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Ovarian cancer remains the deadliest gynecologic malignancy, and transvaginal 
ultrasound (TVS), the first-line test, still suffers from limited specificity and operator 
dependence. We introduce a learned early-fusion (joint projection) hybrid that 
couples EfficientNet-B7 (local descriptors) with a Swin Transformer (hierarchical 
global context) to classify eight ovarian tumor categories from 2D TVS. Using the 
public, de-identified OTU-2D dataset (n = 1,469 images across eight histopathologic 
classes), we conducted patient-level, stratified 5-fold cross-validation repeated 
10×. To address class imbalance while preventing leakage, training used train-only 
oversampling, ultrasound-aware augmentations, and strong regularization; validation/
test folds were never resampled. The hybrid achieved AUC 0.9904, accuracy 
92.13%, sensitivity 92.38%, and specificity 98.90%, outperforming single CNN or 
ViT baselines. A soft ensemble of the top hybrids further improved performance 
to AUC 0.991, accuracy 93.3%, sensitivity 93.6%, and specificity 99.0%. Beyond 
discrimination, we provide deployment-oriented evaluation: isotonic calibration 
yielded reliable probabilities, decision-curve analysis showed net clinical benefit 
across 5–20% risk thresholds, entropy-based uncertainty supported confidence-
based triage, and Grad-CAM highlighted clinically salient regions. All metrics are 
reported with 95% bootstrap confidence intervals, and the evaluation protocol 
preserves real-world data distributions. Taken together, this work advances 
ovarian ultrasound AI from accuracy-only reporting to calibrated, explainable, and 
uncertainty-aware decision support, offering a reproducible reference framework 
for multiclass ovarian ultrasound and a clear path toward clinical integration and 
prospective validation.
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1 Introduction

Ovarian cancer (OC) remains the most lethal gynecological malignancy worldwide. 
According to the World Health Organization (WHO), ovarian cancer ranks as the eighth most 
common cancer among women globally, with approximately 324,603 new cases and 206,956 
deaths reported annually, translating to an estimated incidence of 6.7 cases per 100,000 women 
(Ferlay et al., 2024). Despite significant advances in surgical treatments and targeted therapies, 
global five-year survival remains below 50%, mainly due to late-stage diagnosis (Dexter et al., 
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2024; Lheureux et al., 2019). Approximately 66–70% of OC cases are 
diagnosed at advanced FIGO stages (III–IV), which is tightly 
associated with poorer five-year survival, where therapeutic efficacy is 
limited and invasive interventions become necessary, severely 
impacting patient quality of life and increasing healthcare costs (Hong 
and Ding, 2025; Siegel et  al., 2021; Cortés Morera et  al., 2020; 
Christiansen et al., 2025; Menon et al., 2018).

Currently, B-mode transvaginal ultrasound (TVS) is the 
primary imaging modality for the initial assessment of suspicious 
ovarian masses, given its accessibility, low cost, and absence of 
ionizing radiation (Van Nagell and Hoff, 2013; Sideris et al., 2024). 
However, despite its relatively high sensitivity, TVS suffers from 
limited specificity when used in isolation, with real-world 
specificity varying across practice settings, frequently resulting in 
diagnostic uncertainty, numerous false positives, and unnecessary 
invasive procedures (Gareeballah et al., 2025; Almeida et al., 2025; 
Tsili et al., 2024). Consequently, TVS is often complemented with 
validated structured criteria, such as IOTA and O-RADS, including 
the 2022 ACR O-RADS US update, as well as subjective evaluations 
by expert clinicians, which can lead to observational bias and 
considerable inter-observer variability (Dexter et  al., 2024; 
Buranaworathitikul et  al., 2024; Christiansen et  al., 2021), and 
reproducibility within IOTA frameworks still depends on reader 
expertise. This underscores the urgent need for automated, 
objective diagnostic tools that can deliver accurate and 
reproducible evaluations of ovarian lesions, particularly in clinical 
settings with limited resources or expertise (Tang et al., 2025; Gao 
et al., 2022).

Recent advances in artificial intelligence (AI) and deep learning 
(DL) have revolutionized automated medical image analysis (Mienye 
et al., 2025). Convolutional neural networks (CNNs) have become the 
gold standard for complex diagnostic tasks, demonstrating robust 
performance in various medical imaging domains, from breast and 
lung tumor identification to classification of brain lesions, due to their 
exceptional ability to extract local image features (Hong and Ding, 
2025; Christiansen et  al., 2025; Sideris et  al., 2024). In ovarian 
ultrasound specifically, CNN-based and radiomics-based pipelines 
have shown promising performance for benign–malignant 
discrimination and, more recently, multiclass stratification; however, 
hybrid CNN-Transformer approaches remain uncommon.

Nevertheless, CNN and Vision Transformer (ViT) models 
individually exhibit notable limitations affecting clinical 
generalization: CNNs typically underestimate global contextual 
information, whereas ViTs often struggle to preserve essential fine-
grained local features necessary for precise anatomical lesion 
classification (Khan et al., 2023; Zhang et al., 2024; Kim et al., 2024). 
Recent studies in other medical domains have demonstrated that 
hybrid CNN-Transformer architectures significantly enhance 
performance in complex tasks, such as lung lesion segmentation and 
breast cancer classification, highlighting their superior capability to 
manage inherent variability and complexity in medical imaging (Liu 
et al., 2021; Djoumessi et al., 2025; Mustapha et al., 2025). Yet, the 
application of these hybrid approaches specifically to ovarian cancer 
diagnosis from ultrasound images remains underexplored, 
constituting a critical scientific and clinical gap that limits the potential 
impact of AI in gynecologic oncology. Only a handful of studies have 
examined hybrids tailored to ovarian ultrasound compared with other 
organ systems.

Although recent hybrid CNN-Transformer architectures have 
been proposed for medical imaging, they typically employ late-fusion 
strategies, combining CNN and Transformer features at later stages of 
model processing, thereby limiting early feature interaction and 
potentially reducing diagnostic accuracy. Unlike previous approaches 
(Chen et al., 2021; Zhang et al., 2021), our proposed methodology 
implements a novel learned early-fusion (joint projection). This design 
explicitly enables early cross-talk between local CNN-extracted 
features and global Transformer-derived context, a choice motivated 
by evidence that early interactions can improve generalization over 
late-fusion baselines. Consequently, this provides substantial 
methodological innovation with the potential to enhance the 
performance of multiclass ovarian tumor classification significantly.

In this work, we  make several contributions to AI-based 
ultrasound classification of ovarian tumors. We introduce a learned 
early-fusion (joint projection) hybrid architecture that couples 
EfficientNet-B7 with a Swin Transformer, enabling joint optimization 
and early crosstalk between local and global representations. 
We conduct a comprehensive multiclass evaluation on the OTU-2D 
dataset, which mirrors real-world case mix and class imbalance. 
We adopt class-aware training and reporting, with a specific emphasis 
on underrepresented categories that are crucial for clinical triage. To 
support clinical trust and quality assurance, we provide clinician-
oriented interpretability via Grad-CAM and rigorously benchmark 
the proposed model against CNN-only, Transformer-only, and late-
fusion baselines, quantifying the added value of early fusion. Beyond 
single-model performance, we further optimize diagnostic accuracy 
through a soft ensemble of the top hybrid models. We also move 
beyond accuracy-only assessments by evaluating probabilistic 
calibration (via isotonic regression) and clinical utility (via decision 
curve analysis). Finally, we  explicitly characterize predictive 
uncertainty through an entropy-based analysis, enabling risk-aware 
automation and escalation policies. We ensure statistical robustness 
and reproducibility by employing patient-level stratified cross-
validation, multiple independent runs with fixed seeds, bootstrap 
confidence intervals, and formal hypothesis testing.

2 Materials and methods

2.1 Ethics, data privacy, and security

The present study utilized the publicly available, de-identified 
OTU-2D (Ovarian Tumor Ultrasound—2D) dataset, comprising 
1,469 two-dimensional B-mode ultrasound images acquired under 
standardized clinical conditions (Figure  1). Images were 
retrospectively collected from patients attending Beijing Shijitan 
Hospital, Capital Medical University, Beijing, China, with all diagnoses 
histopathologically confirmed by expert pathologists. Experienced 
gynecologic oncologists systematically classified ovarian lesions into 
eight clinically relevant diagnostic categories: chocolate cyst 
(endometrioma), serous cystadenoma, mucinous cystadenoma, 
teratoma, simple cyst (functional cyst), theca cell tumor, high-grade 
serous carcinoma, and normal ovary, using the IOTA consensus and 
O-RADS US (2022) lexicón as specified by the dataset curators. 
Because OTU-2D is a public resource containing only de-identified 
images and metadata, this secondary analysis did not require new 
Institutional Review Board/Ethics Committee approval or patient 
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informed consent. All analyses were performed exclusively on 
de-identified files; no attempt was made to re-identify individuals or 
to link records to external sources. Processing followed privacy-by-
design safeguards (data minimization; restricted, role-based access; 
encryption at rest and in transit; and audit logging) and complied with 
applicable data-protection requirements for secondary research on 
de-identified data (e.g., GDPR research provisions) (Vara et al., 2023; 
Garg et al., 2017; Andreotti et al., 2020). A detailed breakdown of the 
dataset composition per diagnostic class is provided in Table 1.

2.2 Image preprocessing

All ultrasound images were resized to 224 × 224 pixels to 
standardize the input resolution required by the utilized architectures. 
Images were converted to numeric tensors and normalized using the 
RGB channel mean [(0.485, 0.456, 0.406)] and standard deviation 
[(0.229, 0.224, 0.225)] derived from the ImageNet dataset (Deng et al., 
2009), a common practice facilitating convergence and generalization 
through transfer learning.

In addition, we applied ultrasound-specific data augmentation 
only to the training data to improve generalization while preserving 
clinical plausibility, including small in-plane rotations and translations, 
random crops, additive Rayleigh-distributed speckle noise, brightness/
contrast, and time-gain—like intensity perturbations, and acoustic 
artifacts such as mild shadowing and posterior enhancement.

Due to a significant class imbalance observed in the original 
dataset, a class rebalancing strategy was required. We  opted for 

random oversampling, which was applied exclusively to the training 
folds after the stratified patient-level split, thereby increasing the 
number of examples from minority classes by randomly duplicating 
images. Validation and test folds were never resampled or augmented 
to preserve the real-world distribution and prevent information 
leakage. The rationale behind selecting oversampling rather than focal 
loss or class-balanced loss was twofold: (Ferlay et  al., 2024) 
oversampling maintains the standard categorical cross-entropy loss 
function, preserving its interpretability and facilitating training 
stability, and (Dexter et  al., 2024) it directly equalizes class 
distributions, ensuring adequate feature representation from minority 
classes without modifying loss dynamics. While focal loss and 

FIGURE 1

Representative examples of the eight clinical categories included in the OTU-2D dataset (original images and annotations).

TABLE 1  Distribution of the OTU-2D dataset used in this study, showing 
the number of two-dimensional ultrasound images classified into each 
evaluated clinical category.

Category Number of images

Chocolate cyst 336

Serous cystadenoma 219

Teratoma 336

Theca cell tumor 88

Simple cyst 66

Normal ovary 267

Mucinous cystadenoma 104

High grade serous 53
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class-balanced loss address imbalance by modifying loss function 
gradients, they can complicate training convergence and introduce 
additional hyperparameter tuning complexity. Thus, oversampling 
was chosen as a straightforward, effective, and interpretable method 
to handle class imbalance.

To further mitigate overfitting potentially induced by resampling, 
oversampling was combined with the ultrasound-specific 
augmentations and with model-level regularization (dropout and L2 
weight decay).

Validation and test sets remained unaltered to ensure an unbiased 
evaluation of model performance on real-world data distribution.

2.3 Deep learning architectures

Five pre-trained architectures were evaluated: three CNN-based 
(ResNet-152, DenseNet-201, EfficientNetB7) and two Transformer-
based (ViT-B16, Swin Transformer). These architectures were selected 
based on previously demonstrated performance in complex medical 
imaging tasks: ResNet-152 (He et  al., 2015): Utilizes residual 
connections, enabling adequate gradient flow in deep architectures. 
DenseNet-201 (Huang et  al., 2017): Employs dense connectivity, 
improving feature reuse and reducing parameter count. EfficientNetB7 
(Tan and Le, 2020): Implements automated compound scaling for 
optimal accuracy and computational efficiency. ViT-B16 (Dosovitskiy 
et al., 2021): Adapts transformer architecture to visual tasks through 
global attention mechanisms over image patches. Swin Transformer 
(Liu et al., 2021): Implements hierarchical attention through shifted-
window mechanisms, suitable for capturing complex 
anatomical structures.

For each proposed hybrid CNN–Transformer model, the selected 
CNN and Transformer architectures were individually loaded with 
pre-trained ImageNet weights, and their original classification layers 

were removed. For the CNN architectures, final convolutional 
features underwent adaptive average pooling followed by flattening 
to produce a compact, one-dimensional feature vector. For the 
Transformer architecture, features were directly obtained as flattened 
feature vectors from their respective pre-classification layers. 
Subsequently, CNN-derived local features and Transformer-derived 
global contextual features were concatenated into a single unified 
feature vector. This combined vector was then processed through 
fully connected layers, including dimensionality reduction, 
non-linear activation (ReLU), dropout (0.3), and a final softmax layer 
to yield class probabilities for multiclass ovarian tumor classification. 
This early-fusion (joint projection) approach effectively integrates 
detailed local feature extraction with global context modeling, 
leveraging the complementary strengths of CNN and Transformer 
architectures. A detailed schematic of this strategy is illustrated 
clearly in Figure 2.

2.4 Fusion block (learned early-fusion via 
joint projection)

Let ∈ cd
CNNf   and ∈ td

ViTf   denote the penultimate features 
from the CNN and Transformer branches. We  form 

+= ∈  0 CNN; c td d
ViTh f f   and learn a joint projection ( )φ= +1 0 1z W h b

, followed by dropout, and the classifier ( )= +2 2p softmax W z b .
Here, 1W  adapts both the relative contribution of each branch and 

their cross-feature interactions under the multiclass loss, enabling 
early, end-to-end co-adaptation of local (CNN) and global (ViT) cues. 
This differs from late fusion (e.g., score averaging or stacking), where 
interactions are deferred to outputs and gradients cannot shape 
intermediate features jointly. Regularization (dropout, weight decay) 
curbs co-adaptation and promotes a compact, data-driven 
feature subspace.

FIGURE 2

Methodological pipeline. From OTU-2D acquisition and preprocessing to patient-level, stratified 5-fold cross-validation repeated 10×. CNN (local) and 
ViT (global) branches are combined via a learned early-fusion (joint projection) that enables early co-adaptation of features; training uses train-only 
oversampling, ultrasound-aware augmentation, dropout, and L2 weight decay. Evaluation includes clinically relevant metrics with 95% CIs, bootstrap 
resampling, and statistical testing (Shapiro–Wilk, paired t/Wilcoxon; ANOVA/Tukey, α = 0.01), plus isotonic calibration, decision-curve analysis, entropy-
based uncertainty, and Grad-CAM interpretability. Validation/test folds were never resampled or augmented to avoid leakage.
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2.5 Training strategy and hyperparameters

Model performance was evaluated using patient-level, stratified 
5-fold cross-validation to ensure representative and robust outcomes. 
Each architecture and hybrid combination was independently trained 
and assessed in ten separate runs with explicitly set random seeds, 
facilitating reproducibility. Consistent hyperparameters were applied 
across all experiments, including a batch size of 32 images and a 
maximum of 50 training epochs. The Adam optimizer was employed 
with an initial learning rate of 1e-4, with L2 weight decay, dynamically 
adjusted through a 0.1-factor reduction after five consecutive epochs 
without validation loss improvement (ReduceLROnPlateau 
scheduler). Early stopping based on validation loss was used to halt 
training once no improvement was observed within a fixed patience 
window, thereby further reducing the risk of overfitting. The 
categorical cross-entropy loss function was utilized in all models. 
Dropout (p = 0.3 in the classification head, as detailed in Section 2.3) 
complemented these measures to provide additional regularization.

2.6 Evaluation metrics and statistical 
analysis

Diagnostic performance was assessed using clinically relevant 
metrics: accuracy, sensitivity (recall), specificity, area under the ROC 
curve (AUC-ROC), and area under the Precision-Recall curve (AUC-
PR), essential given the significant class imbalance present in the 
dataset. Complementary metrics, such as the F1-score and Matthews 
correlation coefficient (MCC), were calculated to ensure a 
comprehensive performance assessment.

The statistical significance of differences between individual and 
hybrid models was first assessed through Shapiro–Wilk normality 
testing. Subsequently, paired Student’s t-tests were employed for 
normally distributed data, while the Wilcoxon signed-rank test was 
utilized for non-normal distributions. For multiple comparisons, 
ANOVA with Tukey’s post-hoc tests was applied. In all cases, statistical 
significance was set at α = 0.01.

2.7 Interpretability and generation of 
activation maps

To assess the capability of the proposed hybrid CNN–Transformer 
models in identifying and focusing on clinically relevant regions 
within ultrasound images, the Grad-CAM technique (Selvaraju et al., 
2017) was implemented. Specifically, activation maps were extracted 
from the last relevant layer before global pooling or before the final 
classification layer, depending on each architecture.

Grad-CAM was implemented using the publicly available library 
torchcam.1 Preprocessed ultrasound images were propagated through 
the hybrid models to obtain corresponding activation maps, specifically 
generated after the adaptive feature fusion block (learned early fusion via 
joint projection), highlighting areas with the highest diagnostic relevance.

Qualitative evaluation of the generated activation maps was 
performed by overlaying these maps onto the original ultrasound 
images using OpenCV and PIL libraries. An activation threshold of 
50% of the maximum value was applied to emphasize the regions 
identified by the models visually. Figure 3 provides representative 
examples of these Grad-CAM activation maps, clearly illustrating how 
the hybrid EfficientNetB7–Swin Transformer model effectively focuses 
on tumor-associated anatomical regions, aligning closely with clinical 
expertise and expectations.

Visual examination of these maps confirms that model attention 
is consistently directed toward regions considered clinically significant 
by experts, reinforcing the interpretability and credibility of the hybrid 
CNN-Transformer approach in a clinical context. This interpretability 
facilitates trust in automated diagnostic decisions and represents a 
critical step towards the practical clinical adoption of artificial 
intelligence systems.

1  https://github.com/frgfm/torch-cam

FIGURE 3

Representative Grad-CAM activation maps of ovarian tumor ultrasound images. Activation heatmaps (red and yellow areas indicating higher activation) 
generated by the hybrid EfficientNetB7–Swin Transformer model overlaid onto original ultrasound images. These activation maps visually confirm that 
the model accurately focuses on clinically relevant tumor regions, thus reinforcing the interpretability and diagnostic credibility of the proposed hybrid 
architecture.
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2.8 Software and hardware

The models were implemented and trained using Python version 
3.10, employing the PyTorch library version 2.7.0 with CUDA 11.8. 
Data management and analysis were performed using Pandas 2.1.3, 
NumPy 1.26.4, and Scikit-learn 1.3.2. All training and studies were 
conducted on a server equipped with an Intel Xeon Silver 4,216 CPU 
@ 2.10 GHz and an NVIDIA A100 GPU with 40 GB.

3 Results

3.1 Comparison of hybrid and individual 
model performance

All performance metrics reported in Tables 2–5 correspond to 
evaluations on the held-out folds of the publicly available OTU-2D 
dataset (1,469 de-identified B-mode ultrasound images collected at 
Beijing Shijitan Hospital, Capital Medical University, Beijing, China), 
using patient-level, stratified 5-fold cross-validation repeated ten 
times; validation and test partitions were not resampled or augmented 
to preserve the real-world distribution. The observed, statistically 
significant improvements of the learned early-fusion models over 
single-branch baselines across Accuracy, Sensitivity, Specificity, and 
AUC (Table  2), together with training stability across repetitions 

(Figure  4), are consistent with the intended benefit of early joint 
optimization of CNN and Transformer features.

Table 2 presents a detailed comparison of diagnostic performance 
between hybrid CNN-Transformer models and individual CNN or 
Vision Transformer (ViT) architectures. The hybrid EfficientNetB7–
Swin Transformer model consistently achieved superior performance, 
demonstrating an accuracy of 92.13% [95% CI, 90.7–93.2], sensitivity 
of 92.38% [95% CI, 91.0–93.4], specificity of 98.9% [95% CI, 98.7–
99.0], and an area under the ROC curve (AUC) of 0.9904 [95% CI, 
0.987–0.993]. Complementary metrics included an F1-score of 0.921 
[95% CI, 0.908–0.932] and a Matthews correlation coefficient (MCC) 
of 0.910 [95% CI, 0.894–0.923].

Before statistical comparisons, normality was assessed using the 
Shapiro–Wilk test. Depending on normality results, either paired 
Student’s t-tests (for normally distributed differences) or Wilcoxon 
signed-rank tests (for non-normal distributions) were employed. The 
EfficientNetB7–Swin hybrid model significantly outperformed 
individual EfficientNetB7 (accuracy: +17.1 pp., sensitivity: +26.6 pp, 
specificity: +2.6 pp, AUC: +8.0 pp; p < 0.001 for all metrics) and Swin 
Transformer (accuracy: +20.1 pp, sensitivity: +28.9 pp, specificity: 
+3.1 pp, AUC: +7.3 pp; p < 0.001 for all metrics). Overall, hybrid 
CNN-Transformer models showed statistically significant superior 
diagnostic performance across all evaluated metrics compared to 
individual architectures (p < 0.01). Additionally, we  conducted a 
detailed statistical comparison between the EfficientNetB7–Swin 

TABLE 2  Bootstrap metrics (n = 500) (Accuracy, Sensitivity, Specificity, AUC, F1-macro, MCC) for each algorithm.

Model Accuracy Sensitivity Specificity AUC F1 MCC

ResNet152 0.735 [0.707, 0.764] 0.632 [0.590, 0.676] 0.959 [0.955, 0.964] 0.926 [0.913, 

0.940]

0.661 [0.619, 

0.704]

0.676 [0.641, 

0.711]

DenseNet201 0.776 [0.749, 0.802] 0.662 [0.622, 0.700] 0.966 [0.962, 0.970] 0.922 [0.905, 

0.938]

0.689 [0.649, 

0.727]

0.728 [0.697, 

0.758]

EfficientNetB7 0.750 [0.721, 0.779] 0.656 [0.618, 0.698] 0.962 [0.958, 0.967] 0.911 [0.893, 

0.929]

0.675 [0.635, 

0.716]

0.697 [0.663, 

0.731]

VITB16 0.686 [0.653, 0.714] 0.587 [0.547, 0.627] 0.953 [0.948, 0.957] 0.896 [0.877, 

0.914]

0.595 [0.553, 

0.635]

0.620 [0.580, 

0.653]

Swin 0.719 [0.690, 0.747] 0.634 [0.594, 0.673] 0.958 [0.954, 0.962] 0.917 [0.902, 

0.933]

0.637 [0.598, 

0.672]

0.659 [0.626, 

0.692]

ResNet152-VITB16 0.913 [0.898, 0.925] 0.912 [0.898, 0.925] 0.988 [0.986, 0.989] 0.990 [0.987, 

0.992]

0.908 [0.893, 

0.920]

0.900 [0.883, 

0.915]

DenseNet201-VITB16 0.908 [0.893, 0.923] 0.907 [0.894, 0.922] 0.987 [0.985, 0.989] 0.988 [0.984, 

0.991]

0.907 [0.893, 

0.922]

0.895 [0.879, 

0.912]

EfficientNetB7–VITB16 0.905 [0.892, 0.919] 0.906 [0.893, 0.919] 0.986 [0.985, 0.989] 0.985 [0.981, 

0.988]

0.904 [0.891, 

0.918]

0.892 [0.876, 

0.908]

ResNet152–Swin 0.915 [0.901, 0.929] 0.917 [0.903, 0.931] 0.988 [0.986, 0.990] 0.992 [0.989, 

0.994]

0.914 [0.900, 

0.929]

0.903 [0.887, 

0.919]

DenseNet201–Swin 0.913 [0.900, 0.927] 0.915 [0.902, 0.927] 0.988 [0.986, 0.989] 0.990 [0.987, 

0.993]

0.913 [0.900, 

0.926]

0.901 [0.885, 

0.916]

EfficientNetB7–Swin 0.921 [0.907, 0.932] 0.923 [0.910, 0.934] 0.989 [0.987, 0.990] 0.990 [0.987, 

0.993]

0.921 [0.908, 

0.932]

0.910 [0.894, 

0.923]

Values are presented as mean ± 95% CI, with algorithms in rows and metrics in columns.
Metrics are reported as mean [95% CI] on the held-out folds of patient-level, stratified 5-fold cross-validation repeated 10-fold. Validation/test partitions were not resampled or augmented. 
95% CIs were computed via bootstrap (n = 500). AUC, area under the ROC curve; F1, macro-averaged F1-score; MCC, Matthews correlation coefficient; ViT-B16, Vision Transformer (patch 
size 16); Swin, Swin Transformer.
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model and the other hybrid models using the Wilcoxon signed-rank 
test. The results are clearly summarized in Table 3.

These statistical findings strongly confirm the significant 
superiority of the EfficientNetB7–Swin Transformer model across 
multiple critical metrics. Although some p-values for AUC were 
greater than 0.05 (ResNet152–VITB16 and DenseNet201–Swin), 
key metrics such as Accuracy, Sensitivity, and Specificity 
demonstrated statistically significant differences in all cases. This 
clearly shows the advantage of the EfficientNetB7–Swin model, thus 
justifying its selection as the optimal model for clinical applications 
in precise and robust ovarian tumor classification using 
ultrasound imaging.

Regarding the specific choice of hybrid CNN–Transformer 
models, it is essential to highlight that the explicit combination 
between CNN and Transformer architectures was chosen to leverage 
the complementary strengths of both approaches: the detailed local 
feature extraction capability of CNNs and the global contextual 

attention capability of Transformers. While an exhaustive combination 
of all possible architectures (e.g., ResNet with EfficientNet or ViT-B 
with Swin Transformer) could potentially explore additional 
interactions, we  chose to focus specifically on CNN-Transformer 
combinations due to the clear distinction and complementarity of the 
intrinsic capabilities of these architectures. This decision enabled a 
more direct and specific comparison and validation of how effectively 
integrating local and global information significantly enhances 
medical image classification.

3.2 Diagnostic performance by clinical 
category

Figure 5 shows the normalized confusion matrix for the best-
performing EfficientNetB7–Swin model. The matrix is strongly 
diagonal, with class-wise recalls of 1.00 for high-grade serous 
carcinoma, 0.99 for theca cell tumor, 0.98 for simple cyst, and 0.97 for 
mucinous cystadenoma. Lower—but still robust values are observed 
for serous cystadenoma (0.89), teratoma (0.86), normal ovary (0.87), 
and chocolate cyst (0.82). Most errors are confined to clinically similar 
cystic entities and occasional confusion with the normal ovary, 
consistent with overlapping sonographic patterns.

Table 4 provides a detailed breakdown of diagnostic performance 
by clinical category for the best-performing hybrid EfficientNetB7–
Swin model. Categories such as “High-grade serous carcinoma” and 
“Theca cell tumor” showed outstanding diagnostic performance, with 
sensitivities approaching 100%, specificities exceeding 99%, and 
F1-scores above 97%. Similarly, the “Simple cyst” and “Mucinous 
cystadenoma” categories exhibited high sensitivity (>97%) and 
specificity (>98%). Even categories characterized by slightly higher 
error rates, such as “Chocolate cyst” (endometrioma) and “Normal 
ovary,” retained robust performance (sensitivity ≥82%, specificity 
≥98%), indicating strong model generalizability across diverse 
clinical scenarios.

3.3 Training stability and model 
convergence

Figure 4 illustrates the convergence and stability of diagnostic 
metrics (loss, accuracy, sensitivity, specificity, AUC) across training 
epochs for the EfficientNetB7–Swin hybrid model. All performance 
metrics rapidly converged within ±1 standard deviation of final values 
early during training (loss stabilized at epoch 4, accuracy at epoch 3, 
sensitivity at epoch 2, specificity at epoch 3, and AUC at epoch 2). 
Inter-run variability consistently decreased across epochs, confirming 
the robustness and reproducibility of the proposed model 
training strategy.

3.4 Probabilistic calibration and clinical 
decision utility

Figure  6 shows the reliability curves assessing probabilistic 
calibration for the EfficientNetB7–Swin hybrid model. Initial 
evaluation revealed a minor underestimation of predicted 

TABLE 3  p-value results from the statistical analysis (Wilcoxon signed-
rank test) comparing EfficientNetB7–Swin with other hybrid models 
(n = 10 measurements).

Model Accuracy Sensitivity Specificity AUC

ResNet152–

VITB16

<0.01 <0.01 <0.01 0.5930

DenseNet201–

VITB16

<0.01 <0.01 <0.01 <0.01

EfficientNetB7–

VITB16

<0.01 <0.01 <0.01 <0.01

ResNet152–

Swin

<0.01 <0.01 <0.01 <0.01

DenseNet201–

Swin

0.0488 0.0195 0.0137 0.4922

Wilcoxon signed-rank p-values (two-sided) comparing EfficientNet-B7–Swin against each 
hybrid model across 10 independent repetitions of patient-level, stratified 5-fold cross-
validation. Metrics are computed on held-out folds. α = 0.01 was used to judge statistical 
significance. AUC, area under the ROC curve. Note that AUC differences for ResNet152–
ViT-B16 and DenseNet201–Swin were not significant (p = 0.5930 and p = 0.4922, 
respectively).

TABLE 4  Class-wise metrics (accuracy, sensitivity, specificity, and F1-
score), calculated as the average of the ten repetitions of the 
EfficientNet–Swin hybrid model.

Class 
(ovarian 
lesion type)

Accuracy Sensitivity Specificity F1-
score

Chocolate cyst 0.8929 0.8238 0.9842 0.8569

Serous 

cystadenoma

0.8910 0.8859 0.9836 0.8883

Teratoma 0.8969 0.8572 0.9858 0.8766

Theca cell tumor 0.9617 0.9921 0.9943 0.9765

Simple cyst 0.9508 0.9835 0.9937 0.9669

Normal ovary 0.8563 0.8745 0.9802 0.8650

Mucinous 

cystadenoma

0.9229 0.9731 0.9895 0.9473

High grade serous 0.9914 1.0000 0.9986 0.9957
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TABLE 5  Diagnostic performance metrics [accuracy, sensitivity, specificity, AUC, F1-score, and Matthew’s correlation coefficient (MCC)] obtained 
through soft-ensemble optimization.

Summary 
statistic

Accuracy Sensibility Specificity AUC F1 MCC

Mean ± SD 0.933 ± 0.005 0.936 ± 0.003 0.990 ± 0.001 0.991 ± 0.004 0.933 ± 0.005 0.924 ± 0.006

Metrics are presented as mean ± standard deviation (SD), calculated from the combined probabilistic predictions of the top three hybrid CNN–Transformer models (DenseNet201–Swin, 
EfficientNetB7–Swin, ResNet152–Swin), weighted proportionally by their individual AUC scores.

FIGURE 4

The training stability and variability of the EfficientNet–Swin hybrid model over 50 epochs across ten independent runs. Panels A–E (arranged in two 
columns and three rows) depict the mean ± standard deviation curves for Loss (A), Accuracy (B), Sensitivity (C), Specificity (D) and AUC (E); red dashed 
lines indicate the epoch of stability for each metric (Loss: 4, Accuracy: 3, Sensitivity: 2, Specificity: 3, AUC: 2). Panel F shows the evolution of inter-run 
variability, plotting the standard deviation across repetitions for all metrics by epoch, which converges as training progresses.
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FIGURE 5

Normalized confusion matrix of the best-performing hybrid EfficientNetB7 + Swin Transformer model.

FIGURE 6

Reliability and Decision Curve Analysis of the EfficientNetB7–Swin hybrid model. Left panel: reliability plot showing the alignment between predicted 
probabilities and observed outcomes before (blue line with circles) and after isotonic regression calibration (orange line with squares), compared 
against the ideal calibration reference (dashed gray line). Right panel: Decision curve analysis illustrating net clinical benefit across a range of clinically 
relevant probability thresholds. The EfficientNetB7–Swin model (solid blue line) demonstrates superior clinical utility compared to the strategies of 
“treat all” (orange dashed line) or “treat none” (green dotted line).
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probabilities, especially at intermediate risk ranges. After isotonic 
recalibration, predicted probabilities closely matched observed 
malignancy rates, indicating excellent model calibration.

Clinical decision-curve analysis demonstrated substantial net 
clinical benefit for the hybrid model compared to standard 
management strategies (“treat all” or “treat none”) across a clinically 
relevant threshold range (5–20%). This underscores the practical 
utility of the model predictions, potentially reducing unnecessary 
invasive procedures while maintaining high diagnostic accuracy.

3.5 Diagnostic performance optimization 
via soft ensemble

To further enhance diagnostic accuracy, a soft-ensemble approach 
was employed, combining prediction probabilities from the three 
highest-performing hybrid models (DenseNet201–Swin, 
EfficientNetB7–Swin, ResNet152–Swin), weighted proportionally by 
their individual AUC scores. This strategy yielded a statistically 
significant additional improvement in overall diagnostic performance, 
reaching accuracy of 93.3% ± 0.5%, sensitivity of 93.6% ± 0.3%, 
specificity of 99.0% ± 0.1%, and AUC of 0.991 ± 0.004, along with 
increased stability in predictions.

3.6 Predictive uncertainty and 
confidence-error analysis

Figure  7 explores the relationship between predictive 
uncertainty, measured by entropy of model predictions, and 
diagnostic error rates. Predictions exhibiting high confidence (low 
entropy, deciles 1–5) demonstrated negligible error rates. Errors 
slightly increased from decile 7 (~2%), becoming notably elevated 

in the highest uncertainty deciles, reaching approximately 8% in 
decile 9 and 43% in decile 10. These results indicate that entropy is 
a reliable marker of uncertainty, supporting a practical clinical 
strategy to automate decision-making for approximately 90% of 
cases characterized by low uncertainty, while reserving expert 
clinician review for the remaining 10% exhibiting higher uncertainty. 
This approach would significantly optimize diagnostic accuracy 
and efficiency.

4 Discussion

4.1 Early-fusion hybrid performance

Recent AI-driven ultrasound studies for ovarian tumor 
classification have predominantly focused on benign–malignant 
binary discrimination, often assessed only on internal cohorts and 
lacking external validation (Giourga et al., 2024). For example, Gao 
et  al. (2022) developed a deep learning model with strong 
multicenter performance on a large dataset but restricted the task 
to binary detection (Gao et al., 2022). Similarly, a recent pipeline by 
Dai et  al. (2024) achieved robust performance with multiple 
external validations, yet remained limited to benign–malignant 
discrimination (Dai et  al., 2024). Truly multiclass approaches 
(differentiating multiple histological subtypes) remain uncommon 
(Wu et al., 2018). One exception is the CNN-based study by Wu 
et al. (2023), which addressed seven ovarian tumor subcategories 
and reported high internal accuracy (Wu et al., 2018); however, it 
did not include model calibration, uncertainty analysis, or external 
testing. Most prior work also relies on CNNs alone and omits 
modern interpretability or clinical-utility analyses. By contrast, 
we  present an early-fusion hybrid CNN–Transformer with a 
concise, clinically oriented evaluation. We  summarize once: 

FIGURE 7

Error rate as a function of prediction entropy, grouped by deciles (1 = lowest entropy/highest confidence → 10 = highest entropy/lowest confidence). 
The curve clearly illustrates an increase in error rate as prediction uncertainty rises, underscoring the practical utility of implementing entropy-based 
criteria to guide clinical decision-making.
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isotonic calibration, entropy-based uncertainty, decision-curve 
analysis, and Grad-CAM; all metrics are reported with 95% 
confidence intervals.

In our experiments, the EfficientNet-B7–Swin early-fusion hybrid 
outperformed single-architecture baselines and other hybrids, 
achieving an accuracy of 92.13%, a sensitivity of 92.38%, a specificity 
of 98.9%, and an AUC of 0.9904. A soft ensemble of the top hybrids 
further improved performance to an accuracy of 93.3%, sensitivity of 
93.6%, specificity of 99.0%, and AUC of 0.991, underscoring 
robustness and potential clinical utility. Table 6 summarizes the soft-
ensemble’s diagnostic performance (accuracy, sensitivity, specificity, 
AUC, F1-score, MCC), enabling direct comparison with prior 
ultrasound AI studies of ovarian tumors.

One key methodological strength of this study lies in the effective 
management of class imbalance, a prevalent issue in medical imaging 
datasets. The train-only, patient-level random oversampling strategy, 
combined with ultrasound-specific augmentation and regularization, 
improved performance across diagnostic categories, particularly in 
underrepresented classes such as high-grade serous carcinoma and 
theca cell tumors, while preserving stable convergence 
and interpretability.

Several limitations warrant mention. First, this study relies on a 
single-center dataset (OTU-2D), which may constrain generalizability 
across populations and imaging settings; multicenter external 
validation in diverse cohorts is needed. Second, although the proposed 
early-fusion hybrid outperformed single backbones, additional 
CNN-Transformer combinations could be  explored to assess 
incremental gains. Finally, we employed train-only oversampling with 
ultrasound-aware augmentation and strong regularization, but 
intentionally omitted Mixup/SMOTE/generative augmentation in the 
primary analysis to avoid synthetic-data artifacts. Future work will 
benchmark these techniques under identical patient-level splits and 
multicenter validation to quantify their added value.

Future directions should emphasize external validation and 
further methodological refinement, including the evaluation of other 
CNN–Transformer combinations and the expansion of our hybrid 
framework to additional medical-imaging contexts. Such efforts will 
reinforce generalizability and robustness, ultimately enhancing clinical 
adoption and patient outcomes (Eralp and Sefer, 2024; Sefer, 2025).

4.2 Clinical and methodological 
significance

Our fusion operator is a learned early-fusion joint projection; 
we do not claim a new theoretical fusion family. Its role is to adaptively 
re-weight and couple CNN/ViT representations at an early stage, 
allowing gradients to shape both branches under the multiclass 
objective. We therefore frame our contribution as a clinically aligned, 
domain-specific instantiation (multiclass ovarian US with calibration, 
DCA, and uncertainty), rather than a new fusion theory; head-to-
head early- vs. late-fusion benchmarking is outlined as future work 
under identical splits.

For clinical use, decision support must deliver reliable, actionable, 
and auditable outputs. Well-calibrated probabilities enable threshold-
based triage and shared decision-making. Decision-curve analysis 
quantifies the net benefit versus standard strategies across relevant 
thresholds. Uncertainty estimates define safe automation boundaries 

and escalation pathways. Attribution maps (e.g., Grad-CAM) support 
case-level quality assurance and error analysis, fostering 
clinician trust.

Methodologically, the framework prioritizes deployment 
readiness, encompassing bias-aware training (train-only resampling 
coupled with ultrasound-specific augmentation and regularization), 
reproducible evaluation with confidence intervals, and transparent 
reporting that facilitates monitoring, auditing, and future 
regulatory submissions.

While many hybrid CNN-Transformer designs exist, most target 
binary tasks or other modalities and are not directly comparable 
without substantial re-implementation under identical ovarian-US 
conditions. Our contribution is a domain-specific early-fusion 
instantiation tuned to ultrasound signal characteristics and class 
imbalance, embedded in a clinically aligned evaluation and 
governance template. Future work will focus on multicenter external 
validation and standardized head-to-head comparisons to confirm 
generalizability and establish adoption thresholds.

4.3 Backbone selection and scope

We intentionally used established CNN and ViT backbones to 
provide a stable, reproducible reference while foregrounding our 
learned early-fusion (joint projection) architecture and clinically 
oriented evaluation (patient-level repeated cross-validation with 95% 
CIs, isotonic calibration, decision-curve analysis, and entropy-based 
uncertainty). Given the high performance already observed on this 
dataset, further replacing backbones with newer SOTA variants may 
offer limited incremental gains relative to added complexity for 
clinical deployment. Future work will benchmark more recent families 
(e.g., ConvNeXt/ConvNeXt-V2, EfficientNet-V2, CoAtNet, MaxViT, 
Swin-V2) under identical splits and external multicenter validation to 
assess incremental value.

We did not exhaustively evaluate the latest SOTA backbones; our 
focus was on a calibrated, uncertainty-aware early-fusion pipeline for 
eight-class ovarian ultrasound, to be  extended with multicenter 
external validation and targeted SOTA benchmarking in future work.

4.4 Regulatory pathways and compliance 
for clinical integration

Although the present work is a research-grade model, translating 
an AI-enabled ultrasound classifier into clinical use entails conformity 
with medical-device and AI governance frameworks. In the EU, our 
software would qualify as Medical Device Software (MDSW) under 
MDR 2017/745 (Rule 11), with likely Class IIa/IIb classification 
depending on intended use and risk; CE-marking would require an 
ISO-13485 quality management system, risk management per ISO 
14971, a software life-cycle process per IEC 62304, human-factors/
usability engineering per IEC 62366–1, and a clinical evaluation 
aligned with IMDRF SaMD guidance (Medical Device Coordination 
Group (MDCG), 2025; International Organization for 
Standardization, 2025).

The EU AI Act imposes further obligations on high-risk health AI 
systems (e.g., risk management, data governance, logging, 
transparency, and human oversight) with staged timelines. Our 
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TABLE 6  Comparison of recent AI-based ultrasound studies for ovarian tumor classification.

Study Cohort Modality/task Number of 
classes

Model Validation External 
validation

Primary metric 
(test set)

Explainability/
calibration/
DCA

Key notes

This work 1,469 images; single-

center (China)

2D US (B-mode); 

multiclass 

classification

8 (histological 

subtypes)

Hybrid 

EfficientNet-B7 + Swin 

Transformer (early 

fusion).

5-fold CV (patient-

level), 10 × repetition; 

oversampling; no 

leakage.

No AUC 0.9904; Acc 

92.13%; Sens 92.38%; 

Spec 98.90%; 

ensemble AUC 0.991 

(±95% CI)

Yes (Grad-CAM)/Yes 

(isotonic)/Yes (DCA)

Uncertainty analysis 

performed; metrics 

reported with 95% CIs

Gao et al. (2022) ~105,000 US images 

(3,755 malignant 

vs. ~ 101 k benign); 

multi-center (China)

2D US (B-mode); 

binary classification 

(benign vs. malignant)

2 (benign vs. 

malignant)

Deep CNN (custom 

DCNN model)

Hold-out split 

(training + internal 

test); patient-level 

separation

Yes—two external test 

sets (multi-center, 

China)

AUC 0.911 (95% CI 

0.886–0.936) internal; 

external AUC 0.870 & 

0.831; Acc ~ 88.8%; 

Sens ~82.7%; Spec 

~88.7%

No/No/No DCNN outperformed 

average radiologists 

and improved non-

expert sensitivity on a 

large, histopathology-

confirmed 

retrospective dataset.

Dai et al. (2024) ~8,500 US images 

from 21 hospitals 

(train + internal test); 

plus external sets: 

1,896 images + 159 

videos from 2 

hospitals (China)

2D US (B-mode) with 

ROI segmentation; 

binary classification

2 (benign vs. 

malignant)

Multi-task CNN 

(Ovarian Multi-Task 

Attention Network—

OvaMTA: ovary 

detection + tumor 

classifier)

Hold-out (internal test 

cohort held out from 

training); patient-level 

split

Yes—external image 

and video test sets (2 

hospitals)

AUC 0.941 (internal 

image test); AUC 

0.941 (external image 

test); video test AUC 

0.911; e.g. video Acc 

86.2%, Sens 81.8%, 

Spec 89.2%

Partial (model 

provides heatmaps)/

No/No

Automated ovary/

tumor detection and 

classification; 

performance matched 

senior radiologists; AI 

assistance improved 

junior doctors’ 

accuracy.

Wu et al. (2018) 328 patients (1,142 US 

images); single-center 

(China)

2D US (B-mode); 

multiclass 

classification 

(histologic tumor 

types)

7 (6 benign subtypes 

+ 1 malignant)

Transfer learning with 

multiple CNNs 

(VGG16, GoogleNet, 

ResNet34, ResNeXt50, 

DenseNet121/201); best 

model: ResNeXt50

Hold-out split 

(training/validation/

test sets); patient-level 

separation

No Acc 95.2%; Sens 

≥90%; Spec ≥95% for 

most classes (HGS 

carcinoma Sens 90%, 

Spec 99.2%); overall 

high AUC (~0.95)

Yes (CNN heatmaps)/

No/No

ROI segmentation 

improved accuracy; 

addressed multiple 

subtypes; small 

dataset; no external 

validation.

Giourga et al. (2024) 585 patients (3,510 

images: 390 benign, 

195 malignant); single 

center (Greece)

2D US (B-mode); 

binary classification

2 (benign vs. 

malignant)

Ensemble of three pre-

trained CNNs (VGG16, 

ResNet50, InceptionV3) 

with optimized 

weighting

5-fold cross-validation 

(80/20 splits); patient-

level; no single hold-

out test

No AUC ~ 0.922 (95% 

CI ~ 0.908–0.971); 

Acc 90.9%; Sens 

96.5%; Spec 88.1% (at 

optimized threshold 

0.2)

No (misclassifications 

reviewed only)/No/No

Sensitivity-optimized 

threshold (0.2); tuned 

ensemble (VGG16 

50%); sensitivity 

comparable to expert 

sonographers.

(Continued)
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TABLE 6  (Continued)

Study Cohort Modality/task Number of 
classes

Model Validation External 
validation

Primary metric 
(test set)

Explainability/
calibration/
DCA

Key notes

Xie et al. (2024) 519 patients (269 

benign, 250 

malignant) from 3 

centers; O-RADS 4 

lesions focus (China)

2D US (B-mode); 

binary classification 

(indeterminate-risk 

masses)

2 (benign vs. 

malignant)

Two-stage 

DeepLabV3 + YOLOv8 

pipeline (lesion 

segmentation + 

concept-based 

classification)

Hold-out (train/val/

test = 426/46/47 

patients); patient-level 

split; multi-center 

internal data

No (multicenter data 

split internally)

AUC 0.950 (95% CI 

0.91–0.96); Acc 94.1%; 

Sens 92.5%; Spec 

95.5% (on test set)

Partial (feature 

concepts via YOLO)/

No/No

O-RADS 4 focus; 

CNN-segmented ROI; 

strong internal 

performance; no 

independent external 

validation.

Du et al. (2024) 849 patients (train/test 

8:2 split); single center 

(China)

2D US (B-mode); 

multiclass 

classification (benign, 

borderline, malignant)

3 (benign, 

borderline, 

malignant)

Hybrid radiomics + 

deep CNN + clinical 

features (“DLR” 

signature combining 

handcrafted features, 

transfer-learned CNN 

output, and clinical 

data)

Hold-out (random 

80/20 split into train 

and test); patient-level 

separation

No AUC (micro-average) 

0.90; macro-AUC 0.84 

on test; class-specific 

AUC ~ 0.84 for each 

category. Borderline 

tumor detection was 

poorest (e.g., ~55% 

recall)

No / No / No Logistic-regression 

nomogram fusing 

radiomics and CNN; 

first US 3-class (incl. 

borderline); improved 

accuracy over either 

alone; no external 

validation.

Du et al. (2024) 849 patients (all 

tumors, task 1) + 391 

patients (O-RADS 4–5 

subset, task 2); single-

center (China)

2D US (B-mode); 

binary classification 

(malignant risk 

prediction)

2 (benign vs. 

malignant)

Combined deep 

CNN + radiomics + 

clinical model (logistic 

regression nomogram 

integrating CNN, 

radiomic, and O-RADS 

features)

Hold-out (8:2 split for 

each task); patient-

level; two separate 

analyses (general 

cohort and high-risk 

subset)

No AUC 0.928 (test, 

all-tumor cohort); 

AUC 0.869 (test, 

O-RADS4&5 subset); 

well-calibrated 

(Hosmer–Lemeshow 

p > 0.05); DCA 

showed positive net 

benefit

Yes (Grad-CAM)/Yes 

(calibration curves)/

Yes (decision curve)

DLR_Nomogram 

matched expert 

O-RADS; included 

calibration and DCA; 

supports AI parity 

with standardized risk 

models.

Barcroft et al. (2024) 577 adnexal masses 

(1,444 images)—

development (UK); 

184 masses (476 

images)—external test 

(Italy)

2D transvaginal US; 

binary classification

2 (benign vs. 

malignant)

End-to-end 

CNN + radiomics 

model (U-Net 

segmentation + ML 

classifier using radiomic 

features from ROI)

Split into training & 

validation (UK 

dataset) and 

independent test 

(Italian dataset); 

patient-level

Yes—external test on 

an independent Italian 

dataset

AUC 0.90 (external 

test); F1-score 0.83 on 

external; 

Segmentation Dice 

≈0.85; achieved 

sensitivity ~83% on 

external (comparable 

to expert assessment)

No/No/No Automated 

segmentation 

standardized ROIs; 

AUC ≈ 0.90 matched 

expert sonographers 

and IOTA models, 

supporting 

multicenter 

generalizability.

US, ultrasound; AUC, area under the ROC curve; 95% CI, 95% confidence interval; Acc, accuracy; Sens, sensitivity; Spec, specificity; CV, cross-validation; ROI, region of interest; DCA, decision-curve analysis; CNN, convolutional neural network; ViT, Vision 
Transformer; Grad-CAM, Gradient-weighted Class Activation Mapping; O-RADS, Ovarian-Adnexal Reporting and Data System; IOTA, International Ovarian Tumor Analysis.
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deployment plan anticipates an AI Act-aligned technical file and post-
market monitoring (Wellnhofer, 2022).

In the United States, this software would be regulated as SaMD by 
the FDA (510(k) or De Novo, depending on predicates). We align 
development and evaluation with the joint FDA–Health Canada–
MHRA principles for Good Machine Learning Practice (GMLP) and 
transparency, and we would include a Predetermined Change Control 
Plan (PCCP) in the marketing submission to enable controlled, 
auditable model updates. Cybersecurity requirements are addressed 
per the FDA’s premarket cybersecurity guidance (including SBOM, 
threat modeling, and vulnerability management) (U.S. Food and Drug 
Administration, Health Canada & Medicines and Healthcare Products 
Regulatory Agency, 2025).

Operationally, safe clinical integration requires human-in-the-
loop oversight, clear intended-use labeling, and auditable 
interoperability with PACS/EHR systems (DICOM/DICOM-SR, 
DICOMweb, HL7-FHIR). Our deployment plan includes calibration 
monitoring, drift detection, and real-world performance surveillance, 
which are documented within an AI governance program (e.g., NIST 
AI Risk Management Framework) and a post-market change control 
process. Finally, we anticipate site-level privacy and security controls 
(pseudonymisation, encryption, role-based access, audit logs), local 
DPIAs where required, and jurisdiction-specific data-transfer 
mechanisms (e.g., SCCs) or data-residency constraints (e.g., PIPL).

These compliance and workflow provisions complement our 
technical results, outlining a regulatory-ready path from research to 
deployment that prioritizes patient privacy, safety, and accountability. 
By specifying device classification, change control, security, and data-
protection safeguards, we  clarify the steps required for real-
world adoption.

4.5 Key research gaps in AI-based ovarian 
ultrasound classification

Most deep learning models for ovarian ultrasound have been 
evaluated only on single-center cohorts, which limits the evidence of 
their robustness across different scanners, patient demographics, and 
clinical settings. This lack of external validation raises concerns about 
the generalizability of the findings to broader populations and diverse 
imaging conditions. Current studies have not yet met the stringent 
requirements for clinical translation, as no AI ultrasound classifier for 
ovarian tumors has undergone prospective, multi-site trials or 
demonstrated compliance with medical device regulations. This gap 
in regulatory readiness underscores the need for further prospective 
evaluations to ensure safety, efficacy, and seamless integration into 
real-world workflows.

Present algorithms struggle with underrepresented histological 
subtypes (e.g., borderline ovarian tumors), which often yield 
suboptimal detection rates due to scarce training examples. For 
instance, a recent multiclass model showed markedly low recall 
(~55%) for borderline tumors (Du et al., 2024), underscoring the need 
for methods that can recognize rare or intermediate malignancies with 
higher reliability. Few studies rigorously assess whether model output 
probabilities reflect actual risk or evaluate clinical net benefit. Most 
published models report accuracy metrics without calibrating 
predictions or performing decision-curve analysis, thereby failing to 
quantify clinical utility in terms of the number of avoided interventions 

versus the number of missed cancers. Incorporating these analyses is 
crucial to determine if AI models would improve patient outcomes 
over standard care.

The prevailing literature seldom quantifies predictive uncertainty, 
leaving clinicians blind to the confidence of a model’s verdict. Without 
uncertainty measures, current systems cannot distinguish between 
cases suitable for automated AI diagnosis and those that require 
expert review, hindering safe implementation. Notably, prior studies 
have often omitted any uncertainty analysis, highlighting a need for 
frameworks that flag low-confidence predictions to inform risk-aware 
clinical decision-making. There is no consensus on how to define and 
extract the tumor region in ultrasound images across studies. 
Variability in ROI selection (manual cropping vs. automatic 
segmentation) introduces inconsistencies that hinder reproducibility. 
Automated, standardized ROI segmentation has been shown to 
improve performance and generalizability (achieving AUC ≈ 0.90, 
comparable to expert assessments). Yet, most studies have not adopted 
uniform ROI protocols, representing a critical methodological gap.

The potential of hybrid architectures that combine convolutional 
neural networks with Vision Transformers remains untapped, mainly 
in ovarian ultrasound research. Only a handful of studies have 
examined such hybrids for ovarian tumor classification, so their 
purported advantages over traditional CNN-based or radiomics 
models are not fully established. A systematic benchmarking of early-
fusion CNN-Transformer models is needed to verify performance 
gains and guide best practices for leveraging both local and global 
image features.

5 Conclusion

In conclusion, this study presents a rigorously validated hybrid 
CNN–Transformer model, specifically designed for early fusion (joint 
projection) multiclass ovarian tumor classification using ultrasound 
imaging. The EfficientNetB7–Swin Transformer combination notably 
demonstrated superior diagnostic performance over conventional 
CNN or Transformer architectures, achieving high accuracy, 
sensitivity, specificity, and robust calibration.

The use of soft-ensemble methods further enhanced diagnostic 
precision, illustrating the value of integrating multiple top-performing 
models. Importantly, visual interpretability provided by Grad-CAM 
confirmed the clinical relevance of model predictions, significantly 
improving clinical trust and facilitating adoption into routine 
diagnostic workflows. Predictive uncertainty analysis using entropy 
further optimized clinical efficiency by distinguishing cases requiring 
expert review from those suitable for automated assessment.

The clinical adoption of this model could substantially 
transform current ultrasound diagnostic protocols for ovarian 
tumors by significantly increasing diagnostic precision and 
reducing unnecessary invasive interventions. By integrating 
automated, interpretable decision-support into routine clinical 
practice, healthcare providers can streamline diagnostic 
workflows, prioritize critical cases for expert review, and allocate 
medical resources more efficiently, thereby directly improving 
patient outcomes and the overall effectiveness of ovarian 
cancer care.

Future research efforts must focus on external multicenter 
validations and further methodological exploration of additional 
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CNN-Transformer combinations to reinforce the practical 
applicability and generalizability of the proposed hybrid approach. 
Overall, this study represents a significant step toward enhancing the 
precision, reliability, and interpretability of AI-driven ovarian tumor 
diagnostics, which may lead to earlier and more accurate clinical 
diagnoses, improved patient outcomes, and more efficient 
clinical management.
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