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Introduction: YOLO algorithmic models are widely utilized for detecting surface
defects, offering a robust and efficient approach to identifying various flaws and
imperfections on material surfaces.

Methods: In this study, we explore the integration of six distinct backbone
networks within the YOLOV9 framework to optimize surface defect detection
in steel strips. Specifically, we improve the YOLOV9 framework by integrating
six representative backbones-ResNet50, GhostNet, MobileNetV4, FasterNet,
StarNet, and RepViT-and conduct a systematic evaluation on the NEU-DET
dataset and the GC10-DET dataset. Using YOLOV9-C as the baseline, we
compare these backbones in terms of detection accuracy, computational
complexity, and model efficiency.

Results: Results show that RepViT achieves the best overall performance with an
mMAP50 of 68.8%, F1-score of 0.65, and a balanced precision-recall profile, while
GhostNet offers superior computational efficiency with only 41.2 M parameters
and 190.2 GFLOPs. Further validation on YOLOv5-m confirms the consistency of
the results.

Discussion: The study offers practical guidance for backbone selection in
surface defect detection tasks, highlighting the advantages of lightweight
architectures for real-time industrial applications.
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1 Introduction

Strip steel is a fundamental material in the manufacturing industry, and its quality is
critical to ensuring product reliability and performance (Cui et al., 2025). However, due
to limitations in production technology, working conditions, and equipment precision,
the quality of finished strip steel products is often compromised (Kumar and Das,
2021; Afanasieva et al., 2018). Surface defects are among the most direct and observable
indicators of product quality degradation. They typically refer to localized regions that
deviate from the expected structure, including scratches, cracks, foreign object inclusions,
contamination, and holes (Barros et al.,, 2025), and they exert a significant impact on
product yield and operational reliability. Therefore, accurate and timely detection of such
defects is crucial.

In the early stages of industrial development, traditional strip steel surface defect
detection methods encompassed manual visual inspection, eddy current testing, magnetic
flux leakage testing, infrared thermography, and laser scanning inspection (Chunfeng et al.,
2022). Manual inspection relies on human observation, which is inherently subjective and
susceptible to fatigue-related errors. Eddy current and magnetic flux leakage techniques
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detect defects through while

infrared thermography and laser scanning utilize thermal patterns

electromagnetic interactions,

and high-resolution surface profiling, respectively. Despite
providing foundational solutions, these approaches commonly
exhibit limitations including insufficient detection accuracy,
restricted inspection coverage, slow processing speed, and limited
adaptability to complex defect morphologies (Zhang et al., 2022).

With the development of computer vision and machine
learning technologies, related detection technologies are also
evolving. Machine learning methods are widely used in automated
defect recognition and classification tasks. Techniques such as
Gaussian mixture model-based background subtraction with
feature-driven classifiers achieved over 99% accuracy in weld
defect recognition (Sun et al, 2019). Improved least squares
methods combined with iterative algorithms enabled precise
geometric parameter extraction for nickel-plated punched steel
strip defects (Cao et al.,, 2020). Multi-scale local binary pattern
(LBP) features, especially with Fourier-transformed histograms,
improved classification accuracy when used with SVM (Liu
et al., 2020). Filter-based feature selection coupled with hidden
Naive Bayes classifiers enhanced robustness in steel strip defect
categorization (Zhang et al., 2021). However, these methods depend
heavily on handcrafted features and prior knowledge, limiting their
flexibility and performance in complex defect scenarios. Therefore,
the research focus has shifted toward deep learning approaches.

In recent years, deep learning has developed rapidly and
has made great progress in the field of target detection. Based
on the powerful learning ability and feature extraction ability
of deep learning in a large amount of data, it has become the
core technology of surface defect detection. A BO-CNN-BiLSTM
framework, combined with a theoretical model, enhanced crown
prediction accuracy and speed in hot-rolled electrical steel (Song
et al., 2024). Vision transformers demonstrated a classification
accuracy of 96.39% across six defect categories, offering a promising
alternative to CNNs for real-time defect detection (Vasan et al.,
2024). LWMS-Net, integrating Legendre multi-wavelet multi-scale
theory, achieved 91.2% mAP, balancing accuracy and speed (Zheng
et al., 2025). Despite the significant advancements achieved by
various deep learning algorithms (Hao et al., 2022; Fu et al., 2023;
Guo et al,, 2025), challenges persist in handling complex and
variable defect types, particularly in noisy industrial environments.

Subsequently, algorithms with higher efficiency, shorter time,
higher accuracy and lower cost gradually entered people’s field of
vision. The algorithms mainly include single-stage and double-
stage detection. The most mainstream algorithm in single-
stage detection is YOLO (you only look once; Redmon et al,
2016). Recent YOLO variants emphasize different objectives.
YOLOV9 introduces Programmable Gradient Information (PGI)
and the GELAN backbone to preserve informative gradients
and improve parameter utilization-mainly targeting accuracy on
small objects under constrained compute. YOLOv1O0 advances
end-to-end, NMS-free training via consistent dual assignments
and component-level efficiency redesign, pushing the speed-
accuracy frontier across scales (Wang et al., 2024b). YOLOv11
provides an engineering refresh within the Ultralytics ecosystem
for detection/segmentation/OBB tasks and is widely used as a
practical baseline (Khanam and Hussain, 2024). Domain-specific
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advances within the YOLO lineage also emphasize small-defect
sensitivity and computational efficiency. Many researchers have
employed YOLO and its variants to implement various surface
defect detection methods for steel strips, achieving significant
results (Li et al.,, 2018; Wu et al., 2022; Mi et al., 2023; Lu et al,,
2024; Liao et al., 2025).

For instance, an improved YOLOv9-based method for steel
surface inspection was proposed in the literature (Chen et al,
2025). This approach integrates depthwise separable convolution
to reduce computational cost, employs a C3 module for multi-
level feature fusion, incorporates BiFPN to strengthen small-target
representation, and adopts DySample upsampling to preserve
fine details. On their benchmark, the method reports a 1.8%
improvement in mAP and a 7.4% gain in accuracy over the
YOLOVY baseline, while reducing parameters by 8.9%. These
results exemplify the current trajectory of YOLO-style detectors—
improving small-object detection under constrained compute-
and motivate our recall-first, backbone-aware evaluation under
a unified protocol in the industrial setting. These approaches
effectively improve detection accuracy and real-time performance
by enhancing network architectures, incorporating attention
mechanisms, and integrating multi-scale feature fusion.

Based on the above, many YOLO-based surface-defect
detectors still focus on claiming a universal SOTA detector or
evaluate a single backbone in isolation. However, systematic and
recall-oriented comparisons of modern backbones across detector
frameworks under a unified industrial pipeline remain limited,
especially for tiny, low-contrast, and extreme-aspect-ratio defects
where conventional backbones may struggle to provide precise
localization. To address this gap, this study aims to systematically
evaluate the performance of YOLOVY integrated with six different
backbone networks for steel strip defect detection. The main
contributions of this work are as follows:

o Six backbone networks (ResNet50, GhostNet, MobileNetV4,
FasterNet, StarNet and RepViT) are embedded into the
YOLOV9 framework to construct comparative models.

e Extensive experiments are conducted on the NEU-DET
dataset to assess their performance in terms of precision,
recall, parameter size, and computational efficiency.

e The strengths and limitations of each backbone in detecting
different types of defects are analyzed, and practical
recommendations are provided for backbone selection in
real-world deployment scenarios.

e Determine, for a fixed industrial pipeline, which backbone-
framework pair achieves the best recall-first performance at a
given compute budget.

e Provide actionable guidance for backbone selection when
priorities diverge (highest recall vs. best F1 vs. minimal
GFLOPs/latency).

Beyond detector design, industrial inspection is tightly coupled
with uncertainty propagation and reliability considerations. Recent
work in Structural and Multidisciplinary Optimization (Chen et al.,
2024; Zhang et al., 2018) exemplifies two pertinent directions:
an enhanced Gaussian mixture model approach for nonlinear
probabilistic uncertainty propagation via Gaussian splitting, which
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improves tractability when system responses are non-Gaussian
and highly nonlinear; and an evidence-theory formulation
that accommodates correlations among variables for structural
reliability analysis. Together, these strands clarify how uncertainty:
both aleatory and epistemic interacts with risk sensitive decisions
in engineering systems. In surface defect detection, this perspective
motivates our recall-first emphasis and our unified protocol for
fair backbone-framework comparisons; Our benchmark provides
a reproducible substrate to which such methods can be coupled for
threshold calibration and risk assessment in future work.

In summary, this study focuses on enhancing YOLOV9 for
steel strip surface defect detection by systematically investigating
the impact of different backbone architectures. The findings offer
both theoretical insights and practical guidance for selecting high-
performance models in real-world industrial applications.

2 Materials
2.1 YOLOV9 baseline structure

In the pursuit of state-of-the-art real-time object detection,
YOLOV9 stands out for its innovative approach to mitigating the
inherent information-loss problem of deep neural networks (Wang,
C.-Y. et al). By integrating PGI (Programmable Gradient
Information) with the versatile GELAN (Generalized Efficient
Layer Aggregation Network) architecture, YOLOV9 not only
enhances the model’s learning ability but also ensures that key
information is retained throughout the detection process, thereby
achieving excellent accuracy and performance.

Regarding the choice of the basic architecture in this study,
we select YOLOVY rather than the more recent YOLOvV1O or
YOLOvV1I, and the reasons are as follows. Among the latest
algorithms, YOLOV10 introduces one-to-one matching during
training without the typical accuracy degradation and emphasizes
a holistic efficiency-accuracy trade-off by redesigning components
such as the head, neck, and label assignment. On the COCO
benchmark, YOLOvV10-S is reported to be 1.8x faster than RT-
DETR-R18 at comparable AP, while YOLOv10-B achieves ~ 46%
lower latency and 25% fewer parameters than YOLOV9-C at
similar performance. These advantages are most pronounced in
scenarios where post-processing and head overhead dominate the
runtime budget. YOLOVI11, in contrast, represents an engineering
refresh that extends applicability across diverse tasks including
detection, instance segmentation, classification, pose estimation,
and oriented bounding boxes. It offers multiple model sizes
(N/S/M/L/X) and a wide range of off-the-shelf checkpoints, with
public documentation focusing on training and inference tooling
as well as throughput-accuracy balance. In practice, YOLOvI1
functions as a versatile baseline with convenient deployment
support across tasks and hardware.

However, in our scenario involving high-resolution tiling, tiny
and low-contrast targets, and extreme aspect ratios, the main
challenge lies in feature resolution and recall rather than NMS
latency. Thus, while YOLOv10’s NMS-free design can improve
throughput in general settings, our study prioritizes recall-first
evaluation under a fixed high-resolution protocol. And then,
newer families such as YOLOv10 and YOLOVI11 can be seamlessly
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incorporated into the same unified pipeline in future work to
further enrich the backbone-framework comparison.

The architecture of YOLOV9 consists of four main components:
the backbone network, the neck network, the auxiliary reversible
training branch, and the detection head, as shown in Figure 1.
During training, the input image is simultaneously processed by
the backbone network and the auxiliary reversible training branch
to ensure rich gradient flow, while in inference, the auxiliary path is
discarded to improve speed. Feature fusion is performed using the
RepNCSPELAN4 module, which integrates the CSPNet design and
the re-parameterizable GELAN architecture. This yields a total of
six multi-scale feature maps that are processed by detection heads
to produce the final prediction.

Obviously, YOLOvV9 demonstrates a well-balanced architecture
that enhances both training dynamics and inference efficiency,
laying a solid foundation for backbone network substitution and
performance benchmarking.

In the experimental section of this paper, to investigate the
impact of different feature extraction capabilities, the entire
GELAN backbone of YOLOV9 is replaced with six representative
ResNet50, GhostNet, MobileNetV4,
FasterNet, StarNet, and RepViT. To ensure the uniformity

network architectures:
and compatibility of the model structure, each backbone
network outputs multi-scale feature maps with three different
downsampling scales (8%, 16x, 32x), corresponding to the P3,
P4, and P5 inputs of the Neck network in YOLOv9-C. The overall
integration process of the customized backbones and the feature
adaptation module is illustrated in Figure 2.

In the actual docking process, due to the difference in the
number of original channels of different backbones, we introduced
a 1x1 convolution layer after each output scale to linearly map
the number of channels to unify them into the input dimension
expected by YOLOv9-C Neck, that is, P3 is 256 channels, P4
is 512 channels, and P5 is 1,024 channels. The adjusted feature
map is input to the Neck network to complete multi-scale feature
fusion and passed to the detection head. In addition, all alternative
trunks retain the output of the stride = 8 feature map (ie.,
P3 layer) for connecting to the Auxiliary Reversible Branch,
which is only enabled during the training phase to improve the
quality of gradient propagation and model convergence speed,
and is removed during the inference phase without increasing
the inference overhead. In this way, we have achieved seamless
replacement and unified interface of the six trunk structures under
the YOLOV9-C framework, ensuring the comparability between
structures and providing a basis for subsequent performance
evaluation and analysis. The detailed architecture information of
the corresponding adaptation layers for each backbone network is
provided in Table 1.

2.2 Backbone network integration

2.2.1 ResNet

ResNet, originally proposed by He et al. at Microsoft Research
Lab (He et al., 2016), is a classic deep convolutional network
that introduces residual learning through shortcut (identity)
connections to address the vanishing gradient problem in deep
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FIGURE 1

Basic structure of YOLOVO.

TABLE 1 Feature adaptation configurations of different backbone networks integrated into YOLOv9-C.

Backbone Output layer Downsample Initial channel usted channel Input layer Method
ResNet50 C3/C4/C5 8x,16x,32x 512/1024 /2048 256/512/1024 P3/P4/P5 1x1 Conv
GhostNet Stage2 / Stage3 / Stage4 8x,16x,32x 40/112/ 160 256/512/1024 P3/P4/P5 1x1 Conv?t
MobileNetV4 Stage3 / Stage4 / Stage5 8x,16x,32x 64 /160 /320 256/512/1024 P3/P4/P5 1x1 Conv?t
FasterNet Stage2 / Stage3 / Stage4 8x, 16x,32x 64 /160 /320 256 /512/1024 P3/P4/P5 1x1 Conv?t
StarNet Stage3 / Stage4 / Stage5 8x, 16x,32x 64/128/256 256 /512 /1024 P3/P4/P5 1x1 Conv?t
RepViT Stage3 / Stage4 / Stage5 8x,16x,32x 112/128/ 160 256/512/1024 P3/P4/P5 1x1 Conv?t

architectures. Unlike traditional networks where layers are stacked
sequentially, ResNet enables direct gradient flow across layers by
learning residual mappings.

Assuming that an input f(x) passes through the residual
network and short-circuit connections are added before the second
layer of the activation function, then the output becomes f(x) + x.
In ResNet, this operation where the output is equal to the input is
known as identity mapping. This operation allows the network to
get the same output as the input in the worst case. The added layers

Frontiersin Artificial Intelligence

do not learn anything and simply copy the features of the input, at
least making the network free from degradation. The core operation
is mathematically expressed as:
yi=hx) + Flg +wp),  xipq = f(). (1)
Here, x; and x;;; denote the input and output of the I-th

residual block, respectively. F represents the residual function to
be learned, h(x;) = x; denotes identity mapping, and f is the ReLU
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activation function. The cumulative feature learning from a shallow
layer I to a deep layer L is given by:

L-1

XL =x + Zf(xiawi)- (2)
i=l

In this study, ResNet50 is adopted as the backbone network
within the YOLOvV9 framework. Its deep residual architecture
enhances feature extraction, particularly for large or complex
defects, by mitigating gradient vanishing through identity
mappings. The integration with YOLOv9’s PGI module further
aids in preserving feature information during training. Benefiting
from extensive pretraining, ResNet50 improves detection accuracy
across diverse defect types. However, its high computational cost,
with ~ 25.6 M parameters and 4.1B FLOPs for a 224 x 224 input,
along with its structural complexity, increases the risk of overfitting
on limited datasets and reduces its suitability for real-time or
resource-constrained applications (Han et al., 2020).

2.2.2 GhostNet

GhostNet is a lightweight convolutional neural network
architecture designed to reduce computational redundancy while
maintaining effective feature representation. It introduces the
Ghost module, which first produces a set of intrinsic feature maps
via standard convolution and then generates additional “ghost"
maps through inexpensive linear operations. This approach
significantly reduces FLOPs and parameter count without

Frontiersin Artificial Intelligence

severely impacting accuracy. The Ghost module uses the same
hyperparameters (e.g., filter size, stride, padding) as standard
convolution to maintain output spatial dimensions. The process is
formulated as follows:

Y=Xxf+b, (3)

where f is the convolution filter, X is the input feature map, b is the
bias term, and Y is the output feature map. Then to generate the
intrinsic feature map, the Ghost module uses primary convolution
shown as Equation 4:

Y/ :X*f(), (4)

where fj is the applied filter and Y} is the intrinsic feature map.
For further feature map generation, the intrinsic feature map after
primary convolution is subjected to a series of linear operations
to generate the ghost feature map according to the following
Equation 5:

yi=®i; (). Vi=1,...,mj=1,....5 (5)
where y? is the ith intrinsic feature map in Yo, and @ is the jth
linear operation to generate the jth ghost feature map y;;. The last
®; is the constant mapping used to preserve the intrinsic feature
map. The Equation above allows to obtain n = m X s feature maps.
Equation 6 below represents the output of the feature map:

Y = [y11,)12: Y13+ - o> Yims]- (6)

frontiersin.org


https://doi.org/10.3389/frai.2025.1675154
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Zeng et al.

In our implementation, GhostNet replaces the GELAN
backbone in the YOLOV9 framework, while the neck and detection
head remain unchanged. This substitution drastically improves
inference speed and computational efficiency, making the model
well-suited for low-power, real-time deployment scenarios.

However, due to its dependence on synthesized features,
GhostNet may exhibit reduced sensitivity to subtle, low-contrast
defects such as crazing or fine scratches. This can lead to
performance degradation in fine-grained defect classification
compared to more expressive architectures like RepViT (Zhang and
Yuen, 2021). Nevertheless, GhostNet strikes a compelling balance
between speed and accuracy, making it a practical choice for
resource-constrained industrial applications.

2.2.3 MobileNetV4

MobileNetV4, introduced in 2024, represents a significant

advancement in lightweight neural network design by
incorporating the Universal Inverted Bottleneck (UIB) (Qin
et al, 2024). This unified module integrates elements from the
traditional Inverted Bottleneck, ConvNeXt, and Feedforward
Networks (FFN), enhancing both feature representation and
structural flexibility (Sandler et al., 2018). The UIB optimizes the
bottleneck design for better parameter efficiency and stronger
adaptability across diverse hardware platforms.

A key component of MobileNetV4 is the depthwise separable
convolution, which decomposes standard convolution into
spatially focused depthwise operations and channel-wise pointwise
operations. This separation reduces computational complexity
while maintaining effective feature extraction, particularly for
detecting fine surface anomalies. Combined with Mobile MQA
attention modules and a refined Neural Architecture Search (NAS)
strategy, MobileNetV4 achieves near-Pareto-optimal trade-offs
between accuracy and efficiency.

In our implementation, MobileNetV4 replaces the GELAN
backbone in YOLOV9 while preserving the original neck and
detection head. Experimental results demonstrate improved
identifying defects
scratches, pits, and corrosion, making it a compelling choice
with limited

performance in surface-level such as

for real-time industrial inspection scenarios

computational resources.

2.2.4 FasterNet

FasterNet addresses the inefficiency of low-FLOP lightweight
networks by introducing Partial Convolution (PConv), a localized
convolution strategy that significantly reduces redundant memory
access and computational overhead (Chen et al, 2023). Unlike
standard convolution, which operates on all input channels, PConv
applies spatial convolution only to a selected subset while leaving
the remaining channels unchanged (Huang and Gong, 2024).
Assuming the input and output feature maps have the same size
(¢, h,w) and the kernel size is k x k, the FLOPs of standard
convolution is & x w x k% x ¢2, while for PConv it is reduced to
hxwxk*x cf,,
in partial convolution.

where ¢, denotes the number of channels involved

To compensate for the potential loss of feature information,
a pointwise convolution (PWConv) is added after each PConv,
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forming an efficient feature transformation unit. FasterNet consists
of four hierarchical stages, each containing multiple blocks
composed of one PConv and two PWConv layers, along with
embedding or merging layers for spatial downsampling and
channel expansion.

When integrated as the backbone in the YOLOV9 framework,
FasterNet effectively reduces inference latency and improves
processing speed on edge devices. It achieves a favorable trade-off
between accuracy, computational efficiency, and model complexity,
particularly in surface defect detection scenarios where rapid
response and limited hardware resources are essential.

2.2.5 StarNet
StarNet
mechanism known as the Star Operation, which enables implicit

introduces a novel nonlinear transformation
feature projection into high-dimensional spaces through element-
wise multiplication, without relying on traditional matrix
multiplication (Ma et al., 2024). Unlike conventional dot-product-
based linear transformations, the star operation directly multiplies
corresponding elements of two affine transformations of the input,
enabling nonlinear feature interaction with minimal parameter
increase. In a single-layer neural network, the star operation is

defined as:
(Whx+B1) x (WIX+B2). @)

For simplicity, the authors rewrite this as:

(wlTx) * (wg x) , ®)

where w1, wa, and x € R@HD*1 This operation can be extended
to multiple output channels and larger feature sets without
introducing significant additional cost.

StarNet adopts a conventional hierarchical structure where
spatial resolution is reduced and channel width is doubled at
each stage. To meet inference efficiency requirements, batch
normalization is used in place of layer normalization and is
positioned after deep convolution layers, enabling fusion during
deployment. Additionally, following the design principles of
MobileNeXt, a depthwise convolution is appended at the end of
each block to further enhance representation capability.

When integrated into the YOLOV9 framework, StarNet
demonstrates strong capacity for capturing complex defect features
while maintaining a lightweight design. Comparative experiments
show that StarNet outperforms several compact networks such
as MobileNetV3 and FasterNet in both accuracy and inference
speed, highlighting its practical value for real-world surface defect
detection tasks.

2.2.6 RepVit
Vision Transformer (ViT) is

Google in 2020 to directly apply the Transformer to image

a model proposed by

classification (Dosovitskiy et al., 2020). RepViT is a convolutional
architecture inspired by ViT, aiming to combine the long-range
modeling capability of self-attention with the computational
efficiency of CNNs (Wang et al, 2024a). While ViT achieves
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competitive performance through global self-attention, its lack of
inductive bias and high training requirements hinder its practicality
on small datasets or mobile devices. To address these limitations,
RepViT adopts a MetaFormer structure that separates token
mixing and channel mixing, yet relies entirely on convolutional
operations, making it well-suited for lightweight deployment.

upon MobileNetV3 by
decoupling spatial and channel interactions (Howard et al,

Each RepViT block improves

2019). Specifically, the 3x3 depthwise convolution is followed
by a Ix1 convolution for channel-wise processing, and an
(SE) module is
after the depthwise layer to enhance feature recalibration. To

optional Squeeze-and-Excitation inserted
further optimize inference efficiency, RepViT employs structural
reparameterization, transforming multi-branch training structures
into simpler single-path equivalents during deployment. This
technique reduces memory access overhead and allows the model
to run with minimal latency. Experimental results demonstrate
that RepViT outperforms existing lightweight ViT models across
multiple vision tasks, including ImageNet classification, COCO
object detection, and ADE20k semantic segmentation.

Within the YOLOV9 framework, replacing the default backbone
with RepViT yields enhanced detection accuracy for both coarse
and fine-grained defects, while maintaining low inference time and
parameter count.

3 Results

3.1 Introduction of the dataset

In this study, both the NEU-DET hot-rolled strip steel dataset
and the GC10-DET metallic surface defect dataset are employed
as benchmarks to evaluate the feature extraction capabilities of
different backbone networks.

The NEU-DET dataset (Song and Yan, 2013), produced by
Kechen Song’s team at Northeastern University in China, comprises
1800 images of surface defects on hot-rolled steel strips, divided
into six categories: crazing (Cr), inclusions (In), patches (Pa), pitted
surface (Ps), rolled-in scale (Rs), and scratches (Sc). Each defect
category contains 300 images with a resolution of 200 x 200
pixels. Considerable intra-class variability is present, as illustrated
in Figure 3 (Song and Yan, 2013), where scratches may appear
horizontally, vertically, or diagonally. At the same time, inter-
class similarities also exist; for instance, rolled oxide, cracks, and
pockmarks share overlapping features. Annotations specifying the
class and location of each defect are provided by the dataset’s
authors, which facilitates defect detection tasks (He et al., 2019).

The GC10-DET dataset (Lv et al., 2020), released by Tianjin
University in 2020, extends the evaluation to a broader range
of metallic surface defect types. It consists of 2300 grayscale
images with 3563 labeled objects belonging to ten categories:
punched holes (Ph), welds (WI), crescent cracks (Crg), water
spots (Ws), oil spots (Os), silk spots (Ss), inclusions (In), rolling
pits (Rp), creases (Cr), and waist creases (Wf). Bounding box
annotations are provided for all labeled defects, and only eight
images remain unlabeled. Unlike NEU-DET, GC10-DET does
not include predefined train/validation/test splits, allowing flexible
experimental configurations. Figure 4 illustrates representative
examples with annotations. By covering a wider variety of defect
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patterns on steel plates, GC10-DET provides complementary
evidence for assessing the robustness and generalization of
detection models.

3.2 Environment and parameter settings

The experimental hardware configuration was Intel Core
i512400F@2.5 GHz (Intel Corporation, Santa Clara, CA, USA).
The processor and graphics card were NVIDIA GeForce RTX
3090, 24260MiB (Nvidia Corporation, Santa Clara, CA, USA). The
software environment was CUDA11.2 and the operating system
was GCC 9.4.0 on Linux. The network model was constructed based
on the Python framework with Python version 3.7.12 and Pytorch
version 1.13.1+cull7 shown as Table 1. For the experiments, the
batch size was set to 16, the epoch was set to 100.

We adopt stochastic gradient descent (SGD) with momentum
to ensure stable convergence under the high-resolution tiling
regime, with an initial learning rate of 0.01 with momentum
0.937 and a 3.0 epoch warm-up to promote stable convergence
under high-resolution tiling. the box regression term is upweighted
(box = 7.5). For localization, we combine Distribution Focal Loss
(dfl = 1.5) with an elevated box-loss gain (box = 7.5), thereby
emphasizing precise bounding-box regression. The classification
term is intentionally down-weighted (cls = 0.5) to mitigate
overfitting to visually similar textures. The objectness term is set
to obj = 0.7 to balance recall against false positives in dense scenes.
For label assignment, we use a training IoU threshold of iou-t =
0.20 to enlarge the pool of positive samples for small or extreme-
aspect-ratio targets. focal modulation is disabled (fl-gamma =
0.0) for stable small-object gradients. Finally, the augmentation
choices emphasize robustness without excessive distortion: Mosaic
is applied with high probability (mosaic=1.0) to increase small-
object density and train against proposal conflicts, while MixUp is
kept moderate (mixup=0.15) to avoid diluting discriminative cues.
The training hyperparameters and their rationales used in all
experiments are summarized in Table 2.

For the NEU-DET dataset, 1,440 images are allocated for
training and 360 for validation. The dataset characteristics are
illustrated in Figure 5. The left panel shows the spatial distribution
of defect centers across the steel surface, where samples are
unevenly distributed and exhibit a clear tendency to cluster near
the midpoint of the y-axis. The right panel depicts the distribution
of defect dimensions, with the horizontal and vertical axes
representing width and height, respectively. The majority of defects
fall into the small-scale region, and the joint distribution reveals
a concentration of narrow, elongated, and irregularly shaped
defects. Such properties highlight the challenges of achieving robust
localization and classification, particularly for tiny or low-contrast
targets. For the GC10-DET dataset, the same training-validation
split ratio is applied; however, due to its larger scale, a detailed
statistical analysis is not presented here.

3.3 Evaluation metrics

This study employs six commonly used evaluation metrics:
Params, GFLOPs, mAP50, Precision, Recall, and F1-score. Among
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rolled-in scale

patches crazing

FIGURE 3
Examples of six defect categories from the NEU-DET dataset.

pitted surface inclusion scratches

them, mAP50 (mean Average Precision at IoU=0.5) serves as the
primary indicator of detection performance. It is calculated as the
mean of the average precision (AP) across all categories, where each
AP is derived from the area under the Precision-Recall (P-R) curve:

1 N
AP = / P(R)dR, mAP = z%r ZAP(:’). 9)
0 i=1

Here, N denotes the total number of defect categories, and
AP(i) represents the average precision of the i-th class.

The Precision and Recall are defined based on the number of
true positives (TP), false positives (FP), and false negatives (FN).
Specifically, TP refers to predicted boxes with IoU greater than
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0.5 correctly matched to ground-truth boxes (each ground truth
counted only once), FP refers to predicted boxes with IoU less than
or equal to 0.5 or duplicate detections, and FN denotes ground-
truth boxes that are not detected. Accordingly, Precision, Recall,
and F1-score are computed as follows:

TP
Precision = Meorrect s (10)
Neorrectpred TP + FP
TP
Recall = —eorreet , (11)
Ncorrecttrue TP + FN
Precision - Recall 2TP
Fl-score =2 - (12)

Precision + Recall - 2TP+ FP+FN’
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FIGURE 4

Representative samples with bounding box annotations from the GC10-DET dataset.
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FIGURE 5

Statistical characteristics of the NEU-DET dataset, including the spatial distribution of defect centers (left) and the size distribution of defects (right).

In addition to detection accuracy, we report model size
(Params) and computational cost (GFLOPs) to evaluate inference
efficiency and deployment feasibility. These metrics provide
a balanced perspective on both predictive performance and
resource requirements.

Frontiersin Artificial Intelligence

3.4 Comparative experiment
YOLOV9 supports multiple model configurations (E/C/M/S/T)

to accommodate diverse application scenarios and hardware
constraints. In this study, YOLOvV9-C is selected as the baseline
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TABLE 2 Training hyperparameters and their rationales used consistently
across YOLOv9-C and YOLOv5-m models.

Key Value Rationale

Optimizer SGD (momentum) Stable convergence under
high-resolution tiling

1r0 0.01 Initial learning rate for rapid early
progress

Irf 0.01 OneCycleLR tail; LRgpy = 1x107*
for precise late refinement

momentum 0.937 Damp oscillations; stabilize
small-target updates

warmup_epochs 3.0 Gentle LR/momentum ramp to avoid
early instability

box 7.5 Upweights box regression for accurate
localization

dfl 1.5 Distribution Focal Loss strength for
fine-grained box bins

obj 0.7 Recall-FP balance in dense scenes
(objectness)

cls 0.5 Downweights class loss to reduce
texture overfit

iou_t 0.20 Positive assignment IoU; benefits
small/extreme-AR targets

fl_gamma 0.0 Disable focal modulation for stable
small-object gradients

mosaic 1.0 Increases small-object
density/context; trains against NMS
conflicts

mixup 0.15 Moderate blending; avoids
micro-texture wash-out

model owing to its balance between detection accuracy and
computational cost. To systematically investigate the influence of
different backbone architectures on model performance, we replace
the default GELAN backbone in YOLOv9-C with six alternatives.
Additionally, ablation experiments are conducted on YOLOv5-m
to assess the consistency and generalizability of backbone behavior
across detection frameworks.

Table 3 presents the experimental results of native YOLOv9-C
and various backbones integrated into the YOLOvV9-C framework,
as well as the corresponding precision-recall (PR) curves for the six
backbones are illustrated in Figure 6.

3.4.1 Baseline model analysis

We adopt ResNet50 as the baseline backbone, considering
its widespread usage and solid performance in visual recognition
tasks. This allows for a reasonable and consistent comparison
when evaluating other backbone networks within the YOLOv9-
C framework in terms of detection accuracy, computational
efficiency, and model size.

On the NEU-DET dataset as shown in Table 3, the native
YOLOV9-C model uses 50.7 million parameters and 236.7 GFLOPs,
whereas the ResNet50 variant uses 68.9 million parameters and
266.6 GFLOPs which is the highest value among the six backbone
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networks, representing increases of 18.2 million parameters and
29.9 GFLOPs. These additional resources yield modest accuracy
gains: mAP50 rises from 58.2% to 58.6% , precision from 53.1%
to 55.8%, recall from 59.3% to 59.7%, and the Fl-score from
0.56 to 0.58.

Specifically, ResNet50 achieves an mAP50 of 58.6%, indicating
a moderate average accuracy. Its precision is 55.8%, suggesting
limited capability in distinguishing defective from normal samples.
The recall rate reaches 59.7%, 3.9% higher than the precision,
showing relatively stronger performance in minimizing missed
detections—albeit at the cost of increased false positives. This
imbalance leads to an F1 score of 0.58, the lowest among all
compared backbones.

From the perspective of architectural characteristics, ResNet50
benefits from residual connections that mitigate gradient vanishing
and facilitate the extraction of deep semantic features. However,
such high-level abstraction often compromises sensitivity to fine-
grained surface anomalies like scratches or pits. Specifically, the
bottleneck structure with 1 x 1 convolutions tends to reduce
channel dimensionality, resulting in the loss of critical shallow
details—particularly detrimental for pixel-level defect detection.

As shown in the precision-recall curves in Figure 6, ResNet50
performs well in detecting Pa and Ps defects, with mAP50 scores of
92.5% and 83.4%, respectively. However, the network has limited
feature extraction for Rs and Sc defects, with mAP50 of only 40.7%
and 49.8%, respectively. In particular, the network is very weak for
Cr defects, with a mAP50 of only 20.7%, which shows that the
Resnet50 network is very good at extracting features in the form
of points and lumps, and then has limited ability to extract features
in the form of long, thin, faint and inconspicuous defects.

3.4.2 Improved backbone analysis

To enhance detection performance and computational
efficiency, several lightweight or hybrid-structured backbones were
evaluated as replacements for ResNet50 referred to Figure 5.

As a backbone network, GhostNet shows a significant balance
between lightweight and detection performance. Its parameter
volume is 41.2 M, ranking second lightest among the six compared
networks, only slightly higher than StarNets 41.4 M, but 0.398
less than the traditional residual network ResNet50. In terms of
computational complexity, GhostNet’s floating-point operations
are 190.2 GFLOPs, which is 0.286 lower than ResNet50, and its
computational efficiency is second only to StarNet. This advantage
is due to GhostNet’s unique feature generation mechanism, which
generates “phantom features” by splitting the original feature
channels and applying linear transformations, which greatly
reduces redundant calculations while retaining key information.

In the detection performance indicators, GhostNets mAP50
reached 65.5%, significantly better than ResNet50 and Mobilenetv4,
indicating that it has a strong ability to locate multi-scale defects.
However, its classification precision of 61.0% is lower than that of
Mobilenetv4 of 73.5%, which may be due to the noise interference
introduced by the phantom features in the uniform background.
The recall rate of 62.4% and F1-score of 0.62 are at the middle level,
reflecting its compromise optimization between missed detection
and false detection. Compared with the best-performing RepViT,
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TABLE 3 Detection performance of different backbone networks integrated into the YOLOV9-C framework on the NEU-DET dataset.

Backbone Params (M) GFLOPs mAP50 (%) Precision (%) Recall (%) F1-score
Native YOLOv9-C 50.7 236.7 58.2 53.1 59.3 0.56
ResNet50 68.9 266.6 58.6 55.8 59.7 0.58
GhostNet 41.2 190.2 65.5 61.0 62.4 0.62
Mobilenetv4 45.3 207.9 64.7 73.5 59.6 0.65
FasterNet 43.7 196.2 68.0 58.8 70.5 0.64
StarNet 41.4 191.3 64.6 62.3 61.1 0.62
RepViT 46.3 205.0 68.8 61.8 68.6 0.65
Bold values indicate the best-performing model for each metric (highest value in the column).
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FIGURE 6
Precision-Recall curves of different backbone networks under the YOLOV9 framework: ResNet50 (top-left), StarNet (top-center), MobileNetV4
(top-right), FasterNet (bottom-left), GhostNet (bottom-center), RepViT (bottom-right).

GhostNet has a gap in absolute accuracy, but its parameter
volume and computational complexity are reduced by 0.11 and
0.078 respectively, making it more suitable for industrial scenarios
with limited computing power. In addition, GhostNets recall
rate is better than StarNet, indicating that its defect coverage is
more robust.

However, its capability in extracting features for Cr defects is
notably weak, with a mAP50 of just 0.146. Similarly, its ability to
extract features for Sc defects is also reduced, with a mAP50 of
77.7%. These results indicate that while GhostNet holds a distinct
advantage in computational speed and parameter efficiency, it
compromises some detection capabilities in return.

MobileNetv4 exhibits the significant characteristics of “high
precision but limited recall" in the task of strip surface defect
detection. Its parameter volume is 45.3M and its computational
workload is 207.9 GFLOPs. Although it is significantly lighter
than ResNet50, it has not reached the extreme compression level
of GhostNet. The network ranks first among the six backbone
networks with an precision of 73.5%, an increase of 0.112 over the
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second-ranked StarNet, indicating that it has unique advantages
in distinguishing real defects from background noise. However,
its recall rate of 59.6% ranked last, revealing a serious problem
of missed detection, which may be related to the excessive
compression of shallow feature resolution by its deep separable
convolution. In terms of comprehensive detection performance,
the mAP50 of MobileNetv4 is 64.7%, slightly lower than the
similar lightweight networks FasterNet and GhostNet, reflecting
that its multi-scale defect localization capability has a bottleneck.
Meanwhile, It balances feature extraction for Pa, Ps, and Sc defects
with mAP50 scores of 89.6%, 88.5%, and 81.0%, respectively,
performing comparably to the Resnet50 network in extracting
features for Cr defects, albeit the mAP remains low at 20.4%.
However, due to the lack of recall rate and comprehensive
performance, it is necessary to optimize the feature retention
strategy and loss function design.

Conversely, the FasterNet network exhibits the best overall
recall performance among the networks, recording a rate of
70.5%. It shows marked improvements in defect feature extraction,
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FIGURE 7

The visualization of object detection results using the RepViT backbone integrated into the YOLOV9-C framework.

particularly for Cr defects, where it achieves a mAP50 of 32.6%,
an approximate 0.12 increase over networks like Resnet50. The
performance in extracting features for Pa and Ps defects has also
slightly increased by 0.07% and 8%, respectively. However, its
ability to extract features for In and Rs defects remains weak, with
mAP50 scores decreasing by ~ 3% for In and 1.2% for Rs.

The performance of the StarNet network is mediocre in
terms of parameter count, possessing 0.2 M more than GhostNet.
However, this increase in parameters does not translate into better
defect feature extraction capabilities, as its overall mAP50 remains
0.7% lower than that of GhostNet.

RepViT showed a leading overall performance in the task.
The architecture is based on the visual Transformer design and
ranks first among the six backbone networks with an mAP50
of 68.8%, 0.8% higher than the second-place FasterNet. In
particular, it achieved AP values of 69.9% and 50.5% in the
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detection of In defects and Rs defects, respectively, verifying
its ability to characterize multi-scale texture features. Its recall
rate of 68.6% and F1 score of 0.65 also ranked first, indicating
that it has significant advantages in missed detection control
and precision-recall balance. This performance improvement
stems from RepViT’s hybrid attention-convolution collaborative
mechanism: local window self-attention is used to capture cross-
regional semantic associations, while lightweight convolution is
used to retain detailed information of microscopic defects. It
is worth noting that although RepViT’s parameter count and
computational complexity are slightly higher than GhostNet, its
optimized design for industrial defect characteristics makes the
computing resource input-output ratio significantly better than
that of traditional networks. This network provides the best
solution for high-complexity defect detection scenarios. Here, we
present the detection results of RepViT as shown in Figure 7.
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3.4.3 Detection limitations

Although improved backbone architectures enhance detection
performance, limitations in detecting certain defect types are
analyzed in this subsection. In particular, detection performance
for Cr and Rs is suboptimal across all six backbone architectures
evaluated. As depicted in Figure 5, the center heatmap shows a
strong spatial prior: defects cluster in a horizontal band around the
image midline (y = 0.5), likely induced by the acquisition setup.
This crowding increases the likelihood of proposal overlap and
NMS collisions, particularly for elongated instances such as Cr and
Rs, and may also encourage positional overfitting with reduced
confidence at top or bottom margins. the width-height distribution
indicates that small objects dominate, and a sizeable fraction
exhibits extreme aspect ratios. Such geometry makes the IoU highly
sensitive to tiny localization errors, leading to “near-miss” failures
around common mAP thresholds. These targets rely heavily on
high-resolution, shallow features; insufficient input resolution or
overly aggressive augmentations can attenuate micro-textures and
further depress recall. Consistent with these properties, crazing
and rolled-in scale -typically thin, long, and low-contrast-shows
inferior detection performance relative to other classes. Thus, we
decompose Cr errors into the following categories:

e Near-miss [oU (0.4-0.5),
e Score-threshold Misses,
e NMS Collisions.

The above content explains why Cr AP is low under a baseline
backbone where ResNet50 mAP50 for Cr of 20.7% in our analysis
and why a recall-oriented backbone (FasterNet) improves Cr
of 32.6%.

3.5 Cross-dataset validation on GC10-DET

To further assess the generalization ability of the proposed
backbones and YOLOVY framework, we perform cross-dataset
validation on the GCI0-DET benchmark. The training and
evaluation protocols are kept consistent with those used for NEU-
DET to ensure a fair comparison.

The detection results on GC10-DET are summarized in Table 4,
providing additional evidence on the robustness of backbone-
specific performance trends across datasets.

As a framework reference, the native YOLOv9-C Baseline
achieves 49.9% mAP50, with the highest precision of 67.1%, 46.8%
recall, and 0.55 Fl-score with 50.7 million parameters and 236.7
GFLOPs. Exhibiting a precision-oriented profile with the lowest
recall among all configurations.

We again adopt ResNet50 as the baseline backbone due to
its wide usage and stable optimization behavior. On GC10-DET,
ResNet50 contains 69.0 M parameters and requires 266.7 GFLOPs—
the largest compute among the compared models. It attains mAP50
of 51.0%, Precision of 49.1%, Recall of 55.8%, and F1 of 0.52.
The recall-precision gap is 0.07, 0.07, 0.07 respectively indicating
a tendency to reduce missed detections at the expense of more false
positives. While residual connections aid deep semantic extraction,
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the bottleneck design with 1 x 1 compression can attenuate shallow
textures, yielding moderate accuracy and Fl-score on GC10-DET.
With 41.2 M parameters and 190.3 GFLOPs, GhostNet is among
the most efficient options. It achieves mAP50 of 51.8%, Precision
of 45.8%, Recall of 56.1%, and Fl-score of 0.50. The results
confirm GhostNet’s suitability under compute constraints, while
the precision shortfall relative to heavier or hybrid designs mirrors
its behavior on NEU-DET.

MobileNetV4 with 45.4 M parameters, 208.0 GFLOPs yields
mAP50 of 49.5%, Precision of 54.3%, Recall of 51.8%, and F1-score
of 0.53. Basically consistent with NEU-DET, it remains precision-
leaning with comparatively lower recall, suggesting that aggressive
depthwise separable compression can limit sensitivity to small or
low-contrast instances. FasterNet provides balanced performance
with mAP50 of 54.4%, Precision of 56.6%, Recall of 55.6%, and F1-
score of 0.56 with 43.7 M parameters and 196.3 GFLOPs. Although
it does not top recall on GC10-DET, it remains competitive across
metrics and continues to be a strong choice when minimizing
missed detections under moderate compute. StarNet offers a
well-balanced accuracy-efficiency point, slightly outperforming
GhostNet in mAP50 while preserving comparable computational
cost. RepViT delivers the strongest all-around results on GC10-
DET with mAP50 of 56.0%, Precision of 60.4%, Recall of 57.1%,
and Fl-score of 0.58. Relative to the baseline, it improves mAP50
and F1-score by 5%, 0.06 respectively and also achieving the highest
recall among the six backbones, indicating better discrimination
and coverage on this dataset.

The analysis reveals that three categories: Cr, In, and Rp,
consistently exhibit low detection performance across all examined
backbones. Validation results obtained from ResNet50, StarNet,
GhostNet, MobileNetV4, FasterNet, and RepViT confirm this
pattern. Specifically, the per-class mean average precision at IoU
0.50 remains within the range of 0.13 to 0.19 for Cr, 0.12 to 0.16
for In, and 0.12 to 0.20 for Rp. Correspondingly, recall values are
also limited, with Cr ranging from 0.125 to 0.25, In from 0.082
to 0.205, and Rp from 0.069 to 0.135. These results demonstrate
that, regardless of backbone design, the detection of these particular
defect types remains recall-limited and highlights their inherent
difficulty within the dataset.

Cr contains few instances (16 in our split) and typically
appears as thin, elongated, low-contrast traces. Such extreme
aspect ratios make IoU highly sensitive to sub-pixel localization
errors, producing near-miss failures around common thresholds;
the crowded ridge-like patterns also induce NMS suppression
when multiple narrow proposals overlap. Precision remains low
(21.4%-37.8%) and recall is uniformly poor (12.5%-25.0%) across
backbones, indicating simultaneous challenges in both scoring
and localization for weak-signal, scarce examples. Inclusions are
minute, speck-like targets with very small bounding boxes and
weak contrast against textured steel surfaces. They are easily
confounded with benign spots or background artifacts, leading to
score-threshold misses and assignment instability at small strides.
Correspondingly, recall remains low (8.2%-20.5%) even when
precision is moderate, reflecting a heavy reliance on high-resolution
shallow features. Rp instances are sparse (29 in our split) and
often manifest as quasi-linear/elongated textures that are visually
proximate to scratches or other linear defects. Detectors tend
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TABLE 4 Detection performance comparison of various backbone networks integrated into the YOLOV9-C framework on the GC10-DET dataset.

Backbone Params (M) GFLOPs mAP50 (%) Precision (%) Recall (%) F1-score
Native YOLOv9-C 50.7 236.7 49.9 67.1 46.8 0.55
ResNet50 69.0 266.7 51.0 49.1 55.8 0.52
GhostNet 41.2 190.3 51.8 45.8 56.1 0.50
Mobilenetv4 45.4 208.0 49.5 54.3 51.8 0.53
FasterNet 43.7 196.3 54.4 56.6 55.6 0.56
StarNet 43.9 197.1 55.4 54.3 56.4 0.55
RepViT 46.4 205.0 56.0 60.4 57.1 0.58

Bold values indicate the best-performing model for each metric (highest value in the column).

to fire only on the most salient cases. e.g., MobileNetV4 shows
high precision of 91.3%, but extremely low recall of 6.9% which
is a signature of threshold sensitivity and NMS collisions along
linear structures.

Across GC10-DET, Cr, In, Rp are dominated by the same failure
modes identified on NEU-DET: near miss IoU, score threshold
misses, and NMS collisions arising from small scale, extreme
aspect ratios, low local contrast, and class sparsity. These effects
are consistent across backbones, underscoring the need for recall-
oriented designs and strong high-resolution features when these
categories are operationally critical.

3.6 Cross-framework ablation validation

To verify that our conclusions are not limited to a single
detector family, we integrate the six backbones into the YOLOv5-m
framework and evaluate them on the same NEU-DET dataset using
identical metrics, as summarized in Table 5.

The cross-framework results largely preserve the backbone-
specific tendencies observed under YOLOv9-C while also revealing
the impact of the detector framework on the recall/compute
trade-off. Under YOLOvV5-m, ResNet50 exhibits a pronounced
0.37,
underscoring its inefficiency in a lightweight configuration. In

performance drop where mAP50 = 33.3%, Fl-score =

contrast, FasterNet and StarNet retain strong overall balance with
Fl-score of 0.61, while FasterNet achieving the highest Recall of
63.7% among the six backbones. GhostNet, despite having only
1.03 M parameters and 2.1 GFLOPs, delivers mAP50 of 55.0%
and Precision of 64.8%, highlighting its suitability for low-resource
deployment. MobileNetV4 maintains the expected precision-
dominant profile with 69.1% precision, and 46.2% recall, mirroring
its behavior under YOLOV9-C. RepViT attains mAP50 of 54.2%
and F1 of 0.53, with stable behavior across frameworks. Together,
these results indicate that while absolute numbers shift, backbone-
level characteristics remain consistent across frameworks. This
cross-framework ablation demonstrates that our observations are
not artifacts of a single YOLO implementation. Specifically:

e Backbones favoring recall (e.g., FasterNet) continue to
minimize missed detections;

e Precision-first behavior of MobileNetV4 persists across
frameworks;
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e Ultra-efficient GhostNet provides a competitive accuracy-
efficiency trade-off in constrained settings.

The comparison thus supports our central claim that
framework and backbone jointly determine the recall/compute
trade-off, rather than backbone alone. Overall, the comparison
supports the central claim that both the detector framework and
the backbone jointly determine the recall-compute trade-off, rather
than the backbone alone.

4 Discussion

Beyond aggregate numerical comparisons, this study provides
deeper insight into how different backbone architectures influence
the detection of various defect types. Models equipped with
attention mechanisms or hybrid designs, such as RepViT,
demonstrate superior capacity in capturing complex spatial
patterns and fine-grained defect features, particularly under
visually cluttered conditions. Meanwhile, lightweight backbones
like GhostNet offer an effective compromise between accuracy
and computational efficiency, making them appealing for latency-
sensitive applications. Per-class analyses further reveal that
certain challenging defect categories—such as Cr, In, Rp, and
Rs remain consistently recall-limited, regardless of overall model
performance. This highlights the importance of recall-oriented
designs and high-resolution feature representation, especially in
safety-critical industrial inspection scenarios where missing a
defect may incur substantial risk.

These insights underscore a central message: backbone
selection should not be guided solely by conventional metrics
such as speed or precision. Instead, it must also account for
sensitivity to defect characteristics and the practical constraints
of the deployment environment. For example, applications that
demand high throughput may prioritize latency-optimized models,
whereas those involving rare or safety-critical defects may require
architectures that favor recall and fine-detail sensitivity. Our results
provide practical guidance in this context, demonstrating that
different backbones present trade-offs that are not universally
optimal but context-dependent. Notably, the consistency of
trends across both YOLOv9-C and YOLOv5-m frameworks
lends robustness to these observations, indicating that the
underlying design principles generalize across detection heads and
architectural templates.
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TABLE 5 Detection performance of different backbone networks into the YOLOv5-m framework on the NEU-DET dataset.

Backbone Params (M) GFLOPs mAP50 (%) Precision (%) Recall (%) Fi-score
ResNet50 27.5 72.1 33.3 34.5 41.0 0.37
GhostNet 1.03 2.1 55.0 64.8 53.9 0.59
Mobilenetv4 4.72 19.0 55.8 69.1 46.2 0.55
FasterNet 11.6 22.6 62.5 59.1 63.7 0.61
StarNet 9.47 18 61.2 73.6 52.2 0.61
RepViT 5.75 15.7 54.2 50.1 57.3 0.53

Bold values indicate the best-performing model for each metric (highest value in the column).

A closer examination of the GC10-DET dataset reveals the
nuanced impact of backbone behavior under complex visual
conditions. Here, the native YOLOV9-C configuration achieves the
highest precision, despite several alternative backbones attaining
higher recall and mAP/F1 scores. This outcome is strongly
influenced by the datasets inherent characteristics: GC10-DET
features highly textured backgrounds and a predominance of
sparse, small, and elongated defect types (e.g., Cr, In, Rp). Such
conditions heighten the sensitivity of confidence calibration and
Non-Maximum Suppression (NMS) to both proposal density
and overlap. Under unified confidence and NMS settings, recall-
oriented backbones tend to produce a larger volume of low-
confidence proposals, which increases false positives in the
presence of ambiguous background textures. In contrast, YOLOv9-
C with its GELAN backbone applies more conservative confidence
scoring and stronger suppression, effectively filtering out spurious
detections and thereby achieving higher precision.

By comparison, the NEU-DET dataset with its more uniform
imaging conditions and a smaller, more distinct set of defect classes
shows different behavior. In this case, replacing the backbone tends
to improve both recall and precision concurrently, and the native
configuration’s precision advantage becomes less pronounced. This
contrast highlights that performance dynamics are not solely
dependent on backbone architecture but are deeply coupled with
dataset-specific factors such as image complexity, class granularity,
and defect morphology. Thus, effective backbone selection requires
considering both the visual nature of the data and the downstream
calibration effects imposed by the detection framework.

To provide actionable insights for practitioners facing
competing priorities whether optimizing for recall, F1 score, or
computational efficiency, we present a controlled, cross-family
evaluation. This includes six modern backbones tested under
both YOLOvV9-C and YOLOv5-m frameworks, with consistent
training conditions including identical data splits, input resolution,
augmentation, and schedules. Our deployment-oriented analysis
further incorporates GFLOPs and batch-1 latency metrics,
revealing that YOLOv9-C with RepViT offers the best overall mAP
and F1, while FasterNet achieves the highest recall. In contrast,
the same backbone families under YOLOvV5-m consistently
underperform at matched training budgets. These results reinforce
a key finding: performance-compute trade-offs are not determined
by the backbone alone, but rather by its interaction with the
broader detection architecture and dataset-specific calibration
effects-a relationship that has been largely overlooked in prior
defect detection literature.
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5 Conclusion

This study benchmarks diverse backbones for surface defect
detection and articulates how recent advances in deep learning
align with real world inspection requirements. The results provide
a practical basis for selecting and optimizing backbones under
industrial constraints and lay the groundwork for subsequent
research on backbone optimization tailored to production settings.
To understand failure modes, we analyze class-wise feature
distributions and errors. Dataset visualization reveals a strong
midline spatial prior and a predominance of small, extreme-aspect-
ratio instances; crazing is particularly challenging due to tiny size,
elongated geometry, and low local contrast, leading to near-miss
IoU errors and NMS collisions. Our contribution is a reproducible
selection framework rather than another detector variant: any
future model (e.g., YOLOv10/YOLOV11 or transformer-based real-
time detectors) can be plugged into the same protocol to extend the
matrix. Despite the promising results, this study presents certain
limitations that warrant further investigation. A key limitation is
that persistent near-miss IoU errors and NMS collisions remain
under challenging cases (tiny, low-contrast, extreme-aspect-ratio
defects). Future work will:

e Broaden cross-dataset validation to assess how frequently
these two error modes arise under different data distributions;
e Incorporate additional backbones and NMS-free paradigms to
reduce suppression conflicts among densely packed, elongated

instances;
e Explore oriented boxes/segmentation and threshold
calibration within our unified protocol to improve

localization around decision boundaries and mitigate
close-call (near-miss) failures without changing the study’s

core conclusions.

Moreover, the evaluation was based exclusively on the NEU-
DET and GC10-DET dataset, which may not adequately capture
the diversity and complexity of surface defects encountered in
real-world industrial environments. As a result, the generalizability
of the proposed approach to more diverse or noise-prone
scenarios remains to be verified. In addition, the dataset features
relatively balanced defect categories, which contrasts with the
class imbalance commonly observed in actual production settings.
Future studies should explore defect detection under imbalanced
class distributions and data-augmentation strategies to address
this gap.
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