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Minimizing unnecessary tax
audits using multi-objective
hyperparameter tuning of
XGBoost with focal loss

Ivan P. Malashin*, Igor S. Masich, Vadim S. Tynchenko,
Andrei P. Gantimurov, Vladimir A. Nelyub and
Aleksei S. Borodulin

Artificial Intelligence Technology Scientific and Education Center, Bauman Moscow State Technical
University, Moscow, Russia

This study presents a machine learning (ML) approach for detecting
non-compliance in companies’ tax data. The dataset, consisting of over
one million records, focuses on three key targets: invalid addresses, invalid
director information, and invalid founder information. The analysis prioritizes
young companies (<3 years old) with fewer than 100 employees, thereby
improving class distributions and model effectiveness. A combination of binary
classification techniques was employed, including benchmarked supervised
learning models (XGBoost, Random Forest), anomaly detection methods (LOF,
Isolation Forest), and semi-supervised learning using deep neural networks
(DNNs) with unlabeled data. Given its computational efficiency, XGBoost
was selected as the primary model. However, class imbalance persisted even
among young companies, necessitating the integration of focal loss to improve
classification performance. To further enhance accuracy while maintaining
model interpretability, NSGA-II (Non-dominated Sorting Genetic Algorithm 1)
was used for multi-objective hyperparameter optimization of XGBoost. The
objectives were to maximize ROC-AUC for improved predictive performance and
minimize the number of trees to enhance interpretability. The optimized model
achieved a ROC-AUC of 0.9417, compared to 0.9161 without optimization,
demonstrating the effectiveness of this approach. Additionally, SHAP analysis
provided insights into key factors influencing non-compliance, supporting
explainability and aiding regulatory decision-making. This methodology
contributes to fair and efficient oversight by reducing unnecessary inspections,
minimizing disruptions to compliant businesses, and improving the overall
effectiveness of tax compliance monitoring.
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1 Introduction

The accuracy and reliability of company records are integral to effective regulatory
compliance, especially in the areas of tax and business oversight (Bello et al,
2024; Rahman et al, 2024). With an increasing volume of data generated by LEs,
identifying inaccuracies in key records, such as addresses, directors, and founders,
presents challenges for tax authorities. Inaccurate or outdated information can
lead to issues like misdirected tax inspections or facilitate fraudulent activities.
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Automating the process of detecting invalid data can help reduce
administrative tasks and improve compliance processes.

The task of classifying company records is complicated by
factors such as imbalanced class distributions (Huang et al., 2016),
high-dimensional data (Johnstone and Titterington, 2009), and
difficulties in establishing clear decision boundaries (Dobslaw
and Feldt, 2024) between valid and invalid entries. Traditional
classification (Wang, 2008) methods often struggle with these
challenges, necessitating the exploration of more advanced
approaches capable of handling the complexities of real-world data.

This paper proposes a pipeline for the classification and
validation of companies’ records through the integration of
supervised learning, anomaly detection, and semi-supervised
learning techniques. The study applies deep semi-supervised
learning (DSSL) (Oliver et al., 2018) combined with the feature-
injected anomaly detection (FIAD) (Chen et al., 2025) framework
to refine feature engineering for the classification of LE. Existing
approaches to anomaly detection in tax compliance often struggle
with incomplete or weakly labeled data and provide limited
interpretability (Rahman et al., 2024; Liang et al., 2025; Ramesh
et al., 2025; Mahesar et al., 2025), which reduces their applicability
in real-world audit contexts. To address this gap, the present
methodology aims to support the identification of potentially
non-compliant companies that may engage in activities such
as fraud, money laundering, or tax evasion. The overarching
research question guiding this work is: How can a tailored machine
learning pipeline effectively detect anomalies in company records to
reduce unnecessary tax audits while maintaining interpretability and
generalizability?

The study utilizes a dataset from the Federal Tax Service of
Russia, which includes approximately one million records for the
first three quarters of 2024. The dataset contains attributes related
to LEs, including company addresses, director and founder details,
tax registration information, and operational characteristics. The
proposed pipeline’s performance is evaluated through a series of
experiments designed to address issues like class imbalance and
data complexity.

The following sections detail previous research (Section 2, the
methodology used to process and analyze the dataset (Section 3.1),
the machine learning (ML) models tested (Section 3.2), and the
results (Section 4) obtained from applying these techniques to the
validation of company records. Additionally, the implications of
the findings are discussed (Section 5), with a focus on improving
tax authority inspections and identifying areas for further research.

2 Related work

Financial institutions face strict international regulations
requiring rigorous efforts to prevent services from being exploited
by criminals and terrorists. Current Anti-Money Laundering
(AML) systems rely on watch-list filtering but often produce many
false positives, requiring significant human intervention. Alkhalili
et al. (2021) introduces ML-based component to enhance watch-
list filtering systems. It uses historical transaction data to analyze
blocked transactions and provide recommendations, following a
phased approach: monitoring, advising, and gradual action. It
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reduces manual workload by prioritizing high-risk cases while
maintaining accuracy. Results show the ML-Component can
streamline operations, cut compliance costs, and strengthen
defenses against financial fraud.

Financial institutions are obligated to adhere to international
regulations to prevent providing services to criminals or terrorists,
with continuous monitoring of financial transactions necessary to
detect suspicious activities. Businesses must ensure they validate
customer information against reliable sources that confirm their
identities or flag inconsistencies. Failure to detect fraudulent
or suspicious transactions can result in harmful consequences,
including fines or warnings for the financial institution. AML
software, sanctions screening, and watch-list filtering are used to
monitor transactions and ensure they do not involve prohibited
individuals. While ML has been explored for improving Know Your
Customer (KYC) systems (Ostern and Riedel, 2021), its application
to watch-list filtering systems has been limited due to compliance
concerns. Savi¢ et al. (2022) proposes a model for automating the
check of blocked transactions in watch-list filtering systems using
ML techniques. The model aims to address the challenge of false
positives, reduce the workload of compliance officers, and speed up
transaction processing. Through experiments with ML algorithms,
it was found that support vector machines (SVM) provided the
most accurate predictions for transaction decisions.

Tax evasion refers to actions, whether legal or illegal, that lead
to the non-payment or underpayment of taxes. Proper tax payment
is necessary for maintaining public services, including healthcare,
education, and infrastructure. This is important in developing
countries like Brazil, where large agencies like SEFAZ-CE manage
databases of over 300,000 active taxpayer companies. However,
manual tax inspections are time-consuming and prone to human
error due to the complexity of fraud indicators. To improve this
process, Matos et al. (2020) propose Alicia, a feature selection
method that uses association rules, propositional logic, and graph
centrality to identify the most relevant features for detecting tax
fraud. Alicia operates in three phases: generating association rules,
building a graph from these rules, and ranking features based
on their importance using a novel measure called Fraud Feature
Topological Importance (F2TT) (Huang et al., 2014). Extensive tests
show that Alicia outperforms other feature selection methods with
F-measure scores up to 76.88%.

Tax evasion through related party transactions (RPTTE) (Zhou
et al., 2024a), is a significant issue that can undermine tax systems
and create unfair competition. To address this, a system called
TaxThemis was developed by Lin et al. (2020) to help tax officers
identify suspicious RPTTE groups. This system integrates data
mining and visual analytics to analyze and detect such groups
through tax-related data. It builds networks of taxpayers and trade
relationships, visualizing them to aid in the detection of RPTTE
activities. The system includes modules for data preprocessing,
analysis, and visualization, ensuring privacy while processing
sensitive taxpayer information. TaxThemis enables interactive
exploration, allowing officers to detect, analyze, and investigate
suspicious groups through detailed visualizations and data features.
Additionally, it incorporates advanced visual elements like calendar
heatmaps and network diagrams to display tax-related transactions
and profits, facilitating efficient investigations.
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Mousavi et al. (2022) evaluates the influence of corporate
governance mechanisms, such as the characteristics of board
members and audit committees, on fraud and money laundering
in financial statements of firms listed on the Tehran Stock
Exchange Rostami et al. (2016) from 2014 to 2020. It uses
descriptive correlation methodology with data from 154 firms
across 27 industries, totaling 1,071 observations. Linear regression
with panel data is applied, employing the Benish model for fraud
measurement and auditors’ opinions for money laundering. The
results reveal that board and audit committee characteristics,
including independence, financial and industry expertise, and
effort, significantly reduce fraud and money laundering. The
study suggests that corporate governance plays impact in
improving financial statement integrity, providing useful insights
for investors and policymakers. Additionally, tests such as
normality, collinearity, and integration confirm the robustness of
the data and models used.

With the growth of technology in Rwanda, the tax base has
expanded, but this has also led to an increase in tax fraud.
Murorunkwere et al. (2023) focus on applying a supervised
machine-learning models, including Artificial Neural Networks,
Logistic Regression, and Random Forest, among others, to
identify tax fraud. Findings show that businesses with certain
characteristics, such as being registered for VAT, being involved in
imports/exports, or located in the eastern province, are more prone
to fraud. The data used in the study is anonymized, with 15,732
audited taxpayers from 2014 to 2019. Of these, 32.4% were found
to have committed tax fraud, while 67.6% were non-fraudulent.
The study utilized preprocessing techniques to handle imbalances
in the data, including SMOTE and random under-sampling. The
dataset was split into training, testing, and validation sets for
optimal results.

Xu et al. (2023) address corporate fraud prediction using
ML, specifically leveraging the GONE framework. The research
identifies

Opportunity, Need, and Exposure—and applies ML models to

fraud-related variables in four categories—Greed,
predict corporate fraud in China. Among six models tested, the
Random Forest (RF) model outperforms the others, with Exposure
variables being the most significant predictors. The dataset is
sourced from the China Stock Market and Accounting Research
(CSMAR) (Zhang, 2024) and Chinese Research Data Services
(CNRDS) (Feng and Nie, 2024) databases, including social media
and news data. A sample of 35,922 firm-years from 2009 to 2018
reveals that about 12% of observations are related to fraud, similar
to other studies on corporate fraud in China. The study categorizes
fraud into more-serious and less-serious types and evaluates
ML models based on metrics like AUC, precision, recall, and f1
score. The RF model shows the best performance, particularly in
avoiding false-negative errors, which is a key factor for identifying
fraudulent firms effectively.

In the field of applying ML to combat financial crimes and
tax evasion, there is a range of studies that use models and
approaches to enhance monitoring, filtering, and fraud prediction
systems. These studies cover a wide array of methods, from
improving AML systems to automating checks and detecting tax
violations. Table 1 provides an overview of key research in this
area, highlighting their focus, data used, applied models, and
main results.
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3 Materials and methods

3.1 Dataset description

One of the ideas was to assess the necessity of tax authorities
conducting audits of companies based on their age. To this end, an
analysis was performed on data collected for companies during the
first three quarters of 2024. The dataset, provided by the Federal Tax
Service of Russian Federation, included 1,008,725 tax audit records
related to the accuracy of company addresses. These records
were derived from data available to tax authorities, including
information about real estate ownership by the LE’s director or
manager, the timeliness of submitted financial reports, and other
relevant indicators. Of these, 678,795 records had no inaccuracies,
while 329,930 were flagged as having invalid address information.
Additionally, data on 924,364 directors of these companies were
examined, with 678,795 directors having no invalid data and 42,681
flagged for inaccuracies. Information on 73,453 founders was also
analyzed, revealing 42,681 founders with accurate data and 30,772
with invalid information. This analysis aimed to determine whether
younger companies exhibit patterns that necessitate increased
scrutiny, based on discrepancies in address and leadership data.

t-SNE visualization (Van der Maaten and Hinton, 2008) of
company data is shown in Figure 1. Each point represents a LE,
with the two components (t-SNE1 and t-SNE2) corresponding
to reduced dimensions of the feature space. Colors indicate
the validity of the entity’s address: blue represents entities with
valid addresses, while red corresponds to entities with address-
related issues. The clear clustering patterns suggest underlying
structural differences between the two groups, which may
reflect distinct operational or compliance characteristics. The
data is imbalanced (Hajibabaee et al, 2021), with a larger
number of entities having valid addresses compared to those
with address-related issues. Moreover, the t-SNE plot reveals
overlapping, indicating poor separability between the two classes.
These characteristics suggest that classification of such data
poses challenges due to class imbalance and a lack of clear
decision boundaries.

The relationship between the age of companies and the
likelihood of address validity issues was analyzed by examining the
distribution of days since their creation. The dataset was segmented
into four distinct time ranges: companies younger than 30 days,
those aged 31 to 90 days, 91 to 365 days, and older than one year (up
to 20 years). Histograms were plotted to visualize the proportion of
entities with valid and invalid addresses in each interval. The results
are summarized in Figure 2, highlighting the temporal dynamics of
address validity concerns among LEs

The analysis shows clear patterns in the distribution of
companies by age and address validity. During the first 30 days,
many new companies are created, with a noticeable share flagged
for invalid addresses. This trend continues at lower volumes in
the 31-90 day range. By the time a company reaches one year
and inspections are conducted, the number of entities with invalid
addresses is much higher compared to other periods. After the first
year, the number of invalid-address entities decreases significantly,
likely due to attrition or corrections over time.

Figure 3 presents the distribution of companies according to
both their employee size and the validity of their registered address.
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TABLE 1 Summary of related work.

Reference

Alkhalili et al.
(2021)

Focus

Enhancing AML
systems with ML

Data description

Historical transaction data,
blocked transactions

Applied model

ML-based component
(monitoring, advising, gradual
action)

10.3389/frai.2025.1669191

Results

Reduced manual workload, improved
accuracy, cut compliance costs, strengthened
fraud defenses

Savic et al. (2022)

Automating
watch-list filtering

Blocked transaction data

Support vector machines (SVM)

SVM showed the most accurate predictions,
reducing false positives and workload

Matos et al. (2020)

Tax fraud detection
in Brazil

Database of 300,000+ active
taxpayer companies in Brazil

Alicia (feature selection with
association rules and graph
centrality)

Alicia outperforms other feature selection
methods with F-measure scores up to 76.88%

Lin et al. (2020)

Detecting tax
evasion through
RPTTE

Tax-related data, taxpayer and
trade relationships

Data mining and visual analytics

identified suspicious RPTTE groups via
network and visualization tools

Mousavi et al. Corporate Data from 154 firms across 27 Linear regression with panel data Corporate governance reduces fraud and

(2022) governance and industries (1,071 observations) money laundering, significant impact on
fraud financial integrity

Murorunkwere Predicting tax fraud 15,732 anonymized audited Artificial neural networks, logistic Identified fraud-prone characteristics, 32.4%

etal. (2023) in Rwanda taxpayers (2014-2019) regression, random forest of taxpayers committed fraud

Xu et al. (2023)

Corporate fraud
prediction in China

Data from 35,922 firm-years
(2009-2018) and social
media/news data

Random Forest (RF), GONE
framework

RF model outperformed others, with
Exposure variables as most significant
predictors

FIGURE 1

t-SNE visualization of companies based on feature space. Points blue denotes valid addresses, and red indicates entities with address-related issues.
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FIGURE 2

between the two groups across age ranges of LEs.

d More than 1 year (up to 20 years)

Number of LEs

Distribution of the number of days since the creation of LEs, categorized by address validity. The histograms are divided into four time intervals:
(a) first 30 days, (b) between 31 and 90 days, (c) between 91 and 365 days, and (d) more than one year (up to 20 years). Blue bars represent
companies with valid addresses, while red bars indicate entities with invalid address records. The data highlights the differences in distribution
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The histograms show two categories: companies with a valid
address and those with an invalid address, across four predefined
employee ranges. The chart shows that companies with 1 to 2
employees most often have records with invalid addresses based on
tax authority checks. However, for companies with more than 50
employees, there is a significant shift: among 700 companies in this
category, fewer than 50 have invalid addresses

Since the dataset on inspections was too large, the goal was to
remove records that did not significantly contribute to improving
the identification of companies with invalid information. As part
of this process, entities that have existed for more than 3 years and
with more than 100 employers were excluded.

Figure 4 visualizes the distribution of blocked accounts across
different company sizes, segmented by the validity of the company’s
registered address. Companies are grouped into four account
ranges, and the histograms illustrate how the frequency of
blocked accounts varies between companies with valid and invalid
addresses. It is evident that for companies with zero blocked
accounts, less than 40% had incorrect address records according
to the tax authority’s verification results. However, as the number

Frontiersin Artificial Intelligence
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of blocked accounts increases, the proportion of companies with
invalid address data significantly rises and begins to dominate

Figure 5 presents histograms of binary features, categorized by
the presence of the address validity indicator. The analysis reveals
a discrepancy between the regions of directors and companies,
as well as between founders and companies. In both cases, a
substantial proportion of companies exhibit mismatches in regions,
with approximately 31.5% of companies having a mismatch
between the director and company regions, and 32.8% showing
a mismatch between the founder and company regions. When
focusing on companies with address validity issues, the proportion
of mismatches increases notably. This discrepancy could indicate
either an intentional attempt to obscure the entity’s location or a
failure to update company records accurately. Address mismatches
are often associated with issues such as fraudulent reporting or non-
compliance with local regulations, which may increase the risk of
tax evasion or financial misconduct.

The data also shows a considerable number of companies with
a single founder-director. While this is a common setup in smaller
businesses, the prevalence of such structures warrants attention,
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FIGURE 3

Distribution of companies based on their employee count and address validity. The blue bars represent companies with a valid address, while the red
bars indicate companies with an invalid address. The data is grouped by four employee ranges: up to 10, 11-50, 51-100, and 101-400 employees.
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particularly when examining discrepancies in the tax declarations
of these entities. For instance, in the case of individual founder-
directors, 42.2% of companies exhibited this structure, with a
higher concentration among those subject to address validity issues
(45.7%). A higher proportion of companies with singular founder-
director structures may indicate a lack of corporate governance
mechanisms, potentially making these entities more susceptible
to non-compliance or financial mismanagement. Furthermore,
these entities could be prone to issues like tax avoidance or
underreporting of income, as the concentration of control in a
single individual often leads to weaker oversight.

A significant proportion of companies (25.2%) were found to
have no tax declarations filed (Figure 5¢). This lack of compliance
with tax regulations is of considerable concern, as it could suggest
attempts to evade taxes or failures to comply with regulatory
requirements. When the data is filtered to include only those
entities with address validity issues, the proportion of companies
without tax declarations increases to 23.3%. This could point to
deliberate attempts to conceal financial activities or an indication
of administrative negligence. The absence of tax declarations,
especially in entities with address discrepancies, warrants closer

Frontiersin Artificial Intelligence

scrutiny, as these are typically red flags for financial fraud or
illegal activities.

Another finding is the number of directors disqualified
(Figure 5f) from holding office in certain companies. Although the
overall proportion of disqualified directors is low (less than 1%), the
number increases among companies with address validity issues.
This discrepancy could reflect the presence of entities that operate
with directors who have a history of non-compliance, legal issues,
or involvement in fraudulent activities. Director disqualification is
an important measure to ensure corporate governance and mitigate
risks related to financial misconduct. The higher incidence of
disqualified directors in companies with address validity concerns
suggests that these companies may be more prone to illicit activities
or governance failures.

The data also highlights the prevalence of multiple companies
being owned or directed by the same individual (Figure 5g). While
only a small percentage of companies exhibit this pattern, it still
raises concerns. The practice of founding multiple companies
may indicate attempts to compartmentalize liabilities or evade tax
audit. In entities subject to address validity issues, this practice is
slightly more prevalent. The increased risk of fraudulent activity,
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such as tax avoidance, becomes more likely in these situations, as
controlling multiple companies offers the opportunity for financial
manipulation or the creation of artificial financial structures.

A concerning statistic is the high percentage of entities that
are missing required reporting (Figure 5j) or deemed to present
high tax risks (Figure 5k). Over 36.7% of all companies were
found to have missing reporting, with a higher concentration
among entities with address validity issues (34.3%). This missing
reporting could be indicative of financial opacity, either intentional
or due to inefficiencies in reporting practices. Similarly, a small
but significant portion of entities (less than 1%) were categorized
as presenting high tax risks. The higher incidence of these risks
in companies with address validity issues could suggest a pattern
of non-compliance or the involvement of companies in tax
avoidance schemes.

The incidence of blocked accounts (Figure 5m) and zero
tax declarations (Figure 5n). A substantial number of companies
(29.3%) had blocked accounts, with a higher concentration among
entities with address validity issues (35.5%). Blocked accounts
are often associated with financial misconduct, such as money
laundering or fraudulent activities, and their prevalence among

Frontiersin Artificial Intelligence

companies with address discrepancies further indicates potential
irregularities. Similarly, a small but concerning percentage of
companies (0.1%) had zero tax declarations, which could indicate
attempts to conceal financial activities or evade taxes.

Figure 50 highlights a clear link between address history and
the likelihood of compliance issues among companies (Esayas and
Mahler, 2015). For companies not linked to previously invalid
entities, 28% (287,987 out of 1,008,725) have address issues,
compared to 62% (204,608 out of 329,930) for those linked
to invalid entities. This suggests that addresses associated with
historically problematic entities carry elevated risks and are more
likely to face regulatory scrutiny. Such patterns emphasize the
need for stricter oversight of these addresses during company
registration to mitigate fraud and ensure compliance. Businesses
using such addresses may also encounter increased challenges due
to reputational concerns.

The findings from this analysis suggest that a proportion
of companies exhibit indicators of potential non-compliance or
fraudulent activity (Kamoun et al., 2024). Entities with address
validity issues tend to exhibit higher rates of discrepancies in
region matching, tax reporting, and corporate governance. Possible
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reasons for these irregularities could include deliberate attempts to
evade taxes or regulatory scrutiny, administrative negligence, or the
lack of transparency in certain business structures.

The
disqualification, missing tax declarations, and other risk indicators

prevalence of mismatches in region, director
points to the need for more stringent oversight and regulatory
interventions. Address mismatches, in particular, should raise
red flags for tax authorities and financial regulators, as they are
often associated with attempts to obscure the true nature of a
company’s operations. Furthermore, the lack of tax reporting, high
tax risk, and missing reporting signal areas where improvements
in compliance and enforcement could reduce the overall risks

associated with these LEs.

3.2 Pipeline

The study analyzed data on companies collected by the Federal
Tax Service of Russia, encompassing approximately one million
records for the first three quarters of 2024. The primary objective
was to identify records with potential inaccuracies in three target
variables: invalid companies addresses (current addresses linked
to previously non-compliant LEs), invalid director information,
and invalid founder information. The diagram of the proposed
approach is shown in Figure 6.

Frontiersin Artificial Intelligence

Initial analysis revealed that the dataset was highly imbalanced
and poorly separable. For instance, valid address records accounted
for 678,795 entries, while invalid addresses totaled 329,930,
constituting roughly one-third of the data. To address this, filtering
was applied, focusing on younger companies (operating for about
three years) with fewer than 100 employees. This refinement
improved balance, yielding 433,415 valid and 168,770 invalid
address records. Similarly, director-related records reduced from
843,214 valid and 81,150 invalid entries to 427,223 valid and 41,870
invalid, and founder-related records from 42,681 valid and 30,772
invalid to 21,065 valid and 19,732 invalid.

The problem was framed as a binary classification task with
imbalanced classes (Cateni et al, 2014; Lee and Seo, 2022).
Three methodological approaches were employed to address these
challenges: supervised learning, anomaly detection, and semi-
supervised learning.

In the supervised setting, models such as AdaBoost, KNN,
Random Forest, Gradient and XGBoost were
benchmarked. For anomaly detection, techniques like Local

Boosting,

Outlier Factor (LOF), Isolation Forest, and Autoencoders were
employed to identify deviations indicative of non-compliance.

For the semi-supervised approach, we trained a deep neural
network (DNN) following the principles of (Mandapati et al., 2023).
To strictly avoid test leakage, the data was partitioned into disjoint
sets: (i) a final test set used exclusively for evaluation, and (ii) a
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Experimental pipeline.
training set further divided into a labeled and an unlabeled portion. hy = o(Wahy + by), (2)
Approximately 80% of the training records retained their ground-
truth labels, while the remaining 20% of the training set was treated
as unlabeled. The semi-supervised DNN was optimized using a 3)
combined objective: a supervised cross-entropy loss applied to the
labeled subset and an unsupervised consistency regularization loss
applied to the unlabeled subset. This setup allowed the model to
hy = o (Wrhi—1 + by), (4)

exploit structural patterns in the feature space without accessing
the test set during training. The architecture consisted of three fully
connected hidden layers (with 256, 128, and 64 units, respectively),
ReLU activations, batch normalization, and dropout (rate = 0.3).
Training was performed using the Adam optimizer (learning rate
= le73, batch size = 128) for up to 100 epochs with early stopping
based on validation loss.

DNN emerged as the most effective classifier for predicting
the validity of company records, outperforming other methods
in both predictive performance and computational efficiency.
The DNN consists of multiple layers of fully connected
neurons (Riera et al., 2022). The architecture can be described
as follows:

hy = o (W1 X + by), (1)

Frontiersin Artificial Intelligence

where hy, is the output of the last hidden layer, X is the input data,
W; are the weight matrices, b; are the bias terms, and o is the
activation function (e.g., ReLU or sigmoid).

The output layer produces the predicted probabilities for
classification (Mahbobi et al., 2023):

=0 (Wouthr + bou)s (5)

where 7 is the predicted label (for classification tasks, typically a
vector of probabilities), and Wy and boye are the weights and bias
for the output layer.

The loss function used to train the DNN in a semi-supervised
setting is a combination of labeled and unlabeled data (Njima et al.,
2022). The loss function is typically a cross-entropy loss for the
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labeled data and a reconstruction loss (e.g., autoencoder-based) for
the unlabeled data:

L= Lsupervised + }‘Lunsupervised> (6)

where Lgypervised 18 the cross-entropy loss on the labeled data:

Lsuperw’sed = - Zyi 108()71'), (7)
i

and Lypsupervised 15 the unsupervised reconstruction loss, which
could be based on techniques like autoencoders or other anomaly
detection methods for the unlabeled data.

The parameter A controls the trade-off between the supervised
and unsupervised components of the loss function.

The model is trained by minimizing the total loss function using
gradient-based optimization algorithms such as stochastic gradient
descent (SGD) or Adam:

0 =0—-nVyL, ®)

where 6 represents the parameters of the network, 7 is the learning
rate, and VyL is the gradient of the loss function with respect to
the parameters.

To further enhance the DNN’s predictive capability, anomaly
scores were introduced as an additional feature. These anomaly
scores were generated using Feature-injected Anomaly Detection
(FIAD) (Chen et al,, 2025), an unsupervised anomaly detection
method based on graph neural networks (GNNs) (Zhou et al,
2022) designed to identify deviations in both node attributes
and structure.

FIAD three
injection (Xiao etal., 2021), reconstruction (Zhou et al., 2024b), and

operates through key modules: feature
anomaly detection (Guan et al., 2024). The feature injection module
directly incorporates anomalous information into the feature
dimensions, enabling a finer-grained detection of anomalies. This
approach allows the model to process anomalies across all nodes
rather than focusing on specific subsets, improving the granularity
of anomaly detection and enhancing the representation of subtle
deviations. The reconstruction module leverages a shared encoder,
an attribute decoder, and a structure decoder to encode the input
data and reconstruct the original attribute and structural matrices.
Anomaly detection is then performed by comparing the original
and reconstructed matrices. Significant deviations between these
matrices result in the generation of anomaly scores, where nodes
exhibiting notable discrepancies are identified as anomalous.
Mathematically, the anomaly score Liang et al. (2024) S; for

node v; is computed as:

Si=all(A-AD e +(1-a)IX-X) 06l

where A and X represent the original adjacency and attribute
matrices, A and X are the reconstructed matrices, ®; and ©;
are penalty terms for mismatches in structure and attributes, and
o controls the balance between structural and attribute-based
anomaly contributions.
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Finally, SHAP analysis (Cakiroglu et al., 2024) was employed to
interpret the model’s predictions and identify the most influential
features for each target variable. For invalid addresses, features
like company age, employee count, and property ownership were
key drivers.

3.3 Multi-objective optimization of
XGBoost

To enhance the classification accuracy of company data, focal
loss (Ross and Dollar, 2017) was integrated into the XGBoost model
to address the class imbalance issue in binary classification tasks.
Additionally, NSGA-II (Deb et al., 2002) (Non-dominated Sorting
Genetic Algorithm II) was employed to optimize two conflicting
objectives: model accuracy and interpretability. Specifically, the
goal is to find an optimal trade-off between maximizing the
area under the precision-recall curve (AUC-PR) and minimizing
the number of trees in the model, thereby balancing predictive
performance and model complexity (Sagi and Rokach, 2021).

Focal Loss is an extension of the traditional binary cross-
entropy loss designed to address the class imbalance issue by giving
more importance to hard-to-classify examples, particularly those
from the minority class. The Focal Loss for binary classification is
defined as:

FL(ps) = —ou(1 — py)Y log(py) (10)

where:

e p, is the predicted probability for the true class. For the positive
class, p; is the predicted probability of the positive class.

e «; is a balancing factor that gives more weight to the
minority class.

e y is the focusing parameter, which adjusts the rate at which
easy examples are down-weighted.

The standard binary cross-entropy loss (Ho and Wookey, 2019)
(Log Loss) is given by:

CE(y,3) = —ylog(y) — (1 — y)log(1 — ) 1n

where:

e yisthe true label.
e yis the predicted probability for the positive class.

Focal loss modifies the binary cross-entropy loss by multiplying
it with the factor (1 — p;)?, which reduces the loss contribution
from well-classified examples and focuses more on harder
examples (Mahmoodi et al., 2024).

In this study, the NSGA-II algorithm was employed to optimize
model hyperparameters under multiple objectives, balancing
predictive performance and model complexity. The search space
included parameters such as learning rate, maximum tree depth,
and the number of estimators for ensemble-based models. A
population size of 50 individuals and a maximum of 100
generations were used, with crossover and mutation probabilities
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set to 0.9 and 0.1, respectively. The algorithm was terminated either
upon reaching the maximum number of generations or if the Pareto
front showed no improvement over 20 consecutive iterations.

A solution x; is said to dominate another solution x; if:

Hla) = filez) and fo(x1) < fa(x2) (12)

where f; and f, are two conflicting objectives, such as AUC-PR
(accuracy) and the number of trees (interpretability).
The steps in the NSGA-II algorithm are as follows:

1. A random initial population Py of N candidate solutions is
generated. Each solution x € Py corresponds to a set of
hyperparameters for the XGBoost model, e.g.,

x = (n_trees, max_depth, learning_rate) .

2. Each candidate solution is evaluated on multiple objectives. The
primary objectives are:

e Accuracy: Measured by the AUC-PR (Area Under the
Precision-Recall Curve), denoted by f;(x), which is aim to
maximize.

Objective 1:  fi = AUC-PR(XGBoost) (13)

e Interpretability: Measured by the number of trees in the
model, denoted by f>(x), which is aim to minimize.

Objective 2:  f, = Number of Trees(XGBoost) (14)

For any two solutions x and y, we say that x dominates y (written
x <y)if:

fitx) = fi(y)

with at least one of the inequalities being strict.

and  fo(x) < f2(y),

. The population is partitioned into non-dominated fronts
F1, Fy, ... as follows:
e F; is the set of solutions that are not dominated by any
other solution in the population.
e F, consists of solutions that are dominated only by those in
Fy, and so on.

Each solution is assigned a Pareto rank r(x) based on the front it
belongs to:

r(x) =i if xe€F.

. To maintain diversity within each front, a crowding distance d(x)
is computed for each solution x in a front F. For each objective j
(with m objectives), let

min : max
M= minfi(x), ™ = maxfj(x).
JS x€eF f]( ) f] x€eF ﬁ( )
After sorting the solutions in F in ascending order according to
fj(x), the crowding distance for an interior solution x; is defined
as:

fitxit1) — fi(xiz1)
Z fmax fmln

>

j=1
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where x;1; and xj_; are the immediate neighbors of x;
in the sorted list for objective j. Boundary solutions are
assigned an infinite (or very large) crowding distance to ensure
their preservation.

. Using a binary tournament selection process, solutions are
chosen based on their Pareto rank (Tusar and Filipi¢, 2014)
r(x) and crowding distance d(x). Specifically, a solution with
a lower rank (i.e., belonging to a better Pareto front) and a
larger crowding distance (i.e., located in a less crowded region) is
preferred. Crossover and mutation operators are then applied to
the selected individuals to generate an offspring population Q.

. After a predefined number of generations T, the final population
Pr is obtained. The set of Pareto-optimal solutions, i.e., those
on the first front F; of Pr, represents the trade-offs between
maximizing AUC-PR and minimizing the number of trees:
Pareto-optimal set = {x € P | x is not dominated by any y € Pr}.

Focal Loss and NSGA-II were combined to optimize the
hyperparameters of an XGBoost model, ensuring that both
accuracy and interpretability are optimized simultaneously. Focal
Loss was defined as a custom objective function for binary
classification. The objective function for focal loss is:

L(y,7) = —ay(1 — )" log() — (1 — )" log(1 —3)  (15)

Here, y is the true label, and y is the predicted probability of the

positive class.

By combining Focal Loss and NSGA-II, this approach addresses
the class imbalance problem using a custom loss function while
simultaneously performing multi-objective optimization to balance
the trade-off between accuracy (AUC-PR) and interpretability
(number of trees). The result is a set of Pareto-optimal
solutions that provide the best balance between these two
conflicting objectives.

4 Results

Figure 7 presents the ROC curves, illustrating the performance
In all
experiments, the data was split into 80% for training and 20% for

of ML classifiers without hyperparameter tuning.

testing. XGBoost and Deep Semi-Supervised Learning (DSSL)
models achieved the highest AUC values, with scores of 0.92
and 0.93, respectively, demonstrating their strong discriminatory
power. The robust performance of XGBoost, along with its
interpretability through SHAP, made it the preferred classifier for
this task.

Gradient Boosting and Random Forest models also showed
competitive AUC scores of 0.91, indicating their capability to
handle complex, nonlinear relationships within the data. Logistic
Regression and Support Vector Classifier (SVC) performed well,
with AUC values exceeding 0.88. However, they lacked the
flexibility of tree-based methods in capturing feature interactions,
which limited their performance in comparison.

Anomaly detection methods, such as Local Outlier Factor
(LOF) and Isolation Forest, performed poorly, with AUC values
around 0.49. This suggests that invalid address detection may not
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align well with their unsupervised anomaly-detection paradigms,
which are typically more suited to different types of data anomalies.

In the results Table 2, the DSSL model achieved the highest F1
Score 0f 0.7994 + 0.0133 (mean = standard deviation across 5-fold
cross-validation), indicating a strong balance between Precision
(0.7645 4 0.0162) and Recall (0.8377 & 0.0148). Cross-validation
was performed using StratifiedKFold with 5 splits, shuffling
enabled, and a fixed random seed to ensure reproducibility and
maintain class balance in each fold. For each fold, the model was
trained on 80% of the data and evaluated on the remaining 20%,
and all performance metrics were averaged across folds.

XGBoost and Gradient Boosting also showed strong F1 Scores
of 0.7650 and 0.7726, respectively, indicating that these tree-
based models effectively balance Precision and Recall (Uddin
and Lu, 2024), even though they did not outperform the DSSL
model. On the other hand, Autoencoder Anomaly Detection and
Isolation Forest, with F1 Scores of 0.0614 and 0.2273, demonstrated
significantly poorer performance, particularly in terms of Recall.
These models struggled to capture positive instances, highlighting
their limitations for the given task of detecting valid and invalid
company records. AdaBoost, Logistic Regression, and Random
Forest achieved moderate F1 Scores (around 0.75), showing good
performance, but not as strong as the more advanced methods.

The inclusion of FIAD-generated anomaly scores in the DNN
allowed the model to incorporate global patterns of deviation
into its semi-supervised learning pipeline. For Figure 8 scores
are normalized between 0 and 1. Higher scores indicate a
greater likelihood of anomalies. Due to class imbalance in the
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target variable, the dataset was adjusted to ensure a balanced
representation of both classes for the histogram, preventing skewed
distributions. The histogram shows that normal data points are
concentrated near 0, with their distribution predominantly in the
range of 0 to 0.2. In contrast, anomalous data points are distributed
in the range of approximately 0.18 to 0.38, demonstrating a
clear separation between valid and invalid instances based on the
anomaly score.

Figure 9 illustrates the training and validation accuracy, as
well as the loss curves of the DSSL model over 50 epochs with
incorporated FIAD scores as new featrue. The validation accuracy
gradually increases from 0.82 to 0.86 and stabilizes, demonstrating
effective learning. The training accuracy reaches 0.89, indicating
good generalization without clear overfitting. Training loss
decreases from 0.38 to 0.28, while validation loss stabilizes around
0.24, confirming consistent performance. However, the poorly
separable data presents challenges in forming decision boundaries,
and class imbalance may bias the model toward the dominant class,
requiring further evaluation with metrics like precision, recall, and
F1-score. Despite these challenges, the model achieves an accuracy
of 86.58%, representing a 1.2% improvement over the version
without the FIAD feature. In the context of a large dataset (e.g.,
one million entries, as in the present case), this improvement could
potentially reduce the number of cases to be checked by an average
of 12,000 to 13,000.

The results of the NSGA-II optimization (Figure 10)
demonstrate a clear trade-off between model accuracy, measured
by ROC-AUC, and model complexity, represented by the number
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TABLE 2 Cross-validated performance metrics (mean =+ std) of benchmark models.

Model AUC Precision Recall F Acc.
AdaBoost 0.9019 £ 0.0123 0.7471 £ 0.0156 0.7613 £0.0172 0.7541 £ 0.0160 0.8295 £ 0.0105
Autoencoder 0.4888 + 0.0254 0.2406 £ 0.0131 0.0352 £ 0.0085 0.0614 + 0.0102 0.6324 + 0.0206
Decision Tree 0.7649 £ 0.0182 0.6744 £ 0.0147 0.6996 £ 0.0195 0.6867 £ 0.0174 0.7865 £ 0.0129
DSSL 0.9303 + 0.0098 0.7645 £ 0.0162 0.8377 £0.0148 0.7994 £ 0.0133 0.8558 £ 0.0107
Extra Trees 0.8968 + 0.0135 0.7402 £ 0.0159 0.7671 £ 0.0170 0.7534 £ 0.0156 0.8275 £ 0.0112
Gaussian Process 0.8374 +0.0210 0.6888 £ 0.0171 0.6798 £ 0.0168 0.6842 + 0.0164 0.7845 £ 0.0136
Gradient Boosting 0.9134 £ 0.0109 0.7439 £ 0.0142 0.8035 £ 0.0151 0.7726 £ 0.0139 0.8375 £ 0.0110
Isolation Forest 0.4861 + 0.0225 0.3100 £ 0.0128 0.1795 £ 0.0104 0.2273 £0.0113 0.5832 £ 0.0185
KNN 0.8482 £ 0.0186 0.6884 £ 0.0160 0.6623 £ 0.0177 0.6751 £ 0.0165 0.7810 £ 0.0124
LOF 0.4741 £ 0.0231 0.2800 £ 0.0142 0.1657 £ 0.0098 0.2082 + 0.0106 0.5740 £ 0.0192
Logistic Regr. 0.9088 +0.0115 0.7493 £ 0.0137 0.7728 £ 0.0152 0.7609 % 0.0140 0.8375 £ 0.0111
Random Forest 0.9072 £ 0.0127 0.7555 £ 0.0148 0.7205 £ 0.0163 0.7376 £ 0.0150 0.8285 £ 0.0108
svC 0.8826 + 0.0132 0.7293 £ 0.0150 0.7060 £ 0.0158 0.7175 £ 0.0145 0.8090 £ 0.0113
XGBoost 0.9161 £ 0.0104 0.7362 £ 0.0141 0.7962 £ 0.0155 0.7650 £ 0.0136 0.8320 £ 0.0109
T
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FIGURE 8
Distribution of FIAD anomaly scores in relation to the target class.

of trees in the XGBoost classifier. Given the complexity of the
data, where company records are poorly separable and the dataset
contains hundreds of thousands of entries, achieving a balance
between interpretability and predictive performance is crucial.
The highest ROC-AUC value obtained is 0.9417, consistently
observed with 77 trees, indicating that this configuration provides
the best predictive power. However, several alternative solutions
with fewer trees achieve comparable performance, such as
0.9415 with 75 trees or 0.9413 with only 36 trees, suggesting
that it is possible to maintain a high level of accuracy while
improving model interpretability. The presence of models with
significantly fewer trees, such as those with 25 or even 16 trees
while still maintaining ROC-AUC values above 0.9400, highlights

Frontiersin Artificial Intelligence 13

the potential for reducing model complexity without a severe
drop in classification performance. At the same time, extreme
cases, such as configurations with 1 to 4 trees that exhibit lower
ROC-AUC values around 0.9367, confirm that reducing model
complexity too aggressively results in a loss of predictive power.
The optimization process successfully identifies a Pareto front of
solutions, demonstrating that even a slight increase in classification
accuracy can be meaningful given the scale of the dataset. In the
context of tax authorities, where even marginal improvements can
help reduce the number of unnecessary inspections.

The SHAP summary plots in Figure 11 illustrate the influence
of features on predicting the three target variables: the validity
of address, leader information, and founder information. These
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plots identify the key factors contributing to discrepancies in
the recorded data of the examined LEs. While the anomalous
scores, introduced as part of the best-performing DSSL model,
are not among the top-ranked features in terms of significance,
their inclusion nevertheless improved the model’s classification
performance metric F; by 1.1%. This improvement is noteworthy
given the scale of the dataset, which consists of approximately
one million records, highlighting the practical value of such
an enhancement.

For address validity, the most impactful feature is the linkage
of a company to an invalid entity. This suggests a strong
association between past misuse of an address and its current

Frontiersin Artificial Intelligence

reliability. Temporal factors, including the number of days the
system has tracked the entity and the time since its creation, also
influence. These variables likely capture behavioral patterns linked
to compliance, with newer or older entities exhibiting distinct risks
of irregularities (Hashmi et al., 2018). Other contributing factors,
such as the absence of tax declarations and regional mismatches
associated with leadership, may reflect discrepancies in operational
practices or deliberate attempts to evade regulations.

In predicting leader information validity, temporal variables
remain crucial, highlighting the persistent importance of an entity’s
lifecycle in identifying compliance risks. Factors such as leader
disqualification, high tax risk, and non-reporting strongly impact
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FIGURE 11
SHAP for (a) address, (b) leader, and (c) founder LE.

predictions, which aligns with behaviors typically observed in
problematic leadership practices. Regional mismatches and the
concentration of ownership and leadership in a single individual
further suggest vulnerabilities tied to operational scale and
organizational structure, potentially enabling unchecked decision-
making or reducing accountability (Liikanen et al., 2012).

For founder information validity, the analysis shows consistent
relevance of temporal and operational factors, including the time
since creation and the linkage of a company to an invalid
entity. Specific founder-related features, such as mismatches in
the founder’s registered region and their property registrations,
indicate potential red flags tied to founders’ activities. These factors
may point to intentional obfuscation of true operational details or
failures to maintain accurate records. Additionally, issues linked
to property and tax-related attributes reflect broader challenges
in maintaining accurate documentation, especially in smaller or
newer firms.

The interplay of organizational characteristics, temporal
attributes, and individual roles impact in predicting non-
compliance of companies key attributes. These findings are relevant
for improving tax authority inspection systems to minimize
unnecessary interventions.

5 Discussion

5.1 Key observations

The study presented several limitations and opportunities for
future work. Firstly, the dataset used was not entirely representative
of all LEs, as it focused only on younger companies with
fewer than 100 employees. This selection may have limited the
generalizability (Yaiprasert and Hidayanto, 2024) of the findings to
larger or more established companies. Future studies could expand
the dataset to include a broader range of entities, including those
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with a wider variety of ages and sizes, to better understand the
applicability of the methods across different sectors.

Another limitation was the class imbalance in the dataset.
While the imbalance was addressed through data filtration
techniques, the challenge of separating valid and invalid records
remained, especially for certain variables such as director and
founder information (Balcaen and Ooghe, 2006). Future work
could explore additional methods for handling imbalanced data,
such as advanced oversampling or synthetic data generation
techniques, to further improve model performance.

Additionally, the anomaly detection methods used, including
the Local Outlier Factor (LOF) and Isolation Forest, performed
poorly in this context. These methods, being unsupervised,
struggled to identify invalid addresses effectively. This highlights
the need for more robust anomaly detection techniques tailored
to the characteristics of the dataset in scenarios involving complex
relationships between the records. Future research could investigate
hybrid approaches that combine unsupervised anomaly detection
with supervised learning to improve performance (Nassif et al.,
2021).

The application of multi-objective optimization (NSGA-II)
enhances the practical applicability of the model in regulatory
settings. Oerly complex models can be difficult to interpret and
deploy in real-world compliance monitoring systems. By reducing
the number of trees, the model remains computationally efficient
and transparent, making it more suitable for practical use by
tax authorities. However, some limitations should be considered.
First, while Focal Loss addresses class imbalance effectively,
alternative approaches such as oversampling, undersampling,
or cost-sensitive learning (Fernandez et al, 2018) could be
explored. Second, NSGA-II, while effective, is computationally
expensive (Verma et al., 2021), especially when optimizing over
large search spaces. Future research could investigate alternative
metaheuristic optimization techniques or hybrid approaches
combining reinforcement learning with evolutionary strategies.
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Finally, the inclusion of anomaly scores, while it improved
model performance, was not among the most influential features
in the SHAP analysis. This indicates that the potential of
anomaly detection techniques might not be fully realized in this
context. Future studies could explore more sophisticated methods
for anomaly score generation and investigate how different
anomaly detection techniques impact model interpretability and
performance.

5.2 Future work

In future work, additional features could be incorporated
to further improve the model’s predictive power. For instance,
financial data related to taxes, such as detailed tax payment history
and discrepancies in reported taxes, could be useful in identifying
patterns of non-compliance (Doran, 2009). Information regarding
the size and type of the enterprise-whether it is a small or
large company, and its industry sector-could provide valuable
context for distinguishing between legitimate and potentially
fraudulent entities.

The analysis was restricted to newly registered firms (< 3 years
old), which are generally associated with higher compliance risks
and thus represent a relevant target group for tax monitoring.
While this focus allowed the study to capture early-stage anomalies
in company records, it also limits the direct applicability of the
results to older and larger firms. Validation on broader company
populations, as well as across different time periods or jurisdictions,
constitutes an important direction for future research to strengthen
the generalizability of the proposed approach.

The evaluation metrics in this study were reported using
ROC-AUC, Precision, Recall,
and Fl score, without explicit optimization of thresholds

standard measures such as
in relation to audit costs. However, in practice, the relative
importance of false positives and false negatives is determined
by policy priorities (Kang and Wu, 2023), as unnecessary
audits impose resource burdens while undetected fraudulent
firms result in revenue losses. Future work should therefore
threshold
for example by analyzing the Precision-Recall curve (Boyd

consider cost-sensitive evaluation and tuning,
et al, 2013) or employing weighted utility functions (Ko
et al, 2014). Such an extension would more directly align the
machine learning outputs with real-world audit decision-making
processes.

A promising direction for further research is the integration
of anomaly detection methods or ensemble strategies with the
DNN (Lei et al.,, 2022). Combining the DSSL model with XGBoost,
for instance, could leverage the high recall of the neural network
together with the interpretability and stability of tree-based models,
thereby improving both accuracy and transparency. In addition, the
application of model-agnostic interpretability tools such as SHAP
directly to the DSSL outputs (Parisineni and Pal, 2024), or the
use of surrogate models, may illustrate decision mechanisms while
preserving predictive performance.

Furthermore, additional details about affiliated parties,
particularly the family members of the founders, could enhance

the model. This could include information about the relationships
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between founders and their relatives, as well as the assets they
own, such as real estate. Expand the feature set to include financial
indicators [e.g., tax payment history (Brithne and Schanz, 2022),
VAT claims (Van Brederode, 2008), revenue consistency (Qian
and Li, 2013; Wright, 2016)], firm attributes (Salehi et al,
2022; Mathew et al., 2016; Alabdullah et al, 2021) (industry
sector, size, age) and relational data (ownership links, affiliated
parties). Financial and sectoral variables provide direct signals
of misreporting and improve the model’s capacity to distinguish
legitimate variance from anomalous behaviour. Relational features
and graph-derived metrics enable detection of complex schemes
such as shell-company networks or proxy ownership (Paligorova,
2010) that are not visible from single-entity records. Integrating
external sources (credit ratings, public records, media reports)
would further contextualize internal tax data and is expected
to increase predictive accuracy and reduce false positives in
audit targeting.

such as VAT
deductions, could be integrated into the model (Jenkins

Moreover, indicators related to taxation,
and Kuo, 2000). For example, a company with unusually
low VAT deductions,

by
non-compliance

compared  to standards

the
or

industry

or expectations set tax authority, may signal

These
comprehensive

potential fraudulent activities.

new data points would provide a more
view of an entity’s financial behavior and could further
the detect

fraudulent records.

strengthen model’s ability to inaccurate or

6 Conclusions

This study explored the application of ML techniques

to identify inaccuracies in company data using records
from the Federal Tax Service of Russia. Various approaches,
including supervised learning, anomaly detection, and semi-
supervised applied classify

and validate key information such as addresses, director

learning, were to effectively
details, and founder data. Key findings can be summarized as

it follows:

By refining the dataset to exclude older companies and
large organizations, the class balance was improved, which
subsequently enhanced the model’s accuracy.

The inclusion of FIAD scores led to a 1.2% increase in
classification accuracy, improving the model’s ability to
detect deviations.

included and

temporal factors, which played a key role in identifying

Key predictive features company age
compliance risks.

SHAP analysis revealed crucial features, such as regional
mismatches and anomalies in ownership structure, as primary
indicators of potential non-compliance.

DSSL model achieved the highest results with an AUC of
0.9303 and an F1-score of 0.7994.

XGBoost with NSGA-II optimized hyperparameters achieved

an AUC of 0.9417 using 77 trees.
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e The improved classification accuracy will assist tax authorities
in reducing unnecessary inspections and enhancing the
efficiency of tax compliance processes.
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