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Enhancing Ishihara and 
educational images using 
machine learning: toward 
accessible learning for colorblind 
individuals
Aahan Ritesh Prajapati 1 and Ajay Goyal 2*
1 Adani International School, Ahmedabad, India, 2 Institute of Design, Nirma University, Ahmedabad, 
India

Color Vision Deficiency (CVD) affects over 300 million individuals worldwide, with 
protanopia and deuteranopia being the most common subtypes, causing red–
green confusion. This study leverages machine learning to (a) classify reference 
(considered as normal vision) and simulated protanopia and deuteranopia Ishihara 
plate images, (b) generate corresponding enhanced versions of these images, 
and (c) provide improved textbook diagrams (from NCERT books) and other 
pseudochromatic figures for CVD students, validated through feedback from 
diagnosed individuals. Tritanopia and milder forms of CVD were excluded in this 
study. A dataset of 1,400 Ishihara plates was processed to simulate protanopia and 
deuteranopia perception via standard Red Green Blue (sRGB) to long-, medium-, 
and short-wavelength cone (LMS) modeling. Enhanced images were generated 
using a daltonization function defined by the error between reference and simulated 
images, with enhancement strength (α) optimized to maximize contrast gain while 
minimizing distortion. Feature embeddings from ResNet-50, EfficientNet-B0, and 
DenseNet-201 were fused and reduced via PCA, followed by One-vs-All (OvA) 
(classifiers: linear support vector machine, logistic regression, and decision tree), 
random forest, gradient boosting, and neural network. Results showed optimal 
enhancement at α = 0.54 for deuteranopia and 0.64 for protanopia, achieving 
contrast gains of 69.6 and 64.3, respectively, with minimal color distortion (ΔE ≈ 4.9) 
and negligible clipping (<0.002). The OvA strategy achieved 99.7% accuracy, while 
MLP reached 100% across metrics. Surveys with 15 diagnosed students confirmed 
substantial perceptual improvement: recognition of previously unreadable digits 
and symbols increased from <20% to full visibility, with mean ratings above 4/5 
for enhanced images. The OvA technique integrated with daltonization can assist 
in enhancing Ishihara and educational images in real time.
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Introduction

Color Vision Deficiency (CVD) affects approximately 300 million people worldwide 
(Firth, 2024). It arises from missing cone type, leading to retinal dysfunction and impaired 
ability to distinguish colors (Brettel et  al., 1997; Hunt and Carvalho, 2016). Beyond the 
biological basis, CVD leads to social and psychological burden, including workplace 
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discrimination, emotional distress, and restricted participation in 
everyday activities (Barry et al., 2017; Tillem and Gün, 2023).

CVDs are classified by the affected cone class (protan (L), deutan 
(M), and tritan (S)), each presenting as anomalous trichromacy or, less 
commonly, dichromacy. Most congenital cases are red–green (protan/
deutan), whereas tritan defects are rare (Choi et al., 2019). Due to its 
simplicity and less classifying time, the Ishihara test is the most widely 
used classifying method for these CVDs. However, it cannot confirm 
diagnosis, grade severity, or detect tritanopia.

Motivated by personal experience with red-green color blindness, 
one of the authors (ARP) and volunteers, under supervision of 
ophthalmologist (Dr. Nishant Patel, M.B.B.S, Opthalmology & 
Otorhinolaryngology, D.O.M.S.) and Dr. Shivani Bhatt Charitable 
Foundation, Anand, Gujarat, conducted an outreach program 
(between December 2023 to July 2025) with pre-university students 
across 28 schools in Gujarat, India, classifying more than 10,000 
students (Supplementary material S1). This effort identified 121 CVDs 
those were previously undiagnosed cases, underscoring the scale of 
unrecognized CVD and the urgent need for accessible real-time 
classifying methods. Further, the possibilities to provide color friendly 
NCERT textbook images deeply inspired the authors aimed to reduce 
academic barriers on CVD students.

Machine learning (ML) models are promising tools for CVD 
detection and image enhancement or providing color friendly images 
(Supplementary Tables S2.1, S2.2; Supplementary material 2). Few 
studies also investigated influence of ambient lighting, type of test, test 
presentation angle, refractive error correction, and pathological 
conditions in CVD classifying (Supplementary Tables S2.3; 
Supplementary material 2). However, limitations remain. Recoloring 
models often distorts natural color perception, leading to unnatural 
saturation or elevated ΔE values. Most studies have addressed either 
classifying or enhancement, with only a few attempts at integrating 
both (Ananto et al., 2011; Tecson et al., 2017; Pendhari et al., 2024) but 
with narrow range of image domains. Bile et al. (2023) introduce a 
non-invasive algorithm that both diagnoses dyschromatopsia and 
quantifies its severity, and they explicitly position machine learning as 
the engine for personalized re-education plans. This frames why 
ML-based enhancement of Ishihara plates is clinically meaningful. 
Bile (2025) presents the DEA app for color-vision self-re-education, 
leveraging neuroplasticity with a structured train–test–validate 
protocol and reporting sustained post-training gains in a severity 
index (α).

This study proposes a ML model in color blindness that first 
classifies CVD type using Ishihara plate images, then enhances images 
in realtime based on perceived images generated by removing a cone 
type from reference images. This classification task mirrors the clinical 
use of Ishihara plates, where perceiving or failing to perceive the 
embedded digit constitutes the diagnostic criterion. In this study, 
reference images represent normal vision and simulated protanopia 
and deuteranopia images represent deficient perception. By learning 
image-level features across these groups, the model encodes the same 
decision boundary used clinically to classify CVD. Thus, ML 
classification of reference versus simulated images serves to classify 
the presence and type of CVD. Notably, this is a classifying analogue; 
confirmation requires further clinical evaluation.

The model was validated by enhancing textbook diagrams and 
multiple variants of Ishihara plate (single-digit, double-digit, animal, 
and symbolic forms). To strengthen the results, two detailed feedback 

were done with CVD individuals. To identify best suitable ML model, 
this study applied and compared various ML techniques. This study 
targets classroom material, aiming to reduce the educational barriers 
faced by young students with CVD.

In this study we restrict modeling and evaluation to red–green 
dichromacy (protanopia, deuteranopia); anomalous trichromacy 
(protanomaly, deuteranomaly) is out of scope and slated for future 
work. Also, given the constraints of Ishihara-based classifying, 
Tritanopia, partial anomalies, and severity grading were excluded. By 
laying a methodological foundation, this work contributes toward 
future assistive devices capable of real-time classifying and 
enhancement of pseudochromatic images and textbook images 
for students.

Methodology

Figure 1 shows the model architecture of the proposed study. 
All steps were coded in MATLAB R2024b (The MathWorks Inc., 
Natick, Massachusetts). This study received ethical clearance from 
the Institutional Ethics Committee of Nirma University, 
Ahmedabad, India (Certificate No. IEC/NU/25/ID/01) dated May 
26, 2025. Written consent was obtained from fifteen available CVD 
individuals (eight deuteranopia individuals) who participated in 
the survey. All participants were diagnosed with either 
deuteranopia or protanopia.

Dataset

A dataset of 1,400 reference Ishihara images (531 × 531 pixels) 
( sRGBI ) was adopted from the Kaggle repository.1 Each image contains 
a single-digit numeral (0–9), embedded within a stochastically 
distributed pattern of polychromatic dots with selective chromatic 
contrast designed to challenge color perception. This open-source 
dataset was originally generated at Kuban State University. These 
images are not patient-derived diagnostic records but computer-
generated Ishihara-style plates, generated using combinations of 
Google fonts, digits, and color schemes.

Generating perceived and enhanced 
images

Each reference image sRGBI  in the standard Red-Green-Blue 
(sRGB) space was first converted to linear RGB ( linI ) using the IEC 
sRGB opto-electronic transfer function Equation 1 (IEC 61966-2-1, 
1999). s is the normalized sRGB channel value for a given pixel.

	

( ) 2.4

0.04045
12.92

0.055 , 0.0405
1.055

lin

s s
I s

s s

 ≤
= 

+  >    	

(1)

1  https://www.kaggle.com/datasets/dupeljan/ishihara-blind-test-cards
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Linear RGB values were transformed to LMS cone response 
(Equations 2, 3) (Machado et al., 2009). sRGB was converted to 
LMS because device RGB encodes monitor primaries, not the 
human visual sensors; cone space provides a physiologically 
grounded basis for both simulating dyschromatopsia and 

designing compensations (Hunt and Pointer, 2011). Deficiency 
simulation and compensation follow established LMS models. All 
deficiency and enhancement operations are performed in cone 
space and in opponent coordinates so that edits target the 
channels actually affected in CVD type conditions rather than 

FIGURE 1

Architecture and workflow of the proposed CVD–ML system.
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entangling device-dependent RGB axes (Stockman and 
Sharpe, 2000).

	 →= .RGB LMS linLMS M RGB 	 (2)

	

→

 
 =  
  

0.314 0.639 0.046
0.155 0.757 0.087
0.018 0.109 0.872

RGB LMSM

	

(3)

CVD perception was simulated using deficiency-specific matrices 
DeM / PrM (Machado et  al., 2009) (Equations 4, 5) (Machado 

et al., 2009).

	

 
 =  
  

0.625 0.375 0.000
0.700 0.300 0.000
0.000 0.300 0.700

DeM

	

(4)

	

 
 =  
  

Pr

0.567 0.433 0.000
0.558 0.442 0.000
0.000 0.242 0.758

M

	

(5)

These matrices projected the LMS responses into the deficient 
observer’s perceptual space. The simulated LMS values were converted 
back to linear RGB ( −

→ →= 1
LMS RGB RGB LMSM M ), and then 

reconverted to sRGB using the inverse gamma function (Equation 6) 
(IEC 61966-2-1, 1999). l is the linear-light channel value.

	

( ) 1
2.4

12.92 0.0031308

1.055 0.055, 0.0031308

l l
sRGB l

l l

≤
= 
 − > 	

(6)

This yielded how the reference plate would appear to an observer 
with the corresponding CVD. These simulated images were saved in 
separate folders: Perceived_Deuteranopia and Perceived_Protanopia. 
Labels 0, 1, and 2 were assigned to reference images (assumed to 
be images for normal vision), perceived deuteranopia, and perceived 
protanopia images across the dataset. All images generated from a 
given plate, whether reference or simulated, were assigned exclusively 
to either the training set (80% of the dataset) or the testing set.

An optimized daltonization framework was applied to correct lost 
chromatic cues while maintaining perceptual naturalness to generate 
enhanced images. The error signal (E) was computed in sRGB space 
(Equations 7) (Farup, 2020). Equation 7 is the standard way to 
measure “what information was lost” when a color-normal observer’s 
plate is viewed through a simulated CVD transform (Farup, 2020). 
The enhanced images ( enhI ) were obtained using Equation 8 (Simon-
Liedtke and Farup, 2018). 0,1.5α∈    (Simon-Liedtke and Farup, 
2018) is an enhancement strength parameter. ( ).,0,1clip  ensures all 
channel values remain in the displayable range(Simon-Liedtke and 
Farup, 2018). Equation (8) reinjects that lost signal with α . This linear 
add-back is the design goal of daltonization: amplify contrasts along 
confusion directions while leaving everything else as untouched as 
possible. The explicit clip operator is a perceptual safeguard that 
prevents out-of-gamut excursions from creating hue or lightness 
artifacts on real displays (Simon-Liedtke and Farup, 2018).

	 = −sRGB defE I I 	 (7)

	 ( )α= + . ,0,1enh sRGBI clip I E 	 (8)

The optimal α∗ for each CVD type (protanopia and 
deuteranopia) was determined by maximizing an objective function 
(Equation 9) (Simon-Liedtke and Farup, 2018). CVDC∆  is the 
change in contrast under simulated CVD, computed using 
Equation 10 (Simon-Liedtke and Farup, 2018). kL  denotes the 
CIELAB ∗ ∗ ∗L a b  channels of the simulated images. normE∆  is the 
mean CIE76 color difference between original and enhanced images 
under normal vision, computed using Equation 11 (Simon-Liedtke 
and Farup, 2018). N  is the number of pixels in the image. clipf  is the 
fraction of pixels with at least one channel at 0 or 1 after 
enhancement. λ = 0.15nat  and β = 0.05clip  are penalty weights 
controlling the tradeoff between perceptual naturalness and 
avoidance of channel saturation.

	 ( ) CVD nat norm clip clipS C E fα λ β= ∆ − ∆ −
	 (9)

	
( ) ( )
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origcorr
CVD k k
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( ) ( ) ( )2 2 2

1

1 N

norm p p p
p

E L a b
N

∗ ∗ ∗

=
∆ = ∆ + ∆ + ∆∑

	
(11)

( )αS  was evaluated over a fixed grid { }0.3,0.35, .1.5α …∈ . Then, 
Brent-Dekker bounded minimization was applied to evaluate - ( )αS  
within the interval of 0 to 1.5. The resulting α∗

Pr and α∗
De  were applied 

to the full dataset to produce two enhanced images, each specifically 
optimized for one CVD type.

The objective ( )αS  in Equation 9 formalizes the trade-off the viewer 
actually experiences. The first term, ∆C  from Equation 10, measures 
how much useful structure becomes more legible to a CVD observer 
after enhancement by comparing channel variances in the simulated 
CIELAB image before and after correction; higher is better because it 
means more separable cues where the deficiency collapses chromatic 
differences (Simon-Liedtke and Farup, 2018). The second term, 

normE∆  (Equation 11), pushes back against heavy-handed edits by 
penalizing average CIE76 color differences under normal vision; lower 
is better because improvements are required for CVD observers without 
making the image look “wrong” to everyone else (Simon-Liedtke and 
Farup, 2018). The third term, clipf , directly penalizes saturation hits so 
the optimizer prefers solutions that stay inside the display gamut most 
of the time, which in practice reduces banding and haloing on high-
contrast dot boundaries (Simon-Liedtke and Farup, 2018). The weights 
λnat and βclip express design priorities: readable contrasts for CVD 
viewers first, with focus to keep naturalness and avoid clipping. Coarse 
grid over α ∈[0.3,1.5] followed by Brent-Dekker minimization on 

( )α−S is a practical way to find α∗
Pr and α∗

De  robustly. It is fast, 
reproducible, and avoids the brittleness of gradient-based methods on 
non-smooth objectives with a clipping term (Simon-Liedtke and Farup, 
2018; Farup, 2020). Derivation of Equations 1–11 are given in 
Supplementary material 3.
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Feature extraction

Feature extraction was performed using three convolutional 
neural network (CNN) backbones pretrained on ImageNet: ResNet-50 
(2048-dimensional features ( 50RNX ) from the average pooling layer) 
(He et al., 2015), EfficientNet-B0 (1280-dimensional global average 
pooling features ( 0ENBX )) (Tan and Le, 2020), and DenseNet-201 
(1920-dimensional features ( 201DNX ) from the average pooling layer) 
(Huang et al., 2018). ResNet’s residual blocks emphasize mid−/high-
level edge and shape cues; EfficientNet’s compound scaling maintains 
fine local structure at modest capacity; DenseNet’s dense connectivity 
promotes feature reuse and stable gradients, preserving subtle 
dot-pattern statistics. Each network processed resized images 
matching its native input resolution, and deep embeddings were 
obtained via feed-forward inference. The embeddings from the three 
architectures were concatenated to form a fused feature vector ( fusedX
) (Equation 12) (Li et  al., 2025), resulting in a 5,248-dimensional 
feature space for each image.

	  =  50 0 201fused RN ENB DNX X X X‖ ‖ 	 (12)

The training subset underwent column-wise z-score normalization 
(Equation13) (Tryon et al., 2025). µ j and σ j are the mean and standard 
deviation of feature j  in the training set.

	

µ
σ

′ −
= ij j

ij
j

X
X

	
(13)

Dimensionality reduction was conducted using principal 
component analysis (PCA) (Jolliffe and Cadima, 2016) on the 
normalized training set to retain a standard target variance of 95%. 
The transformation was then applied to the validation set using 
Equation 14 (Mochurad et al., 2025). PCAW  contains the top principal 
components computed to meet a 95% variance threshold.

	 ( )µ′= − .PCA PCA PCAX X W 	 (14)

This design was guided by five criteria: (1) architectural diversity, 
established by combining embeddings from three structurally distinct 
CNN backbones; (2) descriptors derived from ImageNet-pretrained 
networks, which are not explicitly optimized for chromatic opponency, 
but were sanity-checked on recolored probes to confirm retention of 
coarse color variations, with fusion across architectures used to 
mitigate the risk of losing finer chromatic cues; (3) dimensionality 
control via PCA at a 95% variance threshold, chosen as a pragmatic 
balance between tractability and information preservation, with 
sensitivity checks at alternative cutoffs confirming stable performance; 
(4) a non-inferiority safeguard requiring the fused vector’s cross-
validated macro-AUC to remain within a practically defined margin 
of the strongest backbone, recognizing that margins smaller than 
inter-fold variability are interpreted heuristically rather than as strict 
statistical bounds; and (5) reproducibility through fixed preprocessing 
statistics (μ, σ, PCA transform), frozen pretrained weights, consistent 
resizing and normalization to ensure repeatability under 
controlled environments.

Classification model for diagnosis

A One-vs-All (OvA) classification model (Hashemi et al., 2009; 
Lutu and Engelbrecht, 2012; Yan et al., 2020; Kumar et al., 2024) was 
trained to classify perceived De, and Pr, and the reference Ishihara 
plate. Three distinct classifiers were trained for each OvA task: linear 
support vector machine (SVM) (Varghese and Gopan, 2020), logistic 
regression (Manasa et al., 2024), and decision tree (Ramkumar and 
Sivaprakash, 2025). In addition, random forest (Varghese and Gopan, 
2020), gradient boosting, radial basis function SVM (SVM-RBF) 
(Varghese and Gopan, 2020), and a shallow multilayer perceptron 
(MLP) (Tian et al., 2004) were used to compare the results. Class-wise 
accuracy, precision, recall, and F1 score were computed (Sisodia et al., 
2023). The enhancement algorithm was integrated with the One-vs-All 
model to display an enhanced image based on the classification 
classifying result for the test set or validation images.

Validation dataset: enhancing educational 
and other pseudochromatic images

Based on the results, two subsequent in-person surveys were 
conducted with fifteen and then eleven 9th- to 11th-grade students of 
D.N. High School suffering from either De or Pr. In particular, five 
reference images from the dataset (with a subsequent enhanced image 
placed to its right) with the highest possibilities of red-green confusion 
were shown to these students (Figure 2). These images (numbered 
153, 157, 253, 297, and 1,101) were identified based on the maximum 
∆ E between reference and corresponding simulated images. Students 
were asked to compare these two groups of five images, and then they 
responded to various open-ended, single, multiple-choice, or rating-
based questions.

Based on the results, another survey included more specific 
questions. In this survey, other images were also included (enhanced 
using the same algorithm). These include two-digit Ishihara images, 
similar images with a leaf and an animal surrounded by colored dots, 
a periodic table, a physical map of India, and a eukaryotic cell. These 
images were adopted from open-source or purchased from 
professional websites (Planemad, 2024; American Chemical Society, 
2025; Radu, 2025). Reference normal vision images are given in 
Figure 3. Participants were asked to check the clarity, interpretability, 
and usability of enhanced images. Responses were collected using 
closed-format questions (e.g., Likert ratings, forced-choice selection) 
and short written feedback. Participants also identified image types 
where enhancements were most or least helpful and indicated whether 
such improvements should be applied in textbooks. The survey was 
given in English and was designed to be completed in 15–20 min.

Results

ML performance evaluation

Deuteranopia reached its optimum at α = 0.54, scoring 68.84 
and contrast improvement (ΔC) of 69.57. For protanopia, α, score 
and ΔC was 0.64, 63.53 and 64.28, respectively. In both cases, color 
fidelity was maintained (ΔE ≈ 4.9) with negligible clipping 
(<0.002). Table 1 shows the confusion matrix of OvA technique for 
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classifier labels (0: reference image, 1: Deuteranopia and 2: 
Protanopia) in the trained and tested dataset. The OvA confusion 
matrices show near-perfect separation: in training, 3,349 of 3,360 
images are correctly classified, with only class-1 leaking slightly into 
classes 0 (1 case) and 2 (7 cases). On the test set, 839 of 840 images 
are correct; the one error is a class-1 image predicted as class-2. 
Table  2 shows the performance matrices of trained and tested 
dataset of the OvA model for each CVD classifier. Per-class metrics 
confirm uniformly high performance: training precision/recall/F1 
are ≥0.994 across all classes, with minor leakage only for class-1 (8 
FN, 3 FP) and class-2 (3 FN, 7 FP). On the test set, all classes are 
essentially perfect (F1 = 0.998–1.000); the only slips are a single FN 
for class-1 and one FP against class-2, keeping class-wise accuracy 
at 0.999–1.000. Table 3 shows the comparison of different machine 
learning models based on classification performance metrics. All 
models perform strongly, with MLP achieving perfect scores (1.000) 
and SVM-RBF/OvA close behind at 0.997 across all metrics. 
GradBoost (0.993) and Random Forest (0.992) trail slightly but 
remain high.

Figure 4 shows the results of a misclassified (image number 
157) deuteranopia. Figures 4a–c show the original, perceived, and 
enhanced image with “1” digit, respectively. The model diagnosed 
image as protanopia, whose enhanced image is shown in Figure 4d. 
The RGB heat maps between the original vs. perceived difference 
(Figure 4e) showed a maximum distortion difference of 0.50. Heat 
map of reference versus deuteranopia-enhanced (Figure 4f) and 
reference versus protanopia-enhanced (Figure  4g) showed a 
maximum enhancement of 0.20 and 0.18, respectively. The two 
enhanced images showed no significant color difference 
(Figure 4h).

Survey-based visualization of enhanced 
images

Figure  5 shows normal vision (Figure  2) and corresponding 
enhanced Ishihara plates with high chances of red-green confusion in 
simulated 1,400 images.

Image 153 showed complete agreement: all eleven participants 
preferred the enhanced image. Recognition of the digit “1” improved 
from minimal detectability in the reference (De: 2/6; Pr: 1/5) to 
complete recognition in the enhanced image (De: 6/6; Pr: 5/5). 
Structural details such as the horizontal line were visible to only 1–2 
participants in the reference, but to 6 in the enhanced version. The 
mean improvement ratings (out of 5) were 4.08 ± 0.64 (De) and 
4.2 ± 0.45 (Pr).

Image 157 followed a similar pattern. None of the eleven 
participants could identify the alphabet “I” in the reference; five De 
and four Pr participants recognized it in the enhanced image. The 
horizontal line improved from near-invisibility (1/6 De, 1/5 Pr) to full 
detectability in both groups. Textbook inclusion preference was 
strong, with 10/11 participants affirming they would rely on the 
enhanced version. Mean improvement scores were 4.08 (De) and 
4.0 ± 0.63 (Pr).

Image 253 presented slightly more variation. Digit recognition in 
the reference remained low (De: 1/6; Pr: 1/5), but was restored in the 
enhanced image (De: 6/6; Pr: 5/5). Line visibility improved similarly 
(De: 1–5; Pr: 1–5). The average scores was 4.4 ± 0.55 (Pr) and a 
broader 2–5 range in De responses.

Image 297 responses introduced slight perceptual ambiguity. All 
protanopes and five deuteranopes preferred the enhanced image. One 
deuteranope considered both images equally helpful. Digit “2” was 

FIGURE 2

Reference images from dataset with high chances of red-green color confusion.
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FIGURE 3

Reference set of images representing normal color vision, selected for subsequent enhancement targeting Deuteranopia and Protanopia: (a–f) Ishihara 
plates designed with varying content: numerals (a,d,e), alphabetic word (b), animal profile (kangaroo) (c), and abstract leaf shape (f); (g) pie charts 
comparing land use in India between 1960–61 and 2014–15; (h) a labeled eukaryotic cell diagram; (i) periodic table grouped by element categories; 
and (j) physical map of India showing key terrain types.
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difficult to identify in the reference (De: 2/6; Pr: 1/5), but was 
recognized instantly by all eleven in the enhanced version. Visibility 
of the upper curve improved from partial detectability (mostly 
“Maybe” responses) to complete recognition across both groups. 
Improvement scores were 4.1 ± 0.48 (Pr) and more variable in De 
(range: 2–5), possibly influenced by prior familiarity or reduced 
baseline distortion.

For image 1,101, five De and all five Pr selected the enhanced 
version as most helpful. Digit “7” recognition improved from 2/6 (De) 
and 1/5 (Pr) in the reference to 5/6 and 5/5, respectively, in the 
enhanced image. The junction between horizontal and vertical lines 
was a key differentiator, which was visible to all in the enhanced 
version but detected by only 1–2 participants per group in the 
reference image.

Figures 6, 7 show enhanced images for De and Pr, respectively, 
of the reference images shown in Figure 3. Figure 3a (digits “4” and 
“2”) was the strongest case of convergence: both groups reported 
substantial improvement with the enhanced version. All 
protanopes and four of six deuteranopes selected the enhanced 
image as most helpful. Digit recognition rose from 2/6 (De) and 
1/5 (Pr) to complete recognition in the enhanced version across 
both groups. Structural features, such as the junction of “4” and 
curvature of “2,” were visible in the enhanced version for all 
participants. Additional visibility of digit “7” in the enhanced 
image was confirmed across all protanopes, but yielded mixed 
results in deuteranopes. Average improvement scores were 3.25 
(De) and 4.2 (Pr).

Figure  3b (text “COLOR”) produced a consistent benefit for 
deuteranopes, but a divided response among protanopes. While five 
deuteranopes preferred the enhanced image, protanopes were split (3 
vs. 2). Word recognition in the reference image was poor for 
deuteranopes (1/6) and strong for protanopes (4/5). The enhanced 
version improved recognition to 6/6 (De) but slightly declined among 
protanopes (3/5). Both groups showed mixed though positive results 
for clarity.

Figure 3c (text and silhouette of “kangaroo”) was the least effective 
image overall. Both groups showed a neutral response to enhancement. 
3/6 deuteranopes and 3/5 protanopes preferred the enhanced version, 
but the visibility of the word “kangaroo” and animal shape was 
inconsistent. Among protanopes, only 2/5 saw the animal in the 
enhanced image, compared to 4/5  in the reference image. 
Deuteranopes reported better silhouette clarity in the enhanced image 
but noted the reference image was already legible. Mean scores were 

3.3 (De) and 2.6 (Pr), indicating a need for content-specific tuning in 
organic figure enhancements.

Figure 3d (digit “5”) was a strong performer across both groups. 
All protanopes and deuteranopes favored the enhanced image. Digit 
recognition increased from 3/6 (De) and 0/5 (Pr) in the reference 
image to 6/6 and 5/5 in the enhanced versions, respectively. Visibility 
of curved segments improved to full clarity in both groups, 
confirming that edge enhancement and contrast sharpening 
effectively resolved numeric ambiguity. Average ratings were 4.0 for 
both CVDs.

Figure 3e (digits “1” and “0”) showed that all deuteranopes and 
three protanopes preferred the enhanced image. Recognition of digits 
improved from 1/6 (De) and 2/5 (Pr) in the reference to 5/6 and 2/5 in 
the enhanced image, respectively. For both digit “1” line junctions and 
“0” curvature, enhanced images offered clearer visibility to most, but 
not all. Ratings were 3.8 (Pr) and 4 (De).

Figure  3f (flower petals) demonstrated reliable gains in both 
groups, especially for shape detection. All protanopes and five 
deuteranopes selected the enhanced image as most helpful. Petal 
recognition improved from 2/6 (De) and 2/5 (Pr) in the reference to 
full clarity in the enhanced version.

Figure 3g (Land Use Pie Chart) showed complete category-level 
distinction between reference and enhanced images across both CVD 
groups. All participants successfully differentiated red vs. green, pink 
vs. orange, and blue vs. purple zones in reference and enhanced 
images. However, five deuteranopes and all five protanopes preferred 
enhanced image, citing improved comfort, darker tones, and reduced 
cognitive effort. The enhancement was favored for classroom 
applicability across both groups.

Figure 3h (Physical Map of India) enabled perfect region-level 
color distinction in both groups. All participants in both groups 
distinguished landform zones and identified river names with no 
reported issues. Text clarity improved in the enhanced image for 
deuteranopes (5/6), while protanopes reported equal legibility across 
both versions.

Figure  3i (Periodic Table) was interpreted successfully by all 
participants in both groups, with clear differentiation of Non-metals 
and Lanthanides (where color confusion was expected). However, all 
participants rated the enhanced image higher in clarity, with 
protanopes assigning consistent ratings of 4/5 and deuteranopes 
averaging 4.0.

Figure  3j (Labeled Eukaryotic Cell) demonstrated a stronger 
enhancement effect for protanopes. Four of five protanopes and four 
of six deuteranopes preferred the enhanced image for differentiating 
Vacuole and Microtubules (where color confusion was expected). 
Deuteranopes additionally rated the enhanced image high in color 
contrast and shape clarity (5/6 selected “color contrast” as the 
key improvement).

Discussion

The findings of this study demonstrate that machine learning 
coupled with optimized daltonization can classify for red-green CVD 
and considerably improve the accessibility of educational images. The 
OvA strategy performance confirmed its ability to differentiate 
deuteranopia, protanopia, and normal vision images robustly. AlEssa 
and Alzahrani (2024) achieved >90% using an EEG-SVM system, 

TABLE 1  Confusion matrix showing correct and misclassified instances 
by OvA technique for classifier labels in the trained and tested dataset.

Labels 0 1 2

Trained

0 1,132 0 0

1 1 1,102 7

2 0 3 1,115

Tested

0 282 0 0

1 0 282 1

2 0 0 275
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Pendhari et al. (2024) reported upto 98% with CNNs, and Akalın et al. 
(2025) exceeded 90% with a MobileNet evaluator.

Comparison with other classifiers further clarifies the tradeoffs. 
MLP achieved perfect scores across all metrics, suggests risk of 
overfitting. By contrast, OvA delivered almost identical performance 
with better transparency, distributing decision boundaries across 
simpler binary tasks. SVM with RBF kernel also achieved 99.7% 
accuracy. Tree-based models such as Random Forest and Gradient 
Boosting performed reliably (99.2–99.3%).

Optimal α values produced strong contrast gains of ΔC = 69.6 
(deuteranopia) and 64.3 (protanopia), with minimal perceptual 
distortion (ΔE ≈ 4.9) and negligible clipping. This demonstrates that 
color cues lost in CVD perception can be selectively recovered while 
maintaining naturalness. Importantly, these quantitative 
improvements translated into real perceptual benefits. In controlled 
surveys with CVD affected students, recognition of digits, alphabets, 
and structural features improved. Images that were previously 
unreadable, for example, Image 153, where digits were nearly invisible, 
became fully legible across all participants after enhancement. On 
multiple plates, digit recognition improved from fewer than 2 of 11 
participants to complete recognition. Structural clarity, such as line 
junctions or curves, was consistently restored. Preference rating for 
enhanced images was high in most validated figures across 
deuteranopes and protanopes, with mean scores often above four on 
a 5-point scale.

The validation extended beyond Ishihara-like plates. Enhanced 
classroom images, including periodic tables, maps, pie charts, and 
biological diagrams, were rated as more interpretable and usable. 
Physical map of India and the pie chart achieved unanimous 
preference for the enhanced versions, with participants reporting 
reduced effort and clearer region boundaries. The periodic table and 

cell diagram showed targeted benefits in areas of known red-green 
confusion. These outcomes confirm that the enhancement algorithm 
is technically effective and practically valuable in educational settings, 
where misinterpretation of diagrams can hinder learning.

The survey also highlighted variability, reflecting the nuanced 
nature of visual perception in CVD. Certain images, such as the 
kangaroo silhouette, showed neutral or mixed responses, and in some 
cases, enhancements benefited deuteranopes more than protanopes. 
This suggests that content-specific optimization may be necessary, or 
a consequence of not considering the severity of CVD during the 
survey. Nonetheless, the overarching trend was clear: most images, 
including textbook figures, became significantly more visible after 
enhancement, and students overwhelmingly endorsed their 
classroom use.

Comparison with prior enhancement studies contextualizes these 
results. Chen and Mo (2023) employed a Swin Transformer to achieve 
ΔC values near 90, enabling universal recognition of Ishihara plates, 
but at the cost of a complex deep network and a higher risk of color 
distortions. Seo’s CUD-Net produced highly ranked outputs for object 
distinguishability, yet required considerable computational resources 
(Seo et al., 2021). Pendhari et al. (2024) showed that autoencoders 
could recolor images to improve digit readability while supporting 
subsequent classification. While producing slightly lower maximum 
ΔC than Chen’s work (Chen and Mo 2023), the present approach 
retained interpretability, computational simplicity, and minimal color 
distortion, with ΔE values well within perceptual tolerance.

Recent comparative studies have strengthened confidence in 
digital and psychophysical approaches to color vision assessment. 
Klinke et al. (2024) demonstrated that presenting Ishihara plates on 
calibrated PC monitors or smartphones yielded comparable outcomes, 
with sensitivity of 94.4 and 96.0% and specificity of 82.4 and 94.7%, 
respectively, showing no significant difference between display modes. 
Fanlo-Zarazaga et al. (2024) validated the DIVE Color Test against 
both Ishihara and Farnsworth–Munsell 100-Hue, reporting perfect 
agreement with Ishihara in detecting CVD (Cohen’s κ = 1.00) and a 
strong correlation with Farnsworth (ρ = 0.80), while also quantifying 
severity thresholds in ΔE units (ICC = 0.83 for repeatability). Parente 
et al. (2025) compared the Colour Assessment and Diagnosis (CAD) 
test with the Cambridge Colour Test (CCT) in 66 participants and 
found statistically equivalent vector lengths and ellipse orientations, 
concluding that CAD and CCT are complementary tools for 
quantifying severity. Collectively, these studies show that both display-
based and psychophysical measures provide robust, quantitative 
parameters, supporting our ΔE-based optimization (ΔE ≈ 4.9, 

TABLE 2  Performance matrices of trained and tested dataset of the OvA model for each CVD classifier.

Class TP FP FN Accuracy Precision Recall F1-score

Trained dataset

0 1,132 1 0 1.000 0.999 1.000 1.000

1 1,102 3 8 0.997 0.997 0.993 0.995

2 1,115 7 3 0.997 0.994 0.997 0.996

Tested dataset

0 282 0 0 1.000 1.000 1.000 1.000

1 282 0 1 0.999 1.000 0.997 0.998

2 275 1 0 0.999 0.996 1.000 0.998

TABLE 3  Comparison of different machine learning models based on 
classification performance metrics.

Model Accuracy Precision Recall F1 
score

OvA strategy 0.997 0.997 0.997 0.997

Random 

Forest 0.992 0.992 0.992 0.992

GradBoost 0.993 0.993 0.993 0.993

SVM-RBF 0.997 0.997 0.997 0.997

MLP 1.000 1.000 1.000 1.000
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clipping fraction <0.002) and CNN classification approach as clinically 
meaningful analogues for detecting and enhancing protanopia 
and deuteranopia.

Several limitations must be acknowledged. The Discussion text 
was language-edited with ChatGPT; the authors have verified all 
wording and take full responsibility for the content. The dataset was 
based on computer-generated Ishihara-style images rather than 
patient-derived or naturalistic images. While this ensures controlled 
evaluation, it does not fully capture the variability of real-world 
visuals. Moreover, only red-green deficiencies were addressed, leaving 
tritanopia unmodeled. Severity gradation was also not included, 
though perceptual impact often varies along a continuum. Though 
highly informative, the survey involved only 11–15 participants, 

limiting generalizability. This method does not cure the defect but 
simply helps the patient in recognizing the image through its 
processing by the intelligent algorithm. This model was tested using 
natural sceneries. However, it did not perform well performed in these 
images. Finally, occasional mixed responses suggest that the algorithm 
may not universally optimize all image types, and further refinement 
will be necessary for complex or organic figures.

Despite these constraints, this work’s clinical and educational 
relevance is considerable. Early identification would allow families and 
educators to implement accommodations before academic 
performance is affected. Strong survey responses validated the 
enhancement algorithm. Because the method is lightweight and 
computationally efficient, it can be integrated into mobile devices, 

FIGURE 4

Analysis of wrongly diagnosed image number 157 for Deuteranopia CVD patient: (a) Original, (b) actual perceived, (c) actual enhanced, and (d) 
Protanopia diagnosed enhanced image. RGB difference heat map: (e: a,b), (f: a,c), (g: a,d), and (h: c, d).
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classroom projectors, or e-learning platforms for real-time use. 
We have also tested this model on natural sceneries and images from 
MBBS books. However, this model did not well performed in 
these images.

Future work should extend evaluation to real-world photographs 
and diverse educational materials, incorporate tritanopia and severity 
grading, and recruit larger and more diverse cohorts for validation. 
Adaptive algorithms that tailor enhancement strength to specific 
content or individual perceptual responses may further improve 
outcomes. Ultimately, mobile application or embedded classroom tool 

deployment could combine real-time classifying with enhancement, 
creating inclusive educational environments for CVD learners.

Conclusion

The outreach survey to schools revealed a critical gap in 
awareness of CVD among students, parents, and teachers. 
Teachers reported limited strategies for classroom adaptations. 
Career guidance was found inadequate: many respondents were 

FIGURE 5

Visual comparison of enhanced images with references Ishihara plates shown in Figure 2.
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unaware of job restrictions for individuals with CVD in India, and 
no systematic framework currently exists to help students navigate 
career choices. This underscores the need for early classifying and 
structured awareness programs. The One-vs-All (OvA) 

classification models demonstrated reliable performance in 
diagnosing CVDs, validating the potential of machine learning to 
support classifying and targeted interventions. By integrating 
OvA-based computational methods with survey insights, the 

FIGURE 6

Enhanced image set optimized for deuteranopia, corresponding to the reference visuals in Figure 3.
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study highlights the importance of advancing diagnostic 
technologies. The findings indicate that addressing CVD requires 
a dual approach: developing accurate computational tools for 

detection and translating these tools into educational policies and 
career guidance practices that empower students.

FIGURE 7

Enhanced image set optimized for protanopia, corresponding to the reference visuals in Figure 3.
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Glossary

CNN - Convolutional Neural Network

CVD - Color Vision Deficiency

De - Deuteranopia

IEC - International Electrotechnical Commission

ML - Machine Learning

MLP - Multilayer Perceptron

OvA - One-vs-All (classification strategy)

PCA - Principal Component Analysis

Pr - Protanopia

RGB - Red, Green, Blue (color space)

sRGB - Standard Red, Green, Blue (IEC 61966–2-1 standard)

SVM - Support Vector Machine

SVM-RBF - Radial Basis Function Support Vector Machine

α  - Enhancement strength parameter (0 ≤ α ≤ 1.5)

α∗
Pr, α∗

De  - Optimal α values for protanopia and deuteranopia

clipβ  - Penalty weight for pixel clipping

∆ CVDC  - Change in contrast under simulated CVD

∆ normE  - Mean CIE76 color difference under normal vision

E  - Error signal (difference between reference and deficient image)

fclip - Fraction of pixels clipped at channel limits

defI  - Simulated CVD (deficient) image

Ienh - Enhanced image

Ilin - Linear RGB image

IsRGB - Reference sRGB image

L, M, S - Long-, Medium-, and Short-wavelength cones

L*, a*, b* - CIELAB color space channels

Lk  - Individual channel component in CIELAB images

natλ  - Penalty weight for perceptual naturalness

µ j, σ j  - Mean and standard deviation of feature j

N - Number of pixels in the image

S(α) - Objective function for enhancement optimization

X fused  - Concatenated feature vector (ResNet + EfficientNet + 
DenseNet)

XPCA - PCA-transformed feature set
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