitate future implementation.

4.2 Comparison with the state-of-the-art 
algorithms

4.2.1 Classification accuracy comparison
Table  3 presents the classification accuracy of DMLC-MTO 

compared to four baseline algorithms across multiple datasets. Among 
65 comparisons, DMLC-MTO outperforms the other methods in 56 
cases, achieves comparable results in 8, and underperforms in only 1 
case. These results demonstrate the overall superiority and robustness 
of the proposed method. A detailed analysis is as follows:

Compared with FULL: DMLC-MTO consistently outperforms 
the baseline classifier without feature selection (FULL) on all 13 
datasets, highlighting the necessity and effectiveness of feature 
selection. For example, on the NCI9 dataset, DMLC-MTO achieves 
an accuracy of 68.98%, improving upon FULL’s 66.46% by 3.8%. On 
the high-dimensional Prostate6033 dataset, DMLC-MTO reaches 
86.66%, surpassing FULL’s 82.11% by 5.54%. These improvements 
suggest that assigning discriminative weights to features effectively 
mitigates the curse of dimensionality and enhances 
classification performance.

Compared with PSO: DMLC-MTO significantly outperforms 
standard PSO on 12 out of 13 datasets, with the only tie occurring on 
the SRBCT dataset (95.3% vs. 95.27%). On the Lymphoma dataset, 
DMLC-MTO achieves 99.22%, markedly higher than PSO’s 81.35%, 

TABLE 1  Dataset.

No. Dataset Feature no. Instance no. Class no.

1 SRBCT 2,308 83 4

2 warpPIE10P 2,420 210 10

3 Lymphoma 5,026 62 3

4 Nci 5,244 61 8

5 Leukemia 1 5,327 72 3

6 DLBCL 5,469 77 2

7 Prostate6033 6,033 102 2

8 ALLAML 7,129 72 2

9 Nci9 9,712 60 9

10 Orlraws10P 10,304 100 10

11 Prostate 10,509 102 2

12 Leukemia 2 11,225 72 3

13 Lung cancer 12,600 203 5
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a relative improvement of 21.97%. Similarly, it reaches 98.2% on the 
Orlraws10P dataset, outperforming PSO’s 90.84% by 7.5%.

Compared with CSO-FS: DMLC-MTO exhibits clear advantages 
over CSO-FS, achieving better performance on 11 out of 16 datasets, 
with only one dataset where it performs slightly worse and the rest 
showing comparable results. On average, DMLC-MTO improves 
classification accuracy by 11.55 percentage points over CSO-FS. This 
gain underscores the effectiveness of the multitask framework and the 
embedded elite-driven competition mechanism in improving 
feature selection.

Compared with PSO-EMT: DMLC-MTO outperforms PSO-EMT 
on 10 out of 13 datasets, with equivalent performance on NCI9, 
Prostate6033, and one additional dataset. For example, it achieves 
99.22% accuracy on Lymphoma, exceeding PSO-EMT’s 93.26% by 
6.4%, and obtains 89.78% on DLBCL, outperforming PSO-EMT’s 
85.17% by 5.4%. These improvements are largely attributed to the 
hierarchical elite learning strategy, which dynamically guides the 
search towards more informative feature subsets.

Compared with MT-PSO: DMLC-MTO achieves superior 
accuracy on 10 out of 13 datasets compared to MT-PSO, with tied 
performance on NCI9, Prostate6033, and one other dataset. On 
the ALLAML dataset, DMLC-MTO reaches 94.1%, improving 
upon MT-PSO’s 91.16% by 3.2%. On Lung Cancer, it records 
87.22% versus 84.75% by MT-PSO, a relative gain of 2.9%. These 
results validate the advantage of DMLC-MTO’s multi-indicator-
based task generation strategy, which constructs complementary 
tasks more effectively than MT-PSO’s random task 
allocation approach.

4.2.2 Analysis of selected feature subsets
Table  4 reports the number of features selected by different 

algorithms across all datasets. Reducing the number of selected 
features often leads to simpler models and improved computational 
efficiency. The experimental results show that DMLC-MTO 
consistently selects fewer features than other methods. Among 65 
comparisons, it outperforms its competitors in 59 cases, ties in 4, and 
underperforms in only 3, demonstrating its strong capability in 
identifying compact and informative feature subsets.

On high-dimensional datasets such as Orlraws10P and Lung 
Cancer (with over 10,000 dimensions), DMLC-MTO achieves 
significant dimensionality reduction while maintaining high 
classification accuracy. This demonstrates not only its effectiveness 
in compressing features, but also its ability to filter out redundant 
or irrelevant attributes and retain the most discriminative ones. 
Such compact representations are particularly beneficial in 
practical scenarios where computational resources are limited or 
real-time decision-making is required. Moreover, reducing the 
number of features improves model interpretability, which is 
critical in domains like healthcare and bioinformatics.

Although DMLC-MTO performs well on most datasets, there 
are a few cases where its classification accuracy is slightly lower 
than that of CSO-FS. For instance, on the Prostate dataset, 
DMLC-MTO selects an average of 132.13 features compared to 
1305.4 selected by CSO-FS. Despite selecting far fewer features, 

TABLE 2  Algorithms parameters setting.

Algorithms Parameters

PSO = = = 1.494451 2 3c c c

( )= − ×0.9 0.5 /w iter niter

CSO-FS [ ]∈, , 0,11 2 3r r r

PSO-EMT ρ= = = = = =1.49445, 0.05, 0.6, 101 2 3c c c rmp m

( )= − ×0.9 0.5 /w iter niter

MT-PSO ρ= = = = = =1.49445, 0.05, 0.6, 61 2 3c c c rmp G

( )= − ×0.9 0.5 /w iter niter

DMLC-MTO

[ ]∈, , 0,11 2 3r r r

= 0.6P

Pk = 0.6

α = 0.999999f

TABLE 3  Classification accuracy of the compared algorithms on multiple datasets.

Dataset FULL PSO CSO-FS PSO-EMT MT-PSO DMLC-MTO

SRBCT 80 (−) 95.27 (=) 95.13 (=) 95.12 (=) 95.21 (=) 95.3

warpPIE10P 83.58 (−) 98.17 (−) 51.54 (−) 99.12 (=) 99.21 (=) 99.13

Lymphoma 99.08 (−) 81.35 (−) 55.14 (−) 93.26 (−) 96.51 (−) 99.22

Nci 66.46 (−) 65.36 (−) 64.12 (−) 59.32 (−) 63.87 (−) 68.98

Leukemia 1 78.74 (−) 80.47 (−) 81.27 (−) 86.08 (−) 86.12 (−) 87.86

DLBCL 82.79 (−) 83.72 (−) 83.92 (−) 85.17 (−) 87.67 (−) 89.78

Prostate6033 82.11 (−) 84.07 (−) 83.68 (−) 80.57 (−) 84.07 (−) 86.66

ALLAML 78.06 (−) 79.44 (−) 82.02 (−) 89.9 (−) 91.16 (−) 94.1

Nci9 41.3 (−) 47.32 (−) 43.34 (−) 51.11 (=) 51.21 (=) 51.15

Orlraws10P 78.32 (−) 90.84 (−) 92.09 (−) 93.37 (−) 93.18 (−) 98.2

Prostate 84.34 (−) 82.65 (−) 88.36 (=) 81.68 (−) 84.17 (−) 88.38

Leukemia 2 87.68 (−) 87.15 (−) 85.46 (−) 87.16 (−) 86.45 (−) 88.12

Lung cancer 77.65 (−) 78.41 (−) 78.47 (−) 83.47 (−) 84.75 (−) 87.22

+/−/= 0/13/0 0/12/1 1/11/1 0/10/3 0/10/3

Best results are highlighted in bold.
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DMLC-MTO’s accuracy is marginally lower. This may be attributed 
to its limited ability to capture complex nonlinear dependencies 
between features when relying on filter-based metrics like Fisher 
Score. Furthermore, the competitive learning mechanism may 
occasionally introduce negative transfer, where informative 
features are prematurely discarded in early stages of optimization, 
slightly affecting final performance.

Nonetheless, the global search capability of DMLC-MTO ensures 
that it can still find effective solutions with fewer features. On datasets 
such as warpPIE10P and Lymphoma, where CSO-FS selects fewer 
features (8.5 and 3.5, respectively), it achieves only 51.54% and 55.14% 
accuracy. In contrast, DMLC-MTO selects slightly more features (34.57 
and 86.74, respectively), yet reaches significantly higher accuracies of 
99.56% and 99.36%. These results highlight the strength of DMLC-MTO’s 

dual-task and elite-guided learning mechanisms in discovering high-
quality feature combinations that lead to better overall performance.

In summary, DMLC-MTO shows great potential for high-
dimensional feature selection, especially in tasks that require a minimal 
number of features without sacrificing classification performance. By 
significantly reducing dimensionality while maintaining or improving 
predictive accuracy, DMLC-MTO demonstrates an effective trade-off 
between model simplicity and discriminative power. These findings 
further confirm the algorithm’s suitability for practical applications and 
provide a solid foundation for future research.

4.2.3 Training time comparison
Figure 5 presents the training time comparison among all 

algorithms, highlighting the computational efficiency of 

TABLE 4  Number of features selected by different algorithms on multiple datasets.

Dataset FULL PSO CSO-FS PSO-EMT MT-PSO DMLC-MTO

SRCBT 2,308 295.25 (−) 150.2 (−) 122.4 (−) 452.6 (−) 47.18

warpPIE10P 2,420 1185.5 (−) 8.5 (+) 155.67 (−) 288.6 (−) 32.52

Lymphoma 4,026 2155.1 (−) 3.5 (+) 12.52 (+) 21.99 (−) 56.39

Nci 5,244 2064.8 (−) 412.8 (−) 316.74 (−) 1203.47 (−) 282.12

Leukemia 1 5,327 2953.4 (−) 435.2 (−) 282.5 (−) 842.56 (−) 230.22

DLBCL 5,469 2154.7 (−) 332.25 (−) 194.4 (=) 1025.27 (−) 200.22

Prostate6033 6,033 3158.4 (−) 780.54 (−) 462.36 (−) 1451.12 (−) 113.82

ALLAML 7,129 3834.1 (−) 392.5 (−) 162.82 (−) 1852.22 (−) 79.93

Nci9 9,712 4426.1 (−) 618.4 (+) 1932.7 (=) 613.28 (+) 1947.22

Orlraws10P 10,304 4834.9 (−) 65.4 (=) 932.86 (−) 1208.04 (−) 63.28

Prostate 10,509 5675.5 (−) 1305.4 (−) 185.12 (−) 2759.71 (−) 231.32

Leukemia 2 11,225 3548.1 (−) 1057.6 (−) 298.3 (=) 1587.2 (−) 285.58

Lung cancer 12,600 6923.8 (−) 1168.4 (−) 753.38 (−) 832.4 (−) 322.48

+/−/= 0/13/0 2/9/2 1/11/1 0/12/1

Best results are highlighted in bold.

FIGURE 5

Average CPU running time.
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DMLC-MTO. Benefiting from its integrated multitask mechanism 
and efficient search dynamics, DMLC-MTO significantly 
reduces redundant computations while maintaining solution 
quality, leading to superior runtime performance across 
all datasets.

4.3 Mechanism analysis of DMLC-DTO

4.3.1 Evaluation of multi-criteria task generation 
strategy

To assess the effectiveness of the proposed multi-criteria task 
generation strategy, it is compared against three widely used feature 
evaluation methods: Relief-F, Pearson Correlation Coefficient (PCC), 
and Total Variance (TV). The comparison was conducted across 13 
datasets of varying dimensionality, evaluating both the size of the 
selected feature subset and the resulting classification accuracy. The 
detailed results are presented in Table 5.

Overall, the proposed strategy demonstrates competitive or 
superior performance across most datasets. In terms of 
classification accuracy, the multi-criteria approach achieves the 
highest score in seven out of 13 datasets, and performs comparably 
in five others. For instance, on the warpPIE10P dataset, it achieves 
99.13% accuracy using only 32.52 features, outperforming all 
baseline methods in both accuracy and feature compactness. 
Similarly, on Lymphoma, it reaches 99.33% accuracy while 
reducing the feature subset size to 56.39, significantly lower than 
Relief-F’s 97.2 features.

In high-dimensional datasets such as Orlraws10P and DLBCL, the 
multi-criteria strategy also shows clear advantages. On Orlraws10P, it 
achieves the highest accuracy (98.2%) with the smallest feature subset 
(63.28), illustrating the effectiveness of combining multiple relevance 
indicators to filter redundant features. In DLBCL, it selects fewer 
features (158.33) than most methods while maintaining high accuracy 
(89.56%), nearly matching PCC’s best performance (89.83%) with 
improved compactness.

It is worth noting that in some datasets like Nci9 and Leukemia 
2, the proposed method selects a relatively larger number of 
features. In Nci9, although the feature count increases to 1947.22, 
the classification accuracy (51.12%) remains competitive with PCC 
(51.14%) and higher than Relief-F (46.22%). This suggests that, in 
certain cases, the adaptive thresholding mechanism may favor 
retaining more features to ensure sufficient representation, 
especially when the informative features are not well distinguished 
by individual metrics alone.

Another observation lies in the Prostate6033 and Prostate 
datasets, where the proposed method outperforms baseline 
methods in accuracy (e.g., 86.66% and 88.38%, respectively) while 
also maintaining relatively small feature subsets compared to TV 
or PCC. This highlights its capacity to balance global relevance and 
local refinement through dynamic integration of multiple 
scoring criteria.

In conclusion, the multi-criteria task generation strategy 
shows strong robustness and adaptability across various datasets. 
It consistently strikes a favorable trade-off between feature subset 
size and classification performance. By leveraging the 
complementary strengths of Relief-F and Fisher Score, and 

incorporating adaptive knee-point detection, the proposed 
approach enhances the reliability of feature relevance estimation 
and improves the initialization of auxiliary tasks in the multitask 
framework. These results demonstrate that the proposed task 
construction mechanism is an effective foundation for the 
DMLC-MTO algorithm.

4.3.2 Elite-guided competitive particle swarm 
optimization

To further evaluate the effectiveness of the proposed knowledge 
transfer strategy, three variants of the algorithm is considered for 
comparison: (1) CSO, which relies solely on traditional pairwise 
competition without elite or task-level interaction; (2) EC-PSO, which 
introduces elite-based competition but performs optimization 
independently within each task; and (3) EC-PSO + knowledge transfer, 
which enhances EC-PSO with inter-task knowledge exchange via elite 
guidance. The corresponding results are visualized in Figures 6, 7, where 
the bar charts provide an intuitive comparison of classification accuracy 
and the number of selected features across different methods. As shown 
in Table 6, the inclusion of knowledge transfer consistently improves 
both classification accuracy and feature compactness across 
most datasets.

While EC-PSO already improves upon CSO by leveraging elite-
driven intra-task learning (e.g., on DLBCL and ALLAML datasets), 
the incorporation of cross-task knowledge sharing in 
EC-PSO + Knowledge Transfer brings further benefits. It achieves the 
best performance on nearly all datasets in terms of accuracy, while 
selecting fewer features in most cases. These results suggest that cross-
task learning enables more effective exploration of the search space 
and promotes better generalization. Therefore, the proposed transfer 
mechanism not only enhances the performance of individual tasks but 
also facilitates collaboration between tasks to address the challenges 
of high-dimensional feature selection.

5 Conclusion

This paper presents DMLC-MTO, a dynamic multitask evolutionary 
feature selection algorithm that integrates multi-indicator task 
generation, elite competition learning, and spatially-aware knowledge 
transfer. The framework effectively addresses the challenges of high-
dimensional data by enabling precise evaluation of feature subsets and 
improving optimization efficiency through adaptive inter-task 
collaboration. Extensive experiments on 13 benchmark datasets 
demonstrate that DMLC-MTO consistently achieves superior 
classification accuracy with more compact feature sets compared to 
existing evolutionary feature selection methods. The combination of 
complementary filter-based indicators with competitive and transfer 
mechanisms guides the search toward informative and less redundant 
features, highlighting the framework’s practical value in applications 
such as tobacco leaf grading, quality assessment, and agricultural 
phenotype analysis.

While the results validate the method’s effectiveness, limitations 
remain. The reliance on filter-based indicators may not fully 
capture complex nonlinear feature dependencies, some 
hyperparameters are fixed, and evaluation has been restricted to 
high-dimensional gene expression and image datasets. 
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TABLE 5  Comparison of the different task generation methods.

Dataset Method Subset no. Accuracy

SRBCT

Relief-F 54.4 95.23

PCC 70.5 94.58

TV 87.1 88.33

Multi-criteria task generation 47.18 95.3

warpPIE10P

Relief-F 43.7 98.5

PCC 42.3 98.2

TV 70.8 97.3

Multi-criteria task generation 32.52 99.13

Lymphoma

Relief-F 97.2 99.16

PCC 83.2 98.9

TV 81.6 98.5

Multi-criteria task generation 56.39 99.33

Nci

Relief-F 133.2 60.57

PCC 160.8 70.04

TV 184 66.02

Multi-criteria task generation 282.12 68.98

Leukemia 1

Relief-F 122.7 87.77

PCC 156.8 88.35

TV 120.6 88.11

Multi-criteria task generation 230.22 87.86

DLBCL

Relief-F 307.8 86.5

PCC 179.2 89.83

TV 524.4 85.33

Multi-criteria task generation 158.33 89.56

Prostate6033

Relief-F 191.2 86.16

PCC 133.5 86.33

TV 251.5 85.5

Multi-criteria task generation 113.82 86.66

ALLAML

Relief-F 95.4 88.41

PCC 111.8 93.16

TV 152.7 91.16

Multi-criteria task generation 79.93 94.10

Nci9

Relief-F 1438.2 46.22

PCC 1194.1 51.14

TV 1074.4 52.09

Multi-criteria task generation 1947.22 51.12

Orlraws10P

Relief-F 136.9 94.2

PCC 305.5 92.5

TV 100.8 96.1

Multi-criteria task generation 63.28 98.2

Prostate

Relief-F 174.8 82.16

PCC 185.3 84.5

TV 524.4 85.33

Multi-criteria task generation 231.32 88.38

(Continued)
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Furthermore, qualitative interpretability of the selected features 
and more rigorous statistical analyses have yet to be  explored. 
Future work will focus on addressing these limitations by 
incorporating adaptive hyperparameter tuning, evaluating broader 

and more diverse datasets, enhancing interpretability, and 
extending the framework to handle multi-label and unsupervised 
scenarios, thereby strengthening its robustness and broadening 
its applicability.

FIGURE 7

Comparison of accuracy obtained by different optimization and knowledge transfer strategies.

FIGURE 6

Comparison of the subset number obtained by different optimization and knowledge transfer strategies.

TABLE 5  (Continued)

Dataset Method Subset no. Accuracy

Leukemia 2

Relief-F 354.9 91.66

PCC 387 88.33

TV 298.3 88.33

Multi-criteria task generation 285.58 88.12

Lung cancer

Relief-F 222.7 79.13

PCC 434.4 86.08

TV 126.9 82.71

Multi-criteria task generation 322.48 87.22

Best results are highlighted in bold.
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