3 frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY
|. de Zarza,
University of Zaragoza, Spain

REVIEWED BY
Di Yang,

Morgan State University, United States
Zhongpan Zhu,

University of Shanghai for Science and
Technology, China

*CORRESPONDENCE
Mohamed Y. Selim
myoussef@iastate.edu

RECEIVED 20 July 2025
ACCEPTED 23 September 2025
PUBLISHED 15 October 2025

CITATION

Nazar AM, Selim MY, Gaffar A and Qiao D
(2025) Situational perception in distracted
driving: an agentic multi-modal LLM
framework. Front. Artif. Intell. 8:1669937.
doi: 10.3389/frai.2025.1669937

COPYRIGHT

© 2025 Nazar, Selim, Gaffar and Qiao. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiersin Artificial Intelligence

TYPE Original Research
PUBLISHED 15 October 2025
pol 10.3389/frai.2025.1669937

Situational perception in
distracted driving: an agentic
multi-modal LLM framework

Ahmad M. Nazar, Mohamed Y. Selim*, Ashraf Gaffar and
Daji Qiao

Department of Electrical and Computer Engineering, lowa State University, Ames, IA, United States

Introduction: Distracted driving is a significant public safety concern, causing
thousands of accidents annually. While most driver assistance systems
emphasize distraction detection, they fail to deliver real-time environmental
perception and context-aware interventions.

Methods: We propose a large language model (LLM)-driven intervention
framework that assumes distraction is pre-detected and dynamically integrates
camera and GPS inputs to generate verbal driver alerts. The framework employs
an agentic design, where specialized tools handle object detection, speed
limits, live traffic conditions, and weather data. Structured orchestration ensures
information is fused efficiently, balancing accuracy with conciseness to avoid
overwhelming the driver.

Results: Evaluation of the system demonstrates high performance, with
semantic intervention correctness of 85.7% and an average response latency
of 1.74 s. Compared to conventional ML-based driver assistance approaches,
our framework effectively synthesizes multi-modal environmental data and
produces actionable alerts in real time.

Discussion/conclusion: These findings highlight the potential of LLM-driven,
multi-modal reasoning for distracted driving intervention. Integrating specialized
agents and structured orchestration improves situational awareness, maintains
concise communication, and meets real-time safety requirements. This proof-
of-concept establishes a pathway for deploying intelligent, Al-driven driver
support systems in safety-critical applications.

KEYWORDS

LLM, distracted driving, multi-modal, LLM agents, data-driven, situational awareness,
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1 Introduction

Distracted driving is a critical public safety issue, causing approximately eight deaths
and over 1,000 injuries daily in the United States (The Law Office of Melinda J. Helbock
A.P.C., 2024). Despite advancements in driver technologies, distraction-related crashes
persist due to the increased use of mobile devices, and other cognitive distractions.
While conventional monitoring systems can detect distraction, they often lack proactive
intervention mechanisms (National Center for Statistics and Analysis, 2020; World Health
Organization, 2015).

Traditional machine learning (ML)-based driver assistance systems mainly detect
visual distractions through in-cabin monitoring using vision-based models. However,
they often fail to account for external environmental factors, limiting their ability to
generate context-aware interventions. Conventional ML models rely on static datasets and
predefined heuristics, making it challenging to integrate real-time multi-modal data such
as object detection and road conditions (Cui et al., 2024).
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In contrast, large language model [large language models
(LLMs)] provide a more adaptive approach to real-time decision-
making by integrating an agentic reasoning framework with
structured prompt engineering. They dynamically query external
APIs and synthesize sensor inputs to generate contextually relevant
responses (Jin et al.,, 2024; Gu et al.,, 2023). These models have
shown potential as decision-making evaluators while effectively
processing multi-modal data for situational awareness (Gu et al.,
2025).

LLM-driven frameworks are also effective in autonomous
driving, where multi-modal architectures improve situational
awareness and response time. LLMS’ ability to process multi-modal
data ensures a more comprehensive situational awareness. For
instance, Waymo’s model fuses multi-modal data for real-time
decision-making, outperforming traditional systems in complex
tasks and mimicking human-like driving behavior with contextual
reasoning (Hwang et al., 2024; Kim and Park, 2025; Fu et al., 2024;
Zhou et al., 2024).

Beyond perception, LLMs enable context-aware driving actions
through natural language commands, enhancing environmental
awareness and driver reaction time (Nguyen et al, 2024;
Zhu et al., 2025). Structured LLM orchestration using agentic
frameworks ensures reliable, context-grounded reasoning for real-
time decision-making in intelligent driver assistance systems
(Talebirad and Nadiri, 2023; Jin et al., 2024).

This work introduces an LLM-driven intervention framework
for distracted driving, emphasizing real-time environmental
perception and driver re-engagement after distraction detection.
The system dynamically activates an LLM to invoke specialized
agents for object detection, retrieve speed limits, traffic conditions,
and weather awareness, and generate interventions according to
structured tasks.
of this
development of an LLM-driven intervention framework that

The primary contributions work include the
dynamically integrates awareness agents to deliver real-time
driver alerts post-distraction detection. The framework features
a multi-modal environmental perception pipeline that combines
YOLO-based vision analysis, speed limit retrieval, live traffic
monitoring, and weather assessment. The system employs
a structured LLM orchestration framework supported by
Llamalndex. The framework achieved 85.3% semantic correctness
and a 1.74s response time, meeting the sub-2s latency requirement
for practical driver assistance.

The paper is organized as follows: Section 2.1 provides an
overview of the system architecture. Section 2.2 describes the LLM
orchestration methodology. Section 3 presents the evaluation and
results, followed by case studies in Section 3.7. Finally, Section 4
discusses conclusions and future work.

2 Materials and methods

2.1 Framework overview

The proposed framework, as shown in Figure 1, is activated
upon detecting a distracted driver trigger signal, gathering real-time
multi-modal data from a GPS module and a camera. It employs
an LLM-driven decision pipeline to integrate perception, speed
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limit awareness, weather analysis, and traffic congestion data. At
its core, the system utilizes an LLM-orchestrated framework to
invoke awareness agents based on the contextual driving scenario
dynamically. Upon receiving sensor data, the LLM evaluates
the environmental context and identifies necessary data inputs,
utilizing YOLO-based object detection Khanam and Hussain
(2024) and external APIs such as HERE?, OpenMeteoz, and
OpenStreetMap Overpass®. The system dynamically structures the
extracted data to generate context-aware driver interventions.

Upon detecting driver inattention, the system collects GPS
coordinates, speed, and driving scene images. After preprocessing
and structuring this data into a task-oriented prompt, the LLM
initiates decision-making. The processed inputs are sent to the
agent evaluator, which selects appropriate agents based on data
completeness and context. This process iterates as needed to gather
further contextual information.

Once all relevant data is gathered, the LLM synthesizes the
information into a concise, contextually appropriate interventions
alert. The final intervention is delivered as clear auditory feedback
to help the driver regain focus.

2.1.1 Datasets

To ensure robust detection of vehicles, pedestrians, road signs,
and environmental hazards, we utilize two datasets: DeepSense6G
(Scenarios 36-39) (Charan et al., 2022; Alkhateeb et al., 2023), and
the LISA traffic sign dataset (Mogelmose et al., 2012).

The DeepSense6G dataset is a
captured from an outdoor real-world vehicle-to-vehicle (V2V)

multi-modal  dataset
communications environment, and includes time-synchronized
camera, GPS, LiDAR, and radar data from various driving scenarios
with diverse characteristics. We explicitly frame our study as a
proof-of-concept, while our use of real-world multimodal V2V
datasets provides a realistic proxy for deployment conditions.
Our system uses camera images and GPS data for road condition
analysis. The LISA traffic dataset is used to train a fine-tuned
YOLOvIl model specializing in recognizing road symbols
common to USA roadways.

2.1.2 Data acquisition

After detecting a distracted driver signal, the system
automatically gathers data from GPS and camera sensors.
The GPS module records real-time location coordinates, while the
onboard camera captures high-resolution roadway images, which
are resized to (640 x 640). The GPS data is preprocessed to extract
latitude, longitude, and speed. Although real-world deployment
would involve continuous sensor input from an active vehicle, our
evaluation uses extracted data from the aforementioned datasets to
ensure consistency during testing.

1 HERE API: https://www.here.com/platform/map-data.
2 OpenMeteo API: https://open-meteo.com/en/docs.
3 OpenStreetMap API: https://wiki.openstreetmap.org/wiki/Overpass_API.
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FIGURE 1

Overview of the proposed framework with the LLM’s agent orchestration process, data acquisition pipeline, multi-modal intervention generation, and

an agentic evaluator and invoker.

2.1.3 Grounding and prompt engineering

The system employs structured agent invocation and
contextual tracking to ensure factual accuracy and contextual
relevance, guided by carefully designed prompts. The LLM is
specifically configured to utilize only data from designated agents,
thereby minimizing speculative or hallucinated responses.

Preprocessed inputs are formatted within an instructional
prompt template that clearly defines the LLM’s role as an assistant
invoked only upon detecting distracted driving events. This prompt
explicitly mandates using available awareness agents to extract
data from the environment and synthesize responses based solely
on verified outputs. For instance, the template enforces that
the model must not fabricate content if an agent (e.g., traffic
or speed limit awareness agent) does not return information.
This instructional template also enforces the maximum number
of times (once) an agent is invoked to eliminate redundant or
recursive agent calls. Additionally, it requires the LLM to provide a
structured explanation of its reasoning via bullet points, enforcing
transparency and traceability of decisions.

This structured prompt ensures the LLM follows a strict
reasoning sequence: assess object detections, selectively invoke
agents (at most once) as needed, and synthesize a concise, alert-style
summary grounded entirely in retrieved sensor or API outputs.
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By defining functional expectations and behavioral constraints, the
grounding strategy constrains the generative space of the model,
significantly reducing hallucination and ensuring the intervention
remains reliable, explainable, and situationally appropriate.

2.1.4 Awareness agents
The agents
specializing in environmental perception to maintain situational

framework integrates multiple awareness
accuracy. These agents work collaboratively to process multi-
modal data, minimizing redundant computations. The system
dynamically invokes the required agents based on detected driving
conditions. The awareness agents cover two significant aspects:

Road Perception and Weather Awareness.

2.1.4.1 Road perception awareness

This multi-modal system fuses YOLO-based object detection
with geospatial data to identify key road elements, including
vehicles, pedestrians, regulatory signs, and hazards. Speed limit
awareness is achieved through dual-mode detection: using YOLO
for physical signs and querying OpenStreetMap when signage is not
visible. The system cross-references speed data with the vehicle’s
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GPS-derived speed, adjusting intervention severity based on road
and weather conditions.

2.1.4.2 Weather awareness

Using the Open-Meteo API, the system retrieves real-time
weather data to assess driving risks, such as reduced visibility,
slippery roads, or high winds.

2.1.5 LLM awareness orchestration framework

The LLM-driven agent orchestration dynamically selects
and executes relevant awareness agents based on the detected
distraction. The LLM assesses which data is missing and instructs
the agent evaluator to call the relevant agent. The evaluator
prioritizes agents based on their relevance to the current context,
ensuring accurate data retrieval.

The LLM synthesizes a structured intervention upon gathering
the necessary data, ensuring that responses remain grounded and
factually accurate. This dynamic process allows the system to adapt
to changing road conditions, providing precise and situationally
relevant interventions. Once the system compiles the intervention,
it delivers the response via a text-to-speech mechanism to verbally
alert the driver, ensuring immediate and clear communication.

2.2 LLM awareness orchestration
framework

A central innovation of this system is utilizing the LLM
as the core reasoning engine, synthesizing multi-modal inputs
from object detection, traffic sign recognition, weather conditions,
and real-time traffic data. Llamalndex is an integration layer,
setting up the structured space to interact with dedicated agents.
However, the primary evaluation, assessment, and decision-making
are driven by the LLM itself. The LLM dynamically identifies
missing information in the current environmental context and
instructs the agent evaluator to invoke the appropriate agent,
leveraging task descriptions provided as metadata to both the LLM
and the evaluator.

2.2.1 LLM-driven decision framework

The system follows a structured instruction template to ensure
a systematic decision-making process. The LLM initially assesses
the available environmental data and identifies any missing
information needed to make a contextually relevant decision.
The agent evaluator then takes the required inputs and calls the
corresponding agent to retrieve the missing data.

The process begins when the LLM receives preprocessed GPS
and image data. The LLM first evaluates the completeness of the
contexts by checking for missing or ambiguous information. For
instance, if the LLM detects that a speed limit is unavailable from
visual inputs (e.g., YOLO not sensing a speed limit), it flags the
absence of speed data.

Once a gap is identified, the LLM determines which specific
data is required and instructs the agent evaluator to invoke the
appropriate agent. The evaluator then assesses the available agents
and selects the most likely to fill the data gap. For example, in the
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case of missing speed limit data, the evaluator calls the speed limit
awareness agent, which queries OpenStreetMap to retrieve local
speed limits.

To ensure grounding and mitigate against redundant or
unnecessary agent calls, our framework enforces an instruction-
grounded template that conditions the LLM to invoke agents
selectively. Agent calls are not arbitrarily triggered; rather, they are
embedded within a structured reasoning workflow that encourages
the LLM to synthesize available perceptual cues (e.g., from YOLO)
before invoking external sources. While agent queries may still
occur even if partial data is present, this is intentional: agents
are used as supplementary sources when available to enrich the
system’s situational awareness, not merely as last-resort fallbacks.
For example, OpenStreetMap may be queried to cross-check speed
limits even if a sign is detected, enhancing robustness against
visual occlusions or detection failures. This optional-but-informed
invocation policy helps balance reliability and completeness.

The agent evaluator follows a priority-based decision tree
where agents are ranked according to their ability to provide
reliable data for a given context. If the initial agent does not
return adequate information or the data remains incomplete,
the evaluator may attempt secondary agents or cross-reference
outputs. This validation ensures robustness and contextual
accuracy in the generated response. Once collected, the LLM
synthesizes these contexts, integrating object detections, traffic
signs, weather conditions, and speed regulations to determine
the optimal intervention strategy. This dynamic agent selection
process ensures that the system efficiently retrieves all relevant and
necessary contexts.

Unlike conventional decision-making models, the LLM
operates within a constrained reasoning framework where each
decision is grounded in real-time environmental inputs. This
approach ensures that every response is data-driven, reducing
reliance on assumptions or speculative reasoning. The structured
multi-step process prevents hallucinations by requiring the LLM
to rely exclusively on retrieved agent outputs, ensuring that all
interventions are factually supported.

2.2.2 Agent implementation

Each agent is designed and implemented according to the
relevant functionality, and their invocation logic is directly handled
within the framework. The LLM evaluates the context and
determines the needed data. If data is missing or incomplete, the
LLM instructs the agent evaluator to invoke the appropriate agent
to retrieve relevant data. The framework includes four primary
agents with distinct tasks:

1. YOLO Awareness Agent processes onboard camera images to
detect road elements, including obstacles, pedestrians, vehicles,
speed limits, stop signs, and other regulatory signage. The
model is fine-tuned using augmented training data, with
augmentations such as random rotations, horizontal flips,
brightness/contrast adjustments, and added Gaussian noise,
ensuring robustness across varying perceived conditions. After
detection, this agent estimates object proximity and density by
analyzing dynamic object classes, such as vehicles and cyclists,
by measuring pixel-wise distances and bounding box overlaps. If
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the number of detected dynamic objects exceeds a threshold and
spatial proximity falls below a predefined distance margin, the
system flags the environment congested, enabling the evaluator
to infer traffic presence and busy road conditions.

2. Speed Limit Awareness Agent queries OpenStreetMap to retrieve
GPS-based legal speed limits, complementing YOLO’s traffic
sign recognition by providing speed regulations when physical
signs are not detected. This agent confirms whether the vehicle
is currently over the speed limit or safely within its limits

3. Traffic Awareness Agent leverages the HERE Traffic API to assess
real-time congestion levels, identifying potential slowdowns due
to traffic conditions.

4. Weather Awareness Agent retrieves meteorological data

from Open-Meteo, incorporating weather conditions
into the decision-making process to ensure safe driving

recommendations under varying environmental conditions.

Each agent in the system operates independently yet in
coordination, contributing to a dynamic and context-aware
response mechanism. The primary mode of perception and
reasoning is driven by the onboard YOLO-based vision awareness
agent, which handles core tasks such as obstacle detection,
traffic sign recognition, and environmental layout understanding.
External APIs are invoked to supplement the YOLO awareness
agent and serve as complementary data sources rather than critical
dependencies. For example, suppose a speed limit sign is not
detected visually due to occlusion or noise. In that case, the
LLM prompts the agent evaluator to query OpenStreetMap to
supplement the missing contextual information. Similarly, traffic
congestion detected via dense bounding box overlap by YOLO
can be further contextualized by querying HERE to determine the
underlying cause (e.g., construction, accidents).

This tiered design ensures robustness: even if API endpoints are
temporarily inaccessible, the system can still generate meaningful
interventions based on YOLO detections and past context.
Thus, the framework balances autonomy and augmentation to
ensure real-time operation with graceful degradation in resource-
constrained or disconnected environments.

2.2.3 Contextual reasoning and grounded
decision making

A critical aspect of the LLM’s operation is ensuring that all
generated interventions remain grounded in real-time captured
data rather than speculative assumptions. The LLM achieves this by
dynamically incorporating agent outputs into its decision-making
process. The structured instruction template explicitly directs the
LLM to invoke necessary agents first, extract relevant data, and only
then synthesize an intervention.

Using agent outputs as contextual anchors, the LLM ensures
that every response accurately reflects the driving environment.
For example, if the weather API detects fog and the YOLO
model identifies a pedestrian near a crosswalk, the LLM explicitly
references both risk factors in its generated intervention. This
structured methodology prevents ambiguous recommendations
and reinforces fact-based decision-making.

Strict adherence to function signatures within LlamaIndex also
ensures that agent calls remain valid and correctly formatted. The
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LLM is constrained to operating only within its agents, eliminating
the risk of extraneous or hallucinated responses. In cases where
agent outputs are unavailable, the system gracefully handles missing
data by adjusting its reasoning process or prioritizing other
environmental factors.

2.2.4 Dynamic reasoning and alert generation

Once the necessary data is extracted, the LLM synthesizes
a structured intervention consisting of three components: an
environmental summary, a risk factor analysis, and a prioritized
set of driver instructions. The environmental summary provides a
concise overview of detected conditions. The risk factor analysis
highlights specific hazards, such as excessive speed, inclement
weather, or detected obstacles. Finally, the intervention delivers
clear corrective actions.

The LLM dynamically adjusts the severity and urgency of alerts
based on the detected risk level. Minor risks, such as light rain or
moderate congestion, result in advisory messages. In contrast, high-
risk situations such as speeding and low-visibility, trigger high-
priority safety warnings. The resulting intervention is an auditory
alert vocalized using text-to-speech systems.

Furthermore, the system updates interventions in real-time
to reflect changing road conditions. If a previously detected
risk factor is no longer present, the intervention is modified to
prevent unnecessary driver stress. This adaptability distinguishes
the framework from static rule-based warning systems, enhancing
its effectiveness in promoting driver safety.

3 Results

Evaluating our framework involves assessing its efficiency
in distracted driving scenarios, focusing on generating concise,
accurate, real-time responses. We consider these performance
indicators: alert correctness (AC), response latency, verbosity, false
alarm, and missed detection rates.

3.1 Alert correctness

AC measures how accurately the system synthesizes multi-
modal data into meaningful driver interventions. AC evaluates
the retrieved data’s factual accuracy and the system’s ability to
generate contextually relevant alerts. An alert is correct if it
accurately reflects the driving environment’s state based on agent
outputs, ensuring that generated alerts are devoid of hallucinations
and misinformation.

The correctness score is a weighted combination of semantic
similarity and factual accuracy. Let E, and E; represent the
embedding vectors of the system’s generated intervention and the
ground-truth environmental state with F; denoting the factual
accuracy score. The overall correctness score is defined as:

Correctness = w cos (Eai, Eti) + (1 — w)Fy, (1)
where the weighting parameter 0 < w < 1 balances factual

accuracy and contextual relevance. This evaluation compares
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system-generated interventions with ground-truth conditions
across diverse driving scenarios. A high correctness score indicates
effective integration of agent-derived data, while a lower score
highlights low confidence in the intervention.

3.2 Latency of response generation

In real-time distracted driving intervention, measuring the
time from distraction detection to alert issuance is crucial. The
response latency metric quantifies how quickly the system processes
environmental data and delivers driver alerts. Unlike conventional
latency optimization, this evaluation examines how different
modality configurations affect the overall response time rather than
fine-tuning individual agent execution.

The total response latency, Tresponses is calculated as the sum of
processing times across all stages:

Tresponse = Tum + Tagents + TaplI-calls + Tdeliverya (2)

where Tyyym is the time taken by the LLM to process the distraction
signal and initiate agent calls, Tagents represents the execution time
of the invoked agents, Tspy_calls represents the time taken to receive
a response from API calls, and Tyelivery is the time to generate and
transmit the intervention to the driver. Each agent’s external API
invocation and response acknowledgment expended ~ 10 — 15ms.

Empirical studies indicate that a perception-reaction time
of 2.5 seconds covers over 90% of drivers during unexpected
braking scenarios (Federal Highway Administration Research
and Technology, 2004). Therefore, setting Tmax = 2 seconds
ensures timely interventions, maintaining the system’s effectiveness
in mitigating driving risks. Exceeding this threshold may delay
responses and reduce safety benefits.

3.3 Response efficiency and verbosity
control

Effective intervention systems require clear and concise
alerts, especially in safety-critical contexts. Controlling response
verbosity ensures that interventions are easily understandable
and actionable. Overly verbose responses can overwhelm drivers,
delaying vital information and increasing cognitive load. To
balance informativeness with brevity, the word count metric
indicates response efficiency. Structured agent execution constrains
verbosity, grounding responses within context and avoiding
speculative reasoning.

The average word count per intervention, Whesponse> across
different agent configurations is calculated as:

Wresponse = Wim + Wagentsa (3)

where Wipym represents the words generated by the LLM after
synthesizing agent outputs, and Wgents accounts for structured
information from agents. Although no strict word limit for driver
alerts exists, concise communication is crucial for safety. Setting
Whax =
interventions remain clear and concise. Exceeding this threshold

95 words serves as a practical guideline, ensuring
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hinders driver attentiveness, as excessive verbosity is impractical
for real-time assistance. Standard text-to-speech systems take
approximately 22 seconds to vocalize 95 words. To enhance alert
effectiveness, the word “ALERT!” is prepended to each response,
taking an additional ~ 253 ms to vocalize, ensuring immediate
driver attention.

3.4 False alarm and missed detection
analysis

To comprehensively evaluate the system’s reliability, we
assessed the rates of false alarms (incorrect alerts) and missed
detections (failure to recognize hazards) across all configurations.
These metrics help determine the practical viability of real-time
this system as excessive false alarms and missed detections can
compromise driving safety.

The false alarm rate is the proportion of generated alerts that
did not correspond to any verified driving hazard. The missed
detection rate was determined as the proportion of unrecognized
hazards among all ground-truth danger instances.

In our framework, hallucinations are defined as plausible-
sounding but ungrounded LLM outputs that either fabricate
environmental hazards not supported by any active agent (false
alarms) or omit critical information that was correctly retrieved
by an agent (missed detections). We trace each system-generated
response back to its contributing agent outputs to assess this. If any
part of the explanation cannot be mapped to a sensor stream or API
response, it is flagged as a hallucination.

Our structured prompt template explicitly instructs the LLM
to synthesize outputs strictly from agent data, not open-ended
language priors. This grounding strategy curbs the generative
model’s tendency to extrapolate, ensuring that responses remain in
a verified environmental context.

3.5 Evaluation setup

We utilized the lightweight version of the LLaMa3.2-1B LLM
to evaluate the frameworKs performance, deployed on an A40-
8Q GPU with 8GB of VRAM and 16GB of RAM. The LLM
(LLaMa3.2-1B) required approximately 1.8GB of memory. On
average, the multi-modal data processed per inference consisted
of ~ 110 tokens (80 words), including sensor inputs and agent
outputs. We consider three baseline configurations to evaluate
the impact of structured orchestration and agent integration.
First, we use a pretrained LLaMA3.2-1B model (V-LLaMA)
with unrestricted access to all agents but without structured
prompts or task definitions (V-LLaMA w/o agent descriptions),
serving as a baseline for ungrounded reasoning and undefined
agent invocation. Second, we include a variant (V-LLaMA w/
agent descriptions) incorporating agent descriptions but omitting
structured prompt templates, isolating the effect of instruction
and task grounding. Third, we evaluate LLaMA3.2-11B-Vision
(V-MM-LLaMA), a state-of-the-art multi-modal LLM capable
of visual input processing, to assess whether a general-purpose
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vision-enabled model can match the performance of our domain-
specific, agent-based framework in post-distraction intervention
scenarios. These baselines allow us to analyze the independent
and combined effects of agent access, descriptive grounding,
and structured instruction prompting on response accuracy, task
relevance, and overall intervention quality. Finally, we analyze the
effect on including various combinations of agents throughout
the framework when prompt grounding and agent descriptions
are available.

A comprehensive evaluation of the proposed LLM-orchestrated
intervention system was conducted using a diverse, multi-modal
dataset to assess its correctness in generating driver interventions
and efficiency in real-time operation. Our evaluation involved
testing the system across seven distinct modality configurations to
examine its ability to leverage awareness agents. We curated 100
diverse driving scenarios with varied conditions, producing 700
evaluated samples. Human-generated ground-truth interventions
were meticulously crafted for each configuration to ensure rigorous
testing. Additionally, we developed 35 validation Q&A pairs per
configuration, totaling 245 instances, to probe the system’s ability
to generate appropriate interventions.

Regarding implementation feasibility, the proposed system is
designed for onboard deployment within a vehicle rather than
relying on remote processing. To ensure lightweight and efficient
real-time operation, we employ both the lightweight versions of
LLaMa and YOLO (total of <3 GB of RAM). The multi-modal
LLM is used as a multi-modal baseline, however, it is inefficient in
deployment as this model is resource intensive, requiring at least
16GB of memory with a highly capable GPU. These capabilities may
not always be available to vehicles.

3.6 Numerical results

The system was evaluated under seven combinations, varying
the YOLO awareness (Y), the speed (S), traffic (T), and weather (W)
awareness agents.

3.6.1 Ablation study and correctness

To assess the contribution of each module in our framework, we
conducted an ablation study across varying agent configurations,
as summarized in Table 1. Results show that multi-agent setups
consistently outperform single-agent configurations, confirming
the value of diverse environmental inputs. Within individual
agents, integrating fine-tuned YOLO (Y) to recognize traffic signs
and speed limits, objects, and infer traffic conditions achieved
the highest correctness scores of 81.2%. Integrating only the
weather agent (W) induced the worst performance, as a distracted
driving environment cannot be fully deduced from general weather
information independently.

Among dual combination agents, the speed awareness module
(Y+S) delivered the highest correctness at 82.2%, followed by traffic
awareness (Y+T) at 82.0%, and weather awareness (Y+W) at 81.8%.
When including three agents, including speed, traffic awareness
with visual awareness (Y+S+T), achieved the highest correctness
scores (84.4%) as the strongest environmental information is
included to generate a reasoned and actionable alert. The
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full configuration (Y+S+T+W) achieved the highest correctness
of 85.7%, demonstrating the effectiveness of fusing real-time
perception, regulatory data, and external conditions to support
robust intervention decisions.

We further compare our approach to baseline LLMs with
varying degrees of agent access and prompting structure. V-
LLaMA with agents but no agent descriptions achieved 68.3%
correctness, highlighting the difficulty of effective reasoning
without contextual cues. Providing agent descriptions raised
performance to 73.0%, while introducing structured instruction
templates and role definitions as core to our agentic framework
further increased correctness by ensuring concise and task-aligned
responses. The vision-enabled baseline V-MM-LLaMA achieved
75.8%. Despite leveraging multi-modal vision, this setup lacked
real-time grounding and structured interaction, reducing clarity,
increasing latency, and frequent off-topic reasoning. Additionally,
the multi-modality of this model was tailored toward general
visual summary tasks and not accurate object detection and
classification tasks.

3.6.2 Inference latency

Ensuring rapid response times is critical to maintaining driver
attention. Our framework consistently demonstrates sub-2-second
response times across all configurations. As additional modalities
are introduced, the marginal increase in inference latency is an
expected trade-off, as retrieving and processing multiple sensor
modalities necessitates additional agent invocations. However, even
the most computationally intensive case (Y+S+T+W) remains
within the real-time threshold (1.74 s). With perception, the YOLO-
only configuration is the fastest (1.42 s).

The V-LLaMA baselines exhibit prohibitively high inference
latency, consistently exceeding 3.0 seconds and reaching over 4.5
seconds across all configurations, making them unsuitable for
real-time distracted driving intervention. V-Multi-modal LLaMA,
despite its vision capability, incurs even greater delays, with average
response times exceeding 8.3 seconds. These delays stem from the
absence of structured agent definitions, reliance on unconstrained
reasoning over large token contexts, and the overhead of internal
visual encoding. Unlike our agentic framework, which delegates
targeted tasks to lightweight modules with minimal overhead, large
multi-modal LLMs process the entire scene holistically, resulting in
substantial computational burden and longer response generation
times. Additionally, such models require powerful GPUs and
extensive memory, limiting their feasibility for deployment in
resource-constrained or edge-based driver assistance systems.

3.6.3 Response efficiency and verbosity control

An optimal intervention must be informative yet concise,
avoiding excessive verbiage that could overwhelm the driver while
still conveying necessary corrective actions. The agent-integrated
model maintains a controlled response length, averaging 64-80
words across all configurations, indicating that agent-based with
structured prompt templates and reasoning effectively structures
response synthesis without unnecessary elaboration.

By contrast, the baseline V-LLaMA and V-MM-LLaMa models
produce significantly longer responses, with word counts exceeding
100. This verbosity is attributed to unconstrained generation
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TABLE 1 Ablation study results for different agent combinations.

10.3389/frai.2025.1669937

Configuration AC (%) Latency (s) Verbosity (# of words) False alarm rate (%) Missed detection rate (%)
V-LLaMA w/o agent descriptions 68.3 >4.5 130+ 12.1 12.5
V-LLaMA w/ agent descriptions 73.0 >3.0 100+ 12.1 9.8
V-MM-LLaMA w/o agents 75.8 >8.3 120+ 15.9 13.3
Y 81.2 1.42 58 8.7 6.4
S 67.2 1.12 33 9.3 7.1
T 62.7 1.20 50 10.5 8.3
W 60.4 1.27 47 11.0 8.9
Y+S 82.2 1.51 70 6.8 4.9
Y+T 82.0 1.54 66 7.1 5.4
Y+W 81.8 1.60 64 7.5 5.7
Y+S+T 84.4 1.65 74 53 3.7
Y+S+W 83.3 1.62 65 57 4.0
Y+T+W 82.8 1.62 63 6.0 4.3
Y+S+T+W 86.1 1.74 80 4.2 3.1

without structured agent guidance, causing an over-explanation
of conditions or speculative reasoning. Excessive verbosity
increases cognitive load and contributes to longer inference times,
compounding the delay in delivering timely interventions.

3.6.4 False alarm and missed detection analysis

The analysis revealed that the multi-agent integrated setup
(Y+S+T+W) achieved the lowest false alarm rate of 4.2% and a
missed detection rate of 3.1%, yielding a combined hallucination-
adjacent error rate of 7.3%. This analysis indicates a well-balanced
performance in generating timely and relevant alerts. In contrast,
single-agent configurations exhibited higher rates; for instance, the
YOLO-only setup resulted in 8.7% false alarms and 6.4% missed
detections. Unstructured baselines such as V-LLaMA without agent
descriptions and V-MM-LLaMA produced significantly higher
error rates, ranging from 24.6% to 29.2%.

Notably, the grounded configuration (Y+S+T+W) achieved
the highest correctness (86.1%) and minimized hallucination-
prone outputs. This result reinforces the effectiveness of our
agent orchestration and prompt design, especially in contrast
with V-MM-LLaMA and V-LLaMA variants, where the absence
of grounding and structured instruction led to overly verbose,
speculative, or misaligned outputs. These results substantiate
the role of agent grounding in enhancing factual accuracy,
minimizing misfires, and maintaining safety-critical reliability in
post-distraction driver interventions.

3.7 Case studies

To showcase the frameworK’s effectiveness under diverse real-
world conditions, we demonstrate its performance across three
distinct driving environments: clear, busy, and obscure conditions.
Each scenario presents unique challenges that test the system’s
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ability to synthesize multi-modal environmental data and generate
contextually appropriate interventions.

3.7.1 Clear conditions

In clear driving conditions, where visibility is unobstructed
with minimal environmental disruptions, the system primarily
focuses on maintaining compliance with traffic regulations and
reinforcing situational awareness. In the scenario shown in
Figure 2a, the system successfully detected a vehicle positioned
perpendicularly to the roadway, exiting a parking lot. The response
effectively balanced speed compliance, proximity awareness, and
real-time traffic monitoring.

The system verified that the vehicle was traveling within the
legal speed limit and reassured the driver to maintain their current
speed. On recognizing a vehicle to the right, the system issued
a cautionary advisory, instructing the driver to remain alert and
slow down if necessary. Additionally, the system preemptively
warned on intervening with the emergency braking mechanism
in case of an abrupt lane change toward the detected vehicle.
The structured response ensures that only relevant insights are
communicated, reinforcing safe driving behavior while minimizing
cognitive overload.

3.7.2 Busy conditions

High-traffic environments introduce dynamic risks that require
the system to balance situational awareness, regulatory compliance,
and proactive intervention. The scenario shown in Figure 2b
illustrates the system’s ability to generate adaptive responses suited
for complex road conditions.

The system first determined that the driver was traveling below
the posted speed limit. On detecting an upcoming traffic light, the
system advised the driver to stay vigilant and be prepared to slow
down for a light change.
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FIGURE 2

Case study showing system responses in different driving conditions. (a) Speed compliance and minor congestion. (b) Signal and traffic monitoring.

(c) Violation detection in low visibility.

C.

Beyond speed awareness, the system detected multiple vehicles
in the surrounding environment, advising the driver to remain
aware of nearby cars. The system recognized the potential for
sudden lane changes and preemptively warned the driver to
anticipate movement from nearby vehicles. Additionally, the
system identified and incorporated real-time congestion analysis,
identifying moderate traffic density with scattered vehicles. The
response provided a specific recommendation, instructing the
driver to remain within their lane to avoid a vehicle in their
blind spot.

3.7.3 Obscure conditions

Nighttime driving and low-visibility environments pose
challenges for visual perception systems due to limited lighting
and occluded road elements. As shown in Figure 2¢, the driver
navigates an underpass at night. In low-visibility scenarios,
structured regulatory enforcement becomes crucial. Despite these
conditions, the system successfully processed the data to generate a
meaningful intervention. The system accurately identified a speed
limit violation that exceeded the limit by 8.4 km/h and issued a
speed reduction advisory.

Additionally, the system provided a proximity alert regarding
vehicles near a no-entry sign detected to the right. Although
the detection process resulted in a conflict between a no-entry
sign and a traffic light, the system maintained high contextual
accuracy by prioritizing nearby vehicle positioning over ambiguous
signage interpretations.
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The system also detected an increase in traffic density within the
area. Recognizing the potential for sudden stops, the intervention
advised the driver to reduce speed and remain prepared for abrupt
braking events.

4 Discussion
4.1 Challenges

While the proposed LLM-agentic orchestration framework
demonstrates strong performance across multiple metrics, several
technical challenges must be addressed for robust deployment in
real-world vehicular systems.

4.1.1 Edge deployment and resource constraints

Despite using compressed models (YOLOv11 and LLaMA3.2-
1B), real-time orchestration of multi-modal agents imposes
non-trivial computational loads. Running inference pipelines
concurrently for object detection, LLM reasoning, and
external API queries requires efficient scheduling on low-
power vehicle-grade edge processors (e.g., NVIDIA Jetson,
Qualcomm Snapdragon Ride). Balancing response latency
and power consumption remains a critical bottleneck,
particularly under high sensor input frequency or multi-agent
invocation chains.
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4.1.2 Dependency on external APIs and network
latency

The proposed framework leverages external APIs to
supplement perception gaps and enhance intervention accuracy.
While these agents significantly enrich contextual awareness,
their effectiveness depends on stable and low-latency internet
connectivity. In real-world driving scenarios, particularly in rural,
underground, or high-interference zones, API access may be
delayed or disrupted entirely due to network instability, limited
bandwidth, or data plan restrictions.

To mitigate such issues, the framework prioritizes local
perception through the YOLO agent, which serves as the primary
and default sensing mechanism. APIs are invoked only when
the LLM identifies ambiguity or missing environmental context.
For example, the system only calls corresponding agents if speed
limit signs are not visually detected or traffic density patterns are
unclear. This supplementary action ensures graceful degradation:
even without external data, the system continues to function
autonomously based on local sensor cues.

Nevertheless, reliance on API calls introduces challenges such
as variable latency, rate limiting, or complete outages. These
limitations necessitate the design of robust fallback strategies,
including: (1) caching previously queried results, (2) preloading
map and weather data in known high-risk areas, (3) integrating
lightweight onboard models as surrogates for API agents,
and (4) adopting hybrid edge-cloud inference pipelines. These
enhancements ensure the system maintains situational awareness,
minimizes response latency, and sustains reliable performance in
diverse deployment environments.

4.1.3 Agent invocation logic and redundancy

The agent evaluator follows a rule-based invocation logic,
which, while modular, lacks adaptability. This shortcoming can
result in suboptimal agent combinations or unnecessary agent calls
in low-risk scenarios. Moreover, redundancy across agents (e.g.,
YOLO detecting speed signs while the speed awareness gent queries
GPS-based limits) may cause information overlap and inefficient
resource utilization. A more intelligent agent selection policy that
dynamically weighs the utility of agent outputs is needed.

4.1.4 Hallucination risk and contextual overfitting

Although structured prompts, prompt engineering, and
grounded agent responses reduce hallucinations, LLMs can still
generate speculative or contextually misaligned outputs when
encountering ambiguous or conflicting agent data. Fine-grained
control over reasoning steps through intermediate verification
modules or constrained decoding techniques remains an open
challenge for ensuring reliability. Mitigations for this technique
include keeping track of previous responses to act as a history for
expected response behavior through long-term memory.

4.2 Conclusion
We introduce a multi-modal agentic LLM framework

to enhance driver safety through real-time, context-aware
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interventions. Our approach leverages agentic reasoning to
process diverse data and generate actionable alerts for distracted
driving scenarios. Evaluations show that integrating multiple
agents with structured prompts improves accuracy, and enhances
efficiency. Full agent integration achieved the highest correctness
(85.3%), with speed and traffic awareness being critical in standard
conditions and weather awareness essential in adverse scenarios.
The system consistently meets the sub-2s latency requirement,
outperforming V-LLaMA in both latency and accuracy. These
findings underscore the potential of LLM-driven multi-modal
reasoning for Al-assisted driver support. Future work focuses on
incorporating additional sensory data, adaptive driver monitoring,
and improved agent selection through reinforcement learning.

4.3 Future work

Building upon the proposed LLM-driven agentic intervention
framework, several research directions can further enhance its
robustness, scalability, and real-world applicability.

4.3.1 Reinforcement learning for agent
scheduling

Future iterations will explore using reinforcement learning
(RL) to optimize agent invocation strategies. Rather than relying
on fixed rules, an RL-based policy could learn to select the
minimal yet sufficient agents required to meet correctness and
latency constraints. This approach can dynamically balance
performance and resource usage under varying environmental and
computational conditions.

4.3.2 On-Device knowledge graphs for offline
reasoning

We plan to construct on-device, compressed knowledge graphs
encompassing traffic rules, weather patterns, and map data to
reduce reliance on external APIs. These will be queried using LLM-
based reasoning locally through retrieval-augmented generation
(RAG), minimizing latency and improving robustness under weak
connectivity. Integration with tools like Facebook AI Similarity
Search (FAISS) and quantized vector stores will be explored for
efficient memory usage.

4.3.3 Integration of low-level vehicle telemetry

The current framework focuses on external perception and
driver distraction. Future work will incorporate CAN bus data,
including acceleration, braking, and steering signals, to infer
driver intent and vehicle state. Fusing high-frequency telemetry
with semantic LLM-driven reasoning opens new opportunities for
proactive intervention and richer situational grounding.

4.3.4 Multi-agent coordination and temporal
planning

Extending beyond single-turn decision-making, we aim
to implement temporally extended reasoning via hierarchical
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agent planning. This step includes inter-agent memory,
trajectory  forecasting, and attention modulation based

on recent environmental dynamics. Agents could operate
asynchronously, leveraging buffer queues and task prioritization to
maintain responsiveness.
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