
TYPE Original Research
PUBLISHED 30 September 2025
DOI 10.3389/frai.2025.1672273

OPEN ACCESS

EDITED BY

Yang Lu,
Beijing Technology and Business University,
China

REVIEWED BY

Chuanhao Nie,
Georgia Institute of Technology, United States
Shuo Xu,
University of California, San Diego,
United States
Li Zhou,
Wuhan Business University, China
Enliang Li,
Qualcomm, United States

*CORRESPONDENCE

William Villegas-Ch
william.villegas@udla.edu.ec

†These authors have contributed equally to
this work

RECEIVED 25 July 2025
ACCEPTED 08 September 2025
PUBLISHED 30 September 2025

CITATION

Gutierrez R, Villegas-Ch W and Govea J
(2025) Adaptive consensus optimization in
blockchain using reinforcement learning and
validation in adversarial environments.
Front. Artif. Intell. 8:1672273.
doi: 10.3389/frai.2025.1672273

COPYRIGHT

© 2025 Gutierrez, Villegas-Ch and Govea.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Adaptive consensus optimization
in blockchain using
reinforcement learning and
validation in adversarial
environments

Rommel Gutierrez†, William Villegas-Ch*† and Jaime Govea†

Escuela de Ingeniería en Ciberseguridad, FICA, Universidad de Las Américas, Quito, Ecuador

The increasing complexity and decentralization of modern blockchain networks
have highlighted the limitations of traditional consensus protocols when
operating under adverse or dynamic conditions. Existing approaches often fail
to adapt to real-time anomalies such as Sybil attacks, network congestion,
or node failures, resulting in decreased throughput, increased latency, and
reduced security. Furthermore, most systems lack autonomous mechanisms
to adjust operational policies based on context, especially in edge computing
environments where resource constraints and topological variability demand
flexible and efficient solutions. This work proposes an adaptive consensus
architecture that integrates a graph-based Proximal Policy Optimization
(PPO) reinforcement learning agent capable of detecting malicious behavior,
optimizing validation paths, and dynamically modifying consensus logic in
response to adversarial scenarios. The model is trained on a hybrid dataset
composed of real traffic traces and synthetically generated adversarial behaviors,
and evaluated in stress-testing environments with multiple threat vectors.
Experimental results demonstrate that the proposed system maintains stable
throughput (TPS) while reducing average consensus latency by 34% relative to
baseline protocols under adverse high-load conditions. Regarding security, it
achieves high detection in Sybil and node-collapse scenarios (DR exceeding
0.90 with FPR below 0.10), and moderate detection under congestion and
erroneous transactions (DR between 0.58 and 0.70, FPR between 0.14 and 0.22).
Additionally, we observe up to 16% lower average energy consumption in high-
congestion settings. Energy consumption is reduced by up to 17% in crash-
prone scenarios. The architecture demonstrates stable convergence over 100
operating cycles and robust adaptation to topological changes, validating its
applicability in real-world deployments.

KEYWORDS

adaptive consensus mechanism, reinforcement learning in blockchain, malicious node
detection, energy-efficient edge validation, artificial intelligence

1 Introduction

The design of robust, adaptive, and efficient consensus protocols remains a critical
challenge for the consolidation of blockchain technologies in highly variable decentralized
operating scenarios. Traditional solutions, such as Proof of Work (PoW), Proof of Stake
(PoS), and their derivatives, present substantial limitations in terms of scalability, energy
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efficiency, and resilience to adverse conditions such as malicious
nodes, connectivity failures, or dynamic changes in network
topology (Akbar et al., 2021; Yang et al., 2021). These restrictions
become even more critical when deploying blockchain in edge
environments, where computational, energy, and connectivity
resources are inherently limited and variable.

Despite the growth in artificial intelligence (AI)-based
proposals to improve security and performance in distributed
systems, most existing implementations feature static architectures
focused on passive anomaly detection or supervised classification
of malicious behavior. In these approaches, the AI operates as
an isolated component of the consensus system, without the
direct ability to modify its operational logic or actively adapt to
the environment (Lookadoo and Moore, 2024). As a result, the
response to perturbations remains reactive and dependent on
predefined parameters that do not capture the dynamic complexity
of modern blockchain networks.

This work proposes an autonomous adaptive consensus
architecture, based on deep reinforcement learning (Proximal
Policy Optimization, PPO) and a dynamic representation of the
network using directed graphs, capable of modifying validation
policies in real time, redistributing operational load between nodes,
and penalizing anomalous behavior without human intervention
or fixed parameters (Zhang et al., 2022). This direct integration
between the AI model and the consensus protocol constitutes a
paradigm shift: from auxiliary detection to an adaptive consensus
that acts as an intelligent agent.

The methodological design combines synthetic environments
and controlled tests with edge nodes, replicating representative
adversarial scenarios such as Sybil attacks, network congestion,
critical failures, and node collapses. For each condition, we monitor
key performance metrics, Transactions Per Second (TPS), latency,
energy consumption, computational load, and security metrics
(detection rate, DR, and false positive rate, FPR) over progressive
validation cycles. A distributed inference and semi-online policy
update scheme allows the model to adjust dynamically to network
changes without external retraining.

The quantitative evaluation demonstrates that the proposed
system maintains stable throughput (TPS) while reducing the
average consensus latency by 34% relative to the base protocol
under adverse, high-load conditions. Regarding security, it achieves
high detection in Sybil and node-collapse scenarios (DR exceeding
0.90 with FPR below 0.10) and moderate detection under
congestion and erroneous transactions (DR between 0.58 and 0.70,
FPR between 0.14 and 0.22). Additionally, we observe a sustained
reduction in average energy consumption across nodes, on the
order of 16% in high-congestion settings–particularly relevant for
low-power edge deployments. These outcomes are achieved via
policy adaptation guided by a multi-objective reward, rather than
by static thresholds or signatures.

System stability is corroborated by convergence curves of
accumulated rewards per cycle, which show effective learning
within the first 30 iterations and robust stabilization even under
topological perturbations. Moreover, the standard deviation of
consensus latency remains significantly lower with the adapted
protocol, indicating more stable and predictable behavior.

Finally, we conduct a comparative assessment against
recent works considering the form of AI-consensus integration,

addressed adversarial scenarios, experimental complexity, and
multivariate performance (Ressi et al., 2024; Park et al., 2024).
The proposed approach differs substantially by combining
contextual reinforcement learning with dynamic graphs,
active reconfiguration of consensus parameters, and practical
applicability in edge environments without constant supervision
or high computational budgets (Zhu et al., 2023). This positioning
indicates advantages over centralized or static-logic designs in
terms of functional coverage, performance, and stability. From
an applicability perspective, the approach is well-suited to IoT
networks, distributed industrial settings, and decentralized
financial systems operating under structural uncertainty,
heterogeneous nodes, and persistent threats; its ability to self-
regulate and adapt progressively to network dynamics advances
resilience, efficiency, and sustainability in blockchain architectures.

The article is structured in five main sections. Section 2 presents
related work, highlighting current limitations in integrating
AI with blockchain consensus mechanisms. Section 3 details
the proposed architecture, including the reinforcement learning
model, dynamic graph representation, and operational adaptation
logic. Section 4 reports experimental results across multiple
dimensions: transactional throughput, malicious-node detection,
energy efficiency, operational stability, and comparison with the
state of the art. Section 5 discusses the relevance and applicability of
the findings, as well as potential methodological limitations. Finally,
Section 6 presents the general conclusions and proposes future
research directions for the evolution of autonomous architectures
in blockchain systems.

2 Literature review

The intersection of blockchain consensus mechanisms and AI
has emerged as a transformative area of research, strengthening
cybersecurity and addressing issues related to scalability, data
integrity, intrusion detection, and energy efficiency. Recent studies
consolidate the growing trend of integrating machine learning
(ML), deep learning (DL), and reinforcement learning (RL)
techniques into consensus protocols to optimize the performance
and resilience of blockchain-based distributed systems. For a
broader overview of FinTech that frames AI/ML and blockchain
as enabling technologies, the survey by Kou and Lu (2025)
was consulted.

A prominent line of work focuses on improving consensus
efficiency and security through predictive models. Sun et al.
(2023) propose a high-performance consensus algorithm for energy
blockchains, utilizing recurrent neural networks (RNNs) to predict
node integrity and select the most trustworthy nodes, thereby
increasing data privacy and mitigating the actions of malicious
nodes. In a complementary approach, Ameri and Meybodi
(2024) develop cognitive blockchain architectures that integrate
learning automata to optimize Byzantine Fault Tolerance (BFT)
protocols, dynamically adjusting parameters such as block size and
propagation delay based on the network state.

Another fundamental contribution is the use of AI for
intrusion detection and threat prevention. Pathak et al. (2024) and
Ahakonye et al. (2024) demonstrate that expert systems and neural
networks, when integrated with blockchain, can detect malware
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and cyberattacks in real-time, maintaining an immutable record
that reinforces traceability and trust in the infrastructure. The
incorporation of these techniques enables proactive responses and
improves decision-making in decentralized environments.

Regarding data privacy and integrity, the immutable and
decentralized structure of blockchain is combined with the
intelligent detection capabilities of AI. Soren and Rajendran (2023)
argue that the combined use of cryptographic techniques and smart
validators improves the trustworthiness of information, especially
in sensitive sectors such as healthcare or defense. Along these
lines, Himdi (2024) proposes an AI- and blockchain-based security
framework for cognitive cities, enabling secure data processing and
distributed decision-making.

Likewise, new AI-augmented consensus mechanisms have
been proposed. Venkatesan and Rahayu (2024) explore hybrid
models such as Delegated Proof-of-Stake Work (DPoSW),
while Dutta and Puthal (2024) present PoAh 2.0, an adaptive
algorithm that incorporates dynamic authentication based on
the sensitivity of the transacted data. Luo et al. (2021) develop
S-PoDL, a computationally efficient consensus protocol that
utilizes two-stage DL to reduce the load on edge devices, thereby
favoring more scalable implementations. From an Information
Systems perspective, Lu (2021) synthesizes implementation
mechanisms, core technologies, applications, and drawbacks of
blockchain in IS contexts, motivating adaptive and context-aware
consensus designs.

The literature also identifies future directions and research
gaps. Saxena et al. (2023) and Yuan et al. (2025) advocate
for the development of semantic consensus mechanisms, robust
privacy strategies, and the use of AI for distributed threat
intelligence. Significant challenges remain, including robustness
against adversarial attacks, energy efficiency, and the need for
regulatory frameworks that support the integration of these
technologies in critical contexts. Complementing these trends, Lu
(2018) reviews current blockchain research topics and open issues
(e.g., security, scalability, privacy, governance) that our adaptive
consensus directly addresses.

The reviewed papers demonstrate that the synergistic
application of AI and consensus algorithms in blockchain is not
only feasible but necessary to address the growing demands of
cybersecurity. The emergence of intelligent protocols such as PoAh
2.0 and S-PoDL marks a paradigm shift toward adaptive and
context-aware systems capable of detecting, responding to, and
mitigating threats in real time, without sacrificing the principles of
decentralization and trust that characterize blockchain.

3 Materials and methods

3.1 Architecture for blockchain consensus
optimization using AI

To incorporate adaptive capabilities into the consensus
protocols of blockchain systems, a hybrid architecture is designed
that integrates AI techniques to dynamically adjust validation
parameters, identify malicious behavior in participating nodes, and
maintain system stability in the face of adverse conditions. The
proposal seeks not only to increase the operational efficiency of

FIGURE 1

Hybrid functional architecture for dynamic consensus optimization
in blockchain using artificial intelligence.

consensus but also to incorporate early detection and automatic
response mechanisms for events that compromise the security or
quality of the validation process.

The proposed architecture comprises six interrelated functional
modules that form a complete cycle of analysis, inference,
adaptation, and verification on the consensus engine. Figure 1
presents the full schematic of this architecture, illustrating the
data flow from event generation in the nodes to the adaptation of
consensus parameters and the audit trail.

The architecture begins with the network node layer, which
includes participating entities with distinct behaviors. This layer
contains benign nodes, which adequately perform their functions
of transaction validation and propagation; malicious nodes, which
introduce intentional errors, attempt to manipulate consensus, or
alter the block flow; and inactive nodes, which do not respond
within established times or exhibit operational intermittence. Each
node generates a series of events that include validation attempts,
block transmissions, digital signatures, response times, and
participation frequency. The next module collects this information.

The network monitoring module acts as a real-time surveillance
system. Its function is to collect and structure the events generated
by the nodes, producing a set of observation vectors for each of
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them. The processed metrics include average propagation latency,
success or failure of validation tasks, the number of correctly
signed blocks, errors detected during propagation or validation, the
time history of recent behavior, and connectivity with neighboring
nodes. These vectors are transformed into normalized and encoded
inputs for sending to the inference module.

The AI model constitutes the core of the adaptive decision-
making process. This model can be based on different architectures
depending on the system’s objective, including configurations
with deep neural networks, deep RL, such as DDPG or PPO,
or hybrid models that incorporate graph-based structures to
represent relationships between nodes (Bhourji et al., 2024).
The model receives as input the feature vectors generated by
the monitoring module and produces as output one or more
specific actions directed at individual nodes or the system. The
inferred actions include, among others, penalizing a suspicious
node, suspending it, adjusting the validation difficulty at the
personal level, reducing its participation in the consensus
process, or redistributing roles within the network (Wang et al.,
2024).

The decisions generated by the model are transferred to the
consensus adapter, located at the bottom of the architecture. This
module directly executes adjustments to the active consensus
engine, which can correspond to schemes such as PoS, BFT, or
hybrid configurations (Yadav et al., 2023). The variables modified
at this level include the weight assigned to each node’s vote, the
number of confirmations required to consolidate a block, the
threshold of active participation needed to achieve a quorum,
intentional delays applied to limit the activity of problematic nodes,
and the rotation of validators based on dynamic criteria. These
modifications are used without the need to restart the system or
alter the integrity of the ledger, ensuring operational continuity and
structural consistency in the blockchain.

The result of the consensus process, already modulated by
adaptive decisions, is stored in the blockchain ledger (Govindan
et al., 2024). This component fulfills the traditional functions of
logging, cryptographic integrity, and distributed validation, but
also includes additional metadata that documents the decisions
made in each cycle, such as the nodes involved, the modified
parameters, and the conditions that triggered the intervention of
the intelligent system.

The audit module processes all recorded information to
perform verification, traceability, and feedback functions. This
component evaluates whether the decisions executed correspond to
the model’s inference, stores statistics on the impact of the actions
taken, generates new datasets for future training phases, and allows
for the detection of potential systematic errors in the adaptive
logic (Selvarajan et al., 2025). Thus, architecture not only acts on
the system’s current operating environment but also consolidates
an evolutionary memory that allows for continuous adjustment of
the model in real or federated environments.

Overall, this functional architecture constitutes an autonomous
and reactive cycle in which AI does not replace consensus but
rather transforms it into a contextual, resilient mechanism capable
of evolving in the face of dynamic threats while maintaining
the principles of decentralization, traceability, and robustness
characteristic of blockchain networks.

3.2 Selection of the base consensus
protocol

The selection of the consensus protocol on which AI techniques
are applied is a fundamental aspect in the design of the proposed
system, as it determines the security, energy efficiency, transaction
latency, and adaptability of the blockchain system. Based on the
findings presented in the literature review, three predominant
lines of consensus evolution are identified: classic protocols,
such as PoW and PoS; Byzantine fault-tolerant protocols (BFT)
and optimized variants; and hybrid models enriched with AI
techniques, such as PoAh 2.0 or S-PoDL (Zhang et al., 2024).

The architecture developed in this study is oriented toward a
distributed environment with heterogeneous nodes and variable
operating conditions. Therefore, a protocol is required that not only
enables decentralized and secure validation but is also susceptible to
dynamic adaptation, with support for external modules that modify
its internal parameters at runtime. Under these conditions, the
use of PoW is ruled out due to its structural rigidity, high energy
consumption, and low tuning granularity. PoS-based schemes,
Delegated Proof of Stake (DPoS), optimized BFT consensus, and
the PoAh 2.0 algorithm are considered viable candidates–the S-
PoDL model, proposed by Luo et al. (2021) it is also relevant
for incorporating DL-based validation processes. However, it
has limitations in its direct applicability in environments where
distributed computing is restricted.

This work adopts a model inspired by PoAh 2.0, proposed by
Dutta and Puthal (2024), which introduces an adaptive mechanism
where the block authentication process adjusts based on the
sensitivity of the data. This property allows decisions derived from
the AI model to be incorporated into the consensus cycle, granting
control over aspects such as participation frequency, penalization of
nodes with suspicious behavior, and dynamic modification of the
validation threshold. Unlike traditional PoS, PoAh 2.0 decouples
node steak from its accumulated wealth, favoring behavior patterns
evaluated in real time, which is essential for integration with
innovative detection systems.

To support this decision, a comparative analysis of the main
critical performance parameters is presented below, considering
four representative schemes: PoS, BFT, PoAh 2.0, and S-PoDL.
Table 1 summarizes the evaluated characteristics, incorporating
security, efficiency, and adaptability metrics.

The table shows that PoAh 2.0 offers the best balance between
operational efficiency and adaptability to innovative models. Its
modular design and focus on context-based authentication make
it an ideal candidate for integrating decisions issued by DL or RL
models. Furthermore, its low dependence on economic staking
minimizes the centralization risks observed in traditional PoS,
which is especially relevant in scenarios where node behavior must
be evaluated based on their historical performance and not solely
on the number of tokens in their possession.

Another relevant aspect in the choice of PoAh 2.0 is
its compatibility with edge computing architectures and
heterogeneous environments. While BFT offers high efficiency in
small networks, its scalability is compromised by the quadratic
growth of communication complexity. S-PoDL, although
innovative in its use of DL as part of the validation mechanism,
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TABLE 1 Technical comparison of consensus protocols oriented to integration with artificial intelligence.

A B C D E

Dynamic validator adjustment Limited Static Fully dynamic Partially adaptive

Average latency Moderate Low Low Low

Energy consumption Low Low Low Low

Smart penalty capability Not supported Requires redesign Supported by design Model-dependent

AI model compatibility Low Medium High High

Sybil attack resistance High Medium High (with AI) High

Real-time modifiability No Limited Yes, under AI control Partially

Staking dependency High Zero Low None

A = technical parameters; B = traditional POS; C = optimized BFT; D = PoAh 2.0; E = S-PoDL.

entails a high computational burden that does not align with the
energy optimization and structural simplicity requirements of
this work.

3.3 Integrated artificial intelligence model
for dynamic consensus tuning

3.3.1 Definition of the model and learning
environment

The core component of the proposed system is an AI
model designed to infer real-time adjustments to the consensus
protocol based on node behavior and dynamic network conditions.
Given the non-stationary, multi-agent nature of the blockchain
environment, with partially observable states, a deep RL algorithm,
specifically PPO, is selected as the core of the system. This approach
allows training an agent that learns an optimal policy through
continuous interaction with the distributed environment, adapting
its decisions without compromising system stability.

The choice of PPO reflects its balance between training
stability and convergence efficiency. Unlike algorithms such as
REINFORCE or DQN, PPO introduces a loss function with
controlled regularization, which restricts abrupt changes in the
learned policy, avoiding oscillations or overfitting in highly
sensitive environments such as consensus mechanisms (Ibrahim
et al., 2022). Furthermore, its support for distributed learning
and asynchronous execution makes it a viable option for
integration into blockchain architectures with multiple validators
and observable nodes. The learning environment is formally
modeled as a partially observable Markov decision process
(POMDP), where at each validation instant, the agent observes
a representation of the network state, decides on an adjustment
action based on the consensus parameters, and receives a reward
that quantifies the impact of that decision on the overall system
performance (Tresols et al., 2024).

The formalization of the environment is defined as follows:

• The set of SS states includes multidimensional vectors
representing the operational state of each node and the global
consensus. Variables considered include average latency per
node, successful validation rate, penalty history, aggregate

reputation metrics, error rate in recent transactions, and
topological connection density.

• The AA action set comprises decisions that directly affect
the consensus engine. This includes modifying a node’s
validation weight, suspending it from the consensus process,
adjusting the quorum threshold for confirming blocks, and
redistributing the validator selection scheme.

• The reward function R(st , at) is designed to maximize the
efficiency, security, and stability of the system. The reward at
each instant is calculated as a composite function that weights
three factors: the improvement in the rate of confirmed
transactions per second (TPS), the timely detection and
exclusion of malicious nodes, and the reduction in the
variability of consensus time. Formally, it is defined as:

R(st , at) = α · �TPSt + β · Detectiont − γ · Var(Tconsensus) (1)

where we fix the reward weights to α = 0.20, β = 0.50,
and γ = 0.30 across all reported experiments (unless stated
otherwise), and Var(Tconsensus) denotes the temporal variance
of the validation process. To ensure commensurability of
terms, �TPSt is computed as a relative change (TPSt −
TPSbase)/TPSbase clipped to [−1, 1]; the detection term uses
Youden’s statistic, Detectiont = TPRt − FPRt (clipped
to [−1, 1]), which explicitly penalizes false positives; and
Var(Tconsensus) is scaled by the scenario-wise median absolute
deviation (MAD). A ±10% sensitivity analysis around
(α, β , γ ) preserved qualitative conclusions with variations <

2.5% in the primary metrics.
• The agent’s policy πθ (a|s), parameterized by θ , represents the

probability of selecting action a given a state s, and is modeled
using a deep neural network with multiple hidden layers and
nonlinear activation functions.

• The training objective function of the PPO agent is based
on maximizing the cumulative expectation of future rewards,
penalizing excessive deviations from the previous policy
through controlled clipping:

LPPO(θ) = Et

[
min

(
rt(θ)Ât , clip(rt(θ), 1 − ε, 1 + ε)Ât

)]
(2)
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where rt(θ) = πθ (at |st)
πθold (at |st) is the likelihood ratio and Ât the

estimated advantage. We set the PPO clip to ε = 0.20 and use
generalized advantage estimation with discount γPPO = 0.99
and λGAE = 0.95. Optimization uses Adam (learning rate
3 × 10−4) with rollouts of nsteps = 2, 048, minibatch size 64,
and K = 10 epochs per update; the entropy and value-loss
coefficients are 0.01 and 0.50, respectively; we cap gradients
at 0.5 (max_grad_norm) and monitor a target KL of 0.01.
Policy and value functions are two-layer MLPs with hidden
sizes [256, 128] and ReLU activations. Training spans 3.0×106

timesteps per run; observations are standardized online and
rewards are clipped to [−1, 1] for stability.

This model is initially trained in a controlled environment, fed
with synthetically generated scenarios, and subsequently enriched
with real-world data extracted from the architecture audit module.
Once trained, the model is embedded in the consensus adapter’s
operating system and can be updated periodically or continuously
depending on the deployment design (offline vs. online learning).

The environment design, observation structure, and learned
adaptive policy enable the system to adapt to emerging node
behavior patterns, detect attempts at consensus manipulation or
degradation, and optimize the system’s computational resources
without manual intervention. This formalization serves as the basis
for the operational implementation of the intelligent system, which
is developed in the following subsection.

3.3.2 Operational and logical implementation of
the intelligent system

Once the PPO model has been trained in a simulated
environment, its operational integration within the adaptive
consensus system requires a cyclical logic of inference, action,
and continuous feedback. This logic is executed in real time
and operates as an autonomous subsystem within the consensus
adapter. The functional flow of this system consists of three
main stages: (i) observation capture, (ii) inference of adjustment
decisions, and (iii) execution of actions and environment updates.

The process begins with the collection of operational metrics
from the nodes, generated by the monitoring module. These
metrics include values such as the successful validation rate in
the last blocks, the number of rejected transactions, message
propagation delays, and anomalous behavior events. From this
data, a state vector is constructed that represents the current
condition of the consensus environment.

The state vector is processed by the PPO model, which has
learned an optimal policy to select the most appropriate action
for the given situation. The model’s output consists of one or
more decisions that may include individual node penalties, quorum
parameter reconfigurations, or validation weight redistribution.

Once the action is determined, it is communicated directly to
the consensus adapter, which updates the structural parameters
of the running protocol. After this modification, a new block
validation cycle begins, the results of which are again recorded
by the system to feed back to the model. This process is
presented in the following pseudocode, explicitly designed for the

PPO model’s deployment logic in blockchain environments with
heterogeneous nodes:

1: Initialize PPO_Agent with policy πθ and value
function Vθ

2: Load pretrained model parameters θ from offline
training

3: while at each consensus interval t do
4: Observe current network state st from Monitoring

Module
5: st ← vectors including node metrics: latency,

success_rate, error_count, reputation, degree
6: for each node i do
7: ai ← PPO_Agent.select_action(st)
8: Apply consensus-level actions:
9: adjust_vote_weight(i)
10: penalize_node(i)
11: suspend_node(i)
12: change_validation_threshold()
13: end for
14: Send ai to Consensus Adapter
15: Consensus Adapter updates internal protocol

parameters
16: Wait for next block confirmation
17: Record outcome metrics: TPS, variance, fault

detection
18: Compute reward rt as:
19: rt = α ·�TPS+β ·anomaly_detection_success− γ ·

latency_variance
20: PPO_Agent.update_policy(st, ai, rt)
21: end while

Algorithm 1. Pseudocode 1. Dynamic consensus inference and adaptation
using the PPO model.

This operating cycle can be executed at intervals synchronized
with block generation, or at a higher frequency if greater
responsiveness to critical events is required. The model can
operate under online learning schemes, accumulating experience
and continuously updating its policy, or offline through periodic
training sessions with data stored by the audit module.

The implementation architecture also includes control
mechanisms to avoid unwanted fluctuations or unstable
decisions. Therefore, the consensus adapter incorporates trigger
thresholds and smoothing windows to apply changes gradually,
ensuring consistency in validation and avoiding forks or massive
block rejections.

This operational logic allows the system to respond intelligently
and autonomously to variations in the security, stability, or
efficiency of the consensus process, making the PPO model a key
component for the dynamic adaptation of cybersecurity-oriented
blockchain networks.
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3.4 Setting up the blockchain validation
environment

3.4.1 Network structure and validation platform
To validate the behavior of the proposed system, we implement

a permissioned blockchain network adapted to Hyperledger
Fabric (Yu et al., 2024). This platform offers complete control over
node configuration, identity management, and consensus policies,
enabling the seamless integration of AI modules and dynamic
governance adapters. The deployment utilizes Docker containers
to ensure environmental reproducibility and precise control over
experimental conditions. The network state is encoded as a directed
graph, where nodes represent validators/peers and edges capture
validation/gossip interactions with time-windowed attributes (e.g.,
propagation and reliability statistics), following the representation
style discussed in Yu et al. (2024) at the encoding level only. We
do not reuse the dataset from Yu et al. (2024); all training and
evaluation data reported here are generated by our Hyperledger
Fabric testbed using scenario generators and controlled traces, with
fixed seeds and reproducible configurations.

The network consists of a total of Ntotal = 120 nodes,
functionally distributed into three categories: benign (Nb),
malicious (Nm), and inactive (Ni). The coefficients define the
initial distribution:

Nm = ρm · Ntotal, Ni = ρi · Ntotal, Nb = Ntotal − Nm − Ni (3)

where ρm = 0.20 and ρi = 0.10. Consequently, 84 benign
nodes, 24 malicious nodes, and 12 inactive nodes are obtained.
The malicious nodes are programmed with heterogeneous
behaviors, emulating improper validation, invalid block injection,
or spoofing attacks.

The adversarial behavior of the nodes is modeled as a Poisson
process with individual error rate λi, where the cumulative
probability of anomalous behavior over time t is expressed as:

Perror(i, t) = 1 − e−λi·t (4)

This model allows for dynamically representing attacks of
varying intensity and frequency, while maintaining the variability
necessary to test the system’s adaptability.

Figure 2 graphically represents the general structure of the
validation environment. It shows the distribution of the nodes
according to their behavior, the logical connections between them,
and the five defined experimental scenarios.

The validation network is permissioned to enable controlled
stress conditions and precise adversarial injections. The
mechanisms we evaluate (state representation, policy updates
via PPO, and adaptive tuning of consensus parameters) do not
fundamentally rely on curated identities. In a permissionless
deployment, the observation space should be augmented with
stake/attestation and fork signals (e.g., validator stake distribution,
recent slashing events, reorg depth, orphan/uncle rate, and
high-percentile gossip delays), and the action space should focus
on incentive-compatible levers (committee sizing and rotation
frequency, quorum thresholds, gossip fanout/timeout, and
rate-limits for suspicious peers).

FIGURE 2

Structural representation of the blockchain validation environment
and evaluated scenarios.

In production networks, validator heterogeneity, churn, and
heavy-tailed propagation delays must be reflected explicitly in
both the state and the control surface. The state vector is
augmented with (i) stake/attestation participation statistics over
sliding windows (e.g., participation rate, recent slashing incidence,
stake concentration), (ii) fork/reorg signals (recent reorg depth,
orphan/uncle rate), (iii) network propagation percentiles (p50/p95
gossip delay and fanout effectiveness), and (iv) liveness/load
indicators (missed-slot ratio, mempool backlog, queueing delay).
Actions are constrained to incentive-compatible levers with
protocol-level invariants: the validator committee size s and its
rotation cadence, quorum thresholds q satisfying BFT bounds
(s = 3f+1 and q ≥ 2f+1 for up to f Byzantine
faults), gossip fanout/timeouts within admissible [fmin, fmax] and
[τmin, τmax], per-peer rate-limits, and peer-scoring thresholds with
probation/backoff. To avoid instability under churn, parameter
updates use hysteresis and hard caps (at most one control changed
per decision step; cumulative voting-weight adjustment ≤ 5% per
epoch; minimum s enforced to preserve liveness), and changes are
staged via shadow evaluation plus two-phase activation to ensure
feasibility under current load. The optimization objective includes
long-horizon penalties on reorg/orphan rates and committee
volatility, together with explicit costs for false positives and latency
variance, preventing short-term gains that increase security risk.
Telemetry is collected from validator clients and the p2p layer and
aggregated over short/long windows to yield robust features despite
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outliers. At the same time, policy inference is amortized every Nupd
blocks to keep runtime overhead within the consensus budget.

3.4.2 Definition of critical operating scenarios
Based on the previously defined structure, five scenarios

are designed to evaluate the system’s robustness against adverse
conditions common in distributed blockchain networks:

Scenario 1: functional network without disturbances. All nodes
operate as benign nodes. No errors or anomalous traffic are
generated, and a stable transaction rate is maintained. This case
serves as a baseline to measure the pure performance of the system,
with and without the active AI model.

Scenario 2: active Sybil attack. A subset of malicious nodes
generates multiple identities, attempting to alter the distribution
of power in the validation process. The PPO model is evaluated
to determine whether it identifies patterns of correlated behavior,
adjusts validation weights, and mitigates the impact of the
attack. Identity-multiplication and related peer-plane attacks
(e.g., Sybil) have been analyzed in operational V2I/fog-cloud
settings, motivating blockchain-based defenses without sacrificing
application performance (Lakhan et al., 2024).

Scenario 3: Transactional congestion. The transaction arrival
rate increases, modeled as a Poisson process:

Tgen(t) ∼ Poisson(λT) (5)

where λT increases progressively until it exceeds the network’s
operating capacity. This configuration enables the observation
of the system’s response to saturation, particularly in terms
of validation threshold adjustments or load redistribution
mechanisms. Network congestion and mempool backlog have been
documented in deployed blockchains, with observable degradation
of propagation and system responsiveness (Jiang and Liu, 2021).

Scenario 4: partial failure of critical nodes. A subset of nodes
with high prior participation is randomly selected, and a probability
of intermittent downtime is introduced. This behavior simulates
temporary collapses that impact the quorum. The system must
respond by modifying the logical topology and adjusting consensus
parameters. Operational studies of public PoS networks show that
connectivity, client stacks, and deployment geography materially
impact validator performance and reliability (Cortes-Goicoechea
et al., 2025).

Scenario 5: errors covered up by previously benign nodes.
Intentional failures are progressively introduced into nodes that
initially operated correctly, simulating internal betrayals or latent
internal attacks. Detection time, adaptive penalty capacity, and
overall system resilience are measured. Recent work stresses the
need to reason about transitions from benign to Byzantine behavior
at the protocol level and to ensure safety and liveness under
adversarial participants (Honoré et al., 2024).

Each scenario is run with replicable initial conditions,
random seed control, and structured logs, ensuring consistent
results and traceability for the metrics formally defined in the
following sections.

In addition to the canonical adversarial scenarios, we
consider topology families (scale-free, small-world, random

geometric) and operational regimes (low/medium/high churn;
symmetric vs. asymmetric propagation). This allows for assessing
adaptivity under structural and temporal variability, rather than in
single-instance environments.

3.5 Dataset and preprocessing

3.5.1 Hybrid data sources: public datasets and
synthetic generation

The validation and training of the AI model are based on
a hybrid data environment, composed of open public datasets
and data synthetically generated through controlled simulations.
This combination allows leveraging real-world structures and
empirical patterns, while extending coverage to specific attack
scenarios, partial collapse, or adversarial behavior that are not fully
represented in existing datasets.

For real-world data, the TON_IoT dataset developed by
Moustafa (2019), is primarily used. It provides device telemetry
records, network flow, system commands, blockchain transactions,
and tags associated with malicious events. This dataset is processed
to extract the following structural variables:

• Node identifier and event type.
• Timestamp, latency, computational load.
• Participation in consensus (validated blocks, rejected blocks).
• Record of issued and accepted transactions.

Each instance of the dataset is converted into a state vector
st ∈ R

n that represents the observed conditions of a node or the
network at a given time.

To complement these traces, a synthetic adversarial behavior
generator based on probabilistic models is constructed. An
anomalous event generating function is defined per node as:

E(i, t) =
{

1 if U(0, 1) < pi(t)

0 otherwise
(6)

where U(0, 1) is a uniform random variable, and pi(t) is the
probability of malicious behavior of node i at time t, defined as:

pi(t) = αi · e−βit + γi (7)

Here, αi defines the initial intensity of the anomalous behavior,
βi regulates its decay, and γi represents a permanent base risk rate.

Additionally, a congestion data generator is implemented with
transaction arrivals defined by:

Tgen(t) ∼ Poisson(λT), λT ↑ during overload scenarios (8)

This configuration allows the model to be evaluated under
extreme demand conditions, measuring its adaptive capacity to
consensus channel saturation.
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3.5.2 Data transformation, coding, and
structuring

Once the hybrid data environment is established, preprocessing
techniques are applied to ensure semantic consistency, numerical
stability, and structural relevance of the model inputs. Each state
vector, st , is subjected to Min-Max normalization:

s′t =
st − smin

smax − smin
∈ [0, 1]n (9)

where smin and smax are vectors representing the extreme values
of each variable, calculated over the entire dataset.

To capture the temporal dynamics of node behavior, a sliding
window coding is implemented on time sequences of length τ .
Tensors X(i) ∈ R

τ×n are constructed for each node i, representing
the recent state history:

X(i) = {s(i)
t−τ+1, . . . , s(i)

t } (10)

These tensors serve as direct input to the PPO agent when
employing recurrent networks or temporal attention mechanisms.

In configurations that integrate graph neural networks (GNNs),
the blockchain network is structured as a dynamic directed graph
Gt = (V , Et), where:

• V represents the set of nodes (constant over time),
• Et ⊆ V × V denotes the set of transactions and validations

that occurred at time t.

Each node vi ∈ V has an attribute vector xi(t), and each edge
eij(t) contains information about time, transaction size, latency, and
validation result. The graph is represented by a weighted adjacency
matrix At ∈ R

N×N and an attribute matrix Xt ∈ R
N×d.

These structures allow feeding GNN or hybrid PPO-GNN
models with contextual, topological, and evolutionary information
about the network, contributing to improving the quality
of learning and the accuracy of adaptive decisions in the
consensus layer.

3.6 Experimental procedure

The experimental procedure is designed with a formal structure
that allows for evaluating the impact of the AI model on the
dynamic optimization of the consensus protocol. This evaluation
considers the configuration of the data environment, the AI agent’s
training strategy, its integration into the consensus system, and
validation under adversarial conditions.

The hybrid data set is divided into three mutually exclusive
subsets:

• Training set: 60% (30,000 instances), used to fit the RL agent
and perform internal cross-validation.

• Validation set: 20% (10,000 instances), used for early stopping
and model selection after hyperparameter search.

• Test set: 20% (10,000 instances), reserved for final system
evaluation after full integration; it is not used during training
or tuning.

Hyperparameter search (including (λ1, λ2, λ3) and PPO
settings) is conducted via stratified k-fold within the 60% training
split (k = 5), preserving scenario/class proportions. The selected
configuration is retrained on the full 60% and monitored on the
20% validation set for early stopping; final metrics are reported
on the held-out 20% test set. Each adversarial scenario is repeated
five times with distinct random seeds; we fix the environment
seed to 42 and the network initialization seed to 1337. Each run
trains for 3,000,000 timesteps and is evaluated over 100 consecutive
validation cycles.

Empirically, learning curves plateaued between 2.2 × 106 and
2.6× 106 timesteps across scenarios; we cap training at 3.0× 106 to
ensure convergence margin. Increasing to 5.0×106 did not improve
headline metrics by > 1%. Validation over 100 consecutive cycles
yielded stable estimates (95% CI width < 1.5% for DR/FPR), and
using 200 cycles changed means by < 0.5%.

Each partition preserves the proportional distribution of classes
(benign, malicious, inactive nodes) and network contexts (Sybil
attacks, traffic congestion, collapsed nodes, validation errors).
The total number of nodes considered in the environment is
40, distributed in variably interconnected clusters, allowing the
simulation of a realistic and dynamic topology.

The training process is executed in a first offline stage, using
the PPO algorithm. The policy πθ (a|s) is adjusted through repeated
interactions of the agent with the generated environment, using
input sequences X(i) ∈ R

τ×n per node. The total reward is
defined as:

Rt = λ1 · �lat(t) + λ2 · �fail(t) + λ3 · �trust(t) (11)

Where:

• �lat(t) = Latref (t) − Latact(t) represents the reduction in
consensus latency,

• �fail(t) = Errref (t) − Erract(t) measures the decrease in the
invalid block rate,

• �trust(t) = Successful Validations
Total Validations expresses the trust in the

selected nodes.

For all experiments we fix λ1 = 0.50 (latency improvement),
λ2 = 0.30 (failure reduction), and λ3 = 0.20 (trust/quality),
selected via grid search on the training split. To make terms
commensurable, we use normalized deltas: �lat(t) = [Latref (t) −
Latact(t)]/Latref (t) clipped to [−1, 1]; �fail(t) = [Errref (t) −
Erract(t)]/ max(Errref (t), ε) clipped to [−1, 1] with ε = 10−6; and
�trust(t) ∈ [0, 1] is re-centered to 2 · �trust(t) − 1 ∈ [−1, 1]. A
±10% sensitivity analysis around (λ1, λ2, λ3) preserved qualitative
conclusions with variations < 2.5% in the main metrics.

The trained model is subsequently integrated into the
consensus adapter, functioning as an embedded inference
module (Zeng et al., 2024). During operation, the system captures
each state of the network st , encodes it into an input vector, and
delivers it to the model, which predicts an action at ∈ A. The
actions include:

• Reconfiguration of the block difficulty parameter (e.g.,
reduction to mitigate latency in congestion scenarios),
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• Penalization of nodes with anomalous behavior by reducing
voting weights,

• Adaptive redistribution of validator roles.

The model update frequency is semi-online: the policy is
recalibrated every 10 consensus cycles, based on a buffer of
accumulated events. This allows for maintaining adaptability
without compromising operational stability.

Experimental validation follows a stratified k-fold procedure
with k = 5 within the 60% training split. Data are partitioned into
60%/20%/20% for train/validation/test. Hyperparameter search
[including (λ1, λ2, λ3)] is conducted via k-fold only on the 60%
training data; the selected configuration is retrained on the full 60%
and monitored on the 20% validation set for early stopping; final
metrics are reported on the held-out 20% test set. Each adversarial
scenario is repeated five times with distinct random seeds; we fix
the environment seed to 42 and the network initialization seed to
1,337. Each run trains for 3,000,000 timesteps and is evaluated over
100 consecutive validation cycles.

Additionally, specific stress tests are run to analyze the system’s
robustness under extreme conditions:

• Massive sybil attacks: introduction of 10 fake nodes with
inconsistent signatures,

• Network congestion: increase in transaction rate to λT = 200
tx/s per node for defined intervals,

• Crashed nodes: abrupt shutdown of 15% of active validator
nodes,

• Intentional false validations: modification of the hash result on
critical blocks.

All stress tests are repeated five times per scenario and
seed configuration (env = 42, init = 1337, plus four additional
seeds), and the scripts to reproduce each perturbatio. Experiments
were conducted on Ubuntu 22.04 LTS with Python 3.10.13,
using PyTorch 2.2.2 (CUDA 12.1 build), Stable-Baselines 3 2.3.0,
Gymnasium 0.29.1, and Docker 24.0.7. Training requires a CUDA-
capable GPU; our runs used an NVIDIA GeForce RTX 4060
Laptop GPU with the NVIDIA proprietary driver (version ≥ 545)
and CUDA 12.1. Reproduction on equivalent CUDA 12.x GPUs
are supported.

3.7 Evaluation metrics

The evaluation of the proposed system is based on quantitative
metrics that allow us to analyze the impact of the AI model on the
consensus protocol from four dimensions: performance, security,
efficiency, and adaptive stability. Each metric is formally defined
and justified in the context of experimental scenarios.

Blockchain network performance is evaluated through the
following metrics:

TPS = Ntx

Twindow
(12)

where Ntx represents the number of validated transactions in
a time window Twindow. This metric measures the network’s

processing capacity under different load conditions and
consensus adaptations.

Average validation latency:

L̄ = 1
Ntx

Ntx∑
i=1

(
tval
i − tem

i

)
(13)

where tem
i and tval

i are the issuance and validation times of
transaction i, respectively. This metric analyzes the effect of model
decisions on consensus speed.

Security and robustness:

DR = TP
TP + FN

(14)

where TP represents true positives (correctly detected
malicious nodes) and FN represents false negatives (undetected
malicious nodes).

FPR:

FPR = FP
FP + TN

(15)

where FP denotes false positives (misclassified benign nodes) and
TN denotes true negatives.

Attack resilience (RA):

RA = 1 − �attack
TPS

�normal
TPS

(16)

where �attack
TPS and �normal

TPS represent the variation in TPS in the
presence and absence of attacks, respectively.

Energy and computational efficiency:
Average Energy Consumption per Cycle (Eavg):

Eavg = 1
N

N∑
j=1

Ej (17)

where Ej is the energy consumption of node j in a complete
validation cycle.

Computational load reduction (�C) on edge nodes:

�C = Csin_IA − Ccon_IA

Csin_IA
(18)

where C represents CPU cycles or computing time spent on
validation per node.

Model and adaptive protocol convergence:
Model Convergence Time (Tconv):

Tconv = min {t : |Rt −Rt−1| < ε, ∀t > T0} (19)

where Rt is the cumulative reward and ε is a threshold for policy
stabilization.

Protocol stability (σcons):

σcons =
√√√√ 1

N

N∑
i=1

(Li − L̄)2 (20)

where Li is the consensus latency at cycle i and L̄ is the average
latency.
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TABLE 2 Performance comparison between base protocol and AI-adapted protocol.

Scenario TPS (base) TPS (AI) Latency (ms) (base) Latency (ms) (AI)

Normal operation 122.6 122.6 295.3 219.7

Sybil attack 98.4 98.4 345.9 233.5

Network congestion 87.2 87.2 381.4 245.6

Crash nodes 94.7 94.7 358.8 238.9

Error transactions 105.1 105.1 312.5 226.8

4 Results

4.1 Performance of the AI-adapted
protocol

The system performance evaluation focuses on a quantitative
comparison of the behavior of the original consensus protocol
against its AI-optimized version, with an emphasis on two critical
metrics: throughput in terms of transactions per second (TPS)
and average validation latency. In all cases, tests are run over 100
consecutive validation cycles, in five distinct operating scenarios:
regular operation, Sybil attack, network congestion, collapsed
nodes, and the presence of erroneous transactions. Each scenario
replicates controlled adversarial conditions previously described in
the test environment.

Table 2 presents a direct comparison of TPS and average
latency between the base protocol and the AI-optimized
version. As expected, the throughput remains stable across both
implementations, since TPS in blockchain systems is primarily
constrained by block size, bandwidth, and transaction verification
cost. However, significant improvements are consistently observed
in validation latency. Under normal conditions, the adapted
protocol reduces average latency from 295.3 to 219.7 ms,
representing a reduction of 25.6%. This behavior is replicated in
adverse scenarios. For example, during a Sybil attack, the average
latency decreases from 345.9 ms in the base protocol to 233.5
ms with the AI adaptation, providing a faster validation response
without sacrificing throughput.

Under congestion conditions, where simultaneous transactions
saturate the network, the optimized system does not increase
throughput but still achieves a noticeable reduction in latency,
from 381.4 to 245.6 ms. Similarly, in the scenario of critical node
collapse, latency decreases from 358.8 ms in the traditional protocol
to 238.9 ms with the AI-optimized version. In the presence of
erroneous transactions, the system maintains stable throughput
while reducing latency by almost 90 ms. These results indicate
that the AI-enhanced consensus protocol provides tangible benefits
in terms of responsiveness and resilience in adverse operating
environments, even though throughput remains constant.

Figure 3 shows the temporal evolution of both metrics over
the validation cycles. Figure 3a illustrates the average latency per
cycle, where less dispersion and early stabilization of latency are
observed in the optimized protocol, even in the face of disruptions.
Figure 3b shows the evolution of TPS, where the AI system achieves
higher sustained performance with lower inter-cycle oscillation,
which denotes faster operational convergence compared to the
base protocol.

The results identify critical dynamic patterns: while the baseline
protocol exhibits progressive degradation in the presence of attacks
or failures, the AI protocol maintains a flatter curve and a self-
regulation capacity that allows it to absorb disturbances without
degrading overall performance. The gap between the curves
increases as cycles under adversarial load accumulate, indicating a
cumulative advantage over time for the AI model.

4.2 Detection and management of
malicious nodes

The evaluation of the AI model in the detection of malicious
nodes reveals differential performance depending on the type
of adversarial scenario considered. As presented in Table 3, the
model exhibits an outstanding ability to discriminate malicious
patterns, with particularly high results in situations of node collapse
and Sybil attacks. Accuracy reaches 99% for the Node Collapse
case, with a perfect DR (1.00) and a zero FPR, indicating that
forced disconnection events or structural failures in nodes generate
behavioral traces that the model easily differentiates.

In the case of the Sybil attack, a recall of 0.88 is observed,
accompanied by a precision of 0.91 and an AUC of 0.92. These
values indicate a high sensitivity and specificity of the model for this
type of attack based on identity multiplication. This effectiveness
is because Sybil nodes often break natural patterns of connectivity
and block validation, generating topological and load anomalies
that the model can robustly identify.

In contrast, congestion and erroneous transaction scenarios
present greater challenges for the system. In the former, a moderate
precision of 0.77 and an AUC of 0.72 are achieved. These
values, while acceptable, reflect a greater statistical overlap between
natural congestion behavior and that of induced congestion, which
makes classification difficult without generating false positives.
This limitation is even more evident in the case of erroneous
transactions, where the AUC drops to 0.61 and the precision to
0.64. The difficulty here relates to the statistical subtlety of specific
transaction errors that do not immediately affect network behavior,
escaping the time detection windows considered by the model.

False positives (FPs) can temporarily reduce the adequate
voting power of honest participants, potentially increasing latency
or, under extreme conditions, the risk of forks if committee
thresholds are stressed. To bound this effect, the system applies
soft demotion rather than immediate exclusion at low to
moderate confidence, requiring multi-epoch evidence before more
substantial penalties. We also enforce (i) a per-epoch cap on
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FIGURE 3

Dynamic network performance: comparison between the baseline protocol and the AI-adapted protocol. (a) Average latency per validation cycle. (b)
TPS per validation cycle.

TABLE 3 Metrics for the detection of malicious nodes by adversarial scenario.

Adversarial scenario Precision Recall DR FPR AUC ROC

Sybil attack 0.91 0.88 0.88 0.07 0.92

Congestion 0.77 0.70 0.70 0.14 0.72

Node collapse 0.99 1.00 1.00 0.00 1.00

Erroneous transactions 0.64 0.58 0.58 0.22 0.61

cumulative weight reductions (5% of committee voting power) and
a minimum committee size to preserve liveness; (ii) a dual-criteria
gate (model score and rule-based anomaly check) for complex
actions; and (iii) a cooldown/unban mechanism that restores full
voting weight after sustained normal behavior. Under the FP levels
observed in congestion and erroneous-transaction scenarios (FPR
= 0.14 and 0.22, respectively), these guardrails keep quorum
formation stable and are consistent with the latency.

Figure 4a details the discriminative performance using the ROC
curves by scenario. It shows a clear separation of the curves for
well-detected scenarios (Node Collapse, Sybil Attack), in contrast
to those closer to the line of non-discrimination (Erroneous
Tx). Figure 4b reinforces these findings from a Precision-Recall
perspective, showing the model’s ability to maintain acceptable
accuracy even as coverage (recall) increases.

In addition to the classification component, we observe how
the consensus adapter, fed by the model’s output, executes dynamic
penalties on malicious nodes based on the prediction’s confidence
level. These penalties include validation delay, temporary blocking,

voting rights reduction, and progressive exclusion from the
consensus network. In controlled tests, these decisions not only
mitigated the impact of adversarial nodes but also improved system
stability by reducing the number of rejected blocks and avoiding
unnecessary forks. The results obtained suggest that the AI model is
effective at identifying malicious behavior in near real-time, and by
being integrated within the consensus engine, actively contributes
to the network’s resilience to structural or logical disturbances.

4.3 Energy and computational efficiency

Accurate measurement of energy consumption and
computational load by node type allows determining the
operational impact of the proposed model in distributed validation
scenarios. Since blockchain nodes can present heterogeneous
hardware profiles, ranging from validator servers to low-
power edge devices, it is essential to quantify the savings
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FIGURE 4

Evaluation of the malicious node detection model by adversarial scenario. (a) ROC curves by adversarial scenario. (b) Corresponding precision-recall
curves for the same scenarios, demonstrating the discriminatory capacity of the model.

induced by the intelligent adaptation of the consensus protocol.
To do so, a functional group of nodes implements specific
metrics, and the values are recorded under equivalent operating
conditions, differentiating between executions with and without
the intervention of the AI model.

Table 4 compares two key variables for each node type: average
energy consumption measured in joules (J) and computational load
as a percentage of CPU utilization. The distinction is made between
execution conditions with and without the integration of the
adaptive AI model. This comparison allows establishing the direct
contribution of the intelligent module to reducing operational
resources, particularly in energy-constrained environments or
edge computing.

In the case of validator nodes, a significant decrease in energy
consumption is observed, going from an average of 122.4 J without
AI to 98.3 J with AI. This reduction reflects the efficiency gained by
optimizing the validation cycle, where the intelligent model reduces
redundant participation or penalizes inefficient nodes, allowing for
more direct and efficient validation. Regarding computational load,
although the decrease is more minor (91.8%–89.1%), a favorable
trend remains, which is relevant given the intensive nature of
these nodes.

For client nodes, which process user transactions or less
complex network functions, an energy reduction from 83.1 to 63.5
J and a slight decrease in CPU load (67.2-65.3%) are reported.
Although less pronounced than for validators, these differences
are operationally significant, as these nodes are more exposed
to dynamic conditions such as load peaks or congestion. In
edge nodes, which represent resource-constrained edge devices
or gateways, the effect of AI is most visible in terms of energy
efficiency, dropping from 41.2 to 29.3 J, corresponding to a
reduction of approximately 29%. The computational load also
decreased from 37.1 to 34.5%, enabling more stable and sustainable

operation for devices with low hardware profiles. This behavior
validates the relevance of the proposed model for distributed,
heterogeneous, and energy-sensitive environments.

The representation of these results is detailed in Figure 5, where
Figure 5a illustrates the aggregated behavior of energy consumption
by node type using a bar chart. The consistency of the differences
between the two operating modes is visually confirmed. Figure 5b
uses a violin plot to show the distribution of the computational load
across each node type. This representation is key to identifying not
only the average differences but also the density, variability, and
stability of operations in each environment.

Across all three node types, the incorporation of the AI model
reduces power consumption and stabilizes load operations, as
evidenced by the reduced dispersion in the density curves. This
stabilization is crucial for maintaining system performance without
requiring additional resources or hardware oversizing and allows
inference and decision cycles to run with greater predictability.

The results obtained allow us to quantitatively validate
the hypothesis that an AI-powered adaptive consensus model
not only improves transactional performance but also enables
more efficient and sustainable operations in terms of energy
consumption and computational load, especially in edge scenarios
and low-power systems.

To bound runtime overhead during operation, policy inference
is amortized at fixed intervals (every several consensus cycles),
recent observations are cached to avoid redundant feature
extraction, and minor suggested adjustments are clipped to
suppress no-op updates. In practice, the forward pass and action
staging take a small fraction of the consensus cycle on the
reported GPU, and this budget can be tightened or relaxed by
tuning the invocation cadence and confidence thresholds without
altering safety guardrails. Operational logs record timestamps and
durations of each policy action to ensure auditability.
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TABLE 4 Average power consumption and CPU load by node type with and without AI.

Node type AI integration Avg. energy consumption (Joules) Avg. cpu load (%)

Validator No 122.4 91.8

Validator Yes 98.3 89.1

Client No 83.1 67.2

Client Yes 63.5 65.3

Edge No 41.2 37.1

Edge Yes 29.3 34.5

FIGURE 5

Comparative analysis of energy and CPU efficiency by node type with and without AI integration. (a) Average energy consumption by node type. (b)
CPU load distribution by node type.

4.4 Model convergence and system
stability

The convergence of the model is validated by monitoring
the curve of accumulated rewards per episode, represented in
Figure 6a. The shape of this curve allows us to infer the degree of
stabilization of the learned policy and the agent’s ability to sustain
positive performance in the face of changing conditions. In this
case, reward growth is not simply linear. Still, it presents a gently
increasing slope between episodes 10 and 60, indicating a phase
of active adjustment where the model explores combinations of
actions in an initially uncertain decision space. From episode 60

onward, a slight acceleration in reward accumulation is observed,
reflecting more efficient exploitation of the learned policy. This
behavior does not suggest early saturation or oscillating cycles
between suboptimal policies, as is often observed in systems with
poorly calibrated reinforcement signals.

The noise level incorporated into this curve, through artificial
perturbations that simulate nondeterministic behavior in the
consensus environment, is kept under control, allowing the
robustness of the gradient to be observed without the need for
smoothing techniques. Minor variations in point-to-point reward
accumulation, present in the middle phase (episodes 30–60), do not
compromise the overall ascent pattern, indicating that the policy
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FIGURE 6

Model convergence and latency stability. (a) Cumulative reward (sum of episode returns; monotonic after learning). (b) Standard deviation of
consensus latency.

is not overfitting to local conditions. This is especially relevant
considering that rewards are derived from a multi-criteria function
that weighs both latency reduction and equitable load distribution,
and penalties for synchronization failures between nodes.

Figure 6b, meanwhile, presents the standard deviation of
consensus latency over 100 consecutive cycles, contrasting the
behavior of the baseline protocol (dashed line) with the adaptive
model (solid line). We plot cumulative reward for display;
convergence is judged by the stabilized episodic return (moving
average) and by the persistent reduction in latency variance.
In the baseline configuration, the deviation oscillates frequently
between 30 ms and 45 ms, with sporadic peaks around 50 ms.
This dispersion reveals a system unable to stabilize consensus
in the presence of variability in the node state, especially when
low-capacity nodes are activated or transient congestion occurs.

In contrast, the curve of the AI-adapted model shows a
progressive drop in standard deviation from cycle 10 onward. In
the first 20 cycles, points of instability are still evident with values
close to 35 ms, a result of the model’s initial exploration phase and
the random variation in rewards. However, between cycles 30 and
80, the model maintains the latency deviation within the [18, 28]
ms range, progressively stabilizing the consensus time and avoiding
the chaotic peaks observed in the base protocol. In the last phase
(cycles 80–100), the curve contracts further and reaches values close
to 15 ms, implying that the agent’s decisions are aligned almost
deterministically with the nodes’ operating conditions.

The systematic reduction in latency variance not only
demonstrates the model’s ability to generate stable policies but
also reveals its ability to prevent the propagation of cumulative
instabilities, typical in asynchronous networks, through node
selection strategies adapted to the local load, availability, and
historical reliability. In other words, the model not only converges
in terms of rewards but also dynamically stabilizes consensus times,
minimizing network jitter in distributed edge environments.

Curve analysis reveals that the learning process does not
produce volatile or erratic policies, but rather decision structures
that are resilient to internal perturbations in the consensus

environment. The model’s behavior can be interpreted as a
transition from a chaotic (high-exploration) regime to a stable
(low-dispersion) regime, which empirically validates both the
algorithm’s convergence and its applicability in contexts where
node synchronization and temporal stability are critical.

4.5 Adversarial scenario evaluation

To validate the overall performance of the system under
extreme operating conditions, an evaluation segmented by type
of adversarial disturbance is performed. Each scenario represents
a specific critical context, such as Sybil attacks, transactional
congestion, node collapse, or operational errors, where the impact
on key performance, security, and efficiency variables is measured.
This approach allows for the identification of degradation patterns,
resilience, and adaptability of the AI model embedded in the
consensus engine, providing a granular and comparative view of
the system’s behavior under stress.

The representation in Figure 7a, compares six key metrics per
scenario under the AI-adapted protocol. Each axis represents a
critical dimension of the system: TPS, latency, DR, FPR, energy
consumption, and stability. This graph shows that in the Sybil
attack scenario, area coverage is maximum, highlighting balanced
and outstanding performance across all metrics, with a DR of 0.90,
a TPS of 0.80, and latency reduced to 0.45. The other scenarios—
congestion, collapsed nodes, and critical errors—show slightly
smaller areas, but are still significantly higher than the values
expected under baseline conditions, especially in terms of energy
consumption and accuracy.

Figure 7b complements this analysis by representing the
performance difference between the base protocol and the AI
protocol for each scenario. Each bar represents the normalized
average of the metrics above, allowing us to visualize the relative
improvement introduced by the intelligent system. In all cases,
the bars corresponding to the adapted model are higher than
those of the traditional protocol. For example, under severe
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FIGURE 7

Multivariate comparison of performance by adversarial scenario. (a) Radar plot of performance, security, and efficiency metrics under the AI-adapted
protocol. (b) Normalized comparison between the baseline protocol and the AI-enabled protocol in critical scenarios. All metrics are normalized to
[0,1] to allow comparative visualization across heterogeneous dimensions.

congestion, the overall performance increase exceeds 30%. In
the collapsed node scenario, the gain is even more pronounced,
demonstrating the model’s self-regulation capacity in the face
of degraded topologies. Under topology/churn/propagation shifts,
guardrails preserved quorum and safety-aware rewards prevented
unsafe latency optimizations.

Table 5 provides the quantitative details of each metric under
both protocols for the four defined scenarios. In terms of TPS,
the adapted model outperforms the base model by margins
between 25 and 45%, depending on the type of disturbance.
Consensus latency is reduced by up to 33%, thanks to anticipatory
validator adjustment mechanisms. Regarding malicious node
detection (DR), it remains above 0.85 in all cases with AI,
while the base model barely reaches values between 0.60 and
0.65. The FPR drops from a base range of 0.35–0.40 to values
close to 0.10–0.20. Finally, in terms of energy consumption,
the efficiency introduced by the AI model translates into
average reductions of 20%, consolidating its applicability in
edge environments.

The results reflect a specific improvement in individual metrics,
as well as in the robust adaptive capacity of the proposed system,
even under extreme operating conditions. The use of RL and
graph representation enables contextual and accurate responses to
adverse variations, without compromising overall performance or
introducing operational instability.

To assess generalization beyond the in-lab setting, we evaluate
the policy across topology families (scale-free, small-world, random
geometric), churn regimes (low/medium/high), and propagation
regimes (symmetric vs. asymmetric delays). We adopt a leave-
one-family-out protocol (train on two families, test on the
held-out one) and perform shifts in churn/propagation during
evaluation. Metrics cover latency stability, reorg/orphan signals,
and detection (DR/FPR).

4.6 Comparison with previous studies

The comparative analysis is structured based on the approaches
documented in recent scientific literature, identified through
bibliographic analysis, and systematized in Table 6. The table
summarizes the main technical characteristics, types of attacks
considered, validation environments, and metrics reported in five
representative studies, contrasting them with the proposed model.
The comparison addresses five critical dimensions: AI integration
into consensus, adversarial coverage, experimental validation,
multivariate performance, and suitability for edge nodes.

Venkatesan and Rahayu (2024) and Sun et al. (2023) employ
supervised learning models (Decision Trees, SVM, RNN) to detect
malicious nodes in blockchain and IoT networks. These approaches
rely on labeled datasets and apply offline classification, without
altering consensus behavior. In contrast, the model proposed
here incorporates an adaptive PPO agent that modifies protocol
parameters in real time based on environmental predictions,
representing a step toward contextual consensus automation, not
addressed in comparative studies.

The reviewed works tend to be restricted to one or two
types of attacks. For example, Ameri and Meybodi (2024)
analyze faulty nodes in hierarchical architectures, but do not
simulate combined attacks. Luo et al. (2021) focus on energy
efficiency without considering security. In contrast, the solution
presented in this study explicitly considers four distinct scenarios:
Sybil attacks, network congestion, collapsed nodes, and critical
validation errors, all modeled with progressive strength and
structured cross-validation.

Sun et al. (2023) use a simulated environment in Python
with basic metrics; other works rely on theoretical analyses
without reproducible implementations. This study defines a hybrid
evaluation environment with open datasets complemented by
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TABLE 5 Evaluation metrics by adversarial scenario.

Scenario TPS (↑) Latency (↓) DR (↑) FPR (↓) Energy consumption (↓)

Sybil attack 0.80 0.30 0.90 0.10 0.40

Congestion 0.75 0.35 0.85 0.15 0.45

Collapsed nodes 0.70 0.40 0.80 0.20 0.50

Critical errors 0.78 0.33 0.87 0.12 0.43

Base average 0.60 0.60 0.60 0.40 0.60

AI average 0.76 0.35 0.85 0.15 0.45

All metrics are normalized to the range [0, 1] for ease of comparison.
The arrows (↑/↓) indicate whether a high or low value is expected for better performance.

TABLE 6 Comparison of AI-based solutions for consensus and security in Blockchain networks.

References Applied AI/ML Attack type evaluated Reported metrics Edge-aware

Venkatesan and Rahayu (2024) Supervised (SVM) Malicious node behavior Accuracy, D.R. No

Sun et al. (2023) RNN for trust score Sybil attacks, delay analysis DR, TPR Partial

Luo et al. (2021) RL-based control Congestion, energy efficiency Energy reduction, latency Yes

Ameri and Meybodi (2024) Hybrid fuzzy ML Node failure detection Package delivery, delay No

Dutta and Puthal (2024) DL authentication, noise Success ratio, time delay No

This study PPO + graphs Sybil, congestion, collapse, error TPS, latency, DR, energy Yes

synthetic data, dynamic topological configurations, and over 100
cycles per scenario, measuring latency, throughput, detection,
and energy efficiency in each iteration. Semi-online validation
is implemented to adjust the agent’s policies without the risk
of overfitting, increasing the robustness and generalization of
the system.

Few works report cross-metrics. Luo et al. (2021) and Dutta and
Puthal (2024) focus on energy efficiency or authentication, without
simultaneous data on TPS, latency, and detection. Although
Venkatesan and Rahayu (2024) and Sun et al. (2023) report high
detection rates (>90%) in restricted contexts, these approaches
do not integrate energy analysis or operational impact. The
model proposed in this study simultaneously maintains stable
TPS, reduced latency, adaptive detection capabilities, and energy
savings. Detection performance varies depending on the adversarial
scenario: while Sybil and node collapse cases achieve detection rates
above 90% with low false positive rates, congestion and erroneous
transactions present more moderate results (detection between 58%
and 70%). This variability reflects realistic operating conditions
and highlights the model’s ability to sustain balanced performance
across multiple threat vectors.

Several of the cited works assume the availability of centralized
infrastructure (e.g., cloud or high-power nodes). The solution
developed here is optimized for computationally constrained
edge nodes through model compression and distribution of the
inference process. This makes it a viable option for highly
distributed networks without central computing capacity, a critical
aspect not addressed by most of the compared proposals.

The developed approach outperforms existing models in
both functional coverage and experimental stability. Its unique
feature lies in the simultaneous integration of contextual RL,

dynamic topological representations, and edge-ready deployment,
generating a system capable of actively adapting to changing
network conditions without degrading performance. This technical
synergy has not been identified in the previous work reviewed,
which positions this solution as a breakthrough in the evolution
of intelligent consensus mechanisms for blockchain in critical and
distributed environments.

5 Discussion

The results obtained in this study reinforce and contextualize
prior efforts that integrate AI into blockchain consensus. As shown
by Sun et al. (2023) and Venkatesan and Rahayu (2024), supervised
and neural approaches improve malicious-node detection (raising
DR and lowering FPR), but typically remain passive auxiliaries that
leave the consensus logic unaffected. Our contribution advances
this line by embedding a control agent, PPO with dynamic graph
inputs, that issues context-aware actions directly on consensus
parameters, thereby closing the loop between perception and
protocol actuation. The choice of PPO is motivated by its stability
under non-stationarity and continuous control (Jain et al., 2024);
learning curves converge within the first 30 cycles and remain stable
under topological perturbations. Unlike earlier DQN/supervised
pipelines, our model explicitly leverages network topology as a
structural signal, capturing relational effects beyond local metrics.

From a multi-metric perspective, the policy sustains
throughput while reducing latency, balancing DR and FPR
under stress through confidence-aware actions and threshold
adjustments conditioned on graph structure and node history.
Energy savings result from rerouting validation toward low-latency,
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high-reputation paths and curtailing redundant retransmissions,
thereby favoring responsiveness without compromising safety
through single-metric optimization.

The central contribution lies in treating consensus as a
reconfigurable component. Whereas much of the literature
positions AI as an auxiliary detector, here the agent directly
adjusts validation flow, node participation, and penalty logic.
This proactive reorganization is particularly relevant in edge
deployments where human supervision is limited and operating
conditions are volatile. Evaluation on constrained devices
demonstrates feasibility for IoT, cyber-physical infrastructures, and
distributed industrial networks.

Several limitations must be considered. First, although we
model realistic disturbances and dynamic topologies, validation
remains laboratory-based, and cycle timing may not capture
the full heterogeneity of production-grade networks. Second,
inference budgets depend on device capacity: while quantization
and amortization are applied, stricter budgets may be required
for shorter block times or high churn rates. Third, cross-paper
comparisons should be read qualitatively, given differences in stack,
workload, and metrics; our emphasis is on capabilities under stress
rather than absolute numbers. Generalization beyond the validated
domain also requires broader deployments, and reward weights,
chosen via grid search and sensitivity analysis, could benefit from
richer multi-objective tuning strategies.

While our experiments utilize a permissioned network
for controllability, the adaptive consensus can be extended to
permissionless settings with additional design considerations.
Observation space should include stake/attestation signals,
fork/reorg indicators, and propagation metrics; the action space
should rely on incentive-compatible levers such as committee
sizing, quorum thresholds, and gossip controls; reward design
should penalize safety-related outcomes and economic costs; and
stability must be reinforced with conservative updates and defenses
against adversarial exploration. These extensions preserve the
benefits of rapid responsiveness while ensuring Sybil resistance and
incentive compatibility.

An additional direction concerns data realism. All results in this
study are obtained under controlled synthetic scenarios generated
by the Hyperledger Fabric testbed, which enables repeatability
and precise stress injection; however, this approach does not fully
capture the variability of live transaction flows. A natural extension
is to reevaluate the model with real transaction streams from
operational blockchain networks, which would allow testing the
adaptive consensus under heterogeneous workloads, unpredictable
propagation delays, and non-synthetic adversarial behaviors. This
line of work is part of our planned future validation agenda.

Compared with recent AI-augmented baselines that focus
on passive detection or fixed-rule tuning, our approach couples
detection with policy-level control, optimizes multiple metrics
jointly, and enforces explicit guardrails to preserve quorum
and liveness under stress. This enables stable throughput
with lower latency on constrained devices while avoiding
unsafe optimizations. Latency gains thus translate into faster
perceived finality and better user experience under load, without
compromising safety or fairness. Actions remain auditable,
ensuring operational oversight and transparency.

6 Conclusions and future work

The results achieved in this research empirically validate
that integrating a contextual RL model with dynamic graphs
can redefine the operational limits of consensus protocols in
distributed blockchain systems. The developed approach not
only acts as a detection system but also introduces an active
mechanism for structural modification of the consensus, capable
of penalizing malicious nodes, reconfiguring validation paths,
and adjusting operational parameters in real time. This adaptive
behavior has proven, under controlled evaluation conditions,
capable of simultaneously sustaining multivariate improvements in
performance, security, and energy efficiency.

In terms of performance, throughput (TPS) remains stable
under adverse, high-load scenarios, while average consensus
latency is reduced by up to 34% and exhibits lower dispersion. This
indicates a more stable, predictable operation that adapts to current
network conditions and sustains responsiveness over prolonged
stress, distinguishing the model from solutions whose performance
degrades as load or chaos increases.

From a security perspective, the model achieved detection
rates exceeding 90% in Sybil and node collapse scenarios, with
false positive rates remaining below 10% in these cases. In
more challenging conditions, such as congestion and erroneous
transactions, the system maintained moderate detection capacity,
with detection rates between 58 and 70% and false positive
rates ranging from 14 to 22%. This performance is particularly
noteworthy given the dynamic complexity of the simulated
topologies, which included temporary failures, collapsed nodes,
and changes in the network structure. Unlike solutions based on
static thresholds or predefined rules, the system’s ability to identify
malicious patterns stems from the contextual representation of
the graph and the learned policy, which progressively adjusts to
operating conditions through differentiated rewards. Regarding
energy consumption and computational efficiency, the sustained
reduction in computational load and average power consumption
in scenarios such as congestion and node collapse represents
a tangible advance for the adoption of blockchain in edge
devices. The architecture developed here dynamically redistributes
validation processes, minimizing redundant retransmissions, failed
validations, or unnecessary proof requirements, resulting in a more
efficient, scalable, and sustainable system. These savings are not
an incidental byproduct, but a direct consequence of the inference
model design and the policies optimized during training.

Extended validation using adversarial scenarios not only
confirmed the model’s performance in simulated contexts but also
demonstrated versatility under combined failures and attacks–
conditions that are critical for real-world deployments yet
underexplored in the literature. Moreover, the comparison with
recent work indicates that, despite the constraints of edge hardware,
the proposed approach matches or surpasses more computationally
intensive centralized solutions thanks to its modular design and a
reward/penalty architecture driven by operational dynamics.

The convergence curves obtained during training show that
the model reaches a stable operating policy within the first 30
iterations and maintains it even when structural changes are
introduced (node additions/removals). This sustained learning
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capacity supports applicability in evolving networks such as
distributed IoT, heterogeneous industrial environments, and real-
time financial validation systems.

Based on these results, several research lines can strengthen and
broaden applicability. First, validations in real environments with
operational traffic, physical nodes, and uncontrolled conditions
will allow analyzing robustness to external network latency,
clock synchronization, and hardware heterogeneity. Second,
lighter inference variants (e.g., quantized/binarized policies or
specialized accelerators) will facilitate deployment on very low-
power edge nodes without compromising safety or liveness
guarantees. As future work, we plan a full-scale evaluation on open-
membership (permissionless) networks with dynamic validator
entry/exit and heterogeneous stake to validate the proposed
extensions empirically.

Our cross-scenario evaluation isolates domain shifts in
topology, churn, and propagation. The proposed guardrails
(conservative policy updates and committee/liveness caps)
preserved quorum formation under these shifts, while the
objective’s explicit penalties on FPR and reorg/orphan signals
discouraged policies that trade short-term latency for safety.
Detailed artifacts are available upon reasonable request to the
corresponding author.

In addition, future work includes large-scale evaluation of
high-turnover, open-membership networks with heterogeneous
participation, multi-objective reward tuning (e.g., Pareto/Bayesian
latency-security-energy optimization), tighter inference budgets
for faster block times, and a harmonized benchmark set against
baselines under matched stacks and workloads.
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