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SMCFO: a novel cuttlefish
optimization algorithm enhanced
by simplex method for data
clustering
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Chennai, Tamil Nadu, India

Introduction: In unsupervised learning, data clustering is essential. However,
many current algorithms have issues like early convergence, inadequate local
search capabilities, and trouble processing complicated or unbalanced input.
Established methods like Kmeans are still widely used because of their ease
of use; however, they struggle with non-spherical cluster shapes, which are
sensitive to initialization, and suffer in highdimensional space. As a substitute,
metaheuristic algorithms have surfaced as possible options, providing powerful
global search ability. The Cuttlefish Optimization Algorithm (CFO) shows promise
in clustering applications but suffers from premature convergence and poor local
optimization capability.

Methods: This paperintroduces a new clustering method based on the Cuttlefish
Optimization Algorithm (CFO), which improves upon the Nelder-Mead simplex
method known as SMCFO. The method partitions the population into four
subgroups with specific update strategies. One subgroup uses the Nelder-Mead
method to improve the quality of solutions, while the others attempt to maintain
exploration and exploitation equilibrium. This study compares the performance
of the suggested SMCFO algorithm with four established clustering algorithms:
CFO, PSO, SSO, and SMSHO. The evaluation used 14 datasets, which include
two artificial datasets and 12 benchmark datasets sourced from the UCI Machine
Learning Repository.

Results and discussion: The proposed SMCFO algorithm consistently
outperformed competing methods across all datasets, achieving higher
clustering accuracy, faster convergence, and improved stability. The robustness
of these outcomes was further confirmed through nonparametric statistical
tests, which demonstrated that the performance improvements of SMCFO were
statistically significant and not due to chance. The results confirm that the
simplex-enhanced design boosts local exploitation and stabilizes convergence,
which underlies SMCFQO's superior performance compared to baseline methods.

KEYWORDS

clustering, cuttlefish optimization algorithm, Nelder-Mead simplex method, global
search ability, metaheuristic optimization algorithm

1 Introduction

Data clustering is a fundamental unsupervised machine learning method that utilizes
the inherent structures of the dataset to group related data points. Organizing data into
clusters facilitates pattern recognition (Gupta and Kumar, 2024), anomaly detection (Al
et al., 2024), and efficient data summarization. Various domains widely use it, including
image processing (Bhimavarapu et al., 2024), customer segmentation (Vijilesh et al., 2021),
genetics (Wu et al., 2021), and network analysis (Li et al., 2023), and blockchain for
transaction analysis and fraud detection (Yang et al., 2025).
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Clustering is considered an NP-hard problem. It identifies the
cluster center for each cluster to classify all the data reasonably.
Despite its versatility, no single clustering algorithm is optimal for
all clustering problems. The effectiveness of a clustering method
depends on several factors, including data distribution, cluster
density, shape, and noise levels. These elements are essential for
optimizing clustering results.

1.1 Existing clustering methods and critical
analysis

Traditional clustering approaches include:

e Partitional clustering, such as K-Means (Oti et al, 2021),
minimizes the variation within each cluster to group data
into k clusters. As long as the clusters remain unstable,
points will be continuously allocated to the nearest centroid.
Subsequently, the centroids will be updated by computing
the mean of the points assigned to each cluster. Spherical
and well-separated clusters operate well, but more complex
configurations cause problems.

e Hierarchical clustering (Ran et al., 2023) involves dividing
bigger clusters (divisive) or continually merging smaller
clusters (agglomerative) to create a hierarchy of clusters.
The number of clusters need not be known in advance,
and a dendrogram is frequently used to display the results.
Although it excels at capturing nested relationships, the
benefit can become computationally costly when dealing with
huge datasets.

e Density-based clustering finds clusters as densely populated
areas of points with sparser regions in between. Algorithms
such as DBSCAN (Bushra and Yi, 2021) can identify clusters
of any shape and deal with noise, which makes them applicable
to complex datasets. Their performance can be parameter-
sensitive and may not be well-suited for dealing with mixed
cluster densities.

e Model-based clustering (Gormley et al, 2023) techniques
treat data as coming from a combination of probability
distributions. They effectively capture complex cluster shapes
and assign data points based on probabilities. Still, they require
high computational resources and rely heavily on correct
model assumptions and the predefined number of clusters.

e Grid-based clustering (Tareq et al., 2021) partitions the data
space into a grid of cells and forms clusters based on the
data density within each cell. This method is efficient for large
datasets, but its performance depends on the grid size and can
struggle with irregular cluster shapes.

While these methods provide practical frameworks, they often
face challenges in high-dimensional, nonlinear, or noisy datasets.
To overcome these, researchers have explored metaheuristic and
bio-inspired optimization techniques for clustering.

1.1.1 Metaheuristic and bio-inspired clustering
approaches

Researchers employ Genetic Algorithm (GA)-based clustering
to enhance adaptability and performance across domains. Lin
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et al. (2005) improved fitness evaluation through pre-computed
distance look-ups and efficient cluster center selection. GA-based
approaches for Wireless Sensor Networks (Batra and Kant, 2018)
optimized cluster formation and energy efficiency. Trajectory-
based clustering methods (Yang et al, 2020) and fuzzy TDA-
based F-Mapper (Bui et al., 2020) enhanced clustering quality and
robustness against noise.

Swarm intelligence techniques have become more popular. For
instance, variations based on PSO (Rengasamy and Murugesan,
2021; Niu et al, 2017) enhance the accuracy and speed of
convergence. SHO and its simplified variant, SMSHO, improve
centroid precision and population diversity (Fausto et al., 2017;
Zhao et al, 2021; Anand and Arora, 2020). Similarly, Social
Spider Optimization (SSO) (Thalamala et al., 2019; Buvanesvari
and Begum, 2020; Zhao et al., 2021) has effectively discovered
communities and clustering text. Exploration and exploitation
are well-balanced. Feature selection (Karunakaran et al.,, 2020),
dimensionality reduction (Suganthi and Karunakaran, 2019), and
image segmentation (Bhandari et al., 2019) have all seen successful
applications of the Cuttlefish Optimization (CFO) algorithm
(Kowalski et al., 2020). It encourages solution variety through the
use of visibility and reflection methods.

Even with their promising results, earlier clustering and
metaheuristic methods have limitations. Numerous CFO variations
and associated bio-inspired algorithms heavily rely on random
operators. This reliance could lead to early convergence and
less stability in complex search spaces. Moreover, inefficient local
exploitation sometimes leads to inaccurate centroid refinement,
especially in high-dimensional or nonlinear datasets. These issues
show that a better approach that balances improved local search
with global exploration is required. The simplex enhancement in
CFO suggested in this study is motivated by these problems.

The new SMCFO selectively incorporates simplex into Group
I of the CFO population, unlike SMSHO and SMSSO, which use
the simplex method as an extra operator during the restoration or
communication stages. Only the refinement group improves with
deterministic local search in this architecture, but Groups II-IV
maintain their unique exploratory responsibilities. By combining
the geometric changes of the simplex method for updating
centroids with the reflection and visibility dynamics of the CFO,
SMCFO offers a new approach. This selective integration is
structurally different from earlier simplex-hybrid methods. It leads
to more effective clustering and more reliable, unique solutions.

1.2 Motivation and contribution

The literature demonstrates that there are still several issues
with current clustering algorithms. Many tend to converge slowly
and produce imprecise results. They frequently require numerous
iterations to achieve satisfactory performance. Furthermore,
researchers often use small datasets to test algorithms, making
generalizing results challenging. Handling high-dimensional data
remains another significant hurdle. These limitations highlight
the need for improved approaches, which is the central focus of
this work.

A detailed analysis of the CFO’s performance shows it has
a limited global search ability, often leading to locally optimal
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solutions. Introducing the simplex method enhances the CFO
algorithm, improving its ability to explore the search space and
avoid local optima.

The key contributions of this paper are outlined below:

1. The Simplex method is incorporated into the CFO algorithm
for the first time to improve its performance. This incorporation
substitutes some conventional operations in the CFO with
reflection, expansion, contraction, and shrinking operations
to improve local search. The algorithm attains a more

global

improving population diversity and candidate

balanced exploration and local exploitation by

solution
quality. Consequently, it enhances convergence rate, scalability,
and stability and decreases computational complexity. This
improvement makes the optimized algorithm more effective
for centroid-based clustering, nonlinear data structures, and
high-dimensional data scenarios.

2. The proposed algorithm is applied to solve data clustering

with  its

comprehensive experiments on 14 widely used classified

problems, effectiveness  evaluated  through
datasets from the UCI repository. The experiments assess
various aspects of the algorithm’s performance, including (1)
overall optimization capability, (2) convergence speed, (3)
result variance, (4) quality of visual clustering, (5) diversity of
generated solutions, (6) algorithmic stability, (7) computational
runtime, (8) impact of population size, (9) effect of the number
of iterations, (10) statistical significance based on nonparametric
rank-sum tests, and (11) evaluation using standard performance
metrics such as accuracy, F-measure, sensitivity, specificity, and
Adjusted Rand Index (ARI).

3. This study compares the proposed algorithm with several
established clustering algorithms, including PSO (Rengasamy
and Murugesan, 2021), SSO (Thalamala et al., 2019), SMSHO
(Zhou et al,, 2017), and CFO (Eesa et al., 2013). It performs
a thorough analysis and evaluation of these algorithms in
the context of data clustering. The experimental results
reveal that the proposed algorithm attains faster convergence,
higher accuracy, and more excellent stability than the
other methods.

The structure of this paper is as follows: Section 2 introduces
the mathematical model for data clustering. Section 3 outlines the
cuttlefish optimization algorithm. Section 4 provides a detailed
discussion of a variant of the cuttlefish optimization algorithm
based on the simplex method (SMCFO). Section 5 presents the
simulation experiments related to data clustering and analyzes
the results. Finally, Section 6 concludes the study and suggests
directions for future work.

2 Mathematical framework for
clustering analysis

Data clustering analysis aims to classify data based on their
inherent properties. Each group consists of highly similar elements,
while elements in different groups exhibit significant differences.
The following expressions define the mathematical framework for
clustering analysis (Ma et al., 2015).
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2.1 Description of the data clustering
problem

Consider a dataset represented as: D = {x1,X2,...,Xn}
where each data point x; is an M-dimensional vector: x; =
(xi1> Xi2, . . ., xip) for i = 1,2,...,N. The objective of clustering is
to partition D into K disjoint clusters: G = {Gy, Ga, . .., Gk} such
that the following conditions hold:

1. Each cluster is non-empty:
Gy #0, Vke{l,2,...,K}. (1)
2. Clusters are mutually exclusive:
GiNG =0, ¥ije{l,2... K}, i#]. )
3. The union of all clusters reconstructs the original dataset:
K
UG =7. 3)
k=1

Each cluster Gy groups data points with high similarity based
on a predefined metric, minimizing intra-cluster variations and
maximizing inter-cluster differences.

2.2 Principles of clustering

In the clustering process, the dataset D is divided into
K clusters, denoted as {G,Ga,...,Gk}. Each cluster G; has a
representative centroid zj, where j = 1,2,...,K. The set of all
{z1,22,...,2k}. The goal of
clustering is to find the optimal set of centroids Z that ensures a

cluster centroids represents: Z =

significant degree of resemblance between data points in the same
cluster while maximizing the distinction between different clusters.
To measure similarity, the Euclidean distance function computes
the distance between a data point x; and the cluster centroid z;
as follows:

d(xj,z) = (xip — zjp)? 4)

where M is the number of attributes in the dataset, x; is the ph
attribute of the data point x;, and z;j,, is the p'™" attribute of the
cluster centroid z;. Each data point x; is assigned to the cluster
whose centroid is closest in Euclidean distance. Formally, the
if d(xi,zg) < d(xi,2,), Vr#
q. This clustering procedure maximizes intra-cluster similarity

assignment is defined as: x; € gq

while inter-cluster variations remain significant.

2.3 Optimization function for clustering

The SMCFO algorithm is developed to enhance clustering
performance by addressing the limitations of traditional methods.
Consider a dataset D with N data points, where each data point
x; has M attributes. The objective is to partition D into K clusters,
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each represented by a centroid z;. The complete set of centroids
is given by: Z = {z1,2,...,2x}. The dimension of the final
result is a K x M matrix, which helps to optimize the cluster
centroids. In the SMCFO algorithm, each individual represents a
clustering center vector corresponding to a potential solution. A
well-formed clustering solution minimizes intra-cluster distances
while ensuring distinct separation between clusters. The clustering
process aims to minimize the within-cluster sum of squares

(WCSS), expressed as

K
m%nf(D, Z)= Z Z llxi — 2l ()

k=1 x;€Gy.

Here, D represents the dataset and Z is the clustering center
vector. The SMCFO algorithm seeks to determine the optimal
centroid set Z that minimizes this function, ensuring compact and
well-separated clusters.

3 Cuttlefish optimization algorithm
(CFO)

The CFO is a global optimization method inspired by the
natural behavior of cuttlefish. This algorithm was introduced
by Eesa et al. (2013). A distinctive characteristic of cuttlefish,
which underpins this algorithm (Eesa et al., 2014), is their ability
to exhibit individual behaviors that collectively resemble those
of a larger group. The algorithm draws inspiration from the
cuttlefish’s remarkable ability to change color. This trait serves as
camouflage against predators and a strategy for attracting mates
during reproduction. This dynamic color change is produced by
light reflecting off multiple layers of specialized skin cells, including
chromatophores, leucophores, and iridophores, which generate
various patterns and colors. The CFO leverages this biological
phenomenon by incorporating two key processes: reflection and
visibility. These mechanisms simulate how cuttlefish adjust their
appearance in response to environmental stimuli, guiding the
algorithm’s search for new, optimal solutions.

The process of generating a new solution in the optimization
task, guided by reflection and visibility, is illustrated in Equation 6.

Xpew = reflection + visibility. (6)

The CFO algorithm divides individuals into four groups,
each employing different mechanisms to generate new solutions.
In computational intelligence, these mechanisms correspond to
acquiring novel solutions:

Group I: Solutions are updated based on the current position.

reflection = R - X,, (7)
visibility = V - (Xpest — Xo). ®)

Group II: Solutions are influenced by current and

best positions.

reflection = R - Xpest 9)

visibility o). (10)

Il
<
=
b
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Group III: Solutions are generated based on the best-
known position.

(11)
(12)

reflection = R - Xpes,
visibility = V- (Xpest — Xavg)-

Group IV: A random search is performed within the

solution space.

(13)
(14)

reflection &,

visibility = 0

Here, X, represents a candidate solution, X, denotes the
current solution, and X, is the best solution found so far.
The term & represents a randomly selected position in the
search space. The parameters R and V are random values
drawn from uniform distributions over the intervals [ry,7;] and
[v1, v2], respectively. X4, denotes the average of the best solutions
discovered during optimization.

Initialization, grouping, solution updates, evaluation, and
iteration are all steps in the structured optimization process used
by the CFO until a stopping criterion is satisfied. After initializing
the population randomly, the algorithm divides it into four groups,
each employing distinct reflection and visibility mechanisms
to refine candidate solutions. The grouping strategy balances
exploration and exploitation: Group I intensifies the search around
the best solution, Groups II and III refine local searches for
improved convergence, and Group IV introduces randomness
to enhance diversity and prevent premature convergence. The
efficiency of CFO depends on four key parameters (ry, 12, v1,v2),
which regulate the balance between exploration and exploitation.
Adjusting these parameters enhances the algorithm’s capability to
find optimal solutions.

4 A novel cuttlefish optimization
algorithm enhanced by Nelder-Mead
Simplex (SMCFO)

There are numerous applications for the CFO algorithm.
Nevertheless, it has certain drawbacks, such as a tendency to
become trapped in local optima, sensitivity to parameter settings,
inefficient convergence, and high computing cost. To overcome
these problems, the CFO of Group I has incorporated the Nelder-
Mead Simplex approach instead of the conventional reflection and
visibility procedures. The algorithm can converge more quickly
and detect cluster centroids more precisely, which improves local
search by dynamically modifying the search space. The Simplex
method also helps prevent premature convergence and improves
the CFO’s ability to explore complex solution landscapes without
relying on gradient information. By properly balancing the roles
of exploration and exploitation, the improved CFO achieves better
clustering performance with excellent stability and efficiency.
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4.1 Justification of group selection for
simplex integration

Incorporating the Nelder-Mead simplex method into Group
I, instead of other CFO groups, was backed by theory and
evidence. Each group in the CFO algorithm has a specific role:
Group I focuses on refining, Group II and III emphasize guided
exploration and focused exploitation. At the same time, Group
IV maintains diversity through randomization. The Nelder-Mead
simplex method is a local search technique that needs strong
candidate solutions to work well, so Group I fits its exploitative
nature. On the other hand, adding Nelder-Mead to Groups II-IV
either conflicted with their exploratory goals, reduced exploration
efficiency, or showed no meaningful performance improvement.

Additionally, comparative tests were conducted to validate this
rationale by integrating simplex across different groups. The results
indicated that adding it to Group I produced the most reliable gains
in convergence rate, stability, and clustering accuracy.

Therefore, both the CFO’s structural design and the
experimental findings support restricting Nelder-Mead simplex to
Group I, where it enhances local exploitation without undermining
global search capability. The remaining groups continue to fulfill
their original roles, ensuring that the proposed SMCFO maintains
a robust balance between exploration and exploitation.

4.2 Local refinement using Nelder-Mead
simplex method

The proposed Simplex-Enhanced Cuttlefish Optimization
(SMCFO) integrates the Nelder-Mead simplex method into Group
I of the population. Individuals in this group are refined locally
by the simplex method, rather than depending only on the
original cuttlefish update rules. This hybridization improves local
exploitation by adjusting centroid positions through geometric
transformations like expansion, contraction, and reflection. As
a result, SMCFO not only preserves global search through the
remaining groups but also introduces dynamic local improvement
to boost clustering precision and solution stability. This paper
references the simplex method from Nelder and Mead (1965) and
depicts a diagrammatic overview of the method in Figure 1. The
algorithm steps are as follows:

Step 1: Evaluate the objective function for all individuals in
the population and identify the optimal solution x, and the
suboptimal solution x;. Let x; be an individual targeted by a
predator. The objective function values of xg, x5, and x; are
denoted as f(xg), f(xp), and f(x;), respectively.

Step 2: Compute the central position x, of x; and x; using the
following formula:

Xg + X,
P (15)
2
Step 3: Perform the reflection operation using the formula:
Xr = X + o(xe — x5) (16)

where x, represents the reflection point of x5, and « is the
reflection coeflicient, typically set to 1.
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FIGURE 1
Diagrammatic overview of the method.

Step 4: Evaluate the objective function values of x, and x. If
f(xr) < f(xg), apply the expansion operation as follows:

Xe = xc + v (% — xc) (17)

where y is the expansion coeflicient, typically set to 2. Next,
compare f(x.) and f(xg). If f(xe) < f(xg), update x; with x;
otherwise, replace x; with x;,.

Step 5: Compare the objective function values of x, and x;. If
f(xs) < f(xr), execute the contraction operation using:

X = xc + Blxs — xc) (18)

where S represents the contraction coefficient, set to 0.5. Then,
compare f(x;) and f(x). If f(x;) < f(x;), substitute x; with x;
otherwise, replace x; with x;.

Step 6: If f(x;) < f(x;) < f(xs), apply the shrinking operation
as follows:

Xy = Xe — 8(x5 — x¢) (19)

where § is the shrinking coeflicient, typically set to 0.5 (Wang et al.,
2016). This parameter is selected because it balances exploration
and exploitation so that there can be stable convergence without
premature stagnation. A coefficient of 0.5 ensures the gradual
reduction in the search space with a bias toward refining solutions
incrementally. Then, compare f(x,,) and f(x;). If f(x,) < f(xs),
update x; with x,,; otherwise, replace x; with x;.

Group I improves local exploitation of promising candidate
solutions by including the Nelder-Mead simplex approach. The
improved individuals will enhance clustering accuracy and solution
stability without sacrificing global exploration, based on our
simplex operations analysis and the design of the SMCFO method.
The simplex-enhanced architecture ensures effective convergence
toward high-quality cluster centroids by balancing intensive local
search and broad global exploration. The following section presents
the complete SMCFO algorithm in flowchart and pseudocode form.
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4.3 Pseudocode and flowchart of the novel
SMCFO algorithm

The pseudocode presented in Algorithm 1 outlines the step-by-
step process of the Cuttlefish Optimization Algorithm enhanced by
Nelder-Mead simplex method (SMCFO) for data clustering. The
flowchart in Figure 2 illustrates the step-by-step procedure of the
SMCEFO for clustering. It shows how the population is initialized,
divided into strategic groups, updated using CFO and simplex
operations, and iteratively refined until convergence.

5 Experimental results and discussions

A comprehensive series of tests is conducted to validate
the proposed SMCFO’s effectiveness in clustering tasks. The
experimental environment is configured to ensure consistent
evaluation conditions across diverse datasets—the following
subsections present details of the experimental setup, datasets, and
comparative methodologies.

5.1 Experimental environment

All the algorithms are executed in MATLAB online. The
experiments are conducted on a laptop with an AMD Ryzen
7 7735U processor, Radeon Graphics (2.70 GHz), and 16 GB
of memory.

5.2 Comparative analysis of algorithms

The proposed SMCFO algorithm significantly contributes to
the study of data clustering analysis. The evaluation analyzes
performance using 14 benchmark datasets, which include two
synthetic datasets and 12 real-world datasets from the UCI
Machine Learning Repository (Merz, 1998). Table 1 details the
number of data points, features, and clusters for each dataset. All
comparison algorithms will use the randomly selected parameters
for the artl and art2 datasets (Niknam and Amiri, 2010). Since
each dataset has unique characteristics, no algorithm consistently
achieves the best results in all experiments. Consequently,
the experimental outcomes genuinely evaluate the proposed
algorithm’s performance.

To assess the effectiveness of the SMCFO algorithm in
solving data clustering problems, we compare it with four other
optimization algorithms: PSO (Alswaitti et al., 2018), SSO (Cuevas
et al., 2013; Cuevas and Cienfuegos, 2014), SMSHO (Fausto et al.,
2017), and CFO (Kowalski et al., 2020). The parameters for these
comparison algorithms are set as follows, based on prior studies
and their ability to balance exploration and exploitation, enhance
convergence behavior, and maintain diversity during optimization:

1. PSO: The weight factor is set to w = 0.7298 with acceleration
coefficients ¢; = ¢ = 1.4962, which is based on Alswaitti
et al. (2018). These values are widely adopted to achieve a
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Initialize Set up and structure the necessary data
components for the algorithm
Generate a random initial population
representing the positions of the swarm of
cuttlefish.
Evaluate the fitness of each individual based on
its position.
Identify the best global solution.
Divide the population into four subgroups: Gr, Grr,
Grrr, and Gry.
while stopping criteria are not met do
Compute the average position of the best global
solution Xayg.
for each individual in Gr (Simplex Method
applied) do
Apply the Nelder-Mead Simplex Method for
local search refinement using
Equations 15-19.
Update positions based on Simplex
transformations.
Update the current position if a better
solution is found.
end for
for each individual in Gy do
Compute reflection using Equation 9.
Compute visibility using Equation 10.
Generate a new position based on
Equation 6.
Update the current position if a better
solution is found.
end for
for each individual in Grrr do
Compute reflection using Equation 17.
Compute visibility using Equation 12.
Generate a new position based on
Equation 6.
Update the current position if a better
solution is found.
end for
for each individual in Gpy do
Generate a new position based on
Equations 6, 10-11.
Update the current position if a better
solution is found.
end for
Check boundary constraints for newly generated
positions.
Evaluate the fitness of each individual.
Update the best global solution if a better
fitness value is obtained.
end while
Return: The optimal fitness value, corresponding
cluster centroids, and assigned cluster labels of
the dataset

Algorithm 1. Pseudocode of novel SMCFO for data clustering.
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Initialize Population
Evaluate
Fitness
Group Division
Simple est+Avg)
G_I: Refines \ G_III:
Existing Generates
individuals G_II: Modifies near-best
existing individuals
individuals Random
Gl1V:
Creates new
// individuals
Update
Solutions
Re-evaluate
Fitness
No
Converged?
Yes
Return centroids and clusters
FIGURE 2
Flowchart of SMCFO algorithm process.

good trade-off between exploration and exploitation, improving
convergence and solution quality.

2. SSO: Parameters «, 8, §,t,, and PF are randomly selected within
the interval [0, 1], as determined to be the optimal parameter set
based on Cuevas et al. (2013) and Cuevas and Cienfuegos (2014).
Randomization helps maintain population diversity and allows
adaptive behavior across different problem instances.

3. SMSHO: Parameters «, 8, v, § and p are randomly chosen
within the range [0, 1], as referenced in Fausto et al. (2017). This

Frontiersin Artificial Intelligence

stochastic approach increases global search ability and helps
avoid local optima by enabling diverse solution exploration.

4. CFO: rn = —0.5, r = 1.0, vy = —2.0, V) = 2.0,
which is based on Kowalski et al. (2020). These parameters
govern attraction-repulsion dynamics and have been empirically
validated to facilitate effective search space exploration.

These experiments will compare the algorithms based on
optimization performance, clustering effectiveness, solution
diversity, stability, execution time, the influence of population
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TABLE 1 Details of the clustering datasets.

10.3389/frai.2025.1677059

TABLE 3 Comparative analysis of algorithms on art2.

Dataset Data points Features Cluster Algorithm Best Worst Mean SD Rank
artl 250 3 5 PSO 79.2966 | 190.2388 | 87.5799 |  0.0000 1
art2 600 2 4 SSO 86.0661 | 3,690.4179 | 452.8317 | 272.8619 4
iris 150 4 3 SMSHO 117.0561 | 1,145.0481 | 360.0097 | 167.3484 3
breastcancer 569 30 2 CFO 1614016 | 2,455.2082 | 561.6793 | 267.3990 5
tae 151 5 3 SMCFO 186.7356 | 1,114.1836 | 2233517 | 42.9580 2
heartstatlog 270 13 2 Bold values indicate the best performance achieved for each metric among all compared
methods.
thy 215 5 3
haberman 306 3 2
On the haberman, vertebral, and sonar datasets, SMCFO ranked
cmc 1,473 10 3 - .. . . .
3rd, while in all remaining datasets, it consistently achieved 2nd
glass 214 9 7 place, showcasing its reliability and robustness across a diverse
vehicle 946 18 4 range of clustering tasks. A detailed comparison reveals that in
instances where SMCFO ranked 2nd or 3rd, the top-performing
vertebral 310 6 2 K . i
algorithm was either SMSHO or PSO, suggesting that these two
sonar 208 60 2 methods serve as its primary competitors. Despite these variations
ecoli 336 7 3 in ranking, SMCFO consistently outperformed CFO across all
datasets, highlighting its overall advantage in terms of clustering
TABLE 2 Comparative analysis of algorithms on art1. accuracy and optimization efficiency. These findings reinforce
the suitability of SMCFO as a competitive alternative to CFO,
Algorithm  Best ~ Worst  Mean SD Rank particularly in scenarios where enhanced clustering performance is
PSO 33.8521 95.3669 69.8576 | 0.0000 1 required. As is evident from Figures 3-18, the proposed SMCFO
algorithm achieves the most rapid convergence among all the
SSO 741193 | 17231142 | 2857072 | 1547319 3 . . . .
other optimization methods, with the highest values for variance
SMSHO 155.6599 | 1,714.0961 | 515.5672 | 223.1702 5 as well. The high variance indicates that the algorithm has
CFO 1170561 | 1,145.0481 | 360.0097 | 167.3484 4 extreme variations when performing optimization. Nevertheless,
the variance is minimal for all datasets, which shows that the
SMCFO 957152 | 762.8250 | 100.5669 | 31.1964 2

Bold values indicate the best performance achieved for each metric among all compared
methods.

size, the impact of iteration count, and the results of Wilcoxon’s
rank-sum test.

5.3 Comparison of algorithms based on
optimization performance

Each experiment is independently repeated 30 times for
each algorithm to minimize the impact of randomness in the
comparison algorithms. Each run has a maximum of 200 iterations,
with a population size 52 for all algorithms. The evaluation metrics
include the best value, worst value, mean value, and standard
deviation. Tables 2-16 present the experiments findings, with
the best-performing results indicated in bold. “Rank” denotes a
thorough rating, usually based on the algorithm’s optimization
performance and obtained from the mean value.

5.3.1 Analyzing the effectiveness of optimization
algorithms

The results summarized in Tables 2-15 demonstrate its
competitive effectiveness in clustering optimization. Notably,
SMCFO secured the highest ranking (1st place) on the iris, Breast
Cancer, and vehicle datasets, indicating its superior capability.

Frontiersin Artificial Intelligence

suggested algorithm generates consistent and stable results with
fewer variations across varied datasets. This stability indicates
that the algorithm is strong, with consistent performance even
under divergent situations. Even with these changes, the overall
performance of the proposed SMCFO method is still better than the
other algorithms, showing that it is effective and reliable for solving
the given clustering problem.

5.4 Clustering performance of the
algorithm

The clustering procedure of the proposed SMCFO algorithm is
analyzed, and its efficacy is visually evaluated using three datasets:
art2, iris, and vehicle.

5.4.1 Cluster process of SMCFO

The vehicle dataset is utilized to showcase the clustering process
of SMCFO. Clustering results are presented at iterations 0, 10,
20, and 50 to provide a detailed visualization of the algorithm’s
progression. The experimental findings, illustrated in Figure 19,
depict each cluster using a distinct color for clarity. As the number
of iterations increases from 0 to 10, 20, and 50, the clustering of data
points gradually improves. Initially, at iteration 0, the clusters may
be poorly defined, with significant overlap and scattered points.
By iteration 10, the clustering shows noticeable refinement, with
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TABLE 4 Comparative analysis of algorithms on iris.
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Algorithm Best Worst Mean SD Rank
PSO 78.9828 383.6866 102.8874 22.1032 2
SSO 140.5039 43,270.1360 1,764.5459 2,006.5924 5
SMSHO 78.8514 681.3706 153.3178 148.0128 3
CFO 155.6599 1,714.0961 515.5672 223.1702 4
SMCFO 78.6346 156.6882 86.1619 20.2851 1

Bold values indicate the best performance achieved for each metric among all compared methods.

TABLE 5 Comparative analysis of algorithms on breastcancer.
Algorithm Best Worst Mean SD Rank
PSO 27,719.2213 61,961.8269 44,288.6832 0.0144 3
SSO 92,300.1836 2,703,176.1818 341,368.1412 141,670.5397 5
SMSHO 17,040.0000 17,040.0055 17,040.0002 7,403.4635 2
CFO 19,055.8592 286,259.9226 145,548.5798 40,091.9523 4
SMCFO 12,346.6231 14,336.1204 14,270.620 0.0010 1

Bold values indicate the best performance achieved for each metric among all compared methods.

TABLE 6 Comparative analysis of algorithms on tae.
Algorithm Best Worst Mean SD Rank
PSO 461.2022 586.9884 505.4647 0.0008 3
SSO 501.2750 6,545.6577 1,059.1250 517.5986 5
SMSHO 449.6920 570.3536 459.5600 23.3462 1
CFO 598.7145 2,196.7815 919.4560 226.9308 4
SMCFO 460.7516 804.4755 493.6281 15.4547 2

Bold values indicate the best performance achieved for each metric among all compared methods.

TABLE 7 Comparative analysis of algorithms on heartstatlog.
Algorithm Best Worst Mean SD Rank
PSO 3,210.0573 3,853.7981 3,499.9900 0.0018 3
SSO 4,074.4698 250,926.5770 21,650.6378 14,207.0077 5
SMSHO 2,905.0868 3,497.0000 3,112.9941 281.5282 1
CFO 3,378.3706 16,962.3370 7,584.6943 2,131.2829 4
SMCFO 3,119.3496 7,436.9606 3,201.8327 238.0898 2

Bold values indicate the best performance achieved for each metric among all compared methods.

TABLE 8 Comparative analysis of algorithms on thy.
Algorithm Best Worst Mean SD Rank
PSO 475.0458 1,009.2961 761.1499 159.1832 3
SSO 772.5646 66,670.2281 4,352.6209 4,936.6877 5
SMSHO 460.1975 756.8924 557.5196 115.3783 1
CFO 938.9908 16,774.4383 3,901.8475 2,418.3636 4
SMCFO 669.7603 5,144.3083 721.2114 155.1949 2

Bold values indicate the best performance achieved for each metric among all compared methods.

data points beginning to align more closely with their respective  clustering reaches a more optimized state, with well-formed groups

clusters. At iteration 20, the cluster separation becomes more  and minimal misclassification, indicating convergence toward a

distinct, reducing noise and misclassified points. By iteration 50, the  stable clustering solution.
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TABLE 9 Comparative analysis of algorithms on haberman.
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Algorithm Best Worst Mean SD Rank
PSO 682.1756 719.3374 696.5331 0.0000 2
SSO 685.6081 24,970.0202 1,455.7101 1,756.6960 4
SMSHO 682.1756 702.4383 686.9036 8.7167 1
CFO 715.3827 11,736.1278 1,833.7641 1,341.1546 5
SMCFO 704.6310 1,574.9831 706.8229 23.5046 3

Bold values indicate the best performance achieved for each metric among all compared methods.

TABLE 10 Comparative analysis of algorithms on cmc.
Algorithm Best Worst Mean SD Rank
PSO 10,178.1010 13,124.8768 11,600.2101 0.0001 3
SSO 12,947.5107 530,547.6987 49,936.6772 33,291.3189 5
SMSHO 9,218.0206 11,322.6648 9,375.1683 458.5580 1
CFO 12,021.3228 59,460.6542 23,606.7329 6,683.3060 4
SMCFO 9,867.2396 29,593.4094 10,224.7722 1,010.2569 2

TABLE 11 Comparative analysis of algorithms on glass.
Algorithm Best Worst Mean SD Rank
PSO 1,559.1081 2,125.0225 1,745.3408 0.0002 3
SSO 2,110.1945 86,929.9417 12,884.2494 9,985.8961 5
SMSHO 699.5876 1,421.2594 814.1782 123.8344 1
CFO 1,664.1694 17,377.0621 6,540.1074 2,407.9114 4
SMCFO 997.7934 9,703.9430 1,203.9196 449.3489 2

Bold values indicate the best performance achieved for each metric among all compared methods.

TABLE 12 Comparative analysis of algorithms on vehicle.
Algorithm Best Worst Mean SD Rank
PSO 13,894.2022 19,251.7790 16,789.8994 2,403.1634 3
SSO 37,486.7806 863,641.1042 184,219.0311 95,164.2036 5
SMSHO 8,287.4207 58,875.5762 14,222.7502 1,311.9655 2
CFO 14,612.3397 137,149.0716 53,779.8300 18,552.0968 4
SMCFO 8,204.9647 15,210.1916 10,401.9627 0.3796 1

Bold values indicate the best performance achieved for each metric among all compared methods.

TABLE 13 Comparative analysis of algorithms on vertebral.
Algorithm Best Worst Mean SD Rank
PSO 1,087.5728 1,854.0548 1,377.5236 0.0004 2
SSO 1,798.0767 180,020.2325 12,638.3085 13,782.7860 5
SMSHO 926.7104 1,854.0000 1,226.0398 326.5232 1
CFO 1,630.7437 25,462.4495 6,055.7319 3,466.7428 4
SMCFO 1,206.5866 7,590.7959 1,450.6611 269.8318 3

Bold values indicate the best performance achieved for each metric among all compared methods.
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TABLE 14 Comparative analysis of algorithms on sonar.
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‘ Algorithm Best Worst Mean SD Rank ‘
PSO 410.1591 515.2461 466.0496 0.0000 1
SSO 1,049.6481 6,335.2853 2,418.7901 515.2234 2
SMSHO 12,420.0000 12,432.2136 12,420.4071 2.2299 4
CFO 13,359.0858 84,317.0201 51,921.3700 10,102.2940 5
SMCFO 10,937.9891 54,500.3407 11,209.1078 2,678.6782 3
Bold values indicate the best performance achieved for each metric among all compared methods.
TABLE 15 Comparative analysis of algorithms on ecoli.
Algorithm Best Worst  Mean SD Rank ‘ o
o
PSO 23.3869 37.6375 30.8817 0.7407 3
400
SSO 45.4966 958.6798 165.2995 107.1570 5 o
SMSHO 13.8480 16.4804 14.5757 0.6861 1
$ 300 4
CFO 47.7837 188.0031 95.5133 22.8017 4 s
»
o
SMCFO 16.9548 69.5823 17.2179 3.7213 2 é
[ o
Bold values indicate the best performance achieved for each metric among all compared 2001 o
methods. ° o o
o
8
° I
o
100 8 8
700 — pso S
—— SSO . i i . .
= o PSO SSo SMSHO cFo SMCFO
600 1 - (S:DFII%FO Algorithms
FIGURE 4
2% Variance analysis of optimization methods on art1.
3
c
% 400
&
2
= 300 1
3
E
3 700 — pso
2004 — ss0
—— SMSHO
Bh — CFO
\ 600 4 — SMCFO
100 %
i — I
@ 500 1
0-— y y g T T T T T 13
25 50 75 100 125 150 175 200 s
Iteration “
S 400
FIGURE 3 <
Evolutionary convergence trends for art1. 2
§ 300
200 L
. . . . \ i
5.5 Analyzing population diversity L N
improvement in the SMCFO algorithm o0
0 25 50 75 100 125 150 175 200
. - Iterati
A comparative analysis is conducted to demonstrate how the eration
FIGURE 5

proposed SMCFO algorithm improves population diversity relative
to the original algorithm.

5.5.1 Mathematical formulation of population
diversity
Optimization  algorithms how  individuals
disperse the quantify
population diversity. A more extensive distribution indicates
greater the explore
more effectively and avoid getting stuck in local optima.

Let the population S contain N individuals with fitness

analyze

throughout solution  space to

diversity, ~which helps algorithm
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The Spatial Dispersion Index (SDI) is defined as

N - 1\2
spr = Zi=ili =) (1)

N.f2

[ec:]e)

This expression describes the variation of the fitness values
50000 -
across the individuals of the population. Because every individual’s

fitness reflects their location in the search space, an increase in SDI
40000 4

indicates greater spatial dispersal of the individuals, hence more
diversity. A low SDI indicates the population resides within a small,

30000 - . . . .
dense search space region, which indicates convergence. So, the SDI

Fitness Value

is a significant parameter to consider while studying an algorithm’s
200001 diversity dynamics under optimization.

10000 4

- E 0 0 5.5.2 Analysis of population diversity

The algorithm illustrates greater population diversity during

PsSO SSO SMSHO CFO SMCFO . . ) . . .
Algorithms the earlier phases of the search process. Higher spatial distribution

FIGURE 14 of individuals improves the chances of reaching the global
Variance analysis of optimization methods on heartstatlog. optimum. The fitness values continue to converge to the global

optimum as the search advances, which causes a reduction in
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population diversity. The study highlights the importance of early
search iterations to enable a meaningful comparative assessment.
Variance values are analyzed at the 15t 20t 25t and 30th
iterations. Table 16 presents experimental results, and Figures 20—
27 present variance trends for the artl, art2, tae, thy, cmc,
heartstatlog, glass, and ecoli datasets. Table 16 illustrates that the
new algorithm always generates a higher variance of fitness values
than the existing algorithm in early iterations. The distribution of
broader solutions indicates greater population diversity and better
global search ability. Figures 20-27 demonstrate that the suggested
approach has more variance than the original algorithm during
the initial optimization phase. This high variance is not a random
fluctuation. Still, it follows a stable and consistent pattern, proving
that the proposed algorithm’s increased population diversity is
systematic and not random.
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Clustering results of SMCFO for vehicle dataset over the iterations O,
10, 20, 50.

5.6 Stability evaluation of the proposed
SMCFO algorithm

Stability of the proposed algorithm is evaluated using
experimental data from 30 independent runs, as detailed in
Section 5.3. The assessment includes all considered algorithms—
PSO, SSO, SMPSO, CFO, and SMCFO-—across benchmark
datasets. Figures 28-35 present the stability curves of all
the evaluated algorithms-PSO, SSO, SMPSO, CFO, and the
proposed SMCFO-across various benchmark datasets. The
stability plots measure the distribution of the obtained fitness
values based on 30 independent runs of each algorithm. Across
the datasets, the proposed algorithm shows minimal or zero
variance in its fitness values at all points, unlike the original
algorithms, which show higher variability. Such stability of
performance guarantees that the proposed approach achieves
a more stable and uniform convergence process. The minor
variance demonstrates the strength of the proposed algorithm. It
confirms its ability to maintain solution quality under repeated
runs, thereby constructing its superior stability compared to the
baseline algorithms.

5.7 Runtime efficiency analysis of the
algorithms

The runtime comparison between SMCFO and CFO across
benchmark datasets highlights the efficiency gains and the
computational overhead introduced by the simplex-enhanced
design. SMCFO provides significant performance in datasets such
as artl, art2, thy, cmc, and heartstatlog, as Table 17 shows. art2
shows the most significant improvement, with a 70% reduction in
execution time from 45.25 to 13.33 seconds. These cases highlight
how the Nelder-Mead simplex method accelerates convergence and
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TABLE 16 Analysis of population diversity.

Database
CFO CFO CFO

artl 2.32E-01 1.30E-03 2.04E-01 1.00E-03 1.80E-01 8.36E-04 1.60E-01 7.03E-04
art2 3.24E-01 7.40E-03 3.09E-01 5.70E-03 2.87E-01 4.60E-03 2.70E-01 3.90E-03
tae 4.57E-02 8.00E-04 4.04E-02 6.13E-04 3.56E-02 4.97E-04 3.16E-02 4.18E-04
thy 2.00E-01 3.41E-04 1.68E-01 2.61E-04 1.44E-01 2.11E-04 1.26E-01 1.77E-04
cme 5.85E-02 0.00E+00 4.87E-02 0.00E+00 4.15E-02 0.00E+00 3.61E-02 0.00E+00
heartstatlog 4.32E-02 2.28E-06 3.45E-02 1.74E-06 2.87E-02 1.41E-06 2.45E-02 1.18E-06
glass 8.05E-01 1.11E-04 7.11E-01 8.45E-05 6.31E-01 6.84E-05 5.65E-01 5.74E-05
ecoli 1.89E4-00 9.44E-04 1.82E4-00 7.24E-04 1.73E+00 5.87E-04 1.66E+-00 4.93E-04

Bold values indicate the best performance achieved for each metric among all compared methods.
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Variance distribution analysis in art2. Variance distribution analysis in thy.

reduces computational cost when the search space is relatively

low-dimensional or moderately complex. typically requires several objective assessments every iteration in
In contrast, on datasets such as glass and ecoli, the runtime  higher-dimensional or noisy feature spaces, is the cause of this

of SMCFO exceeds that of CFO. Simplex-based refinement, which  increase. In addition, cluster size also matters: the more clusters
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Variance distribution analysis in cmc.
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Variance distribution analysis in glass.
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Convergence stability visualization for art1.
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Convergence stability visualization for art2.
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Convergence stability visualization for glass.
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Convergence stability visualization for heartstatlog.
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Convergence stability visualization for ecoli.
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there are, the more expensive centroid updates and simplex
refinements become, resulting in increased runtime overhead.

These parameters may enhance the clustering quality even
though they lengthen runtimes by creating better centroids and
stable partitions. Even though SMCFO is more computationally
expensive in complex scenarios because runtime efficiency is not
the top priority, the balance favors effectiveness. The balance
between accuracy, stability, and speed must be essential in
clustering tasks.

5.8 Impact of population size on the
performance of the algorithm

The proposed SMCFO algorithm demonstrates enhanced
performance through a comprehensive evaluation across multiple
benchmark datasets and population sizes. SMCFO consistently
achieves lower or comparable mean fitness values to the original
CFO, particularly at smaller populations such as 20, 40, and
60. Table 18 shows that SMCFO can explore the solution space
more effectively and converge toward optimal solutions faster,
even with fewer search agents. For instance, at a population
size of 40, the fitness value for the art2 dataset dropped from
1,198 (CFO) to 252.62 (SMCFO), showcasing an impressive
improvement in solution quality. In addition to solution quality,
SMCFO demonstrates improved stability and robustness across

TABLE 17 Runtime comparison between CFO and SMCFO (in seconds).

10.3389/frai.2025.1677059

diverse datasets with varying feature sizes and class distributions.
Unlike CFO, which often shows flat performance regardless of
population variation, SMCFO adapts dynamically and produces
competitive results even on complex datasets such as thy, glass,
and ecoli. While in some cases, such as at higher population
sizes (e.g., 80), SMCFO incurs slightly higher fitness values due
to increased complexity in local search computations, the overall
trend favors the proposed method regarding both effectiveness and
efficiency. SMCFO?s ability to balance global exploration with local
exploitation more precisely makes it a superior choice for clustering
tasks where both accuracy and computational cost are critical.

5.9 Effect of iteration count on algorithmic
performance

As evident from Tables 19, 20, the findings highlight the
performance of CFO and SMCFO algorithms at various iterations
with all parameters fixed as per Section 5.3, with the only variable
being the number of iterations. These findings reveal that SMCFO
always performs better than CFO in terms of stability, speed of
convergence, and overall dependability. While SMCFO maintains
steady fitness values with minimal fluctuations across iterations,
CFO exhibits significant variations, particularly in the later stages.
This trend is most apparent in complex datasets like ecoli and
glass, where SMCFO converges more efficiently and avoids the

TABLE 19 Mean fitness values for CFO across different iterations.

Dataset CFO SMCFO (s) Dataset Iteration
) Group1l Othergroups Total 100 150 250

artl 26,9499 4367446 0.002073 4.602394 artl 683.73 683.73 683.73 683.73 683.73
art2 45.2508 3.166557 0.002456 3525148 art2 489.46 1,084.33 | 108434 | 1,08434 | 1,084.34
tae 82126 3716139 0.002738 3.935072 tae 843.90 856.62 856.62 856.62 856.62
thy 117591 3360865 0.002441 3576417 thy 243236 | 243236 | 243236 | 243236 | 243236
heartstatlog | 10.4010 5268119 0.002396 5539633 heartstatlog | 528949 | 531335 | 5313.35 | 531335 | 531335
eme 78.8871 23.112601 0.002922 24.035071 eme 1620637 | 1733848 | 17,34632 | 17,34632 | 17,346.32
glass 27.8973 28.813956 0.003201 29.240945 glass 347299 | 347299 | 347299 | 347299 | 3,472.99
ecoli 48,5128 79.383515 0.003828 80.456814 ecoli 4383370 | 513775 | 484818 | 4,848.18 | 4,3848.18

TABLE 18 Mean fitness comparison of CFO and SMCFO at different population sizes.

Dataset

artl 747 163.32 747 96.69 747 96.69 315.53 1,747.49
art2 1,198 2,653.88 1,198 252.62 1,198 252.62 353.39 3,275.76
tae 750 546.84 750 522.28 750 518.18 1,298.78 1,521.39
thy 1,070 851.81 1,070 699.55 1,070 699.55 8,381.63 8,109.11
heartstatlog 3,497 3,307.17 3,497 3,166.31 3,497 3,166.31 9,900.78 7,441.88
cmc 13,248 9,996.73 13,248 9,906.84 13,248 99,06.84 35,728.93 50,485.71
glass 1,917 1,437.23 1,917 1,219.43 1,917 1,219.43 10,087.00 18,417.50
ecoli 2,345 3,916.32 2,345 1,270.59 2,345 1,270.59 6,508.79 27,062.64
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more significant deviations observed in CFO. In addition, SMCFO
is more stable and performs steadily across iterations, whereas
CFO performs slower and with more considerable variation.
SMCEFO’s stability indicates its better capability to optimize
solutions and escape local minima, making it a more consistent
option for clustering operations on varied datasets. These findings
highlight the benefits of incorporating the Nelder-Mead simplex
method within Cuttlefish Optimization so that SMCFO can realize

TABLE 20 Mean fitness values for SMCFO across different iterations.

Dataset Iteration
100 150 250

artl 469.96 45022 45022 45022 45022
art2 1,044.50 1,014.18 1,066.41 1,013.06 | 1,064.79
tae 875.56 877.16 869.29 863.00 863.06
thy 3,439.07 | 3,439.10 | 3,439.07 | 3439.10 | 3,439.07
heartstatlog | 5,667.50 | 5,670.91 566409 | 567694 | 566523
cme 20,097.47 | 20,055.23 | 20,130.73 | 20,055.34 | 20,130.62
glass 5,382.42 537469 | 537488 | 537483 | 537451
ecoli 12,591.03 | 12,585.61 | 12,584.86 | 12,596.35 | 12,605.38

TABLE 21 Wilcoxon rank-sum test p-values for sMCFO vs. other

10.3389/frai.2025.1677059

accelerated, more regular, and more stable convergence and thus
outperform the original CFO algorithm.

5.10 Statistical validation using
nonparametric tests

The Wilcoxon rank-sum test (Derrac et al., 2011), a widely
used nonparametric statistical method, was used to strictly test
the statistical significance of differences in performance between
algorithms. The test is suitable for comparing two independent
samples when the data does not follow a normal distribution. It
tests whether one group tends to have higher values than another
without assuming the underlying distribution, making it best suited
for testing algorithm performance on diverse datasets.

The statistical inference was based on the mean values reported
in Tables 2-15. A p-value was calculated for every pairwise
comparison between the proposed SMCFO approach and the
four baseline methods: CFO, PSO, SSO, and SMSHO. The p-
value quantifies the probability of achieving the observed outcome
under the null hypothesis that there is no statistically significant
difference between the mean performance of the two algorithms.
A smaller p-value provides more substantial evidence against the
null hypothesis.

TABLE 23 Nemenyi post-hoc test p-values for SMCFO vs. other

algorithms. algorithms.
SMCFO vs.

SSO SMSHO
artl 1.0386E-80 2.8903E-72 7.1408E-68 1.5468E-75 artl 0 0 0 1.0397E-09
art2 5.9107E-75 7.6675E-71 1.9002E-25 2.4159E-81 art2 2.7758E-12 0 0.0086728 0
tae 4.0974E-77 2.4371E-71 2.3473E-68 2.6633E-65 tae 2.5091E-14 0 0 3.1152E-10
thy 3.1709E-80 2.1449E-71 2.1689E-70 9.6101E-48 thy 0 0 0 4.2004E-07
heartstatlog 1.0693E-84 1.3498E-74 6.4545E-74 2.8339E-77 heartstatlog 3.8176E-10 0 0 2.0684E-10
cmce 6.1420E-81 7.0467E-72 5.9534E-53 8.2430E-74 cmc 6.6391E-14 1.0542E-11 0 0
glass 7.4065E-85 7.1716E-75 6.5139E-75 2.6391E-06 glass 0 0 0 0.4292
ecoli 2.92E-82 6.71E-73 5.80E-72 3.34E-12 ecoli 0 4.4409E-16 0 0.0032724

TABLE 22 Friedman test results with best rankings.

Dataset SMCFO CFO PSO SSO SMSHO Friedman_p First_Best = Second_Best
artl 1.995 3.465 5 3.510 1.030 7.0637e-161 SMSHO SMCFO

art2 2.770 3.875 5 2.355 1.000 1.4063e-158 SMSHO SSO

tae 2.005 3.210 5 3.775 1.010 8.0466e-165 SMSHO SMCFO

thy 1.905 3.660 5 3.330 1.105 2.6036e-160 SMSHO SMCFO
heartstatlog 3.005 3.995 1 5 2.000 1.1423e-171 PSO SMSHO

cmc 2.075 3.260 1 4.060 4.605 5.5555e-148 PSO SMCFO

glass 2475 3.925 1 5 2.600 1.4647e-159 PSO SMCFO

ecoli 2.290 3.955 1 5 2.755 9.1675e-163 PSO SMCFO
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TABLE 24 Clustering quality comparison: SMCFO vs. CFO.

Dataset SMCFO CFO
F-meas. Sens. Spec. F-meas. Sens. Spec.

artl 0.712 0.636 0.712 0.928 0.848 0.600 0.490 0.600 0.900 0.827
art2 0.732 0.637 0.732 0911 0.834 0.500 0.334 0.500 0.833 0.644
tae 0377 0.249 0378 0.689 0.386 0.430 0.395 0.436 0718 0.509
thy 0.730 0.405 0.411 0.703 0.580 0.716 0.344 0.371 0.694 0.569
heartstatlog 0.611 0.610 0.623 0.623 0.523 0.641 0.550 0.598 0.598 0.538
eme 0.427 0.199 0.333 0.667 0353 0.482 0.342 0399 0.708 0.487
glass 0.355 0.105 0.168 0.834 0.297 0411 0215 0.285 0.861 0.534
ecoli 0.640 0.395 0.416 0.935 0.736 0.488 0.221 0.237 0.893 0.466

The study used a significance level of 5%(c = 0.05), a standard
cut-off value in statistical hypothesis testing. This cutoff was chosen
because it strikes an equilibrium between reducing false positives
(Type I error) and avoiding actual effects from being missed (Type
II error). This represents a 5% chance of incorrectly concluding the
presence of a difference when no difference exists. A stricter 1%
significance level (¢ = 0.01) could lower the likelihood of Type I
errors but might increase the risk of Type II errors, leading to the
possible failure to detect significant differences. Accordingly, the
5% level provides a reasonable compromise, allowing rigorous but
not unduly inhibiting testing.

Table 21 lists the p-values obtained using the Wilcoxon rank-
sum test. In most comparisons, the p-values are well below 0.05,
providing strong statistical evidence against the null hypothesis.

Table 22 shows the Friedman test findings confirm statistically
significant differences between the compared algorithms (p < 0.05
across all datasets). In particular, SMCFO routinely places in the
top two performers on every dataset. SMCFO frequently competes
with PSO or SMSHO and is explicitly ranked as the best or second-
best in several datasets ( artl, tae, thy, hearstatlog, glass, ecoli).
Table 23 shows the Nemenyi post-hoc test in that SMCFO achieves
statistically significant improvements over CFO, PSO, and SSO in
most datasets, with very small p-values (e.g., 1077, 10712, 10714),
Against SMSHO, SMCFO shows mixed results: in some cases,
differences are not significant (glass, p = 0.4292), while in others
SMCFO outperforms SMSHO (e.g., ecoli, p = 0.0037).

The findings show that the performance gains achieved
by the proposed SMCFO algorithm are due to its effective
design, not random variation. Therefore, the SMCFO algorithm
significantly and consistently outperforms the other algorithms on
all tested datasets.

5.11 Clustering quality comparison:
SMCFO vs. CFO

The proposed SMCFO algorithm is compared with the
original CFO approach using eight benchmark datasets to
evaluate clustering performance. The evaluation relied on standard
clustering performance metrics, including accuracy, F-measure,
sensitivity (detection rate), specificity, and adjusted Rand index
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(ARI). Table 24 shows that the SMCFO algorithm consistently
outperformed CFO across most datasets, particularly in accuracy,
where it achieved higher values on seven out of eight datasets,
such as 0.7317 on art2 compared to CFO’s 0.5. SMCFO continually
enhanced precision-recall trade-offs and better identified positive
cluster assignments, especially in datasets such as artl and
heartstatlog, echoing the same trends in F-measure and sensitivity.
Though both algorithms retained high specificity, SMCFO
performed better on datasets such as glass and ecoli, efficiently
eliminating false positives. In terms of clustering agreement, ARI
scores were consistently higher with SMCFO, indicating greater
alignment with ground truth labels-for example, artl (0.8481 vs.
0.8269), art2 (0.8345 vs. 0.6437), and ecoli (0.7362 vs. 0.4658). These
results demonstrate that the modifications introduced in SMCFO
enhance clustering quality, stability, and convergence, particularly
in datasets characterized by complexity or imbalance.

5.12 Limitations and future directions

While SMCFO provides better stability and centroid accuracy
on average, it is not always better. In datasets with greater
dimensionality or strict evaluation budgets, the simplex step incurs
per-iteration overhead that lowers the rate of global updates,
at times constraining exploration. The local refinement can
over-exploit shallow basins in datasets with overlapping classes
and noisy or redundant features (e.g., glass). Class skewness
and numerous small clusters (e.g., ecoli) also prevent centroid
placement with a strictly Euclidean objective. For these, we see
more minor improvements or some underperformance compared
to baselines. To achieve this, future updates will (i) adaptively
trigger simplex based on recent progress and use it only for
top candidates, (ii) limit per-iteration simplex evaluations to
safeguard the global search budget, (iii) include dimensionality
reduction or feature weighting/metric learning to help counteract
noise and overlap, (iv) introduce diversity-preserving restarts
or annealed exploration weights, and (v) leverage parallelization
of simplex evaluations. These modifications preserve SMCFO’s
advantages in accuracy while enhancing its robustness on
complex datasets.
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6 Conclusion

The effectiveness of the proposed SMCFO method is assessed
using benchmark datasets representing diverse tasks such as
species classification, disease prediction, educational assessment,
analysis of contraceptive behavior, signal processing, and protein
localization. The SMCFO algorithm integrates the Nelder-Mead
Simplex method into the original CFO framework, replacing the
traditional reflection and visibility stages for group 1. The primary
motivation for introducing the simplex method is to enhance the
algorithm’s exploration capability and population diversity. This
combination allows for creating a more extensive and diverse range
of candidate solutions in the search space, which enhances the
likelihood of obtaining improved fitness values and strengthens
the capacity of the algorithm to escape local optima. The SMCFO
algorithm improves global search ability and demonstrates better
convergence speed and stability. In data clustering problems,
every solution in SMCFO is a collection of cluster centroids. The
performance of the proposed algorithm is tested using extensive
experiments on two artificial and twelve real-world datasets. Its
performance is compared with well-known algorithms, such as
PSO, SSO, SMSHO, and CFO. Both numerical and graphical results
affirm that SMCFO outperforms the other methods consistently,
with improved fitness values, stable convergence behavior, and high
capability for avoiding premature convergence.

Future research will concentrate on a few essential topics.
Firstly, will look into complex fitness function designs to improve
performance on noisy and unbalanced datasets. Further illustrating
the practical utility of SMCFO, will thoroughly assess its scalability
and dependability on large-scale, multi-modal, high-dimensional
datasets. In addition, SMCFO will expand to address complex
real-world optimization issues, such as intelligent transportation
systems, blockchain transaction data for scalable and fraud-proof
clustering, image segmentation, and scheduling jobs.
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