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Once a case reaches the Supreme Court on appeal, the justices may either
affirm or reverse the judgment of the lower court. Forecasting such judicial
disagreement is important not only for predicting outcomes but also for
understanding the judge-specific and case-specific factors that drive these
decisions. This study aimed to present the Legal Logit Model (LLM), an evolved
neural network-based version of the Multinomial Logit (MNL) model. The LLM
combines the interpretability of discrete choice theory with the flexibility of
neural networks. Therefore, it is capable of modeling complex, non-linear
interactions while preserving transparency about the influence of individual
features. Utilizing features extracted from both cases and judges, the model
predicts whether the Supreme Court will reverse a lower court’s ruling and
highlights the factors most strongly associated with disagreement. When tested
on a dataset of Supreme Court opinions, the LLM achieves 80% accuracy
in predicting outcomes, outperforming conventional logit and deep learning-
based models. Despite the possibility of motivated reasoning in Supreme Court
opinions, limiting causal interpretation, the findings show that the LLM presents
an interpretable and effective predictive framework applicable to the study of
judicial decision-making.

KEYWORDS

difference of opinions, affirmative and reverse decisions, choice modeling, conditional
logit, logit model, SDG 17

1 Introduction

Examination of human dynamics has revealed that individuals tend to have a strong
inclination to maintain the status quo when making choices among alternatives. The legal
domain is one such domain where judges make predictions based on political and socio-
legal situations. Answering one or more questions is the starting point of prediction.
Should I take a case close by? Regardless of whether to settle the case outside or take it
to court? Will the settlement sum be awesome? What are the odds of winning the case?
These are a portion of the inquiries that involve predicting the outcome of a case, and
legal professionals need to manage them consistently (Sivaranjani et al., 2019). These
inquiries address the significance of result expectations in the event of choice, making
settlement decisions, and different parts of legal processes (Sivaranjani et al., 2019). Lawful
professionals have been investigating the cases reflectively to recognize and comprehend
the elements or factors that play a significant part in making decisions. In any case,
analyzing decisions after they are made is not the sole strategy for understanding the
decision-making process (Surden, 2014), and the logical speculations should be tested
against future results. Which factor influences the prediction of the constitutional court
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decision-making process: legal background or political
background? Legal scholars and social researchers have long
investigated legal choices to understand what motivates judges.
For the past 50 years, research has been using past legal data to
describe and predict the court decision-making process. However,
existing work to forecast court decision-making has significant
constraints. (i) Almost all the studies related to legal focus on the
U.S. Supreme Court cases. The U.S. custom-based law framework
is guided by the standard of stare decisis, under which previous
cases in a given space of the law have precedential impact on
future cases. This uniformity between the facts and output enables
machine learning to be used in prediction. Additionally, existing
work considers the voting behavior of judges in prior cases to
obtain the outcome for new cases. Unluckily, the Supreme Court of
India lacks this rich source of information due to the unavailability
of judges’ votes. (ii) Second, none of the current examinations
have unambiguously tried to examine the overall commitment
of legal perspective vs. political perspective factors to figure out
court choices. There is a long-standing discussion about which
aspect impacts a judge’s decision-making process and subsequently
helps to forecast the case. Conventional legal researchers are likely
to extract the important legal features and inquire about legal
policies as the case arises. Different researchers also focus on
non-legitimate elements, such as judges perspectives or general
assessment, for court decision-making. Determining legal results
cannot end this adapted discussion by giving causal proof to one
side or the other. However, it helps to test the aspect that influences
the judge’s prediction. The legal scholars argued that the legal
perspective alone influences the decision-making, whereas the
legal scientist argues that the non-legitimate elements may also
influence the decision-making. Hence, this study discusses various
aspects that are considered to be influencing factors for a judge
to make a judgment. Thus, any judgment given by the court not
only considers case-specific features and prior cases but also judges
specific features. Out of 8k appeal cases in the Supreme Court,
only 928 cases have a difference of opinion between the lower
court and the Supreme Court. Though many studies try to predict
the behavior of the Supreme Court using prior cases, none of the
research has focused on identifying the influencing aspect for any
decision. This study examines the factors that influenced a judge
to overturn a lower court decision, focusing specifically on the
features that influenced the judge’s decision in each case. There is
a connection between a judge’s values and the public policies they
uphold, and vice versa: “Judicial judgments are influenced by the
judge’s perspective of public policy” (Xiao et al., 2018). In particular,
certain judges are inclined to arrive at specific verdicts due to
social, financial, and cultural shifts, as well as the judge’s distinctive
character, personal instincts, and lifelong experiences (Luo et al.,
2017). The judges may be influenced by (1) direct influences (legal
and political experiences, intelligent and emotionally unstable
traits) and (2) indirect and remote influences (legal and general
education, wealth, and social status). The proposed LLM (Legal
Logit Model) takes court opinion as input and suggests how
people’s preferences vary depending on past experiences and what
seems best in the given circumstances. The model is trained to
accurately forecast the substantial considerations involved in
making a decision.
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The study is organized as follows: Section 2 discusses related
works and their shortcomings, and Section 3 presents the research
motivation. Section 4 explains the dataset collection and analysis.
Section 5 introduces the baseline Discrete Choice Model and the
proposed Neural Network-based Discrete Choice Model. Section 6
evaluates the proposed model against other models using various
performance measures. Finally, Section 7 summarizes the findings,
followed by the conclusion.

2 Existing work

With the rise of Artificial Intelligence (AI) over the past
decade, quantitative legal prediction, which focuses on the ex-
ante expectation of future legal outcomes, has become an integral
part of analyzing legal issues. Machine learning is nothing but
a program that learns from experience, predicts the future, and
improves performance (Surden, 2014). The primary reason for AI
is to identify examples and connections in information and to infer
expectations about future results. Interestingly, conventional causal
surmising approaches that make the best-case scenario, hypothesis-
driven expectations about future results, and quantitative legal
expectations center completely around the anticipated endeavor.
Not the illustrative, yet the prescient force of a variable is significant
here. Conversely, put in an unexpected way (Katz, 2013). Though
many had an idea to predict the constitutional court decisions,
only a few models were developed for forecasting the judicial
decisions (Holmes, 1897). The first model for legal prediction
was developed in 2004 for use in analyzing US Supreme Court
decisions. Ruger et al. (2004) developed a model to predict the
voting behavior of individual judges and appeal case final decisions.
They have also compared the performance of the machine learning
algorithm and the human legal experts. This model depends on
the observable case features that are extracted directly from the
case database. This work is extended by Guimera and Sales-Pardo
(2011) to predict the behavior of a judge by considering not only
his prior voting behavior but also the voting behavior of 8 other
judges in the same case. Another model developed by Katz et al.
(2017) is fully predictive. Exclusive feature engineering improves
the performance of the model. The features are given to the
Random Forest algorithm to predict the court decision. The model
(Mackaay and Robillard, 1974) utilizes the nearest neighbor in 64
tax cases using 46 descriptors. The model is developed using the
features that have the same values. This work is later extended
by SHYSTER (Popple, 1996), which assigns weight to each of the
descriptors and uses more complex feature engineering. The model
using regression analysis developed by Haar et al. (1977) reduced
the number of features from 67 to 32, which were then given as
input to the regression analysis. Dependent variables are considered
the outcome. Using five case descriptors, Zeleznikow and Hunter
(1994) used a decision tree classifier for predicting debt deferral
cases. CATO (Aleven, 2003), designed by Aleven et al., extracts
similar cases by identifying the factors applicable to the case and
uses the similar to predict the case outcome. IBP, developed by
Briininghaus and Ashley (2003), recognizes the issue in the case
and the winner of the case. This is then used to predict the out-
of-sample trade secret law cases. They have enhanced the model

frontiersin.org


https://doi.org/10.3389/frai.2025.1671474
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

NandJ

(Ashley and Briininghaus, 2009) called SMILE+IBP to reason the
case text. The model actually classified the text by extracting the
facts and forecasted the case outcome using extracted factors.
VJAP (Grabmair, 2017), developed by Grabmair, predicted the
outcome of trade secret cases and defended the prediction using
legal arguments. They have compared the results with the IBP
model. Christensen (2018) used logistic regression to predict the
behavior of the U.S. Supreme Court in Indian Law cases.

Beyond computer science methodologies, a considerable
volume of scholarship across economics, psychology, political
science, and empirical legal studies has explored the process of
judicial decision-making. For example, political economists such
as Ash and Chen (2018) analyze voting decisions by judges
using political economy models, while political scientists (e.g.,
Segal and Spaeth, 1993) privilege ideological and institutional
explanations through the framework of the attitudinal model.
Moreover, psychological analyses highlight the effect of cognitive
bias and heuristic processing among judges (Guthrie et al., 2007).
Finally, empirical legal scholarship examines the relative influence
of legal and extralegal factors in determining case outcomes.
Entering into this literature situates our particular inquiry within a
broad interdisciplinary enterprise to understand comprehensively
what influences adjudicative behavior.

3 Motivation

From the literature review, it is clear that all the work
focuses on predicting the decision of the new case based on past
similar cases. Some models were developed using machine learning
algorithms, while others employed hypothesis testing. All the
models focus on increasing the accuracy of the prediction, giving
the least importance to feature extraction and factors influencing
the judgment. Thus, there was a need to provide a solution for
identifying the factor that influenced the judge to make a particular
judgment. Furthermore, during the feature selection, some models
leave out some features that are related to judgment, but decision-
making does not depend only on case-specific features. Thus,
research on legal prediction requires all of the attributes to be
considered. This motivated the use of the choice model in legal
prediction technology, where it not only improves the prediction
but also helps to analyze the predictive factors for that decision.

A prediction model is developed by considering the drawbacks
of the existing system, called LLM. The extracted features are
categorized according to their nature, including judge-specific and
case-specific features. The model starts by predicting the outcome
of a particular judge in a specific case. The model then uses
correlation to learn the influencing parameter [it may be either
case-specific features, citation, or the law involved (section code)]
that made the judge take a particular decision. In this research, the
proposed LLM offers better predictability and, when combined with
ITA, provides a deeper understanding of the decision made.

4 Dataset

The proposed model relies on the Supreme Court of India
dataset, which contains more than ~13 thousand cases with
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FIGURE 1
The rate of reversal in civil and criminal cases since 2000.

judgments from 1950 to the present. The database is taken from the
website http://www.liiofindia.org/in/cases/cen/INSC (Sivaranjani
and Jayabharathy, 2022a). Out of ~13k decided cases, there are
around eight thousand appeal cases filed in the Supreme Court
due to an unsatisfactory decision of the lower court. The judgment
given by the Supreme Court has a particular structure on different
aspects of the case. Judgments are usually divided into different
aspects that cover the entire content of a particular case to allow
the standardization of text. The different aspects of the case text
(Sivaranjani et al., 2023) are (i) Facts: this subsection contains
the issues raised and the factual background of the case; (ii) Law:
contains the section codes applicable to case; (iii) Lower Court
Decision: this contains the decision given by the lower court; (iv)
Case Citation: contains the case decision that impacts the Supreme
Court decision; (v) Reasoning: points highlighted by the advocates
about the case. This study analyzes which of the aspects influenced
the judge to change the decision given by the Supreme Court in
appeal cases. Our previous work (Sivaranjani et al., 2021) already
classified the new case from the appeal case and predicted the
outcome of the appeal case (Sivaranjani and Jayabharathy, 2022b).
The appeal case is already decided in the lower court in favor of one
of the parties, either the petitioner or the defendant. The party with
unsatisfied judgment from the lower court goes for an appeal in the
Supreme Court. If the Supreme Court gives the judgment in favor
of the petitioner (one who appealed the case), then a difference
of opinion arises. Not all the appeal cases will have a difference
of opinion.

Limitations of the Dataset: A limitation of our research is that
the data set is derived from Supreme Court opinions, which are
framed after the final decision. Therefore, information inherent
to these opinions might reveal motivated reasoning such that
judges feature particular facts and legal arguments supporting their
chosen conclusions. Thus, even though the Legal Logit Model
(LLM) identifies factors associated with judicial disagreement, such
patterns might reveal how outcomes are justified rather than
an indication of what highlights factors associated with judicial
reversals. Thus, we interpret our results to be predictive correlations
but not causal influences upon judicial behavior.

The appeal case will be accepted by the Supreme Court only if
there is an error in constitutional law. Thus, out of 8k appeal cases,
the decision was changed only for 928 cases. Figure 1 shows the
rate of reversal in each of the case types among the total number
of appeal cases filed in the Supreme Court.
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5 Proposed Legal Logit Model

The suggested LLM is developed by augmenting the
Multinomial Logit (MNL) model with neural network elements.
The reason for this selection is 2-fold. Initially, MNL is extensively
applied in discrete choice analysis because it has a robust
theoretical basis and interpretability. MNL allows for estimating
parameters that simply illustrate how certain factors, i.e., case facts,
lower court decisions, or judge-specific attributes, affect judicial
decisions. But the classical MNL is limited by its linearity and
Independence of Irrelevant Alternatives (ITA) assumptions, which
constrain it from detecting intricate high-dimensional interactions
in judicial judgments. In contrast, neural network models like
DNNs are capable of detecting such implicit non-linearities
but tend to be black-box predictors that fail to give transparent
reasons for the variables behind the decision. Likewise, MNL
latent-class extensions (L-MNL) can account for heterogeneity
but are still unable to learn complex feature interactions in
a flexible manner. The LLM avoids these shortcomings by
integrating the transparency of MNL with the expressiveness of
neural networks. In the design, the neural layers learn non-linear
relationships between features, while the MNL head maintains
the discrete choice framework and makes the impact of various
factors transparent. Its hybrid structure also renders LLM highly
appropriate for the legal field, where interpretability as well as
predictive accuracy are imperative. The experimental evidence
in this study substantiates that LLM performs better than
standard logit and neural baselines, confirming its efficacy in
predicting judicial disagreement. Hence, this section begins with
the introduction of the discrete choice model and an elaborate
explanation of the MNL model, followed by its application
in a neural network framework, with a greater emphasis on
feature selection.

5.1 Discrete Choice Model

According to the survey, Discrete Choice Models (DCM)
operate within the framework of typical decision-making. It is
anticipated that when presented with a discrete set of options,
people select the one that offers the most significant benefit or
utility. This suspicion implies that the utility of a decision is a
function of the quality of the alternatives and the characteristics
of the person making a choice. DCM allows regular people to
take into account factual knowledge about the practical bounds. By
fitting a DCM to a dataset of transportation mode decisions, experts
noticed that the travel mode choice is related to both qualities
of the decision and to collaborations between the decisions and
characteristics of the decision maker. The MNL is the accepted
practice in DCM. Due to its appealing characteristics in terms of
a thorough embedding in economic theory, it is frequently the
starting point for modeling choice decisions.

One type of decision-making framework is the DCM, in
which the decision-maker selects one option from several
possible outcomes (Michael and Nagler, 1998). A Discrete Choice
Experiment (DCE) is a quantitative method for suggesting
individual preferences. It enables scientists to understand how
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people value their chosen attributes by asking them to express their
preferences over various theoretical alternatives. In DCE, the set of
options, also called the choice set, must have the following three
properties to work within a discrete choice framework:

. Choices must be mutually exclusive.
. Options need to be fully explored.
. There should be a finite number of choices.

5.1.1 Discrete choice framework

Travel mode choice research was one of the earliest uses of
the discrete choice framework created in the 1970s by McFadden
(1973) and others working in the field of travel demand (i.e., the
choice between train, bus, car, or airplane). A later application of
the approach involved picking out travel itineraries and vacation
spots (Ben-Akiva and Lerman, 1985). This research uses the
DCE framework to analyze a judges preference for a case. Four
assumptions make up the discrete choice framework (Ben-Akiva
and Bierlaire, 1999):

o Authorized to make choices: Someone or something that makes
a decision is called a decision maker.

o Alternatives: From the collection of all feasible options
(alternatives), a decision maker must select one option.

o Attributes: Attributes of alternatives that appeal to the decision
maker are discussed. A decision maker weighs the merits of
each possible course of action. The decision maker itself may
have a set of characteristics.

e Guidelines for making a choice: Following the commands of
economic theory, a person making a choice will pick the
option that maximizes their (anticipated) utility (net gain,
profits, and satisfaction).

The i-th decision maker faces a set of j possible courses of
action. To clarify, alternatives refer to the available options for
selection, while “choice” refers to the final decision made by the
decision maker. The term “option set” is sometimes used to refer
to all potential solutions; however, “set of alternatives” may be
more accurate.

5.1.2 Multinomial Logit Model

The MNL model is a variant of the Discrete Choice Model used
for calculating the probabilities of selecting various alternatives.
The model is attractive because it is stochastic, yet it allows for
consideration of various decision factors. It has been used as a
promotional tool by several authors. A variant of this model is
used to illustrate the likelihood that a car buyer purchases a vehicle
from a specific dealership by Hlavac and Little (1966). The model is
integrated into the pre-test market evaluation procedure for new
products developed by Silk and Urban (1978). The logit is used
by Punj and Staelin (1978) to characterize how potential business
school students make their decisions. The broad explanation and
comparison of the logitss fitting ability to that of regression for
shoppers’ choice of grocery stores are provided by Gensch and
Recker (1979). The logit has an even more extensive history of
use in transportation planning, particularly in determining the best
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way to anticipate an individual’s preference for a given mode of
transportation (e.g., vehicle vs. bus) (Domencich and McFadden,
1975).

The MNL model assumes that the decision-maker chooses
an alternative that gives them maximum utility (Utility can
be measured in terms of an individuals satisfaction, benefit,
usefulness, etc., depending on the individual). The utility is coded
as Uj; if a decision maker (judge) i € I obtains a maximum utility
by choosing an alternative (factor) from j € J choices. The utility is
given as follows if the decision-maker chooses ]

Uy >UpVi#] (1)

In general, the utility function is unobservable. For each of the
alternatives given to the user or decision maker, some features are
associated, denoted as x;;V j. Not only are the alternatives associated
with the features, but the decision maker itself also possesses certain
features. So, the alternatives that are chosen are dependent on the
decision maker’s characteristics. The features of the decision-maker
are represented as s;. The unknown decision-maker’s utility and
observed features are related as

Vij = Vixij» si) (2)

Where V;; is considered to be a linear combination of features.
Given an individual i and a set of d variables. For convenience, Vij
in Equation 2 is represented as

Vij =) Ba-xj 3)

Where B are preference parameters associated with input
features. For example, if a court is trying to predict the case, then
the simple model is represented as

Vij = a*case;j + b*Judge; (4)

where a and b are learnable parameters by the model. The
relationship between V;; and Uj; is denoted as

Uij = Vij + &ij (5

&ij is unobservable factors that affect the utility but are not
considered in V;;. The probability of choosing an alternative j,
should give maximum utility rather than choosing the alternative
j. This is represented as

Pi,j = P(U,',J“ > U,',j; Vj ;é f) (6)

&ij is said to be i.i.d (independent and identically distributed),
the MNL has a property

- exp(Vij)
ij = -

= (7)
D iy exp(Vij)

Finally, the model is optimized as

6 = arg max Zi o Zj oy Vii In(P; ) (8)

Where y;; is an indicator of whether decision maker i is
associated with the alternative j.
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5.2 Proposed Legal Logit Model

DCMs are typically developed in a random utility model,
assuming decision-makers aim to maximize their utility (Long,
2001). Rational choice theory has given rise to the preeminent
paradigm of judicial decision-making, in which the judge is a
rational actor who applies the law, precedent, and reasoning to
arrive at a verdict (Posner, 1998). However, it is well-known that
this model can account for just a fraction of the process. Various
scholars have used this model, transitioning (Fisher and Reed,
1998) from the legal realists of the early half of the twentieth century
to the critical legal theorists of today.

It is not enough to look at the facts when deciding how to
proceed with a case. Therefore, the courts decision considers the
facts of this case, the outcomes of similar instances, and the judge’s
qualifications and experience. As the choice model (Section 5)
suggests, individuals select solutions that best fit their needs and
circumstances. Predicting the factors that ultimately decide a case
is the goal of the LLM—Legal Logit Model. The MNL, a notable
example of DCM, can foretell what factor or factors influenced a
Supreme Court justice in a given case. The proposed model aims to
identify the predictive factors that influence a judge’s decision in a
case. Therefore, greater emphasis is given on feature engineering,
ensuring that the addition of numerous important features to the
model does not lead to dimensionality issues.

5.2.1 Selecting important features

To extract the desired information from unstructured data,
it is first transformed into structured data with the required
attributes. The proposed model uses Named Entity Recognition
(NER) implemented in the Python NLTK library. Table 1 shows
the extracted features. Considering the features such as judge-
specific and case-specific (Sivaranjani and Jayabharathy, 2023), as
well as lower court features given in Katz (2013), the proposed
model incorporates additional features, including salience and
social impact, which are categorized as other factors. Including
additional features, the proposed model gives better prediction
accuracy and the most predictive factors in the case. The features
are categorized as follows:

= Judge Specific Features
= Historic Judge Features
= Case-Specific Characteristics

m Facts
s Law

s Lower court features
» Other Factors

= Salience
= Social Impact

5.2.1.1 Judge specific features

When a case is to be judged, judgment does not depend solely
on the case-specific features. As the choice model represents, each
person chooses different options based on their experience and
those that are most suitable for the current situation. Determining
a choice involves the characteristics of an individual. Similarly,
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TABLE 1 Features extracted by the feature engineering mechanism.

Features

Judge specific feature (mean values)

e Justice direction

o Justice direction petitioner

e Justice direction respondent

e Justice direction for circuit origin

o Justice direction for circuit source

e Justice direction by facts

Case-specific feature

o Case origin

e Case origin circuit

Source information

Source circuit

e Law type

LC decision direction

LC decision

LC dissent

Case facts

Case place

Argument month

Decision month

Petitioner

Petitioner bin

Respondent

Respondent bin

Certiorari

Lower court features (mean values)

e LC direction source circuit

e LC direction facts

e LC direction petitioner

e LC direction respondent

Other factors (1—Yes, 0—No)

e Salience

e Social impact

forecasting judgment on a specific case should also consider
features of the judge, such as the party that appointed the president,
the judge’s direction, salience, etc., to improve the performance.
Table 1 shows the features considered for each judge.

5.2.1.2 Historic judge features

During the feature engineering, along with judge-specific
features, the essential parameters that a judge possesses concerning
the court are also included. This is used to calculate baseline trends
in court and judge behavior. These features show how conservative
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FIGURE 2
Architecture of proposed Legal Logit Model.

or liberal a judge is in giving the judgment. This feature is calculated
by taking the mean value of considering the number of cases a
particular judge handled and the number of cases the judgment was
reversed throughout their career. Conservative is coded as 1, and
liberal is coded as 0.

5.2.1.3 Case-specific features

The model takes case-specific information such as the issue,
issue Area, law Type, cert, Reason, respondent, petitioner, case
Origin, case source, and LC Disposition Direction, which are
predictive factors for a judge to make a confident decision. Given
the petitioner and respondent features, the model bins the features
into similar groups in higher-order bins, which may increase
prediction accuracy.

5.2.2 Implementing Multinomial Logit in
convolutional neural network

Figure 2 depicts the architecture of the proposed LLM using
a Convolutional Neural Network with two hidden layers working
like an MNL model. The case-specific input features are divided
into four alternatives: Facts, Law, lower court decisions, and
other factors that may influence the decision maker. Case Specific
Features—These are characteristics (facts of the case and law
involved) that define the case at issue. They come as a collection
of inputs (green circles) located on the left-hand side, with the
names “Case Specific Features” and Judge Specific Features. These
are the characteristics that define information specific to the judge
in this instance. They are drawn as orange circles and labeled
as “Judge Specific Features.” Historic Judge Traits—These are
historical information or previous actions regarding the judge (blue
circles). Lower Court Features—These are the traits or facts of the
lower court involved (teal circles).

Every feature group is one input vector with a quantity of
values (designated by a quantity of circles). The LLM model is
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applied to the i x d matrix, where i refers to the decision maker,
and d refers to variables that vary across i. The data set used
to estimate the LLM model has a data format comparable to
that of most other regression models, as well as numerous event
spreadsheets. Each column denotes a variable (a characteristic of
the alternative), and each row (a record) denotes an observational
unit (a decision maker). The alternative chosen from a list of
alternatives is indicated by the dependent variable, which is a
nominal variable. The variation in the characteristics of decision-
makers determines the variation in outcomes. The Neural Network
takes all the features as input, along with the weight and bias.
Since decision-makers’ features cannot be directly fed into the
Neural Network, the vector of decision-maker characteristics is
embedded with the choice vector. This is the dot product of
decision-maker features and case features, resulting in a vector. The
embedding converts categorical attributes to low-dimensional real-
valued vectors. Each of the attributes v €[V] is converted to RE*1,
Wembeda € RV*E, where V represents the size of the attributes, and
E represents the embedding dimension. This reduces the size of the
input matrix dimension and is efficient in terms of computation.

Once the embedded vector of all the features is given as input,
Ist hidden layer of the CNN imitates the MNL algorithm to
calculate the utility value by an adaptive linear transformation, then
Equation 5 is given as

Ue= (X5 B) + b ke (©)

Where J denotes all the alternatives e.g., ] = {Facts, Law, lower
court decision, other factors}. X} € R is the input to the Neural
Network of the kth category of alternative. Wlil) € R% and b](;) are
the weight and bias of the first hidden layer.

The 2nd hidden layer receives the input as the utility from
the Ist hidden layer. The 2nd hidden layer enhances feature
representation through fully connected neurons. It then calculates
the relevance of all the utility values received from the previous
layer. Finally, the softmax layer calculates the choice probabilities
between 0 and 1. The hidden layer calculations are given as follows:

H(l) = Ufact5> ULaw> ULower Court Decision> Uotherfuctors] (10)

In CNN, the weight matrix is in the shape of a filter used to
connect the hidden layer HY to the next hidden layer by applying
convolution operations. Hence, the value of the i-th neuron in the
layer (H®) is given as

d
(2) _ (1) 2) 2)
H = g(zk:() hi B )+ bi 1)

Where {81, ........ Ba) =P is (1x d) filter, t is the stride, and
b is bais and the activation function is represented as g.

As represented in Equation 3, the utility function Vi =
(Viis vvovvnnn v1;} is calculated by retrieving the MNL formula in
a single layer (H My, activity function as (f(x) = x) and stride t to d.

Then the softmax activation function gives the probability
calculated as

exp(Vij)

(0 (WVi)j= P
> ke exp(Vij)

(12)
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This is identified as the overall probability as defined in
Equation 8. Then the output of the softmax function is given to the
categorical cross-entropy loss function.

Hi,y) == D . vilog (Vi) (13)

Where y;; is an indicator of whether decision maker i is
associated with the alternative j.

6 Experimental setup and evaluation

The dataset was divided randomly into 70% training, 10%
validation, and 20% testing. The model parameters were estimated
with the training set, hyperparameters were tuned to avoid
overfitting with the validation set, and generalization performance
was measured with the test set. All Neural Network-based models
depend heavily on hyperparameters. Table 2 summarizes the values
of each hyperparameter on which the model seems to perform
well. ReLu and softmax use two activation functions in the hidden
and final layers, respectively. The cross-entropy loss function is
combined with L1 and L2 penalties to calculate the actual and
predicted values error. The number of hidden layers is defined
to be 8 with 100 neurons. Increasing the hidden layer by more
than 8 does not affect the output accuracy. To protect the model
from overfitting, the dropout rate is defined as 0.2 and the learning
rate as 0.001. The optimal number of iterations for the proposed
model is 500, as a few iterations lead to underfitting the model,
and a larger number of iterations leads to overfitting. The proposed
and existing neural (DNN, NN-MNL, and L-MNL) models use
the Adam optimizer and have run for 100 epochs. Each model’s
parameters are initialized using the Keras Python Deep Learning
Library (Chollet, 2015) default random initialization. It is observed
that there is no difference in learning time among models.

TABLE 2 Hyperparameter tuning for LLM model.

Hyperparameter Values

Activation function ReLu in hidden layers and softmax in the

final layer

Loss function Cross-Entropy

Number of layers (L) 8

Number of neurons (H) 100

L1 loss 1.0,0.5

L2 loss 1.0,0.5
Dropout 0.2

Batch normalization True, false
Learning rate 0.0001
Number of iterations 500

Mini batch size 250
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FIGURE 3
Accuracy comparison of the proposed model with existing models.
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6.1 Experimental results and discussion

This section shows the performance comparison of existing
models with the proposed model. The model is evaluated using
two performance metrics, namely accuracy and Monte Carlo
estimation, to assess its performance. Monte Carlo is used to
evaluate the outcome of an uncertain event. The training set
consists of 170 judges' features and case-specific features. The
results are evaluated by repeating the experiment 100 times.

6.1.1 Accuracy

Figure 3 shows the accuracy of the proposed and existing
models. The proposed model is compared with traditional MNL
and Neural Network-based MNL models: DNN, NN-MNL, and L-
MNL. The relative error terms eg and eg,/g must be defined to
calculate the model’s accuracy, where g is the preference parameter.
The error terms are defined as

»= 5]
€p; — €p;

egi/p = 1_—6; (15)
)

The value clearly shows that the proposed LLM model
outperforms the existing models. The proposed model improves
the parameter estimation by reducing the error rate. From the
graph, it is observed that the MNL model still performs equally to
the Neural Model despite having a high relative error in parameter
estimation. Other Neural Network models have errors in parameter
estimation. The NN component in the proposed model corrects the
estimators by learning simply from the information included in the
linear component’s data. Both the MNL and the LLM models are
effective at retrieving the parameter ratio.
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6.1.2 Monte Carlo average log-likelihood
estimation

The broad category of computational calculations known as
Monte Carlo procedures or Monte Carlo tests uses repeated
random sampling to produce numerical results. The underlying
concept is to use randomness to address problems that may
initially be deterministic. They are frequently used in mathematical
and physical problems and are particularly useful when applying
other strategies would be difficult or unthinkable. To ensure
that results were not dependent upon a single individual
random partitioning, a Monte Carlo simulation was performed
by running the random sampling process multiple times.
Then the metrics of performance were averaged across these
iterations. This approach reduces variance due to sampling
noise and provides a more robust estimate of model accuracy,
making the evaluation less sensitive to any specific train—
test split.

Log Likelihood estimation is a degree of the goodness of fit for
any model. The higher the value, the better the model. The value
of Log Likelihood can range between —00 to +00. The model log
Likelihood estimation for independent and identically distributed
data is given as follows:

mp(flo) = 3 Inp(Fl0) (16)

Where fis the discrete random variable, which ranges from 1 to
n, and p is the probability, 0 is the parameter distribution. L is the
likelihood function.

Using Monte Carlos method, random samples are
generated from the input data, and the log-likelihood is
calculated for the model. This is repeated 100 times, and the
average likelihood value is calculated to find the best fit of
the model.

Figure 4 shows the value of the Average Log-Likelihood
estimated using Monte Carlo. The graph illustrates that the neural
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Average log-likelihood estimation using Monte Carlo.

TABLE 3 Asymptotic training and inference costs of models.

Training Inference Justification
complexity (per complexity
epoch/iteration) (per case)
Logit/MNL O (N.k.d) O (k.d) Linear in #cases (N), #alternatives (k), and feature dimension (d).
L-MNL (latent classes/random coefTs.) (6] (N k.d+ N .G.d) (per (@] (k.d) Additional overhead from G latent classes; inference is the same as
EM/MC step) MNL.
DNN (softmax classifier) O(N.P), O (P) Complexity scales with parameter count (P); final softmax adds k.
where P =Y hjhy,
NN-MNL (NN feature extractor + (6] (N P+ N .k.dﬂm) o (P + k.d,mt) Neural network extracts a representation of size d,,;, then the MNL
MNL head) head computes choice probabilities.
LLM-based (proposed Legal Logit O(N.L.S.H?) O(L.S.H?) CNN-based hybrid of MNL and NN; cost grows with the number of
Model) CNN layers (L), sequence length (S), and hidden neurons per layer (H).

network-based choice model provides a better fit to the data
than the traditional MNL model. Moreover, we observed that the
proposed model has a lower likelihood value than the existing
neural model.

The LLM performance is uniformly strong according to all the
measures of evaluation. Its log-likelihood estimates (Training =
—90, Testing = —80) support both a fit and low overfitting, as
evidenced by the low gap (—10). The 80% accuracy further confirms
that the model accurately captures case outcomes. Apart from
accuracy, the AUC of 0.78 also validates that the model has excellent
discriminative ability in separating different alternative outcomes.
Furthermore, the Fl-score of 0.76 offers balanced recall and
precision to ensure robustness even in class-imbalanced instances.
Together, these metrics indicate that the LLM not only fits the
data well but also generalizes effectively to provide a complete and
dependable predictive model.

Frontiersin Artificial Intelligence

09

6.1.3 Training and inference complexity

Although accuracy and log-likelihood are significant indicators
of predictive accuracy, efficiency in terms of training and inference
complexity of the model is also vital, particularly for large
judicial datasets. Table 3 compares the computational complexity
of conventional and neural network-based discrete choice models.
The comparison in this analysis highlights the scalability trade-
offs between understandable models, such as MNL, and more
expressive but computationally expensive models like NN-MNL
and LLM.

All the variables follow the same definitions as introduced in
the text.

As presented in Table 3, the traditional MNL is computationally
the simplest, which varies linearly with cases (N), alternatives (k),
and feature dimension (d). L-MNL adds training cost because
of latent classes (G), while inference is the same as MNL.
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TABLE 4 Comparative performance of models (log-likelihood and
predictive metrics).

Model Test log- Accuracy AUC  Fl-score
likelihood (%)

Logit ~200 66.0 0.62 0.60

DNN ~120 70.2 0.67 0.65

NN-MNL ~110 73.5 0.70 0.68

L-MNL —100 76.8 0.74 0.72

LLM —80 80.0 0.78 0.76

DNN and NN-MNL add neural network feature learning, whose
complexity depends on the number of parameters (P) and the
output representation size do,. The proposed LLM model is
realized through a Convolutional Neural Network (CNN) design
where feature embeddings are fed through several convolutional
layers before the use of an MNL-similar softmax choice head. This
adds complexity in training, growing with the number of layers (L),
sequence length (S), and hidden neurons per layer (H). Despite this
added expense, the LLM is the top predictor (see Table 4). Thus, it
is best applied to legal prediction problems where the simulation
of non-linear interactions between case-specific and judge-specific
features is important.

6.1.4 The parameter/features influencing
decision-making

The above results show the performance of LLM and prove that
it outperforms the other existing algorithms. However, the results
do not indicate which feature or parameter led the judge to choose
the alternative that yields the highest utility. Most of the choice
models try to improve the predictability of the alternative; only
a few concentrate on predicting the influencing features that aid
in choosing the alternative. The legal practitioner highlights the
aspects and questions in each case and places great importance
on legal belief and its contribution to jurisprudence. Although
many studies on legal research by legal scholars and social scientists
examine the behavior of the Supreme Court, the challenging
part lies in portraying the social factor and understanding how
the law drives the outcome. Table 5 shows the feature score
calculated during the feature extraction. These scores give much
information on their contribution toward legal prediction. Many
highly correlated features complicate their analysis (Tolos and
Lengauer, 2011; Strobl et al., 2008).

Table 4 provides an insight into the contribution of different
classes of features. The contribution values indicate legal features
(e.g., Case Facts = 0.01541, Argument Month = 0.02014, Justice
Direction by Issue = 0.01881) to be the core of predictive
performance. They comprise the factual content of a case
and judicial leaning, which by nature are more predictive
in significance. Conversely, social attributes (Social Impact,
Salience) are binary features (1/0) of general societal salience.
While their quantitative contribution is smaller than for legal
attributes, they are contextual qualifiers. For example, a highly
public or politically sensitive case might make non-standard
judicial conduct, like dissent, more likely. Social Impact labels
cases with immediate impacts on society; while its quantitative

Frontiersin Artificial Intelligence

10.3389/frai.2025.1671474

TABLE 5 Feature score to determine predictive factor.

Features Values

Case-specific feature

Case origin 0.00971
Case origin circuit 0.00845
Source information 0.00953
Source circuit 0.01015
Law type 0.0137
LC disposition direction 0.0119
LC disposition 0.01125
LC dissent 0.00706
Case facts 0.01541
Case place 0.01469
Argument month 0.02014
Decision month 0.01349
Petitioner 0.01406
Petitioner bin 0.01199
Respondent 0.0149
Respondent bin 0.01179
Certiorari 0.01408
Lower court features (mean values)

LC direction circuit source 0.00962
LC direction facts 0.01334
LC direction petitioner 0.00949
LC direction respondent 0.00973
Judge specific feature (mean values)

Justice direction 0.01248
Justice direction petitioner 0.00732
Justice direction respondent 0.00724
Justice direction for circuit origin 0.00792
Justice direction for circuit source 0.00891
Justice direction by issue 0.01881
Other factors (1—Yes, 0—No)

Salience lor0

Social impact lor0

contribution is smaller than for legal attributes, its presence
can make predictions fundamentally different. Broadly, the
model is based on legal content (petitioner/respondent attributes,
facts, judicial guidance by issue), with social context features
refining predictions to suggest where judicial decisions are set to
diverge from purely legal analysis. Case-specific features account
for approximately 24% of the contribution, with other classes
combined accounting for approximately 7%. Interestingly, in
this setup, social impact-marked cases have specific influence,
suggesting political and social salience heavily interact with legal
reasoning in judicial decision-making.
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7 Inferences

The results show that the proposed LLM outperforms the other
models considered. The LLM improves parameter estimation while
minimizing error rates. In contrast, the traditional logit model
performs well only under linear data structures and fails to capture
non-linear relationships. Neural models such as DNN and NN-
MNL perform better than the classical logit but still suffer from
errors in parameter estimation because they primarily treat inputs
through linear dependencies.

Figure 3 illustrates the behavior of the proposed model when
evaluated from the Oth neuron to the 5,000th neuron in a single-
layer (L = 1L = 1L = 1) configuration. It is observed that the NN
component does not fully capture all non-linearities between the
0Oth and roughly the 20th neuron, as reflected by higher likelihood
values and unstable parameter estimates. Between the 20th and
100th neurons, the values stabilize and align with the ground
truth. Beyond this range, the model closely approximates the true
specification, indicating that the NN component has successfully
learned the underlying non-linearities.

Whereas, the LLM identifies attributes strongly associated with
judicial disagreement, such results should not be interpreted as
evidence of causation. The model reveals predictive structures
inherent in the data rather than establishing causal determinants of
judicial behavior. Establishing causal relationships in observational
legal data remains a distinct methodological challenge, as
emphasized in the causal inference literature (Pearl, 2009;
Rubin, 2005; Gelman and Imbens, 2013). Accordingly, this study
contributes a predictive framework that can inform further inquiry
but does not claim causal interpretation.

8 Conclusions

This study proposed a model that identifies the differences
of opinion among lower courts and the Supreme Court, as well
as the predictive factors that influence a judge’s decision. With
aspect-based feature extraction, the LLM learns utility by design,
considering only the appeal cases from the entire Supreme Court
dataset. This improves the predictability performance with a testing
accuracy of 80%. The model also calculates the probability of each
aspect contributing to the final decision, along with the judge’s
specific feature. We compared our model performance with other
existing algorithms, and the results demonstrated that the proposed
LLM outperforms the other neural-based as well as traditional
discrete choice models in terms of predictability and accuracy. In
the future, this study could be extended to improve the accuracy by
identifying more hidden factors from the case and judgment.
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Appendix

Dataset Source:
The dataset is downloaded from the Indian Supreme Court
Public Database (provide precise link).

Pre-processing Steps:
Raw case records were downloaded and filtered for relevant fields
(case origin, petitioner, respondent, legal context, etc.).
Features were transformed into case-specific, lower court, judge-
specific, and social context categories.
Binary encoding was used to categorical features (e.g., Salience,
Social Impact).
Train-test splits were created (80:20).
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Software Environment:
The experiments were carried out in Python (v3.10). The major
libraries employed are described below:

pandas (v1.5.3): Data manipulation and preprocessing

numpy (v1.24.2): Numerical computations

scikit-learn (v1.2.2): Feature encoding, model training, evaluation
(Accuracy, AUC, F1-score)

statsmodels  (v0.13.5): Discrete choice modeling (Logit,
MNL, L-MNL)
tensorflow/keras (v2.12.0): Neural network  models

(DNN, NN-MNL)
matplotlib (v3.7.1) and seaborn (v0.12.2): Visualization and plots
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