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Breaking the gatekeepers: how AI
will revolutionize scientific
funding

Madhur Mangalam*

Department of Biomechanics, University of Nebraska at Omaha, Omaha, NE, United States

As artificial intelligence (AI) transforms nearly every domain of human endeavor,

one of its most consequential impacts may be on science itself. This

analysis explores how AI technologies could disrupt the power structures that

govern research funding—structures that privilege senior investigators while

sidelining early-career scientists and genuinely novel ideas. By juxtaposing the

youth-driven innovation behind AI with the increasingly gerontocratic funding

patterns in biomedical sciences, we highlight how institutional mechanisms

shape not only who gets to do science but also when. Evidence suggests that

conventional grant peer review has become a self-reinforcing system—more

e�ective at preserving consensus than fostering discovery. AI presents a

compelling alternative: evaluation frameworks that could reduce bias, broaden

participation, and open more meritocratic pathways to research independence.

The implications extend far beyond individual careers. At stake is society’s ability

to mobilize scientific creativity against its most urgent challenges. By rethinking

outdated practices—especially the gatekeeping role of study sections—and

exploring algorithmic approaches to assessment, we may be able to reverse

troubling trends and unleash a broader, more diverse wave of discovery. AI will

not fix science on its own, but it could help build a system where innovation is

no longer an accident of privilege and timing.
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1 Structural problems in scientific funding

Contemporary scientific funding systems exhibit persistent and well-documented

structural biases that disproportionately disadvantage early-career researchers, while

simultaneously favoring established investigators engaged in safe, incremental lines of

inquiry. The average age of first-time NIH grant recipients has increased dramatically over

the past few decades, with researchers under 40 receiving only 29% of R01 grants in 2010,

compared to 43% in 1980 (Rockey, 2012). This shift coincides with mounting evidence of

reviewer bias against novel or high-risk research approaches, where innovative proposals

routinely receive lower scores than equally rigorous but more conventional submissions

(Boudreau et al., 2016).

As Alberts et al. (2014) warned, the system now privileges certainty over creativity,

experience over originality. The consequence is structural: a persistent tilt toward

incrementalism and a quiet exile of the next generation of innovators. When bold ideas

are consistently filtered out in favor of safe bets, the pace of discovery slows. While many

of history’s most transformative scientific breakthroughs were made by researchers in their

twenties and thirties, recent decades have seen a marked institutional shift: the peak age of
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great achievement has risen from around 30 in 1900 to

nearly 40 in 2000, largely driven by prolonged training,

delayed independence, and structural disincentives for early-career

innovation (Jones, 2010).

The authors argue that the long-standing assumption of

continuous growth in biomedical research has led to a system

overloaded with scientists competing for a shrinking pool of

resources. This has created a hyper-competitive environment that

discourages new talent, overloads experienced researchers, and

misaligns the training pipeline with available career opportunities

(Alberts et al., 2014). Innovative ideas without institutional backing

are often overlooked, as merit is frequently conflated with visibility

rather than substance.

This risk aversion has emerged alongside striking demographic

changes in federal research funding recipients. For instance,

in 1998, early-stage investigators (ages 24–40) and established

investigators (ages 56 and older) each comprised about 20% of

NHLBI grant recipients, with mid-career investigators (ages 41–55)

making up the remaining 60%. By 2014, the proportion of early-

stage awardees had stabilized at a lower level, while the proportion

of established investigators had risen linearly and surpassed that

of early-stage awardees—signaling a demographic shift toward an

older funded population (Charette et al., 2016). This reflects the

institutional ossification of a funding system that systematically

undervalues early-career researchers, regardless of their creativity,

technical sophistication, or transformative potential.

The consequences extend beyond individual careers to affect

the pace and direction of scientific progress. As Azoulay et al.

(2011) argue, most current funding mechanisms are explicitly

designed to reward safe proposals, discourage experimentation, and

enforce short-term deliverables. The result is a system that routinely

confuses risk with recklessness and treats innovation as a form of

impertinence rather than ambition.

At the core of this conservatism is the study section itself—

a peer review mechanism that has morphed from a panel of

equals into a high-stakes citadel of professional self-preservation.

Li and Agha (2015) show that reviewers tend to favor applicants

from their own academic networks, theoretical orientations, and

methodological schools. This intellectual and social insider effect

locks in epistemic homogeneity and blocks the entry of novel

perspectives. In a landmark study, Boudreau et al. (2016) found

that even when two proposals are of equal quality, reviewers

consistently give lower scores to the more novel one, with

bias magnitude sufficient to fully offset the novelty premium.

Increasingly, study sections demand extensive pilot data as a

condition of funding, creating a Catch-22 where researchers need

funding to generate the very preliminary results required to justify

funding (Alberts et al., 2014).

Travis and Collins (1991) document how study sections are

composed of researchers who often have overlapping training

histories, co-authorships, and institutional affiliations. This creates

recursive vetting by an insider class rather than genuine peer

review. The cumulative result is what sociologist Robert Merton

famously termed the Matthew effect (Merton, 1968)—a systemic

pattern where scientific recognition, resources, and visibility accrue

to those who already possess them.

Despite their central role in allocating billions of research

dollars, there is remarkably little empirical evidence that study

sections consistently succeed at identifying the most impactful

proposals. As Smith (2006) and others have shown, review

outcomes are often influenced more by panel composition and

subjective dynamics than by the intrinsic quality of the science.

In a landmark evaluation, Jacob and Lefgren (2011) compared the

publication trajectories NIH applications that scored just above and

just below the funding cutoff, revealing no significant differences in

subsequent scientific output between the two groups.

The history of science includes numerous transformative

breakthroughs that were initially dismissed by institutional

gatekeepers. Kary Mullis’ early proposal for the polymerase chain

reaction (PCR) was denied NIH support (Mullis, 1990). Hans

Krebs’ elucidation of the citric acid cycle was rejected by Nature

before earning him a Nobel Prize (Krebs and Johnson, 1980). Barry

Marshall’s discovery that Helicobacter pylori causes ulcers faced

years of funding rejection before transforming clinical medicine

(Marshall and Warren, 1984). Campanario (2009) systematically

cataloged 24 cases where Nobel-winning papers were initially

rejected by peer reviewers.

The crisis of evaluation is compounded by the economics of

academic labor. As institutions increasingly shift to soft money

models where salaries are contingent on extramural grants,

established investigators face continuous existential pressure to

maintain funding. These same individuals disproportionately serve

on review panels, voting on proposals that draw from the very pool

of resources they themselves must compete for to survive.

2 AI research as a counter-example of
innovation

While the biological sciences have grown increasingly

dominated by researchers in their fifties and sixties—many of

whom did their most innovative work decades earlier—artificial

intelligence presents a striking counter-example. It is a field

where early-career scientists not only contribute but routinely

lead transformative breakthroughs. This divergence is not due

to differences in intellectual complexity, experimental rigor, or

the maturity of the disciplines themselves. Rather, it reflects

how institutional design and cultural norms determine who may

innovate, when that opportunity is granted, and under what

conditions merit matters. The lesson is clear: scientific vitality is

not merely a function of content, but of context.

This is not just theoretical—the recent history of AI is filled

with early-career breakthroughs that illustrate the point. In 2012,

Alex Krizhevsky, then a graduate student, led the development of

AlexNet—the deep learning system that revolutionized computer

vision and launched the modern AI boom (Krizhevsky et al., 2012).

In 2014, Goodfellow et al., while still a PhD student, invented

Generative Adversarial Networks, a technique now foundational in

image generation and media synthesis (Goodfellow et al., 2014). In

2017, Vaswani et al., as a relatively early-career research scientist,

was the first author on the paper introducing the Transformer

architecture—the foundation of nearly all large language models

today (Vaswani et al., 2017). In 2019, Devlin et al. developed

BERT, a pretraining method for natural language processing that

continues to shape both industrial and academic research (Devlin

et al., 2019).

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2025.1667752
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mangalam 10.3389/frai.2025.1667752

What makes artificial intelligence so conducive to early-career

innovation? The answer lies not in the technical content of the field,

but in its surrounding structures—its infrastructure, its incentives,

and its evaluative norms. These factors make AI a uniquely fertile

ground for merit-based disruption by those outside traditional

power hierarchies. Unlike experimental sciences that require

multi-million-dollar facilities, complex instrumentation, and long

institutional lead times, AI research is primarily computational.

While the most advanced models require enormous resources,

many key innovations—including AlexNet and BERT—began with

comparatively modest infrastructure (Ahmed and Wahed, 2020).

Open-source libraries such as PyTorch and TensorFlow provide

powerful toolkits freely available to anyone with internet access and

technical fluency. Public datasets enable rigorous benchmarking

without expensive data collection, and cloud computing reduces

the barrier to running experiments at scale. This accessibility

creates a technical environment where a determined graduate

student can meaningfully contribute to the state of the art without

institutional gatekeeping.

AI researchers have benefited from research cycles that are

orders of magnitude faster than in the biological sciences. Unlike

lab experiments that can take months to prepare and even longer

to interpret, AI experiments can often be implemented, trained,

and evaluated in hours or days. Zoph and Le (2016) document

automated architecture search procedures that evaluate thousands

of model variants within days. These rapid feedback loops

enable empirically grounded learning through high-throughput

experimentation, allow researchers to build intuition through

direct, iterative refinement, reduce the sunk cost of failure thereby

de-risking intellectual exploration, and empower students to test

unconventional ideas without formal institutional approval. These

dynamics particularly benefit early-career researchers, who gain

traction through experimentation, not slow institutional ascent or

apprenticeship. They also invert the typical power structure of

slow-moving fields, where access to equipment and mentoring is a

precondition for experimentation. In fast-feedback environments,

ideas compete before résumés do.

Equally important, AI researchers operate in an ecosystem

supported by multiple funding channels beyond traditional

academic grants (Arora et al., 2020). These include venture

capital for AI startups and research commercialization, corporate

research labs with autonomy and experimental freedom, industry

fellowships and open-access research grants, non-traditional

philanthropic or advocacy-backed initiatives, and open-source

community collaborations and support. Unlike biomedical

research—where approximately 80% of academic funding comes

through the NIH, a single, centralized gatekeeper (Moses et al.,

2015)—AI researchers can pursue multiple avenues. A student with

a promising idea can seek VC backing, publish via open platforms,

or contribute to a community-led project without first winning

institutional endorsement. This pluralism in funding pathways

unlocks the possibility of meaningful innovation by those whose

ideas may be unproven, unpopular, or considered premature by

conventional academic or institutional standards. It also helps

reduce the disciplinary and professional cost of failure, allowing

researchers to take intellectual and methodological risks without

jeopardizing their entire career trajectory.

AI culture prizes speed, openness, and reproducibility over

gatekeeping and credentialism. Preprint servers like arXiv enable

immediate dissemination of findings, bypassing the months-long

delays and status-dependent bottlenecks of peer-reviewed journals

(Soergel et al., 2013). Research is judged in the open, and often

implemented in production systems within weeks, regardless of the

author’s rank or affiliation. A graduate student can post a novel

architecture, and if it performs well, it may be integrated into

commercial applications before they defend their dissertation. The

open publication culture in AI research means an idea’s influence is

determined by its inherent quality and utility—not by the journal’s

status or the author’s seniority. The culture does not eliminate

hierarchy—but it does allow work to speak for itself. In doing so,

it offers early-career researchers a path to visibility and influence

untethered from traditional credentials.

These cultural and infrastructural conditions form a uniquely

generative and dynamic ecology for early-career researchers. They

enable ideas to gain visibility through demonstrated performance

rather than proximity to institutional power. As a result, AI

remains one of the rare scientific fields where breakthroughs

emerge not despite youth, but often because of it. The contrast

with biomedical sciences could not be more dramatic. Where

AI rewards speed, openness, and pluralism, biomedical research

remains governed by centralized review, extended timelines,

and vertically stratified hierarchies. The institutional structure of

scientific funding profoundly shapes who can innovate, when they

can innovate, and what ideas receive resources (Azoulay et al.,

2011). Where AI creates paths for merit to rise on its own terms,

biology often demands that it wait its turn.

In short, the aging of scientific innovation is not a natural

function of intellectual maturity, disciplinary complexity, or the

inherent difficulty of modern problems. It is the artifact of

institutional architecture—systems that delay, dilute, or deny

opportunities for boldness, depending on who holds the keys and

how tightly they guard them. More importantly, it suggests an

alternative: that by applying the cultural principles and structural

affordances that have made AI fertile ground for early-career

innovation, other scientific fields could begin to reclaim their

futures—not by lowering standards, but by removing the barriers

that prevent boldness from taking root.

3 The transformative potential of AI in
research evaluation

What if the technologies driving the AI revolution could

be applied not only to scientific discovery itself, but also to

the very systems that determine which discoveries are allowed

to happen in the first place? AI offers profound and timely

potential for rethinking how we allocate scientific resources—

particularly in confronting the structural limitations, entrenched

hierarchies, and well-documented biases of human review panels.

Its promise lies not in merely automating existing procedures, but

in enabling new forms of evaluation grounded in transparency,

scalability, and epistemic diversity. AI could help construct

more equitable, inclusive, and forward-looking pathways to

research funding—pathways that prioritize intellectual merit over
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institutional prestige. At stake is not just the efficiency of evaluation,

but the architecture of access, legitimacy, and innovation in

science itself.

3.1 Detecting novelty and impact potential

Traditional peer review has consistently shown bias against

research that breaks from conventional paradigms, favoring

incremental advances over ambitious leaps (Boudreau et al., 2016).

AI systems, by contrast, can evaluate proposals not through the

narrow lens of disciplinary conservatism, but through patterns

of innovation embedded across the entire scientific landscape.

Natural language processing can assess the semantic content of

proposals against vast corpora of scientific literature, identifying

novel concept combinations and underexplored intersections

(Wang et al., 2013). Unlike human reviewers bounded by personal

expertise, AI can systematically scan the full terrain of knowledge.

Machine learning systems can detect linguistic and structural

signals that have historically preceded transformative discoveries.

If certain semantic and stylistic markers are reliably associated with

breakthroughs, and AI can recognize them without institutional

bias, it may help surface transformative ideas that would otherwise

be overlooked. Graph-based learning can simulate the potential

diffusion of proposed ideas through the scientific ecosystem. Zeng

et al. (2017) demonstrated that these models can outperform

expert judgment in predicting future citation impact and field-

level influence.

These techniques could help identify the very kinds of

proposals—like those for PCR or Helicobacter pylori—that

traditional review processes have historically rejected, only to see

them later revolutionize their fields. Because AI can operate across

fields, detect subtle signals, and remain agnostic to disciplinary

prestige, it may be uniquely positioned to recognize the value of

ideas before institutions do. AI could help shift the system from

protecting the status quo to discovering what lies beyond it.

3.2 Reducing human bias through
algorithmic fairness

Human review panels exhibit persistent biases related to

race, gender, institutional prestige, and methodological orthodoxy

(Ginther et al., 2011; Hofstra et al., 2020; Li and Agha,

2015; Witteman et al., 2019). When designed with care,

transparency, and accountability, AI systems offer powerful

mechanisms for dismantling entrenched inequities. AI can enforce

stricter separation between applicant identity and proposal

content, focusing attention on ideas rather than pedigree. Unlike

human reviewers, who unconsciously infer prestige from names,

institutions, or writing style, AI can be deliberately blinded to such

cues. Fairness-aware algorithms can be explicitly designed to audit

and adjust for disparities across demographic and institutional

dimensions. As Kleinberg et al. (2018) note, algorithmic systems

can be tuned iteratively to improve parity, while human committees

rarely correct for their biases, even when known. AI systems can be

continuously monitored and retrained based on post-hoc outcome

data. Unlike fixed human committees, algorithms can evolve in

response to bias audits, error analysis, and real-world disparities.

This explicitness makes it possible to systematically measure

both the intended and unintended consequences of different

designs. This stands in stark contrast to the implicit, often opaque

processes of human judgment, where evaluative criteria tend to

be diffuse, unstandardized, and largely shielded from meaningful

scrutiny. Beyond questions of fairness, AI systems can broaden

what review panels even recognize or consider as valid evidence

of merit.

3.3 Expanding the information base for
evaluation

Traditional peer review has historically relied on a narrow

and fragmented stream of information: the written proposal, the

applicant’s CV, and the limited, often idiosyncratic knowledge that a

small group of reviewers happens to bring to the table. By contrast,

AI systems can dramatically expand the evaluative horizon through

continuous, data-rich integration of diverse sources that no human

committee could feasibly synthesize. AI models can synthesize

publication history, citation dynamics, data sharing practices,

software reproducibility, prior funding efficiency, and mentorship

outcomes into a multidimensional assessment (Fortunato et al.,

2018). These factors can be weighted and calibrated for context,

offering a fuller picture than reputation or impact factor alone.

Machine learning algorithms can continuously scan, analyze,

and map emergent research areas, enabling reviewers to assess

alignment with fast-evolving scientific frontiers rather than rely on

outdated assumptions or legacy paradigms.While human reviewers

are often years behind the bleeding edge of innovation, AI can

operate in near real time, adapting as new knowledge surfaces.

Many significant breakthroughs originate precisely at the edges and

intersections between disciplines. AI systems trained on literature

across domains can detect transdisciplinary relevance and assess

impact in areas reviewers may overlook (Foster et al., 2015). This

helps address one of peer review’s most stubborn blind spots: its

bias against boundary-crossing science.

This broadened evaluative base would allow more accurate

assessment of early-career researchers, interdisciplinary thinkers,

and novel approaches that traditional panels may undervalue.

These capabilities do not aim to replace expert judgment—they aim

to extend it with the breadth, speed, and self-correcting capacity

that onlymachine intelligence can provide. Of course, these systems

must be built and audited with the same transparency and fairness

they aim to enforce.

3.4 Potential applications: AI in research
funding

Though still in early phases of implementation, the application

of AI in research funding represents a rapidly emerging frontier.

Conceptual models and emerging pilot programs illustrate how

AI could not only augment existing evaluation processes but

also help surface overlooked ideas, reduce systemic bias, and
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enhance transparency. These potential applications offer more than

technical reform—they suggest how AI might reshape not just the

mechanics, but the institutional culture of scientific funding.

3.5 Potential AI-enhanced evaluation
systems

AI platforms could be designed to identify high-risk, high-

reward proposals that might be overlooked by conventional peer

review. Such systems could employ natural language processing

to analyze proposal content in relation to the broader scientific

literature. They might be able to flag promising, unconventional

proposals that would otherwise receive low ratings from human

reviewers. These models could be especially effective in elevating

proposals from early-career researchers and applicants outside

traditional institutional power centers.

Algorithmic approaches to proposal evaluation could

potentially identify innovative research that challenges existing

paradigms—precisely the type of work human reviewers tend

to undervalue (Fortunato et al., 2018). Such systems could

act as amplifiers of intellectual diversity—especially where

entrenched review cultures tend to filter it out. By systematically

surfacing overlooked potential, AI systems could help correct

for the structural conservatism that has long skewed scientific

resource allocation.

3.6 Machine learning for reducing
evaluation bias

Future machine learning approaches could be designed to

augment the first-pass screening of grant applications. Models

could be trained on historical funding decisions while explicitly

correcting for known demographic and institutional biases. Such

systems could potentially match human reviewers in predictive

accuracy while significantly reducing bias in scoring. Automating

initial screening could enable reviewers to devote more time and

scrutiny to borderline cases that require genuine deliberation.

The systematic nature of algorithmic evaluation creates an

opportunity to explicitly correct for known biases in ways that ad

hoc human judgment cannot. Rather than replacing peer review,

AI could be deployed to rebalance it—helping funding institutions

uphold commitments to equity without compromising scientific

quality, provided the systems are implemented with transparency

and rigorous auditing.

3.7 Algorithmic approaches to reviewer
selection

AI systems might improve equity and innovation in reviewer

selection itself. Such systems could be designed specifically to

identify reviewers with diverse perspectives and expertise beyond

traditional metrics. This approach might lead to funding more

diverse applicants across dimensions of geography, career stage,

and institutional prestige. Theoretically, such diversity in review

could help identify proposals with greater innovation potential.

Diversifying reviewer backgrounds and perspectives could

fundamentally alter which proposals receive support, potentially

favoring more innovative approaches (Li and Agha, 2015). Such

systems would not merely aim to streamline peer review—they

would challenge its epistemic foundations and rebuild them around

broader principles of inclusion and innovation. By reconfiguring

the architecture of peer review itself, algorithmic reviewer selection

could help dismantle entrenched networks of epistemic authority

and expand the voices long excluded from gatekeeping roles.

Taken together, these use cases point toward a future in which

AI does not merely assist review but redefines what scientific

promise looks like—and who gets to define it.

These emerging applications suggest that AI could do more

than replicate the logic of traditional peer review—it could expose

its blind spots and offer a blueprint for its reinvention. By

broadening the definition of merit, dampening the persistent signal

of bias, and creating new pathways for unconventional voices to

be heard, AI-assisted review systems may help surface precisely

the kinds of science that entrenched structures are least equipped

to recognize. Though still in development, these approaches point

toward a future in which evaluation is not only more efficient but

also more equitable, inclusive, and aligned with the true spirit of

scientific inquiry.

3.8 Implementation pathways: how AI
could transform scientific funding

The most promising near-term strategy for integrating artificial

intelligence into research funding lies not in full automation, but in

carefully designed hybrid systems that combine algorithmic insight

with human oversight at each stage of the evaluation process.

Such systems could preserve the ethical reasoning, contextual

awareness, and domain-specific insight of human judgment while

leveraging the consistency, scalability, and pattern recognition

strengths of machine learning. If implemented thoughtfully and

transparently, these hybrid models could serve not only as agents

for efficiency but as scaffolds for building a more accountable,

inclusive, and innovation-oriented funding ecosystem (Table 1).

While current AI systems remain limited in their interpretability

and domain transferability, their evaluative potential continues to

grow—particularly in hybrid frameworks with careful constraints.

Designing such systems today is not just a technical challenge,

but a moral imperative—an opportunity to rebuild evaluation

infrastructures before they entrench further the very inequalities

they ought to correct.

One practical pathway involves a tiered review system that

distributes evaluative labor across complementary stages. Initial AI

screening through algorithmic analysis could identify promising

proposals, with a focus on novelty, interdisciplinarity, and potential

impact. This step would counteract the documented tendency

of human reviewers to undervalue unorthodox or paradigm-

challenging research (Boudreau et al., 2016). Following this

automated screening, blind human review by reviewers selected

to minimize conflicts of interest would evaluate a subset of
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TABLE 1 Comparison of traditional peer review and AI-hybrid funding

evaluation systems.

Current peer review
system

AI-hybrid evaluation pathway

Heavily reliant on human

judgment, often influenced by

cognitive bias and professional

networks.

Combines algorithmic triage and bias

detection with human expertise for more

balanced decision-making.

Emphasizes prior track record

and institutional prestige.

Prioritizes proposal quality, novelty, and

potential impact, independent of credentials

or affiliation.

Slow, opaque, and

labor-intensive evaluation

processes.

Faster, more transparent screening through

automated systems, enabling broader and

more inclusive applicant pools.

Focus on identifying flaws and

eliminating risk.

Designed to identify promise, support

risk-taking, and explicitly allocate funding to

high-risk/high-reward research.

Limited feedback loops or

performance tracking.

Enables continuous outcome monitoring,

feedback, and system refinement based on

real-world evidence.

Tends to reinforce existing

disciplinary hierarchies and

funding patterns.

Encourages methodological, demographic,

and institutional diversity through portfolio

optimization.

anonymized proposals flagged by the algorithm. By decoupling

reviewer identity from applicant credentials, this step could

significantly reduce homophily, prestige bias, and gatekeeping

effects. Finally, during AI-assisted panel discussions for final

decision-making, AI systems could provide real-time analysis of

reviewer behavior, flag potential inconsistencies, and surface latent

bias patterns in scoring or commentary. These AI applications

would function not as judges, but as mirrors—making institutional

blind spots visible precisely when they matter most, during high-

stakes decisions about funding and recognition. Such a system

would not only streamline evaluation processes, but also help make

them fairer, more transparent, more consistent, and more capable

of identifying scientific ideas that challenge the status quo. In doing

so, it could begin to shift the culture of peer review itself—from

subjective gatekeeping to a more structured, evidence-based, and

accountable mode of deliberation.

While AI-enhanced evaluation systems offer significant

promise, it is equally important to acknowledge that traditional

peer review still performs critical functions that must be preserved

and integrated. Human reviewers bring irreplaceable domain

expertise, contextual understanding of field-specific nuances, and

the capacity to assess research ethics, feasibility, and broader

scholarly relevance in ways that current AI systems cannot yet

fully replicate. The collegial aspects of peer review—including

mentorship, community building, and the transmission of

disciplinary standards—represent valuable social functions beyond

mere evaluation. Moreover, AI systems face inherent limitations

including potential algorithmic bias amplification if training

data reflects historical inequities, difficulties in evaluating truly

interdisciplinary or paradigm-shifting research that lacks historical

precedent, and challenges in assessing subjective elements like

research elegance, theoretical sophistication, or investigator

resilience. Any implementation of AI-enhanced evaluation must

therefore be designed as a complement to, rather than replacement

for, human expertise, preserving the collaborative and mentoring

dimensions of scientific review while addressing its documented

biases and structural limitations.

Beyond evaluating individual proposals in isolation, AI

could be harnessed to optimize entire funding portfolios across

multiple dimensions of scientific value and risk. Through

portfolio optimization algorithms, funders could explicitly balance

exploratory and incremental projects by allocating resources

according to risk profiles—ensuring that a dedicated portion

supports high-risk, high-reward research that might otherwise

be excluded by conservative review processes (Boudreau et al.,

2016). AI systems could also help ensure equitable representation

across career stages. As Jones and Weinberg (2011) demonstrate,

early-career researchers are more likely to pursue novel ideas,

while senior researchers contribute depth and continuity—both

essential to a thriving scientific ecosystem. Similarly, portfolio

strategies could promote methodological diversity, supporting

varied approaches to the same research problem as a hedge

against epistemic blind spots. Scientific breakthroughs often arise

not from consensus methods but from methodological outsiders

(Foster et al., 2015). Critically, portfolio-based strategies have

been shown to outperform project-by-project evaluations in

maximizing long-term scientific progress (Wang et al., 2013). At

scale, AI canmake these strategies tractable—dynamically adjusting

funding distributions to optimize discovery across disciplines,

time horizons, and theoretical frameworks. Such a shift would

enable funding agencies to move from reactive gatekeeping toward

proactive, ecosystem-level stewardship of science.

Despite their promise, AI-based evaluation systems pose

serious risks that must be confronted through thoughtful design,

transparent governance, and public accountability. Models trained

on historical funding decisions risk encoding and perpetuating

inequities, as biased training data may reflect structural exclusions

embedded in past review outcomes. To mitigate these harms,

strategies such as reweighting for underrepresented applicants,

incorporating explicit novelty or risk-taking bonuses, and

generating synthetic training datasets that break from legacy

patterns should be prioritized. Moreover, opaque or black-box

evaluations will fail to earn the trust of researchers and institutions

alike. Transparency and explainability are not optional—they are

foundational to legitimacy. Explainable AI techniques, open-source

evaluation criteria, and structured appeals processes are essential

for ensuring procedural fairness and due process. Crucially,

research funding is not merely a matter of technical merit; it

reflects societal priorities and normative values. Safeguarding

those values requires democratic oversight, value-aligned model

objectives, and integration with ethical review structures to ensure

that algorithmic methods reflect the human stakes of scientific

judgment. Failure to meet these ethical and technical challenges

risks entrenching the very injustices that AI is often invoked to

remedy. But with proactive safeguards, AI systems can serve not

only as instruments of efficiency but as mechanisms for epistemic

integrity and institutional repair.

Taken together, these implementation pathways offer not

just operational reform but a bold new epistemic blueprint for

how science allocates trust, risk, and opportunity. One in which
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human expertise and algorithmic automation collaborate rather

than compete; one in which merit is thoughtfully disentangled

from prestige and inherited privilege; and one in which bold,

uncredentialed ideas are not prematurely filtered out at the start.

It is a vision of evaluation as infrastructure for discovery—not as

a filter for conformity, but as a scaffold for possibility. AI will

not eliminate human bias, but it can help us name it, mitigate it,

and—where necessary—route around it. If designed with humility,

transparency, and ethical resolve, AI-enabled funding systems

could help re-engineer science’s most powerful lever: the ability to

decide what gets discovered, and who gets the chance to discover it.

3.9 Implementation considerations

Translating AI-enhanced evaluation from concept to

practice requires careful attention to institutional readiness

and methodological rigor. The most promising near-term

approach involves controlled experimentation within existing

funding frameworks rather than wholesale system replacement.

Funding agencies could begin by implementing parallel review

processes–simultaneously evaluating matched proposal pools

through both traditional panels and AI-augmented systems–to

generate empirical evidence about comparative effectiveness, bias

reduction, and outcome quality.

Such trials would need to address several critical

implementation challenges. Technical infrastructure must be

developed with appropriate safeguards for researcher privacy

and institutional compliance, while evaluation metrics should

extend beyond traditional citation counts to include measures

of innovation, interdisciplinary impact, and long-term field

transformation. Equally important is the cultivation of institutional

culture change, as successful implementation requires buy-in

from both reviewers and applicants who may initially resist

algorithmic evaluation.

The transition period offers an opportunity to iteratively refine

AI systems based on real-world performance rather than theoretical

assumptions. This empirical approach–testing, measuring, and

adjusting–represents a more scientifically rigorous pathway than

immediate full-scale deployment. Moreover, such controlled trials

could provide the evidence base necessary to convince traditionally

conservative funding institutions that AI-enhanced evaluation

serves scientific progress rather than merely technological novelty.

4 The youth revolution: how AI will
transform scientific careers

Scientific progress has depended on boldness at the edge

of consensus—but in today’s academic funding system, boldness

is often delayed. Early-career scientists, historically responsible

for many of science’s most transformative insights, are now

forced to wait. Structural biases in funding systems have steadily

shifted the arc of scientific independence later into researchers’

careers, narrowing the window for risk-taking and innovation.

The integration of artificial intelligence into research evaluation

offers a rare opportunity to reverse this trend. By redesigning the

very systems that allocate resources and recognition, AI-enhanced

evaluation could reinvigorate scientific careers—and accelerate

discovery itself.

AI systems can be designed to address the deeply embedded

biases that currently disadvantage early-career researchers and

reverse the age trend in scientific funding. Traditional peer

review overweights past performance and underweights future

potential through systematic bias (Hofstra et al., 2020). AI

systems, by contrast, can focus on proposal quality rather than

researcher pedigree, opening doors for early-career investigators.

Furthermore, younger scientists, less invested in prevailing

paradigms, are more likely to propose truly novel combinations

of ideas (Fortunato et al., 2018). AI systems designed to detect

conceptual novelty could help surface this often-overlooked

innovation potential. Additionally, current systems heavily reward

institutional familiarity and professional networks (Li and Agha,

2015), but AI-assisted evaluation can minimize these network

effects, helping to level the playing field for newcomers. Reducing

these biases could significantly lower the average age of first major

grant receipt—by 5 to 7 years—better aligning funding with peak

creative periods. In doing so, AI could help restore the natural

rhythm of scientific contribution: one where early brilliance is not

deferred until it is safe, but nurtured when it is bold.

Current funding systems concentrate resources in elite

institutions through both formal mechanisms and unspoken norms

(Wahls, 2018), but AI-enhanced evaluation can help democratize

access across institutions and decentralize this imbalance. AI

can remove institutional identifiers from first-pass assessments

through institution-blind evaluation, preventing prestige bias from

distorting reviewer judgment (Li and Agha, 2015). Machine

learning models can adjust for institutional infrastructure through

equipment-normalized expectations, reducing unfair penalties for

researchers with fewer resources (Wahls, 2018). Additionally,

AI-enabled portfolio optimization could support regionally and

institutionally diverse funding ecosystems through geographic and

institutional portfolio diversity, tapping into a broader base of

intellectual potential. This democratization is not only a matter of

fairness—it is a strategy for accelerating discovery.

The cumulative effect of these changes would be nothing short

of transformative for accelerating scientific careers and discoveries,

fundamentally altering both the pace and structural trajectory

of scientific advancement. AI-enhanced evaluation systems could

empower younger scientists to lead ambitious research programs

nearly a decade earlier than current norms by enabling earlier and

more sustained research independence. Even a one-year reduction

in the average age of independence could yield a 5–8% increase

in lifetime scientific productivity (see Jones, 2009). Freed from

the need to appease senior gatekeepers through reduced loyalty

signaling, early-career researchers could pursue more independent

and unconventional lines of inquiry (Azoulay et al., 2011). With

evaluation focused on ideas rather than orthodoxy, scientists

would be freer to challenge prevailing paradigms through more

diverse research approaches—precisely the conditions under which

major discoveries tend to emerge (Foster et al., 2015). AI-

enhanced systems could thus unlock not only earlier independence

but also more creative and self-directed scientific lives. By

restructuring who gets to take risks and when, these reforms could
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expand the horizon of what science is willing—and institutionally

able—to imagine.

In sum, artificial intelligence is not just a means for optimizing

review—it is a catalyst for reimagining scientific careers. By shifting

the locus of opportunity earlier in the pipeline and broadening

access across institutions, AI could help science return to its most

generative rhythm: one that rewards imagination over conformity,

and possibility over pedigree. This would not simply change who

receives funding—it would change what kinds of ideas enter the

canon of science in the first place.

5 Beyond gatekeeping: a new
scientific future

The introduction of AI-enhanced evaluation represents more

than a technical upgrade to the grant review process—it marks a

fundamental shift in how science defines merit, allocates resources,

and determines who is invited to participate in the project of

discovery. Whereas current systems often filter out novelty under

the guise of rigor, AI offers the potential for a more expansive,

evidence-based, and inclusive vision of scientific possibility.

Conventional funding systems operate primarily as

gatekeepers—identifying flaws, enforcing norms, and maintaining

intellectual boundaries. AI-enhanced approaches could invert this

logic, shifting from exclusion to cultivation by seeking promise

rather than flaws. While human reviewers are trained to identify

reasons to reject, AI systems could be explicitly designed to identify

elements of novelty, potential, and unorthodox insight that merit

investment. These systems could expand rather than restrict the

scope of scientific inquiry, continuously expanding the pool of

viable researchers by surfacing promising work from beyond

established institutions and disciplinary silos, where existing

review structures tend to reinforce closed networks and elite

circles. Moreover, algorithmic systems can be designed to evolve

in response to empirical outcomes, creating a learning system that

improves over time, whereas human review cultures often rely on

precedent and inertia. This shift from gatekeeping to opportunity

creation could reorient scientific culture itself—from one that

rewards conformity and credentialism to one that actively seeks

out risk, difference, and intellectual diversity.

A truly innovative funding ecosystem would not be dominated

by a single evaluative mechanism, but would instead feature

multiple, parallel approaches tailored to different types of inquiry.

This diversified landscape could include AI-optimized traditional

grants that enhance project-specific funding through algorithmic

triage and bias correction, investigator-based models following

HHMI-style approaches that fund people rather than projects

to enable sustained creative independence, and challenge-based

allocation through prizes, competitions, and milestone-driven

awards aligned with concrete scientific goals. Market-based

mechanisms such as science prediction markets or crowd-based

evaluation models could harness collective intelligence, while AI-

enabled microgrants could provide small, rapid-turnaround funds

to support early-stage exploration with minimal administrative

burden. This diversification would distribute power, encourage

experimentation, and create natural laboratories for testing what

works most effectively.

One of the most transformative promises of AI-enhanced

funding lies in its ability to learn from itself. Unlike legacy

systems that operate without feedback or accountability, AI

models can be continuously updated based on real-world

outcomes through comprehensive outcome tracking that assesses

funded proposals across multiple time horizons and metrics—

citations, replication, translational impact—to evaluate program

effectiveness. Counterfactual analysis could randomly fund a

portion of initially rejected proposals to identify false negatives

and calibrate reviewer and algorithmic performance, while

system evolution would allow evaluation models to be updated

regularly, refining scoring functions, bias detectors, and novelty

detection based on empirical evidence. While peer review is often

mythologized as the “gold standard” of scientific evaluation, it

remains largely unevaluated by the standards of science itself

(Smith, 2006). AI-enhanced systems offer a rare opportunity to

turn evaluation into an evidence-generating process—not just for

research outcomes, but for the system that chooses them.

The contrast between youth-driven innovation in AI

and the increasingly gerontocratic funding patterns in the

biological sciences reveals how institutional structures shape

scientific progress. Traditional study section models of peer

review have evolved into self-reinforcing systems that favor

established researchers pursuing incremental advances while

systematically excluding early-career scientists who offer

potentially transformative ideas. In a profound irony, artificial

intelligence—a field that continues to empower early-career

innovators and reward unconventional thinking—now offers a

radical alternative for how research funding could be structured

across scientific disciplines. AI-enhanced evaluation systems could

reduce entrenched bias, open doors to broader participation, and

accelerate the pace of discovery by disrupting the deeply rooted

hierarchies that govern resource allocation. This transformation

could create new, more equitable pathways to innovation, level

the playing field for those outside elite networks, and help revive a

spirit of boldness in a system increasingly constrained by caution.

The stakes extend well beyond academic careers to society’s

ability to meet global challenges. The current system favors those

who can guarantee results rather than those with potentially

transformative ideas that, by definition, cannot promise certainty

of success (Alberts et al., 2014). This bias against uncertainty—

and thus against innovation—undermines science precisely when

humanity faces complex, urgent crises. From climate change

and pandemic disease to ecological collapse, dwindling resources,

and the growing burden of chronic illness, neurodivergence, and

psychological stress, the problems of our time demand not just new

answers but entirely new ways of thinking. These challenges are

not only scientific but deeply human, requiring systems that value

creativity, intellectual risk, and the capacity to imagine what does

not yet exist.

By dismantling the study section stranglehold, AI could help

unlock the full creative potential of the scientific enterprise. Early-

career researchers could pursue bold, unconventional projects

without spending decades navigating institutional bottlenecks,

while scholars from historically underfunded or marginalized

institutions could finally compete on more equal footing. Truly

novel approaches could receive support based on intrinsic promise

rather than proximity to established paradigms, restoring a sense
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of scientific possibility and intellectual risk-taking often lost in

the grind of grantmanship, careerism, and incrementalism. The

promise is real, but so are the risks, and AI-driven systems must

themselves be designed with transparency and accountability to

avoid reproducing the very exclusions they aim to overcome.

In the long arc of scientific reform, AI may prove to

be less an instrument than a turning point. It invites us to

imagine a future in which scientific promise is judged not by

pedigree, proximity, or prestige, but by the quality of ideas and

the breadth of possibilities. This transformation would not be

merely technical but deeply human, replacing gatekeeping with

opportunity, institutional inertia with imagination, and systemic

exclusion with inclusion. Science advances fastest when it includes

diverse perspectives, approaches, and participants, yet our current

funding systems systematically exclude precisely this diversity.

Addressing this exclusion represents perhaps the single greatest

opportunity to accelerate scientific progress. Artificial intelligence

offers a viable path toward a more open, generative, and forward-

looking scientific future where researchers of all ages, disciplines,

and institutions could compete based on the strength of their ideas

rather than the prestige of their pedigrees. The very technology

that has reshaped countless other domains may now be poised

to transform science itself—helping to unlock human potential

and accelerate discovery when the world needs it most. This is

not a call to abandon human judgment, but to re-engineer it—

by embedding it within systems that are transparent, accountable,

and capable of learning. We may finally realize a scientific funding

system that does not merely reward those who fit the mold but

invests in those bold enough to reshape it. The stakes are not just

procedural—what we choose to fund today determines what we will

be able to understand tomorrow. The future of science may depend

not just on what we discover—but on how we decide who gets

to try.

While senior scientists and other beneficiaries of the current

system may continue to advocate for traditional study sections, the

empirical evidence supporting their effectiveness remains limited

and contested. Numerous evaluations of peer review have revealed

persistent issues, including inconsistent scoring, susceptibility to

both conscious and unconscious bias, and low inter-rater reliability

across panels. To rigorously assess the potential of alternative

models, funding agencies could initiate controlled, large-scale

comparisons—for instance, allocating matched pools of proposals

through both conventional panels and AI-assisted review systems.

Resulting outcomes could be analyzed not only in terms of

demographic characteristics of awardees (such as age, institutional

affiliation, discipline, and career stage), but also with respect to the

long-term scientific impact, innovation potential, and productivity

generated by the funded research. Such trials would provide

a more robust, evidence-based foundation for evaluating the

comparative fairness, efficiency, and effectiveness of competing

research funding mechanisms.
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