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Enhancing Ishihara and
educational images using
machine learning: toward
accessible learning for colorblind
individuals

Aahan Ritesh Prajapati' and Ajay Goyal®*

tAdani International School, Ahmedabad, India, ?Institute of Design, Nirma University, Ahnmedabad,
India

Color Vision Deficiency (CVD) affects over 300 million individuals worldwide, with
protanopia and deuteranopia being the most common subtypes, causing red—
green confusion. This study leverages machine learning to (a) classify reference
(considered as normal vision) and simulated protanopia and deuteranopia Ishihara
plate images, (b) generate corresponding enhanced versions of these images,
and (c) provide improved textbook diagrams (from NCERT books) and other
pseudochromatic figures for CVD students, validated through feedback from
diagnosed individuals. Tritanopia and milder forms of CVD were excluded in this
study. A dataset of 1,400 Ishihara plates was processed to simulate protanopia and
deuteranopia perception via standard Red Green Blue (sRGB) to long-, medium-,
and short-wavelength cone (LMS) modeling. Enhanced images were generated
using a daltonization function defined by the error between reference and simulated
images, with enhancement strength (a) optimized to maximize contrast gain while
minimizing distortion. Feature embeddings from ResNet-50, EfficientNet-BO0, and
DenseNet-201 were fused and reduced via PCA, followed by One-vs-All (OvA)
(classifiers: linear support vector machine, logistic regression, and decision tree),
random forest, gradient boosting, and neural network. Results showed optimal
enhancement at @ = 0.54 for deuteranopia and 0.64 for protanopia, achieving
contrast gains of 69.6 and 64.3, respectively, with minimal color distortion (AE ~ 4.9)
and negligible clipping (<0.002). The OvA strategy achieved 99.7% accuracy, while
MLP reached 100% across metrics. Surveys with 15 diagnosed students confirmed
substantial perceptual improvement: recognition of previously unreadable digits
and symbols increased from <20% to full visibility, with mean ratings above 4/5
for enhanced images. The OVA technique integrated with daltonization can assist
in enhancing Ishihara and educational images in real time.

KEYWORDS

Color Vision Deficiency (CVD), protanopia, deuteranopia, Ishihara plates,
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Introduction

Color Vision Deficiency (CVD) affects approximately 300 million people worldwide
(Firth, 2024). It arises from missing cone type, leading to retinal dysfunction and impaired
ability to distinguish colors (Brettel et al., 1997; Hunt and Carvalho, 2016). Beyond the
biological basis, CVD leads to social and psychological burden, including workplace
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discrimination, emotional distress, and restricted participation in
everyday activities (Barry et al., 2017; Tillem and Giin, 2023).

CVDs are classified by the affected cone class (protan (L), deutan
(M), and tritan (S)), each presenting as anomalous trichromacy or, less
commonly, dichromacy. Most congenital cases are red-green (protan/
deutan), whereas tritan defects are rare (Choi et al., 2019). Due to its
simplicity and less classifying time, the Ishihara test is the most widely
used classifying method for these CVDs. However, it cannot confirm
diagnosis, grade severity, or detect tritanopia.

Motivated by personal experience with red-green color blindness,
one of the authors (ARP) and volunteers, under supervision of
ophthalmologist (Dr. Nishant Patel, M.B.B.S, Opthalmology &
Otorhinolaryngology, D.O.M.S.) and Dr. Shivani Bhatt Charitable
Foundation, Anand, Gujarat, conducted an outreach program
(between December 2023 to July 2025) with pre-university students
across 28 schools in Gujarat, India, classifying more than 10,000
students (Supplementary material S1). This effort identified 121 CVDs
those were previously undiagnosed cases, underscoring the scale of
unrecognized CVD and the urgent need for accessible real-time
classifying methods. Further, the possibilities to provide color friendly
NCERT textbook images deeply inspired the authors aimed to reduce
academic barriers on CVD students.

Machine learning (ML) models are promising tools for CVD
detection and image enhancement or providing color friendly images
(Supplementary Tables S2.1, S2.2; Supplementary material 2). Few
studies also investigated influence of ambient lighting, type of test, test
presentation angle, refractive error correction, and pathological
conditions in CVD classifying (Supplementary Tables $2.3;
Supplementary material 2). However, limitations remain. Recoloring
models often distorts natural color perception, leading to unnatural
saturation or elevated AE values. Most studies have addressed either
classifying or enhancement, with only a few attempts at integrating
both (Ananto et al., 2011; Tecson et al., 2017; Pendhari et al., 2024) but
with narrow range of image domains. Bile et al. (2023) introduce a
non-invasive algorithm that both diagnoses dyschromatopsia and
quantifies its severity, and they explicitly position machine learning as
the engine for personalized re-education plans. This frames why
ML-based enhancement of Ishihara plates is clinically meaningful.
Bile (2025) presents the DEA app for color-vision self-re-education,
leveraging neuroplasticity with a structured train-test-validate
protocol and reporting sustained post-training gains in a severity
index ().

This study proposes a ML model in color blindness that first
classifies CVD type using Ishihara plate images, then enhances images
in realtime based on perceived images generated by removing a cone
type from reference images. This classification task mirrors the clinical
use of Ishihara plates, where perceiving or failing to perceive the
embedded digit constitutes the diagnostic criterion. In this study,
reference images represent normal vision and simulated protanopia
and deuteranopia images represent deficient perception. By learning
image-level features across these groups, the model encodes the same
decision boundary used clinically to classify CVD. Thus, ML
classification of reference versus simulated images serves to classify
the presence and type of CVD. Notably, this is a classifying analogue;
confirmation requires further clinical evaluation.

The model was validated by enhancing textbook diagrams and
multiple variants of Ishihara plate (single-digit, double-digit, animal,
and symbolic forms). To strengthen the results, two detailed feedback
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were done with CVD individuals. To identify best suitable ML model,
this study applied and compared various ML techniques. This study
targets classroom material, aiming to reduce the educational barriers
faced by young students with CVD.

In this study we restrict modeling and evaluation to red-green
dichromacy (protanopia, deuteranopia); anomalous trichromacy
(protanomaly, deuteranomaly) is out of scope and slated for future
work. Also, given the constraints of Ishihara-based classifying,
Tritanopia, partial anomalies, and severity grading were excluded. By
laying a methodological foundation, this work contributes toward
future assistive devices capable of real-time classifying and
enhancement of pseudochromatic images and textbook images
for students.

Methodology

Figure 1 shows the model architecture of the proposed study.
All steps were coded in MATLAB R2024b (The MathWorks Inc.,
Natick, Massachusetts). This study received ethical clearance from
the Institutional Ethics Committee of Nirma University,
Ahmedabad, India (Certificate No. IEC/NU/25/ID/01) dated May
26, 2025. Written consent was obtained from fifteen available CVD
individuals (eight deuteranopia individuals) who participated in
the survey. All participants were diagnosed with either
deuteranopia or protanopia.

Dataset

A dataset of 1,400 reference Ishihara images (531 x 531 pixels)
(Isrgp) was adopted from the Kaggle repository.! Each image contains
a single-digit numeral (0-9), embedded within a stochastically
distributed pattern of polychromatic dots with selective chromatic
contrast designed to challenge color perception. This open-source
dataset was originally generated at Kuban State University. These
images are not patient-derived diagnostic records but computer-
generated Ishihara-style plates, generated using combinations of
Google fonts, digits, and color schemes.

Generating perceived and enhanced
images

Each reference image I;zgp in the standard Red-Green-Blue
(sRGB) space was first converted to linear RGB (Ij;,;) using the IEC
sRGB opto-electronic transfer function Equation 1 (IEC 61966-2-1,
1999). s is the normalized sSRGB channel value for a given pixel.

N

5$<0.04045
() 12.92
lin ($) =
; 540055 $>0.0405 W
1.055 ’ ’

1 https://www.kaggle.com/datasets/dupeljan/ishihara-blind-test-cards

frontiersin.org


https://doi.org/10.3389/frai.2025.1676644
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://www.kaggle.com/datasets/dupeljan/ishihara-blind-test-cards

Prajapati and Goyal

10.3389/frai.2025.1676644

Input
Ishihara plates

digits (0-9)

1400 reference images,
531x531 pixels, single

6 Data input and Initial processing

ML Framework
Feature extraction
(95% variance), CVD
classification, testing,
and enhancement

—

—

Output
Educational and other
pseudochromatic
images enhancement

~

Training and Testing using MATLAB R2024b

L

7~

CVD perception simulation

sRGB - linear RGB —» LMS
conversion (Egs. (1)-(3))

Apply CVD matrices (Egs. (4) and (5)
Generate perceived images for analysis

Back conversion to SRGB images (Eq.

©))

-

b) CVD simulation and Daltonization Enhancement

.

Daltonization Enhancement

Compute error (Eq. (7))
Apply enhancement (Eq. (8))

—> Optimize strength: maximize S(a)

(Egs. (9)(11))

Save enhanced images routed by
predicted type

Feature Extraction

ResNet50 Features

C )

( EfficientNetB0 features )

D)

Principal component analysis
(95% variance)

C DenseNet201 Features

c) Feature Extraction and Classification Pipeline

FaY

Classification

4 R

One-vs-All strategy
(using Linear support
vector machine, Logistic
regression, and Decision
tree classifiers)

Random forest

)
)

Gradient boosting

C
C

Educational and

Brent—-Dekker P
other images

Q Neural network )
\_ _/
fd) Supporting Techniques \
Error Human Performance
optimization validation Dimensionality Metrics
Course grid and Reduction Accuracy, F1-

PCA, t-SNE score, precision,

recall

/

\ line search
FIGURE 1

Architecture and workflow of the proposed CVD-ML system.

Linear RGB values were transformed to LMS cone response
(Equations 2, 3) (Machado et al., 2009). sRGB was converted to
LMS because device RGB encodes monitor primaries, not the
human visual sensors; cone space provides a physiologically
grounded basis for both simulating dyschromatopsia and
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designing compensations (Hunt and Pointer, 2011). Deficiency
simulation and compensation follow established LMS models. All
deficiency and enhancement operations are performed in cone
space and in opponent coordinates so that edits target the
channels actually affected in CVD type conditions rather than
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entangling device-dependent RGB (Stockman and

Sharpe, 2000).

axes

LMS = MpGB—s1ms-RGBji (2)

0.314 0.639 0.046
MRGB—sLms =| 0.155 0.757 0.087 3)
0.018 0.109 0.872

CVD perception was simulated using deficiency-specific matrices
Mpe/Mp, (Machado et al., 2009) (Equations 4, 5) (Machado
et al., 2009).

0.000 |
0.000 (4)
0.700

[0.625
Mp, =| 0.700
0.000

0.375
0.300
0.300 |
0.000 |
0.000 (5)
0.758

[0.567
Mp, =| 0.558
0.000

0.433
0.442
0.242

These matrices projected the LMS responses into the deficient
observer’s perceptual space. The simulated LMS values were converted
back to linear RGB (Mpys_srGB = MRGB—)LMS_I ), and then
reconverted to sSRGB using the inverse gamma function (Equation 6)
(IEC 61966-2-1, 1999). L is the linear-light channel value.

12.921 1<0.0031308
sRGB(I)= 1 (6)
1.055/24 —0.055, 1>0.0031308

This yielded how the reference plate would appear to an observer
with the corresponding CVD. These simulated images were saved in
separate folders: Perceived_Deuteranopia and Perceived_Protanopia.
Labels 0, 1, and 2 were assigned to reference images (assumed to
be images for normal vision), perceived deuteranopia, and perceived
protanopia images across the dataset. All images generated from a
given plate, whether reference or simulated, were assigned exclusively
to either the training set (80% of the dataset) or the testing set.

An optimized daltonization framework was applied to correct lost
chromatic cues while maintaining perceptual naturalness to generate
enhanced images. The error signal (E) was computed in sSRGB space
(Equations 7) (Farup, 2020). Equation 7 is the standard way to
measure “what information was lost” when a color-normal observer’s
plate is viewed through a simulated CVD transform (Farup, 2020).
The enhanced images (I,j) were obtained using Equation 8 (Simon-
Liedtke and Farup, 2018). ae[O,l.S] (Simon-Liedtke and Farup,
2018) is an enhancement strength parameter. clip(.,O,l) ensures all
channel values remain in the displayable range(Simon-Liedtke and
Farup, 2018). Equation (8) reinjects that lost signal with ¢. This linear
add-back is the design goal of daltonization: amplify contrasts along
confusion directions while leaving everything else as untouched as
possible. The explicit clip operator is a perceptual safeguard that
prevents out-of-gamut excursions from creating hue or lightness
artifacts on real displays (Simon-Liedtke and Farup, 2018).
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E=Iep— Idef (7)

Tonn = clip(Irgp + a.E0,1) (8)

The optimal a* for each CVD type (protanopia and
deuteranopia) was determined by maximizing an objective function
(Equation 9) (Simon-Liedtke and Farup, 2018). ACcyp is the
change in contrast under simulated CVD, computed using
Equation 10 (Simon-Liedtke and Farup, 2018). L denotes the
CIELAB L'a*b* channels of the simulated images. AE, ., is the
mean CIE76 color difference between original and enhanced images
under normal vision, computed using Equation 11 (Simon-Liedtke
and Farup, 2018). N is the number of pixels in the image. fjp is the
fraction of pixels with at least one channel at 0 or 1 after
enhancement. A, =0.15 and S, =0.05 are penalty weights
controlling the tradeoff between perceptual naturalness and
avoidance of channel saturation.

S(a) =ACcvp — Anat AEnorm _ﬂclipfclip 9)

ACeyp = {iVur(Lf”)} {iVar(L‘,’j"g )} (10)

k=1 k=1

AEno,m:;’g:l\/(AL;)2+(Aa;)z+(Ab;)2 (11)
=

S(a) was evaluated over a fixed grid a € {0.3,0.35,. . ..1.5} .'Then,
Brent-Dekker bounded minimization was applied to evaluate - S(a)
within the interval of 0 to 1.5. The resulting ap, and e, were applied
to the full dataset to produce two enhanced images, each specifically
optimized for one CVD type.

The objective S (a) in Equation 9 formalizes the trade-off the viewer
actually experiences. The first term, AC from Equation 10, measures
how much useful structure becomes more legible to a CVD observer
after enhancement by comparing channel variances in the simulated
CIELAB image before and after correction; higher is better because it
means more separable cues where the deficiency collapses chromatic
differences (Simon-Liedtke and Farup, 2018). The second term,
AE, ., (Equation 11), pushes back against heavy-handed edits by
penalizing average CIE76 color differences under normal vision; lower
is better because improvements are required for CVD observers without
making the image look “wrong” to everyone else (Simon-Liedtke and
Farup, 2018). The third term, f;p, directly penalizes saturation hits so
the optimizer prefers solutions that stay inside the display gamut most
of the time, which in practice reduces banding and haloing on high-
contrast dot boundaries (Simon-Liedtke and Farup, 2018). The weights
Anat and Bip express design priorities: readable contrasts for CVD
viewers first, with focus to keep naturalness and avoid clipping. Coarse
grid over a €[0.3,1.5] followed by Brent-Dekker minimization on
=S (a') is a practical way to find ap, and ap, robustly. It is fast,
reproducible, and avoids the brittleness of gradient-based methods on
non-smooth objectives with a clipping term (Simon-Liedtke and Farup,
2018; Farup, 2020). Derivation of Equations 1-11 are given in
Supplementary material 3.
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Feature extraction

Feature extraction was performed using three convolutional
neural network (CNN) backbones pretrained on ImageNet: ResNet-50
(2048-dimensional features (Xpys0) from the average pooling layer)
(He et al., 2015), EfficientNet-B0 (1280-dimensional global average
pooling features (Xgnpg)) (Tan and Le, 2020), and DenseNet-201
(1920-dimensional features (X pn01) from the average pooling layer)
(Huang et al., 2018). ResNet’s residual blocks emphasize mid—/high-
level edge and shape cues; EfficientNet’s compound scaling maintains
fine local structure at modest capacity; DenseNet’s dense connectivity
promotes feature reuse and stable gradients, preserving subtle
dot-pattern statistics. Each network processed resized images
matching its native input resolution, and deep embeddings were
obtained via feed-forward inference. The embeddings from the three
architectures were concatenated to form a fused feature vector (X fysed
) (Equation 12) (Li et al., 2025), resulting in a 5,248-dimensional
feature space for each image.

X fused :[XRNSO I XEno HXDNZOI] (12)

The training subset underwent column-wise z-score normalization
(Equation13) (Tryon et al., 2025). Hj and ojare the mean and standard
deviation of feature j in the training set.

X4

Xji= (13)
oj

Dimensionality reduction was conducted using principal
component analysis (PCA) (Jolliffe and Cadima, 2016) on the
normalized training set to retain a standard target variance of 95%.
The transformation was then applied to the validation set using
Equation 14 (Mochurad et al., 2025). Wpcy contains the top principal
components computed to meet a 95% variance threshold.

Xpca =(X'— ppca )-Weca (14)

This design was guided by five criteria: (1) architectural diversity,
established by combining embeddings from three structurally distinct
CNN backbones; (2) descriptors derived from ImageNet-pretrained
networks, which are not explicitly optimized for chromatic opponency,
but were sanity-checked on recolored probes to confirm retention of
coarse color variations, with fusion across architectures used to
mitigate the risk of losing finer chromatic cues; (3) dimensionality
control via PCA at a 95% variance threshold, chosen as a pragmatic
balance between tractability and information preservation, with
sensitivity checks at alternative cutoffs confirming stable performance;
(4) a non-inferiority safeguard requiring the fused vector’s cross-
validated macro-AUC to remain within a practically defined margin
of the strongest backbone, recognizing that margins smaller than
inter-fold variability are interpreted heuristically rather than as strict
statistical bounds; and (5) reproducibility through fixed preprocessing
statistics (4, o, PCA transform), frozen pretrained weights, consistent
to ensure

resizing and normalization repeatability under

controlled environments.

Frontiers in Artificial Intelligence

10.3389/frai.2025.1676644

Classification model for diagnosis

A One-vs-All (OvA) classification model (Hashemi et al., 2009;
Lutu and Engelbrecht, 2012; Yan et al., 2020; Kumar et al., 2024) was
trained to classify perceived De, and Pr, and the reference Ishihara
plate. Three distinct classifiers were trained for each OvA task: linear
support vector machine (SVM) (Varghese and Gopan, 2020), logistic
regression (Manasa et al., 2024), and decision tree (Ramkumar and
Sivaprakash, 2025). In addition, random forest (Varghese and Gopan,
2020), gradient boosting, radial basis function SVM (SVM-RBF)
(Varghese and Gopan, 2020), and a shallow multilayer perceptron
(MLP) (Tian et al., 2004) were used to compare the results. Class-wise
accuracy, precision, recall, and F1 score were computed (Sisodia et al.,
2023). The enhancement algorithm was integrated with the One-vs-All
model to display an enhanced image based on the classification
classifying result for the test set or validation images.

Validation dataset: enhancing educational
and other pseudochromatic images

Based on the results, two subsequent in-person surveys were
conducted with fifteen and then eleven 9th- to 11th-grade students of
D.N. High School suffering from either De or Pr. In particular, five
reference images from the dataset (with a subsequent enhanced image
placed to its right) with the highest possibilities of red-green confusion
were shown to these students (Figure 2). These images (numbered
153, 157, 253,297, and 1,101) were identified based on the maximum
A E between reference and corresponding simulated images. Students
were asked to compare these two groups of five images, and then they
responded to various open-ended, single, multiple-choice, or rating-
based questions.

Based on the results, another survey included more specific
questions. In this survey, other images were also included (enhanced
using the same algorithm). These include two-digit Ishihara images,
similar images with a leaf and an animal surrounded by colored dots,
a periodic table, a physical map of India, and a eukaryotic cell. These
images were adopted from open-source or purchased from
professional websites (Planemad, 2024; American Chemical Society,
2025; Radu, 2025). Reference normal vision images are given in
Figure 3. Participants were asked to check the clarity, interpretability,
and usability of enhanced images. Responses were collected using
closed-format questions (e.g., Likert ratings, forced-choice selection)
and short written feedback. Participants also identified image types
where enhancements were most or least helpful and indicated whether
such improvements should be applied in textbooks. The survey was
given in English and was designed to be completed in 15-20 min.

Results
ML performance evaluation

Deuteranopia reached its optimum at « = 0.54, scoring 68.84
and contrast improvement (AC) of 69.57. For protanopia, «, score
and AC was 0.64, 63.53 and 64.28, respectively. In both cases, color
fidelity was maintained (AE = 4.9) with negligible clipping
(<0.002). Table 1 shows the confusion matrix of OvA technique for
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classifier labels (0: reference image, 1: Deuteranopia and 2:
Protanopia) in the trained and tested dataset. The OvA confusion
matrices show near-perfect separation: in training, 3,349 of 3,360
images are correctly classified, with only class-1 leaking slightly into
classes 0 (1 case) and 2 (7 cases). On the test set, 839 of 840 images
are correct; the one error is a class-1 image predicted as class-2.
Table 2 shows the performance matrices of trained and tested
dataset of the OvA model for each CVD classifier. Per-class metrics
confirm uniformly high performance: training precision/recall/F1
are >0.994 across all classes, with minor leakage only for class-1 (8
FN, 3 FP) and class-2 (3 FN, 7 FP). On the test set, all classes are
essentially perfect (F1 = 0.998-1.000); the only slips are a single FN
for class-1 and one FP against class-2, keeping class-wise accuracy
at 0.999-1.000. Table 3 shows the comparison of different machine
learning models based on classification performance metrics. All
models perform strongly, with MLP achieving perfect scores (1.000)
and SVM-RBF/OVA close behind at 0.997 across all metrics.
GradBoost (0.993) and Random Forest (0.992) trail slightly but
remain high.

Figure 4 shows the results of a misclassified (image number
157) deuteranopia. Figures 4a—c show the original, perceived, and
enhanced image with “1” digit, respectively. The model diagnosed
image as protanopia, whose enhanced image is shown in Figure 4d.
The RGB heat maps between the original vs. perceived difference
(Figure 4¢) showed a maximum distortion difference of 0.50. Heat
map of reference versus deuteranopia-enhanced (Figure 4f) and
reference versus protanopia-enhanced (Figure 4g) showed a
maximum enhancement of 0.20 and 0.18, respectively. The two
enhanced images showed no significant color difference
(Figure 4h).
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Survey-based visualization of enhanced
images

Figure 5 shows normal vision (Figure 2) and corresponding
enhanced Ishihara plates with high chances of red-green confusion in
simulated 1,400 images.

Image 153 showed complete agreement: all eleven participants
preferred the enhanced image. Recognition of the digit “1” improved
from minimal detectability in the reference (De: 2/6; Pr: 1/5) to
complete recognition in the enhanced image (De: 6/6; Pr: 5/5).
Structural details such as the horizontal line were visible to only 1-2
participants in the reference, but to 6 in the enhanced version. The
mean improvement ratings (out of 5) were 4.08 + 0.64 (De) and
4.2 +0.45 (Pr).

Image 157 followed a similar pattern. None of the eleven
participants could identify the alphabet “I” in the reference; five De
and four Pr participants recognized it in the enhanced image. The
horizontal line improved from near-invisibility (1/6 De, 1/5 Pr) to full
detectability in both groups. Textbook inclusion preference was
strong, with 10/11 participants affirming they would rely on the
enhanced version. Mean improvement scores were 4.08 (De) and
4.0 +0.63 (Pr).

Image 253 presented slightly more variation. Digit recognition in
the reference remained low (De: 1/6; Pr: 1/5), but was restored in the
enhanced image (De: 6/6; Pr: 5/5). Line visibility improved similarly
(De: 1-5; Pr: 1-5). The average scores was 4.4 + 0.55 (Pr) and a
broader 2-5 range in De responses.

Image 297 responses introduced slight perceptual ambiguity. All
protanopes and five deuteranopes preferred the enhanced image. One
deuteranope considered both images equally helpful. Digit “2” was
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TABLE 1 Confusion matrix showing correct and misclassified instances
by OvA technique for classifier labels in the trained and tested dataset.

Labels (0] 1 2
Trained

0 1,132 0 0

1 1 1,102 7

2 0 3 1,115
Tested

0 282 0 0

1 0 282 1

2 0 0 275

difficult to identify in the reference (De: 2/6; Pr: 1/5), but was
recognized instantly by all eleven in the enhanced version. Visibility
of the upper curve improved from partial detectability (mostly
“Maybe” responses) to complete recognition across both groups.
Improvement scores were 4.1 + 0.48 (Pr) and more variable in De
(range: 2-5), possibly influenced by prior familiarity or reduced
baseline distortion.

For image 1,101, five De and all five Pr selected the enhanced
version as most helpful. Digit “7” recognition improved from 2/6 (De)
and 1/5 (Pr) in the reference to 5/6 and 5/5, respectively, in the
enhanced image. The junction between horizontal and vertical lines
was a key differentiator, which was visible to all in the enhanced
version but detected by only 1-2 participants per group in the
reference image.

Figures 6, 7 show enhanced images for De and Pr, respectively,
of the reference images shown in Figure 3. Figure 3a (digits “4” and
“2”) was the strongest case of convergence: both groups reported
substantial improvement with the enhanced version. All
protanopes and four of six deuteranopes selected the enhanced
image as most helpful. Digit recognition rose from 2/6 (De) and
1/5 (Pr) to complete recognition in the enhanced version across
both groups. Structural features, such as the junction of “4” and
curvature of “2,” were visible in the enhanced version for all
participants. Additional visibility of digit “7” in the enhanced
image was confirmed across all protanopes, but yielded mixed
results in deuteranopes. Average improvement scores were 3.25
(De) and 4.2 (Pr).

Figure 3b (text “COLOR”) produced a consistent benefit for
deuteranopes, but a divided response among protanopes. While five
deuteranopes preferred the enhanced image, protanopes were split (3
vs. 2). Word recognition in the reference image was poor for
deuteranopes (1/6) and strong for protanopes (4/5). The enhanced
version improved recognition to 6/6 (De) but slightly declined among
protanopes (3/5). Both groups showed mixed though positive results
for clarity.

Figure 3¢ (text and silhouette of “kangaroo”) was the least effective
image overall. Both groups showed a neutral response to enhancement.
3/6 deuteranopes and 3/5 protanopes preferred the enhanced version,
but the visibility of the word “kangaroo” and animal shape was
inconsistent. Among protanopes, only 2/5 saw the animal in the
enhanced image, compared to 4/5 in the reference image.
Deuteranopes reported better silhouette clarity in the enhanced image
but noted the reference image was already legible. Mean scores were
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3.3 (De) and 2.6 (Pr), indicating a need for content-specific tuning in
organic figure enhancements.

Figure 3d (digit “5”) was a strong performer across both groups.
All protanopes and deuteranopes favored the enhanced image. Digit
recognition increased from 3/6 (De) and 0/5 (Pr) in the reference
image to 6/6 and 5/5 in the enhanced versions, respectively. Visibility
of curved segments improved to full clarity in both groups,
confirming that edge enhancement and contrast sharpening
effectively resolved numeric ambiguity. Average ratings were 4.0 for
both CVDs.

Figure 3e (digits “1” and “0”) showed that all deuteranopes and
three protanopes preferred the enhanced image. Recognition of digits
improved from 1/6 (De) and 2/5 (Pr) in the reference to 5/6 and 2/5 in
the enhanced image, respectively. For both digit “1” line junctions and
“0” curvature, enhanced images offered clearer visibility to most, but
not all. Ratings were 3.8 (Pr) and 4 (De).

Figure 3f (flower petals) demonstrated reliable gains in both
groups, especially for shape detection. All protanopes and five
deuteranopes selected the enhanced image as most helpful. Petal
recognition improved from 2/6 (De) and 2/5 (Pr) in the reference to
full clarity in the enhanced version.

Figure 3g (Land Use Pie Chart) showed complete category-level
distinction between reference and enhanced images across both CVD
groups. All participants successfully differentiated red vs. green, pink
vs. orange, and blue vs. purple zones in reference and enhanced
images. However, five deuteranopes and all five protanopes preferred
enhanced image, citing improved comfort, darker tones, and reduced
cognitive effort. The enhancement was favored for classroom
applicability across both groups.

Figure 3h (Physical Map of India) enabled perfect region-level
color distinction in both groups. All participants in both groups
distinguished landform zones and identified river names with no
reported issues. Text clarity improved in the enhanced image for
deuteranopes (5/6), while protanopes reported equal legibility across
both versions.

Figure 3i (Periodic Table) was interpreted successfully by all
participants in both groups, with clear differentiation of Non-metals
and Lanthanides (where color confusion was expected). However, all
participants rated the enhanced image higher in clarity, with
protanopes assigning consistent ratings of 4/5 and deuteranopes
averaging 4.0.

Figure 3j (Labeled Eukaryotic Cell) demonstrated a stronger
enhancement effect for protanopes. Four of five protanopes and four
of six deuteranopes preferred the enhanced image for differentiating
Vacuole and Microtubules (where color confusion was expected).
Deuteranopes additionally rated the enhanced image high in color
contrast and shape clarity (5/6 selected “color contrast” as the
key improvement).

Discussion

The findings of this study demonstrate that machine learning
coupled with optimized daltonization can classify for red-green CVD
and considerably improve the accessibility of educational images. The
OvVA strategy performance confirmed its ability to differentiate
deuteranopia, protanopia, and normal vision images robustly. AlEssa
and Alzahrani (2024) achieved >90% using an EEG-SVM system,
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TABLE 2 Performance matrices of trained and tested dataset of the OvA model for each CVD classifier.

Class TP FP FN Accuracy Precision Recall Fl-score
Trained dataset

0 1,132 1 0 1.000 0.999 1.000 1.000

1 1,102 3 8 0.997 0.997 0.993 0.995

2 1,115 7 3 0.997 0.994 0.997 0.996
Tested dataset

0 282 0 0 1.000 1.000 1.000 1.000

1 282 0 1 0.999 1.000 0.997 0.998

2 275 1 0 0.999 0.996 1.000 0.998

TABLE 3 Comparison of different machine learning models based on
classification performance metrics.

Model Accuracy Precision Recall F1
score

OvVA strategy 0.997 0.997 0.997 0.997
Random

Forest 0.992 0.992 0.992 0.992
GradBoost 0.993 0.993 0.993 0.993
SVM-RBF 0.997 0.997 0.997 0.997
MLP 1.000 1.000 1.000 1.000

Pendhari et al. (2024) reported upto 98% with CNNs, and Akalin et al.
(2025) exceeded 90% with a MobileNet evaluator.

Comparison with other classifiers further clarifies the tradeoffs.
MLP achieved perfect scores across all metrics, suggests risk of
overfitting. By contrast, OvA delivered almost identical performance
with better transparency, distributing decision boundaries across
simpler binary tasks. SVM with RBF kernel also achieved 99.7%
accuracy. Tree-based models such as Random Forest and Gradient
Boosting performed reliably (99.2-99.3%).

Optimal a values produced strong contrast gains of AC = 69.6
(deuteranopia) and 64.3 (protanopia), with minimal perceptual
distortion (AE & 4.9) and negligible clipping. This demonstrates that
color cues lost in CVD perception can be selectively recovered while
these
improvements translated into real perceptual benefits. In controlled

maintaining  naturalness. Importantly, quantitative
surveys with CVD affected students, recognition of digits, alphabets,
and structural features improved. Images that were previously
unreadable, for example, Image 153, where digits were nearly invisible,
became fully legible across all participants after enhancement. On
multiple plates, digit recognition improved from fewer than 2 of 11
participants to complete recognition. Structural clarity, such as line
junctions or curves, was consistently restored. Preference rating for
enhanced images was high in most validated figures across
deuteranopes and protanopes, with mean scores often above four on
a 5-point scale.

The validation extended beyond Ishihara-like plates. Enhanced
classroom images, including periodic tables, maps, pie charts, and
biological diagrams, were rated as more interpretable and usable.
Physical map of India and the pie chart achieved unanimous
preference for the enhanced versions, with participants reporting
reduced effort and clearer region boundaries. The periodic table and
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cell diagram showed targeted benefits in areas of known red-green
confusion. These outcomes confirm that the enhancement algorithm
is technically effective and practically valuable in educational settings,
where misinterpretation of diagrams can hinder learning.

The survey also highlighted variability, reflecting the nuanced
nature of visual perception in CVD. Certain images, such as the
kangaroo silhouette, showed neutral or mixed responses, and in some
cases, enhancements benefited deuteranopes more than protanopes.
This suggests that content-specific optimization may be necessary, or
a consequence of not considering the severity of CVD during the
survey. Nonetheless, the overarching trend was clear: most images,
including textbook figures, became significantly more visible after
enhancement, and students overwhelmingly endorsed their
classroom use.

Comparison with prior enhancement studies contextualizes these
results. Chen and Mo (2023) employed a Swin Transformer to achieve
AC values near 90, enabling universal recognition of Ishihara plates,
but at the cost of a complex deep network and a higher risk of color
distortions. Seo's CUD-Net produced highly ranked outputs for object
distinguishability, yet required considerable computational resources
(Seo et al,, 2021). Pendhari et al. (2024) showed that autoencoders
could recolor images to improve digit readability while supporting
subsequent classification. While producing slightly lower maximum
AC than Chen’s work (Chen and Mo 2023), the present approach
retained interpretability, computational simplicity, and minimal color
distortion, with AE values well within perceptual tolerance.

Recent comparative studies have strengthened confidence in
digital and psychophysical approaches to color vision assessment.
Klinke et al. (2024) demonstrated that presenting Ishihara plates on
calibrated PC monitors or smartphones yielded comparable outcomes,
with sensitivity of 94.4 and 96.0% and specificity of 82.4 and 94.7%,
respectively, showing no significant difference between display modes.
Fanlo-Zarazaga et al. (2024) validated the DIVE Color Test against
both Ishihara and Farnsworth-Munsell 100-Hue, reporting perfect
agreement with Ishihara in detecting CVD (Cohen’s x = 1.00) and a
strong correlation with Farnsworth (p = 0.80), while also quantifying
severity thresholds in AE units (ICC = 0.83 for repeatability). Parente
etal. (2025) compared the Colour Assessment and Diagnosis (CAD)
test with the Cambridge Colour Test (CCT) in 66 participants and
found statistically equivalent vector lengths and ellipse orientations,
concluding that CAD and CCT are complementary tools for
quantifying severity. Collectively, these studies show that both display-
based and psychophysical measures provide robust, quantitative
parameters, supporting our AE-based optimization (AE = 4.9,
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Analysis of wrongly diagnosed image number 157 for Deuteranopia CVD patient: (a) Original, (b) actual perceived, (c) actual enhanced, and (d)
Protanopia diagnosed enhanced image. RGB difference heat map: (e: a,b), (f: a,c), (g: a,d), and (h: c, d).

clipping fraction <0.002) and CNN classification approach as clinically
meaningful analogues for detecting and enhancing protanopia
and deuteranopia.

Several limitations must be acknowledged. The Discussion text
was language-edited with ChatGPT; the authors have verified all
wording and take full responsibility for the content. The dataset was
based on computer-generated Ishihara-style images rather than
patient-derived or naturalistic images. While this ensures controlled
evaluation, it does not fully capture the variability of real-world
visuals. Moreover, only red-green deficiencies were addressed, leaving
tritanopia unmodeled. Severity gradation was also not included,
though perceptual impact often varies along a continuum. Though
highly informative, the survey involved only 11-15 participants,

Frontiers in Artificial Intelligence

limiting generalizability. This method does not cure the defect but
simply helps the patient in recognizing the image through its
processing by the intelligent algorithm. This model was tested using
natural sceneries. However, it did not perform well performed in these
images. Finally, occasional mixed responses suggest that the algorithm
may not universally optimize all image types, and further refinement
will be necessary for complex or organic figures.

Despite these constraints, this worK’s clinical and educational
relevance is considerable. Early identification would allow families and
educators to implement accommodations before academic
performance is affected. Strong survey responses validated the
enhancement algorithm. Because the method is lightweight and
computationally efficient, it can be integrated into mobile devices,
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Visual comparison of enhanced images with references Ishihara plates shown in Figure 2.
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classroom projectors, or e-learning platforms for real-time use.
We have also tested this model on natural sceneries and images from
MBBS books. However, this model did not well performed in
these images.

Future work should extend evaluation to real-world photographs
and diverse educational materials, incorporate tritanopia and severity
grading, and recruit larger and more diverse cohorts for validation.
Adaptive algorithms that tailor enhancement strength to specific
content or individual perceptual responses may further improve
outcomes. Ultimately, mobile application or embedded classroom tool
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deployment could combine real-time classifying with enhancement,
creating inclusive educational environments for CVD learners.

Conclusion

The outreach survey to schools revealed a critical gap in
awareness of CVD among students, parents, and teachers.
Teachers reported limited strategies for classroom adaptations.
Career guidance was found inadequate: many respondents were
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unaware of job restrictions for individuals with CVD in India, and
no systematic framework currently exists to help students navigate
career choices. This underscores the need for early classifying and
The One-vs-All (OvA)

structured awareness programs.
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classification models demonstrated reliable performance in
diagnosing CVDs, validating the potential of machine learning to
support classifying and targeted interventions. By integrating
OvA-based computational methods with survey insights, the
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Enhanced image set optimized for protanopia, corresponding to the reference visuals in Figure 3.

study highlights the importance of advancing diagnostic  detection and translating these tools into educational policies and
technologies. The findings indicate that addressing CVD requires  career guidance practices that empower students.
a dual approach: developing accurate computational tools for
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Glossa ry ACcyp - Change in contrast under simulated CVD

CNN - Convolutional Neural Network AE,,5pm - Mean CIE76 color difference under normal vision

CVD - Color Vision Deficiency E - Error signal (difference between reference and deficient image)

De - Deuteranopia feip - Fraction of pixels clipped at channel limits

IEC - International Electrotechnical Commission Ijef - Simulated CVD (deficient) image

ML - Machine Learning Ieun - Enhanced image

MLP - Multilayer Perceptron Ij;, - Linear RGB image

OvVA - One-vs-All (classification strategy) I;rgp - Reference sSRGB image

PCA - Principal Component Analysis L, M, S - Long-, Medium-, and Short-wavelength cones

Pr - Protanopia L*, a*, b* - CIELAB color space channels

RGB - Red, Green, Blue (color space) L - Individual channel component in CIELAB images

sRGB - Standard Red, Green, Blue (IEC 61966-2-1 standard) Anat - Penalty weight for perceptual naturalness

SVM - Support Vector Machine Uj0j - Mean and standard deviation of feature j

SVM-RBF - Radial Basis Function Support Vector Machine N - Number of pixels in the image

@ - Enhancement strength parameter (0 < @ < 1.5) S(ax) - Objective function for enhancement optimization

apy D, - Optimal o values for protanopia and deuteranopia X fused - Concatenated feature vector (ResNet + EfficientNet +
DenseNet)

Belip - Penalty weight for pixel clipping
Xpca - PCA-transformed feature set
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