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Early-fusion hybrid
CNN-transformer models for
multiclass ovarian tumor
ultrasound classification
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Andrés Bueno-Crespo®* and Francisca Villanueva-Flores®**

‘Escuela Politécnica Superior, Universidad Catolica de Murcia (UCAM), Murcia, Spain, ?Centro de
Investigacion en Ciencia Aplicada y Tecnologia Avanzada (CICATA), Unidad Morelos del Instituto
Politécnico Nacional (IPN), Xochitepec, Mexico, *Facultad de Medicina, Universidad Catolica de
Murcia (UCAM), Murcia, Spain

Ovarian cancer remains the deadliest gynecologic malignancy, and transvaginal
ultrasound (TVS), the first-line test, still suffers from limited specificity and operator
dependence. We introduce a learned early-fusion (joint projection) hybrid that
couples EfficientNet-B7 (local descriptors) with a Swin Transformer (hierarchical
global context) to classify eight ovarian tumor categories from 2D TVS. Using the
public, de-identified OTU-2D dataset (n = 1,469 images across eight histopathologic
classes), we conducted patient-level, stratified 5-fold cross-validation repeated
10x. To address class imbalance while preventing leakage, training used train-only
oversampling, ultrasound-aware augmentations, and strong regularization; validation/
test folds were never resampled. The hybrid achieved AUC 0.9904, accuracy
92.13%, sensitivity 92.38%, and specificity 98.90%, outperforming single CNN or
ViT baselines. A soft ensemble of the top hybrids further improved performance
to AUC 0.991, accuracy 93.3%, sensitivity 93.6%, and specificity 99.0%. Beyond
discrimination, we provide deployment-oriented evaluation: isotonic calibration
yielded reliable probabilities, decision-curve analysis showed net clinical benefit
across 5-20% risk thresholds, entropy-based uncertainty supported confidence-
based triage, and Grad-CAM highlighted clinically salient regions. All metrics are
reported with 95% bootstrap confidence intervals, and the evaluation protocol
preserves real-world data distributions. Taken together, this work advances
ovarian ultrasound Al from accuracy-only reporting to calibrated, explainable, and
uncertainty-aware decision support, offering a reproducible reference framework
for multiclass ovarian ultrasound and a clear path toward clinical integration and
prospective validation.

KEYWORDS

ovarian cancer, ultrasound imaging, deep learning, CNN, vision transformer, hybrid
model, early diagnosis

1 Introduction

Ovarian cancer (OC) remains the most lethal gynecological malignancy worldwide.
According to the World Health Organization (WHO), ovarian cancer ranks as the eighth most
common cancer among women globally, with approximately 324,603 new cases and 206,956
deaths reported annually, translating to an estimated incidence of 6.7 cases per 100,000 women
(Ferlay et al., 2024). Despite significant advances in surgical treatments and targeted therapies,
global five-year survival remains below 50%, mainly due to late-stage diagnosis (Dexter et al.,
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2024; Lheureux et al., 2019). Approximately 66-70% of OC cases are
diagnosed at advanced FIGO stages (III-IV), which is tightly
associated with poorer five-year survival, where therapeutic efficacy is
limited and invasive interventions become necessary, severely
impacting patient quality of life and increasing healthcare costs (Hong
and Ding, 2025; Siegel et al., 2021; Cortés Morera et al., 2020;
Christiansen et al., 2025; Menon et al., 2018).

Currently, B-mode transvaginal ultrasound (TVS) is the
primary imaging modality for the initial assessment of suspicious
ovarian masses, given its accessibility, low cost, and absence of
ionizing radiation (Van Nagell and Hoff, 2013; Sideris et al., 2024).
However, despite its relatively high sensitivity, TVS suffers from
limited specificity when used in isolation, with real-world
specificity varying across practice settings, frequently resulting in
diagnostic uncertainty, numerous false positives, and unnecessary
invasive procedures (Gareeballah et al., 2025; Almeida et al., 2025;
Tsili et al., 2024). Consequently, TVS is often complemented with
validated structured criteria, such as IOTA and O-RADS, including
the 2022 ACR O-RADS US update, as well as subjective evaluations
by expert clinicians, which can lead to observational bias and
considerable inter-observer variability (Dexter et al., 2024;
Buranaworathitikul et al., 2024; Christiansen et al., 2021), and
reproducibility within IOTA frameworks still depends on reader
expertise. This underscores the urgent need for automated,
objective diagnostic tools that can deliver accurate and
reproducible evaluations of ovarian lesions, particularly in clinical
settings with limited resources or expertise (Tang et al., 2025; Gao
et al., 2022).

Recent advances in artificial intelligence (AI) and deep learning
(DL) have revolutionized automated medical image analysis (Mienye
et al., 2025). Convolutional neural networks (CNNs) have become the
gold standard for complex diagnostic tasks, demonstrating robust
performance in various medical imaging domains, from breast and
lung tumor identification to classification of brain lesions, due to their
exceptional ability to extract local image features (Hong and Ding,
2025; Christiansen et al., 2025; Sideris et al., 2024). In ovarian
ultrasound specifically, CNN-based and radiomics-based pipelines
have shown promising performance for benign-malignant
discrimination and, more recently, multiclass stratification; however,
hybrid CNN-Transformer approaches remain uncommon.

Nevertheless, CNN and Vision Transformer (ViT) models
exhibit
generalization: CNNs typically underestimate global contextual

individually notable limitations affecting clinical
information, whereas ViTs often struggle to preserve essential fine-
grained local features necessary for precise anatomical lesion
classification (Khan et al., 2023; Zhang et al., 2024; Kim et al., 2024).
Recent studies in other medical domains have demonstrated that
hybrid CNN-Transformer architectures significantly enhance
performance in complex tasks, such as lung lesion segmentation and
breast cancer classification, highlighting their superior capability to
manage inherent variability and complexity in medical imaging (Liu
et al., 2021; Djoumessi et al., 2025; Mustapha et al., 2025). Yet, the
application of these hybrid approaches specifically to ovarian cancer
diagnosis from ultrasound images remains underexplored,
constituting a critical scientific and clinical gap that limits the potential
impact of Al in gynecologic oncology. Only a handful of studies have
examined hybrids tailored to ovarian ultrasound compared with other

organ systems.
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Although recent hybrid CNN-Transformer architectures have
been proposed for medical imaging, they typically employ late-fusion
strategies, combining CNN and Transformer features at later stages of
model processing, thereby limiting early feature interaction and
potentially reducing diagnostic accuracy. Unlike previous approaches
(Chen et al., 2021; Zhang et al., 2021), our proposed methodology
implements a novel learned early-fusion (joint projection). This design
explicitly enables early cross-talk between local CNN-extracted
features and global Transformer-derived context, a choice motivated
by evidence that early interactions can improve generalization over
late-fusion Dbaselines. Consequently, this provides substantial
methodological innovation with the potential to enhance the
performance of multiclass ovarian tumor classification significantly.

In this work, we make several contributions to Al-based
ultrasound classification of ovarian tumors. We introduce a learned
early-fusion (joint projection) hybrid architecture that couples
EfficientNet-B7 with a Swin Transformer, enabling joint optimization
and early crosstalk between local and global representations.
We conduct a comprehensive multiclass evaluation on the OTU-2D
dataset, which mirrors real-world case mix and class imbalance.
We adopt class-aware training and reporting, with a specific emphasis
on underrepresented categories that are crucial for clinical triage. To
support clinical trust and quality assurance, we provide clinician-
oriented interpretability via Grad-CAM and rigorously benchmark
the proposed model against CNN-only, Transformer-only, and late-
fusion baselines, quantifying the added value of early fusion. Beyond
single-model performance, we further optimize diagnostic accuracy
through a soft ensemble of the top hybrid models. We also move
beyond accuracy-only assessments by evaluating probabilistic
calibration (via isotonic regression) and clinical utility (via decision
curve analysis). Finally, we explicitly characterize predictive
uncertainty through an entropy-based analysis, enabling risk-aware
automation and escalation policies. We ensure statistical robustness
and reproducibility by employing patient-level stratified cross-
validation, multiple independent runs with fixed seeds, bootstrap
confidence intervals, and formal hypothesis testing.

2 Materials and methods
2.1 Ethics, data privacy, and security

The present study utilized the publicly available, de-identified
OTU-2D (Ovarian Tumor Ultrasound—2D) dataset, comprising
1,469 two-dimensional B-mode ultrasound images acquired under
standardized clinical conditions (Figure 1). Images were
retrospectively collected from patients attending Beijing Shijitan
Hospital, Capital Medical University, Beijing, China, with all diagnoses
histopathologically confirmed by expert pathologists. Experienced
gynecologic oncologists systematically classified ovarian lesions into
eight clinically relevant diagnostic categories: chocolate cyst
(endometrioma), serous cystadenoma, mucinous cystadenoma,
teratoma, simple cyst (functional cyst), theca cell tumor, high-grade
serous carcinoma, and normal ovary, using the IOTA consensus and
O-RADS US (2022) lexicédn as specified by the dataset curators.
Because OTU-2D is a public resource containing only de-identified
images and metadata, this secondary analysis did not require new

Institutional Review Board/Ethics Committee approval or patient
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Chocolate cyst Serous cystadenoma

Simple cyst Normal ovary

FIGURE 1

Representative examples of the eight clinical categories included in the OTU-2D dataset (original images and annotations).

Teratoma Theca cell tumor

Mucinous cystadenoma

High grade serous

informed consent. All analyses were performed exclusively on
de-identified files; no attempt was made to re-identify individuals or
to link records to external sources. Processing followed privacy-by-
design safeguards (data minimization; restricted, role-based access;
encryption at rest and in transit; and audit logging) and complied with
applicable data-protection requirements for secondary research on
de-identified data (e.g., GDPR research provisions) (Vara et al., 2023;
Garg et al,, 2017; Andreotti et al., 2020). A detailed breakdown of the
dataset composition per diagnostic class is provided in Table 1.

2.2 Image preprocessing

All ultrasound images were resized to 224 x 224 pixels to
standardize the input resolution required by the utilized architectures.
Images were converted to numeric tensors and normalized using the
RGB channel mean [(0.485, 0.456, 0.406)] and standard deviation
[(0.229, 0.224, 0.225)] derived from the ImageNet dataset (Deng et al.,
2009), a common practice facilitating convergence and generalization
through transfer learning.

In addition, we applied ultrasound-specific data augmentation
only to the training data to improve generalization while preserving
clinical plausibility, including small in-plane rotations and translations,
random crops, additive Rayleigh-distributed speckle noise, brightness/
contrast, and time-gain—Ilike intensity perturbations, and acoustic
artifacts such as mild shadowing and posterior enhancement.

Due to a significant class imbalance observed in the original
dataset, a class rebalancing strategy was required. We opted for

Frontiers in Artificial Intelligence

TABLE 1 Distribution of the OTU-2D dataset used in this study, showing
the number of two-dimensional ultrasound images classified into each
evaluated clinical category.

Chocolate cyst 336
Serous cystadenoma 219
Teratoma 336
Theca cell tumor 88
Simple cyst 66
Normal ovary 267
Mucinous cystadenoma 104
High grade serous 53

random oversampling, which was applied exclusively to the training
folds after the stratified patient-level split, thereby increasing the
number of examples from minority classes by randomly duplicating
images. Validation and test folds were never resampled or augmented
to preserve the real-world distribution and prevent information
leakage. The rationale behind selecting oversampling rather than focal
loss or class-balanced loss was twofold: (Ferlay et al, 2024)
oversampling maintains the standard categorical cross-entropy loss
function, preserving its interpretability and facilitating training
stability, and (Dexter et al, 2024) it directly equalizes class
distributions, ensuring adequate feature representation from minority
classes without modifying loss dynamics. While focal loss and
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class-balanced loss address imbalance by modifying loss function
gradients, they can complicate training convergence and introduce
additional hyperparameter tuning complexity. Thus, oversampling
was chosen as a straightforward, effective, and interpretable method
to handle class imbalance.

To further mitigate overfitting potentially induced by resampling,
the
augmentations and with model-level regularization (dropout and L2

oversampling was combined with ultrasound-specific
weight decay).
Validation and test sets remained unaltered to ensure an unbiased

evaluation of model performance on real-world data distribution.

2.3 Deep learning architectures

Five pre-trained architectures were evaluated: three CNN-based
(ResNet-152, DenseNet-201, EfficientNetB7) and two Transformer-
based (ViT-B16, Swin Transformer). These architectures were selected
based on previously demonstrated performance in complex medical
imaging tasks: ResNet-152 (He et al., 2015): Utilizes residual
connections, enabling adequate gradient flow in deep architectures.
DenseNet-201 (Huang et al., 2017): Employs dense connectivity,
improving feature reuse and reducing parameter count. EfficientNetB7
(Tan and Le, 2020): Implements automated compound scaling for
optimal accuracy and computational efficiency. ViT-B16 (Dosovitskiy
etal., 2021): Adapts transformer architecture to visual tasks through
global attention mechanisms over image patches. Swin Transformer
(Liu et al., 2021): Implements hierarchical attention through shifted-
window  mechanisms, suitable for capturing complex
anatomical structures.

For each proposed hybrid CNN-Transformer model, the selected
CNN and Transformer architectures were individually loaded with

pre-trained ImageNet weights, and their original classification layers

10.3389/frai.2025.1679310

were removed. For the CNN architectures, final convolutional
features underwent adaptive average pooling followed by flattening
to produce a compact, one-dimensional feature vector. For the
Transformer architecture, features were directly obtained as flattened
feature vectors from their respective pre-classification layers.
Subsequently, CNN-derived local features and Transformer-derived
global contextual features were concatenated into a single unified
feature vector. This combined vector was then processed through
fully connected layers, including dimensionality reduction,
non-linear activation (ReLU), dropout (0.3), and a final softmax layer
to yield class probabilities for multiclass ovarian tumor classification.
This early-fusion (joint projection) approach effectively integrates
detailed local feature extraction with global context modeling,
leveraging the complementary strengths of CNN and Transformer
architectures. A detailed schematic of this strategy is illustrated
clearly in Figure 2.

2.4 Fusion block (learned early-fusion via
joint projection)

Let fcnn € R% and fvir € R% denote the penultimate features
from the CNN and Transformer branches. We form
hy :[ fonn ;fV,»T]e R%*%andlearna joint projection z = ¢ (W1h0 + bl)
, followed by dropout, and the classifier p = soﬂmax(sz +b, )

Here, Wj adapts both the relative contribution of each branch and
their cross-feature interactions under the multiclass loss, enabling
early, end-to-end co-adaptation of local (CNN) and global (ViT) cues.
This differs from late fusion (e.g., score averaging or stacking), where
interactions are deferred to outputs and gradients cannot shape
intermediate features jointly. Regularization (dropout, weight decay)
curbs co-adaptation and promotes a compact, data-driven
feature subspace.

Hybrid CNN-Transformer adaptive early-
Image Preprocessing fusion
Acquisition of dataset il : 5esize:.?24.x224 Database Split
OTU-2D: 8 categories ! ;w'" Train (0.8) and Test (0.2) .
magenet
* Oversampling l l
Feature extraction (flatten)
Concatenate features
Evaluation of performance .
» Accuracy Model tramir‘wg Fully-connected layers
* Sensitivity = Optlrr}lzer. Adam : (Dense+RelLU+Dropout)
+ Learning rate reduction
* Specificity +— e
. AUC + Max50epchs
+ Categorical cross-entropy
* Fl-score + Batch size: 32
S Nico tch size: Softmax
FIGURE 2
Methodological pipeline. From OTU-2D acquisition and preprocessing to patient-level, stratified 5-fold cross-validation repeated 10x. CNN (local) and
VIiT (global) branches are combined via a learned early-fusion (joint projection) that enables early co-adaptation of features; training uses train-only
oversampling, ultrasound-aware augmentation, dropout, and L2 weight decay. Evaluation includes clinically relevant metrics with 95% Cls, bootstrap
resampling, and statistical testing (Shapiro—-Wilk, paired t/Wilcoxon; ANOVA/Tukey, a = 0.01), plus isotonic calibration, decision-curve analysis, entropy-
based uncertainty, and Grad-CAM interpretability. Validation/test folds were never resampled or augmented to avoid leakage.
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FIGURE 3

architecture

Representative Grad-CAM activation maps of ovarian tumor ultrasound images. Activation heatmaps (red and yellow areas indicating higher activation)
generated by the hybrid EfficientNetB7—-Swin Transformer model overlaid onto original ultrasound images. These activation maps visually confirm that
the model accurately focuses on clinically relevant tumor regions, thus reinforcing the interpretability and diagnostic credibility of the proposed hybrid

2.5 Training strategy and hyperparameters

Model performance was evaluated using patient-level, stratified
5-fold cross-validation to ensure representative and robust outcomes.
Each architecture and hybrid combination was independently trained
and assessed in ten separate runs with explicitly set random seeds,
facilitating reproducibility. Consistent hyperparameters were applied
across all experiments, including a batch size of 32 images and a
maximum of 50 training epochs. The Adam optimizer was employed
with an initial learning rate of le-4, with L2 weight decay, dynamically
adjusted through a 0.1-factor reduction after five consecutive epochs
(ReduceLROnPlateau
scheduler). Early stopping based on validation loss was used to halt

without validation loss improvement
training once no improvement was observed within a fixed patience
window, thereby further reducing the risk of overfitting. The
categorical cross-entropy loss function was utilized in all models.
Dropout (p = 0.3 in the classification head, as detailed in Section 2.3)

complemented these measures to provide additional regularization.

2.6 Evaluation metrics and statistical
analysis

Diagnostic performance was assessed using clinically relevant
metrics: accuracy, sensitivity (recall), specificity, area under the ROC
curve (AUC-ROC), and area under the Precision-Recall curve (AUC-
PR), essential given the significant class imbalance present in the
dataset. Complementary metrics, such as the F1-score and Matthews
correlation coefficient (MCC), were calculated to ensure a
comprehensive performance assessment.

The statistical significance of differences between individual and
hybrid models was first assessed through Shapiro-Wilk normality
testing. Subsequently, paired Student’s t-tests were employed for
normally distributed data, while the Wilcoxon signed-rank test was
utilized for non-normal distributions. For multiple comparisons,
ANOVA with Tukey’s post-hoc tests was applied. In all cases, statistical
significance was set at a = 0.01.

Frontiers in Artificial Intelligence

2.7 Interpretability and generation of
activation maps

To assess the capability of the proposed hybrid CNN-Transformer
models in identifying and focusing on clinically relevant regions
within ultrasound images, the Grad-CAM technique (Selvaraju et al.,
2017) was implemented. Specifically, activation maps were extracted
from the last relevant layer before global pooling or before the final
classification layer, depending on each architecture.

Grad-CAM was implemented using the publicly available library
torchcam.! Preprocessed ultrasound images were propagated through
the hybrid models to obtain corresponding activation maps, specifically
generated after the adaptive feature fusion block (learned early fusion via
joint projection), highlighting areas with the highest diagnostic relevance.

Qualitative evaluation of the generated activation maps was
performed by overlaying these maps onto the original ultrasound
images using OpenCV and PIL libraries. An activation threshold of
50% of the maximum value was applied to emphasize the regions
identified by the models visually. Figure 3 provides representative
examples of these Grad-CAM activation maps, clearly illustrating how
the hybrid EfficientNetB7-Swin Transformer model effectively focuses
on tumor-associated anatomical regions, aligning closely with clinical
expertise and expectations.

Visual examination of these maps confirms that model attention
is consistently directed toward regions considered clinically significant
by experts, reinforcing the interpretability and credibility of the hybrid
CNN-Transformer approach in a clinical context. This interpretability
facilitates trust in automated diagnostic decisions and represents a
critical step towards the practical clinical adoption of artificial
intelligence systems.

1 https://github.com/frgfm/torch-cam
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2.8 Software and hardware

The models were implemented and trained using Python version
3.10, employing the PyTorch library version 2.7.0 with CUDA 11.8.
Data management and analysis were performed using Pandas 2.1.3,
NumPy 1.26.4, and Scikit-learn 1.3.2. All training and studies were
conducted on a server equipped with an Intel Xeon Silver 4,216 CPU
@ 2.10 GHz and an NVIDIA A100 GPU with 40 GB.

3 Results

3.1 Comparison of hybrid and individual
model performance

All performance metrics reported in Tables 2-5 correspond to
evaluations on the held-out folds of the publicly available OTU-2D
dataset (1,469 de-identified B-mode ultrasound images collected at
Beijing Shijitan Hospital, Capital Medical University, Beijing, China),
using patient-level, stratified 5-fold cross-validation repeated ten
times; validation and test partitions were not resampled or augmented
to preserve the real-world distribution. The observed, statistically
significant improvements of the learned early-fusion models over
single-branch baselines across Accuracy, Sensitivity, Specificity, and
AUC (Table 2), together with training stability across repetitions

10.3389/frai.2025.1679310

(Figure 4), are consistent with the intended benefit of early joint
optimization of CNN and Transformer features.

Table 2 presents a detailed comparison of diagnostic performance
between hybrid CNN-Transformer models and individual CNN or
Vision Transformer (ViT) architectures. The hybrid EfficientNetB7-
Swin Transformer model consistently achieved superior performance,
demonstrating an accuracy of 92.13% [95% CI, 90.7-93.2], sensitivity
0f 92.38% [95% CI, 91.0-93.4], specificity of 98.9% [95% CI, 98.7-
99.0], and an area under the ROC curve (AUC) of 0.9904 [95% CI,
0.987-0.993]. Complementary metrics included an F1-score of 0.921
[95% CI, 0.908-0.932] and a Matthews correlation coefficient (MCC)
0f 0.910 [95% CI, 0.894-0.923].

Before statistical comparisons, normality was assessed using the
Shapiro-Wilk test. Depending on normality results, either paired
Student’s ¢-tests (for normally distributed differences) or Wilcoxon
signed-rank tests (for non-normal distributions) were employed. The
EfficientNetB7-Swin hybrid model significantly outperformed
individual EfficientNetB7 (accuracy: +17.1 pp., sensitivity: +26.6 pp,
specificity: +2.6 pp, AUC: +8.0 pp; p < 0.001 for all metrics) and Swin
Transformer (accuracy: +20.1 pp, sensitivity: +28.9 pp, specificity:
+3.1 pp, AUC: +7.3 pp; p < 0.001 for all metrics). Overall, hybrid
CNN-Transformer models showed statistically significant superior
diagnostic performance across all evaluated metrics compared to
individual architectures (p <0.01). Additionally, we conducted a
detailed statistical comparison between the EfficientNetB7-Swin

TABLE 2 Bootstrap metrics (n = 500) (Accuracy, Sensitivity, Specificity, AUC, F1-macro, MCC) for each algorithm.

Model Accuracy Sensitivity Specificity AUC F1 MCC
ResNet152 0.735 [0.707, 0.764] 0.632 [0.590, 0.676] 0.959 [0.955, 0.964] 0.926 [0.913, 0.661 [0.619, 0.676 [0.641,
0.940] 0.704] 0.711]
DenseNet201 0.776 [0.749, 0.802] 0.662 [0.622, 0.700] 0.966 [0.962, 0.970] 0.922 [0.905, 0.689 [0.649, 0.728 [0.697,
0.938] 0.727) 0.758]
EfficientNetB7 0.750 [0.721,0.779] 0.656 [0.618, 0.698] 0.962 [0.958,0.967] 0911 [0.893, 0.675 [0.635, 0.697 [0.663,
0.929] 0.716] 0.731]
VITB16 0.686 [0.653,0.714] 0.587 [0.547,0.627] 0.953 [0.948,0.957] 0.896 [0.877, 0.595 [0.553, 0.620 [0.580,
0.914] 0.635) 0.653]
Swin 0.719 [0.690, 0.747) 0.634 [0.594, 0.673] 0.958 [0.954, 0.962] 0.917 [0.902, 0.637 [0.598, 0.659 [0.626,
0.933] 0.672] 0.692]
ResNet152-VITB16 0.913 [0.898,0.925] 0.912 [0.898, 0.925] 0.988 [0.986, 0.989] 0.990 [0.987, 0.908 [0.893, 0.900 [0.883,
0.992] 0.920] 0.915]
DenseNet201-VITB16 0.908 [0.893,0.923] 0.907 [0.894, 0.922] 0.987 [0.985, 0.989] 0.988 [0.984, 0.907 [0.893, 0.895 [0.879,
0.991] 0.922] 0.912]
EfficientNetB7-VITB16 0.905 [0.892, 0.919] 0.906 [0.893, 0.919] 0.986 [0.985, 0.989] 0.985 [0.981, 0.904 [0.891, 0.892 [0.876,
0.988] 0.918] 0.908]
ResNet152-Swin 0.915 [0.901, 0.929] 0.917 [0.903,0.931] 0.988 [0.986, 0.990] 0.992 [0.989, 0.914 [0.900, 0.903 [0.887,
0.994] 0.929] 0.919]
DenseNet201-Swin 0.913 [0.900, 0.927] 0.915 [0.902, 0.927] 0.988 [0.986, 0.989] 0.990 [0.987, 0.913 [0.900, 0.901 [0.885,
0.993] 0.926] 0.916]
EfficientNetB7-Swin 0.921 [0.907, 0.932] 0.923 [0.910, 0.934] 0.989 [0.987, 0.990] 0.990 [0.987, 0.921 [0.908, 0.910 [0.894,
0.993] 0.932] 0.923]

Values are presented as mean + 95% CI, with algorithms in rows and metrics in columns.

Metrics are reported as mean [95% CI] on the held-out folds of patient-level, stratified 5-fold cross-validation repeated 10-fold. Validation/test partitions were not resampled or augmented.
95% ClIs were computed via bootstrap (n = 500). AUC, area under the ROC curve; F1, macro-averaged F1-score; MCC, Matthews correlation coefficient; ViT-B16, Vision Transformer (patch

size 16); Swin, Swin Transformer.
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TABLE 3 p-value results from the statistical analysis (Wilcoxon signed-
rank test) comparing EfficientNetB7—Swin with other hybrid models
(n = 10 measurements).

Model Accuracy @ Sensitivity = Specificity AUC

ResNet152— <0.01 <0.01 <0.01 0.5930
VITB16

DenseNet201- <0.01 <0.01 <0.01 <0.01

VITB16

EfficientNetB7- <0.01 <0.01 <0.01 <0.01

VITB16

ResNet152— <0.01 <0.01 <0.01 <0.01

Swin

DenseNet201- 0.0488 0.0195 0.0137 0.4922
Swin

Wilcoxon signed-rank p-values (two-sided) comparing EfficientNet-B7-Swin against each
hybrid model across 10 independent repetitions of patient-level, stratified 5-fold cross-
validation. Metrics are computed on held-out folds. @ = 0.01 was used to judge statistical
significance. AUC, area under the ROC curve. Note that AUC differences for ResNet152-
ViT-B16 and DenseNet201-Swin were not significant (p = 0.5930 and p = 0.4922,
respectively).

TABLE 4 Class-wise metrics (accuracy, sensitivity, specificity, and F1-
score), calculated as the average of the ten repetitions of the
EfficientNet—Swin hybrid model.

Class Accuracy Sensitivity Specificity  F1-
(ovarian score
lesion type)

Chocolate cyst 0.8929 0.8238 0.9842 0.8569
Serous 0.8910 0.8859 0.9836 0.8883
cystadenoma

Teratoma 0.8969 0.8572 0.9858 0.8766
Theca cell tumor 0.9617 0.9921 0.9943 0.9765
Simple cyst 0.9508 0.9835 0.9937 0.9669
Normal ovary 0.8563 0.8745 0.9802 0.8650
Mucinous 0.9229 0.9731 0.9895 0.9473
cystadenoma

High grade serous 0.9914 1.0000 0.9986 0.9957

model and the other hybrid models using the Wilcoxon signed-rank
test. The results are clearly summarized in Table 3.

These statistical findings strongly confirm the significant
superiority of the EfficientNetB7-Swin Transformer model across
multiple critical metrics. Although some p-values for AUC were
greater than 0.05 (ResNet152-VITB16 and DenseNet201-Swin),
key metrics such as Accuracy, Sensitivity, and Specificity
demonstrated statistically significant differences in all cases. This
clearly shows the advantage of the EfficientNetB7-Swin model, thus
justifying its selection as the optimal model for clinical applications
in precise and robust ovarian tumor classification using
ultrasound imaging.

Regarding the specific choice of hybrid CNN-Transformer
models, it is essential to highlight that the explicit combination
between CNN and Transformer architectures was chosen to leverage
the complementary strengths of both approaches: the detailed local
feature extraction capability of CNNs and the global contextual

Frontiers in Artificial Intelligence

10.3389/frai.2025.1679310

attention capability of Transformers. While an exhaustive combination
of all possible architectures (e.g., ResNet with EfficientNet or ViT-B
with Swin Transformer) could potentially explore additional
interactions, we chose to focus specifically on CNN-Transformer
combinations due to the clear distinction and complementarity of the
intrinsic capabilities of these architectures. This decision enabled a
more direct and specific comparison and validation of how effectively
integrating local and global information significantly enhances
medical image classification.

3.2 Diagnostic performance by clinical
category

Figure 5 shows the normalized confusion matrix for the best-
performing EfficientNetB7-Swin model. The matrix is strongly
diagonal, with class-wise recalls of 1.00 for high-grade serous
carcinoma, 0.99 for theca cell tumor, 0.98 for simple cyst, and 0.97 for
mucinous cystadenoma. Lower—but still robust values are observed
for serous cystadenoma (0.89), teratoma (0.86), normal ovary (0.87),
and chocolate cyst (0.82). Most errors are confined to clinically similar
cystic entities and occasional confusion with the normal ovary,
consistent with overlapping sonographic patterns.

Table 4 provides a detailed breakdown of diagnostic performance
by clinical category for the best-performing hybrid EfficientNetB7-
Swin model. Categories such as “High-grade serous carcinoma” and
“Theca cell tumor” showed outstanding diagnostic performance, with
sensitivities approaching 100%, specificities exceeding 99%, and
Fl-scores above 97%. Similarly, the “Simple cyst” and “Mucinous
cystadenoma” categories exhibited high sensitivity (>97%) and
specificity (>98%). Even categories characterized by slightly higher
error rates, such as “Chocolate cyst” (endometrioma) and “Normal
ovary, retained robust performance (sensitivity >82%, specificity
>98%), indicating strong model generalizability across diverse
clinical scenarios.

3.3 Training stability and model
convergence

Figure 4 illustrates the convergence and stability of diagnostic
metrics (loss, accuracy, sensitivity, specificity, AUC) across training
epochs for the EfficientNetB7-Swin hybrid model. All performance
metrics rapidly converged within +1 standard deviation of final values
early during training (loss stabilized at epoch 4, accuracy at epoch 3,
sensitivity at epoch 2, specificity at epoch 3, and AUC at epoch 2).
Inter-run variability consistently decreased across epochs, confirming
the robustness and reproducibility of the proposed model
training strategy.

3.4 Probabilistic calibration and clinical
decision utility

Figure 6 shows the reliability curves assessing probabilistic

calibration for the EfficientNetB7-Swin hybrid model. Initial
evaluation revealed a minor underestimation of predicted
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TABLE 5 Diagnostic performance metrics [accuracy, sensitivity, specificity, AUC, F1-score, and Matthew's correlation coefficient (MCC)] obtained

through soft-ensemble optimization.

Summary

Accuracy
statistic

Sensibility

Specificity

Mean + SD 0.933 £ 0.005

0.936 £ 0.003

0.990 £ 0.001

0.991 + 0.004 0.933 £ 0.005 0.924 + 0.006

Metrics are presented as mean + standard deviation (SD), calculated from the combined probabilistic predictions of the top three hybrid CNN-Transformer models (DenseNet201-Swin,
EfficientNetB7-Swin, ResNet152-Swin), weighted proportionally by their individual AUC scores.
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FIGURE 4
The training stability and variability of the EfficientNet—Swin hybrid model over 50 epochs across ten independent runs. Panels A-E (arranged in two
columns and three rows) depict the mean + standard deviation curves for Loss (A), Accuracy (B), Sensitivity (C), Specificity (D) and AUC (E); red dashed
lines indicate the epoch of stability for each metric (Loss: 4, Accuracy: 3, Sensitivity: 2, Specificity: 3, AUC: 2). Panel F shows the evolution of inter-run
variability, plotting the standard deviation across repetitions for all metrics by epoch, which converges as training progresses.
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against the ideal calibration reference (dashed gray line). Right panel: Decision curve analysis illustrating net clinical benefit across a range of clinically
relevant probability thresholds. The EfficientNetB7-Swin model (solid blue line) demonstrates superior clinical utility compared to the strategies of
“treat all” (orange dashed line) or “treat none” (green dotted line).
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probabilities, especially at intermediate risk ranges. After isotonic
recalibration, predicted probabilities closely matched observed
malignancy rates, indicating excellent model calibration.

Clinical decision-curve analysis demonstrated substantial net
clinical benefit for the hybrid model compared to standard
management strategies (“treat all” or “treat none”) across a clinically
relevant threshold range (5-20%). This underscores the practical
utility of the model predictions, potentially reducing unnecessary
invasive procedures while maintaining high diagnostic accuracy.

3.5 Diagnostic performance optimization
via soft ensemble

To further enhance diagnostic accuracy, a soft-ensemble approach
was employed, combining prediction probabilities from the three
highest-performing  hybrid  models  (DenseNet201-Swin,
EfficientNetB7-Swin, ResNet152-Swin), weighted proportionally by
their individual AUC scores. This strategy yielded a statistically
significant additional improvement in overall diagnostic performance,
reaching accuracy of 93.3% * 0.5%, sensitivity of 93.6% =+ 0.3%,
specificity of 99.0% + 0.1%, and AUC of 0.991 + 0.004, along with
increased stability in predictions.

3.6 Predictive uncertainty and
confidence-error analysis

7
uncertainty, measured by entropy of model predictions, and

Figure explores the relationship between predictive
diagnostic error rates. Predictions exhibiting high confidence (low
entropy, deciles 1-5) demonstrated negligible error rates. Errors
slightly increased from decile 7 (~2%), becoming notably elevated

10.3389/frai.2025.1679310

in the highest uncertainty deciles, reaching approximately 8% in
decile 9 and 43% in decile 10. These results indicate that entropy is
a reliable marker of uncertainty, supporting a practical clinical
strategy to automate decision-making for approximately 90% of
cases characterized by low uncertainty, while reserving expert
clinician review for the remaining 10% exhibiting higher uncertainty.
This approach would significantly optimize diagnostic accuracy
and efficiency.

4 Discussion
4.1 Early-fusion hybrid performance

Recent Al-driven ultrasound studies for ovarian tumor
classification have predominantly focused on benign-malignant
binary discrimination, often assessed only on internal cohorts and
lacking external validation (Giourga et al., 2024). For example, Gao
et al. (2022) developed a deep learning model with strong
multicenter performance on a large dataset but restricted the task
to binary detection (Gao et al., 2022). Similarly, a recent pipeline by
Dai et al. (2024) achieved robust performance with multiple
external validations, yet remained limited to benign-malignant
discrimination (Dai et al., 2024). Truly multiclass approaches
(differentiating multiple histological subtypes) remain uncommon
(Wu et al., 2018). One exception is the CNN-based study by Wu
et al. (2023), which addressed seven ovarian tumor subcategories
and reported high internal accuracy (Wu et al., 2018); however, it
did not include model calibration, uncertainty analysis, or external
testing. Most prior work also relies on CNNs alone and omits
modern interpretability or clinical-utility analyses. By contrast,
we present an early-fusion hybrid CNN-Transformer with a
concise, clinically oriented evaluation. We summarize once:
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FIGURE 7
Error rate as a function of prediction entropy, grouped by deciles (1 = lowest entropy/highest confidence — 10 = highest entropy/lowest confidence).
The curve clearly illustrates an increase in error rate as prediction uncertainty rises, underscoring the practical utility of implementing entropy-based
criteria to guide clinical decision-making.
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isotonic calibration, entropy-based uncertainty, decision-curve
analysis, and Grad-CAM; all metrics are reported with 95%
confidence intervals.

In our experiments, the EfficientNet-B7-Swin early-fusion hybrid
outperformed single-architecture baselines and other hybrids,
achieving an accuracy of 92.13%, a sensitivity of 92.38%, a specificity
of 98.9%, and an AUC of 0.9904. A soft ensemble of the top hybrids
further improved performance to an accuracy of 93.3%, sensitivity of
93.6%, specificity of 99.0%, and AUC of 0.991, underscoring
robustness and potential clinical utility. Table 6 summarizes the soft-
ensemble’s diagnostic performance (accuracy, sensitivity, specificity,
AUC, Fl-score, MCC), enabling direct comparison with prior
ultrasound Al studies of ovarian tumors.

One key methodological strength of this study lies in the effective
management of class imbalance, a prevalent issue in medical imaging
datasets. The train-only, patient-level random oversampling strategy,
combined with ultrasound-specific augmentation and regularization,
improved performance across diagnostic categories, particularly in
underrepresented classes such as high-grade serous carcinoma and
theca stable
and interpretability.

cell tumors, while preserving convergence

Several limitations warrant mention. First, this study relies on a
single-center dataset (OTU-2D), which may constrain generalizability
across populations and imaging settings; multicenter external
validation in diverse cohorts is needed. Second, although the proposed
early-fusion hybrid outperformed single backbones, additional
CNN-Transformer combinations could be explored to assess
incremental gains. Finally, we employed train-only oversampling with
ultrasound-aware augmentation and strong regularization, but
intentionally omitted Mixup/SMOTE/generative augmentation in the
primary analysis to avoid synthetic-data artifacts. Future work will
benchmark these techniques under identical patient-level splits and
multicenter validation to quantify their added value.

Future directions should emphasize external validation and
further methodological refinement, including the evaluation of other
CNN-Transformer combinations and the expansion of our hybrid
framework to additional medical-imaging contexts. Such efforts will
reinforce generalizability and robustness, ultimately enhancing clinical

adoption and patient outcomes (Eralp and Sefer, 2024; Sefer, 2025).

4.2 Clinical and methodological
significance

Our fusion operator is a learned early-fusion joint projection;
we do not claim a new theoretical fusion family. Its role is to adaptively
re-weight and couple CNN/VIT representations at an early stage,
allowing gradients to shape both branches under the multiclass
objective. We therefore frame our contribution as a clinically aligned,
domain-specific instantiation (multiclass ovarian US with calibration,
DCA, and uncertainty), rather than a new fusion theory; head-to-
head early- vs. late-fusion benchmarking is outlined as future work
under identical splits.

For clinical use, decision support must deliver reliable, actionable,
and auditable outputs. Well-calibrated probabilities enable threshold-
based triage and shared decision-making. Decision-curve analysis
quantifies the net benefit versus standard strategies across relevant
thresholds. Uncertainty estimates define safe automation boundaries
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and escalation pathways. Attribution maps (e.g., Grad-CAM) support

case-level quality assurance and error analysis, fostering
clinician trust.

Methodologically, the framework prioritizes deployment
readiness, encompassing bias-aware training (train-only resampling
coupled with ultrasound-specific augmentation and regularization),
reproducible evaluation with confidence intervals, and transparent
reporting that facilitates monitoring, auditing, and future
regulatory submissions.

While many hybrid CNN-Transformer designs exist, most target
binary tasks or other modalities and are not directly comparable
without substantial re-implementation under identical ovarian-US
conditions. Our contribution is a domain-specific early-fusion
instantiation tuned to ultrasound signal characteristics and class
imbalance, embedded in a clinically aligned evaluation and
governance template. Future work will focus on multicenter external
validation and standardized head-to-head comparisons to confirm

generalizability and establish adoption thresholds.

4.3 Backbone selection and scope

We intentionally used established CNN and ViT backbones to
provide a stable, reproducible reference while foregrounding our
learned early-fusion (joint projection) architecture and clinically
oriented evaluation (patient-level repeated cross-validation with 95%
ClIs, isotonic calibration, decision-curve analysis, and entropy-based
uncertainty). Given the high performance already observed on this
dataset, further replacing backbones with newer SOTA variants may
offer limited incremental gains relative to added complexity for
clinical deployment. Future work will benchmark more recent families
(e.g., ConvNeXt/ConvNeXt-V2, EfficientNet-V2, CoAtNet, MaxViT,
Swin-V2) under identical splits and external multicenter validation to
assess incremental value.

We did not exhaustively evaluate the latest SOTA backbones; our
focus was on a calibrated, uncertainty-aware early-fusion pipeline for
eight-class ovarian ultrasound, to be extended with multicenter
external validation and targeted SOTA benchmarking in future work.

4.4 Regulatory pathways and compliance
for clinical integration

Although the present work is a research-grade model, translating
an Al-enabled ultrasound classifier into clinical use entails conformity
with medical-device and AI governance frameworks. In the EU, our
software would qualify as Medical Device Software (MDSW) under
MDR 2017/745 (Rule 11), with likely Class IIa/IIb classification
depending on intended use and risk; CE-marking would require an
ISO-13485 quality management system, risk management per ISO
14971, a software life-cycle process per IEC 62304, human-factors/
usability engineering per IEC 62366-1, and a clinical evaluation
aligned with IMDRF SaMD guidance (Medical Device Coordination
Group (MDCG), 2025;
Standardization, 2025).

The EU AI Act imposes further obligations on high-risk health AI
systems (e.g., risk management, data governance, logging,

International ~ Organization for

transparency, and human oversight) with staged timelines. Our
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TABLE 6 Comparison of recent Al-based ultrasound studies for ovarian tumor classification.

Cohort

Modality/task

Number of
classes

Model

Validation

External
validation

Primary metric
(test set)

Explainability/
calibration/
DCA

Key notes

images: 390 benign,
195 malignant); single

center (Greece)

binary classification

malignant)

trained CNNs (VGG16,
ResNet50, InceptionV3)

with optimized

(80/20 splits); patient-
level; no single hold-

out test

CI ~ 0.908-0.971);
Acc 90.9%; Sens
96.5%; Spec 88.1% (at

reviewed only)/No/No

This work 1,469 images; single- | 2D US (B-mode); 8 (histological Hybrid 5-fold CV (patient- No AUC 0.9904; Acc Yes (Grad-CAM)/Yes | Uncertainty analysis
center (China) multiclass subtypes) EfficientNet-B7 + Swin | level), 10 X repetition; 92.13%; Sens 92.38%; | (isotonic)/Yes (DCA) | performed; metrics
classification Transformer (early oversampling; no Spec 98.90%; reported with 95% Cls
fusion). leakage. ensemble AUC 0.991
(£95% CI)

Gao et al. (2022) ~105,000 US images 2D US (B-mode); 2 (benign vs. Deep CNN (custom Hold-out split Yes—two external test = AUC 0.911 (95% CI No/No/No DCNN outperformed
(3,755 malignant binary classification malignant) DCNN model) (training + internal sets (multi-center, 0.886-0.936) internal; average radiologists
vs. ~ 101 k benign); (benign vs. malignant) test); patient-level China) external AUC 0.870 & and improved non-
multi-center (China) separation 0.831; Acc ~ 88.8%; expert sensitivity on a

Sens ~82.7%; Spec large, histopathology-
~88.7% confirmed
retrospective dataset.

Dai et al. (2024) ~8,500 US images 2D US (B-mode) with = 2 (benign vs. Multi-task CNN Hold-out (internal test | Yes—external image AUC 0.941 (internal Partial (model Automated ovary/
from 21 hospitals ROI segmentation; malignant) (Ovarian Multi-Task cohort held out from | and video test sets (2 | image test); AUC provides heatmaps)/ tumor detection and
(train + internal test); | binary classification Attention Network— training); patient-level = hospitals) 0.941 (external image | No/No classification;
plus external sets: OvaMTA: ovary split test); video test AUC performance matched
1,896 images + 159 detection + tumor 0.911; e.g. video Acc senior radiologists; AT
videos from 2 classifier) 86.2%, Sens 81.8%, assistance improved
hospitals (China) Spec 89.2% junior doctors’

accuracy.

Wu et al. (2018) 328 patients (1,142 US | 2D US (B-mode); 7 (6 benign subtypes = Transfer learning with Hold-out split No Acc 95.2%; Sens Yes (CNN heatmaps)/ | ROI segmentation
images); single-center | multiclass + 1 malignant) multiple CNNs (training/validation/ >90%; Spec >95% for | No/No improved accuracy;
(China) classification (VGG16, GoogleNet, test sets); patient-level most classes (HGS addressed multiple

(histologic tumor ResNet34, ResNeXt50, | separation carcinoma Sens 90%, subtypes; small
types) DenseNet121/201); best Spec 99.2%); overall dataset; no external
model: ResNeXt50 high AUC (~0.95) validation.

Giourga et al. (2024) 585 patients (3,510 2D US (B-mode); 2 (benign vs. Ensemble of three pre- 5-fold cross-validation = No AUC ~ 0.922 (95% No (misclassifications | Sensitivity-optimized

threshold (0.2); tuned
ensemble (VGG16
50%); sensitivity

weighting optimized threshold comparable to expert
0.2) sonographers.
(Continued)
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TABLE 6 (Continued)

Cohort

Modality/task

Number of
classes

Validation

External
validation

Primary metric
(test set)

Explainability/
calibration/
DCA

Key notes

patients (O-RADS 4-5

(malignant risk

clinical model (logistic

level; two separate

AUC 0.869 (test,

Yes (decision curve)

Xie et al. (2024) 519 patients (269 2D US (B-mode); 2 (benign vs. Two-stage Hold-out (train/val/ No (multicenter data | AUC 0.950 (95% CI Partial (feature O-RADS 4 focus;
benign, 250 binary classification malignant) DeepLabV3 + YOLOV8 | test = 426/46/47 split internally) 0.91-0.96); Acc 94.1%; concepts via YOLO)/ | CNN-segmented ROI;
malignant) from 3 (indeterminate-risk pipeline (lesion patients); patient-level Sens 92.5%; Spec No/No strong internal
centers; O-RADS 4 masses) segmentation + split; multi-center 95.5% (on test set) performance; no
lesions focus (China) concept-based internal data independent external

classification) validation.

Du et al. (2024) 849 patients (train/test | 2D US (B-mode); 3 (benign, Hybrid radiomics + Hold-out (random No AUC (micro-average) | No/No/No Logistic-regression
8:2 split); single center | multiclass borderline, deep CNN + clinical 80/20 split into train 0.90; macro-AUC 0.84 nomogram fusing
(China) classification (benign, = malignant) features (“DLR” and test); patient-level on test; class-specific radiomics and CNN;

borderline, malignant) signature combining separation AUC ~ 0.84 for each first US 3-class (incl.
handcrafted features, category. Borderline borderline); improved
transfer-learned CNN tumor detection was accuracy over either
output, and clinical poorest (e.g., ~55% alone; no external
data) recall) validation.

Du et al. (2024) 849 patients (all 2D US (B-mode); 2 (benign vs. Combined deep Hold-out (8:2 split for | No AUC 0.928 (test, Yes (Grad-CAM)/Yes | DLR_Nomogram
tumors, task 1) + 391 | binary classification malignant) CNN + radiomics + each task); patient- all-tumor cohort); (calibration curves)/ matched expert

O-RADS; included

subset, task 2); single- | prediction) regression nomogram analyses (general O-RADS4&S5 subset); calibration and DCA;
center (China) integrating CNN, cohort and high-risk well-calibrated supports Al parity
radiomic, and O-RADS | subset) (Hosmer-Lemeshow with standardized risk
features) p>0.05); DCA models.
showed positive net
benefit
Barcroft et al. (2024) 577 adnexal masses 2D transvaginal US; 2 (benign vs. End-to-end Split into training & Yes—external teston | AUC 0.90 (external No/No/No Automated
(1,444 images)— binary classification malignant) CNN + radiomics validation (UK an independent Italian | test); F1-score 0.83 on segmentation
development (UK); model (U-Net dataset) and dataset external; standardized ROIs;
184 masses (476 segmentation + ML independent test Segmentation Dice AUC % 0.90 matched
images)—external test classifier using radiomic | (Italian dataset); ~0.85; achieved expert sonographers
(Ttaly) features from ROI) patient-level sensitivity ~83% on and IOTA models,
external (comparable supporting
to expert assessment) multicenter
generalizability.

US, ultrasound; AUC, area under the ROC curve; 95% CI, 95% confidence interval; Acc, accuracy; Sens, sensitivity; Spec, specificity; CV, cross-validation; ROI, region of interest; DCA, decision-curve analysis; CNN, convolutional neural network; ViT, Vision

Transformer; Grad-CAM, Gradient-weighted Class Activation Mapping; O-RADS, Ovarian-Adnexal Reporting and Data System; IOTA, International Ovarian Tumor Analysis.
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deployment plan anticipates an AI Act-aligned technical file and post-
market monitoring (Wellnhofer, 2022).

In the United States, this software would be regulated as SaMD by
the FDA (510(k) or De Novo, depending on predicates). We align
development and evaluation with the joint FDA-Health Canada-
MHRA principles for Good Machine Learning Practice (GMLP) and
transparency, and we would include a Predetermined Change Control
Plan (PCCP) in the marketing submission to enable controlled,
auditable model updates. Cybersecurity requirements are addressed
per the FDAs premarket cybersecurity guidance (including SBOM,
threat modeling, and vulnerability management) (U.S. Food and Drug
Administration, Health Canada & Medicines and Healthcare Products
Regulatory Agency, 2025).

Operationally, safe clinical integration requires human-in-the-
loop oversight, clear intended-use labeling, and auditable
interoperability with PACS/EHR systems (DICOM/DICOM-SR,
DICOMweb, HL7-FHIR). Our deployment plan includes calibration
monitoring, drift detection, and real-world performance surveillance,
which are documented within an AI governance program (e.g., NIST
AT Risk Management Framework) and a post-market change control
process. Finally, we anticipate site-level privacy and security controls
(pseudonymisation, encryption, role-based access, audit logs), local
DPIAs where required, and jurisdiction-specific data-transfer
mechanisms (e.g., SCCs) or data-residency constraints (e.g., PIPL).

These compliance and workflow provisions complement our
technical results, outlining a regulatory-ready path from research to
deployment that prioritizes patient privacy, safety, and accountability.
By specifying device classification, change control, security, and data-
protection safeguards, we clarify the steps required for real-
world adoption.

4.5 Key research gaps in Al-based ovarian
ultrasound classification

Most deep learning models for ovarian ultrasound have been
evaluated only on single-center cohorts, which limits the evidence of
their robustness across different scanners, patient demographics, and
clinical settings. This lack of external validation raises concerns about
the generalizability of the findings to broader populations and diverse
imaging conditions. Current studies have not yet met the stringent
requirements for clinical translation, as no Al ultrasound classifier for
ovarian tumors has undergone prospective, multi-site trials or
demonstrated compliance with medical device regulations. This gap
in regulatory readiness underscores the need for further prospective
evaluations to ensure safety, efficacy, and seamless integration into
real-world workflows.

Present algorithms struggle with underrepresented histological
subtypes (e.g., borderline ovarian tumors), which often yield
suboptimal detection rates due to scarce training examples. For
instance, a recent multiclass model showed markedly low recall
(~55%) for borderline tumors (Du et al., 2024), underscoring the need
for methods that can recognize rare or intermediate malignancies with
higher reliability. Few studies rigorously assess whether model output
probabilities reflect actual risk or evaluate clinical net benefit. Most
published models report accuracy metrics without calibrating
predictions or performing decision-curve analysis, thereby failing to
quantify clinical utility in terms of the number of avoided interventions
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versus the number of missed cancers. Incorporating these analyses is
crucial to determine if AT models would improve patient outcomes
over standard care.

The prevailing literature seldom quantifies predictive uncertainty,
leaving clinicians blind to the confidence of a model’s verdict. Without
uncertainty measures, current systems cannot distinguish between
cases suitable for automated Al diagnosis and those that require
expert review, hindering safe implementation. Notably, prior studies
have often omitted any uncertainty analysis, highlighting a need for
frameworks that flag low-confidence predictions to inform risk-aware
clinical decision-making. There is no consensus on how to define and
extract the tumor region in ultrasound images across studies.
Variability in ROI selection (manual cropping vs. automatic
segmentation) introduces inconsistencies that hinder reproducibility.
Automated, standardized ROI segmentation has been shown to
improve performance and generalizability (achieving AUC = 0.90,
comparable to expert assessments). Yet, most studies have not adopted
uniform ROI protocols, representing a critical methodological gap.

The potential of hybrid architectures that combine convolutional
neural networks with Vision Transformers remains untapped, mainly
in ovarian ultrasound research. Only a handful of studies have
examined such hybrids for ovarian tumor classification, so their
purported advantages over traditional CNN-based or radiomics
models are not fully established. A systematic benchmarking of early-
fusion CNN-Transformer models is needed to verify performance
gains and guide best practices for leveraging both local and global
image features.

5 Conclusion

In conclusion, this study presents a rigorously validated hybrid
CNN-Transformer model, specifically designed for early fusion (joint
projection) multiclass ovarian tumor classification using ultrasound
imaging. The EfficientNetB7-Swin Transformer combination notably
demonstrated superior diagnostic performance over conventional
CNN or Transformer architectures, achieving high accuracy,
sensitivity, specificity, and robust calibration.

The use of soft-ensemble methods further enhanced diagnostic
precision, illustrating the value of integrating multiple top-performing
models. Importantly, visual interpretability provided by Grad-CAM
confirmed the clinical relevance of model predictions, significantly
improving clinical trust and facilitating adoption into routine
diagnostic workflows. Predictive uncertainty analysis using entropy
further optimized clinical efficiency by distinguishing cases requiring
expert review from those suitable for automated assessment.

The clinical adoption of this model could substantially
transform current ultrasound diagnostic protocols for ovarian
tumors by significantly increasing diagnostic precision and
reducing unnecessary invasive interventions. By integrating
automated, interpretable decision-support into routine clinical
practice, healthcare providers can streamline diagnostic
workflows, prioritize critical cases for expert review, and allocate
medical resources more efficiently, thereby directly improving
patient outcomes and the overall effectiveness of ovarian
cancer care.

Future research efforts must focus on external multicenter
validations and further methodological exploration of additional
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CNN-Transformer combinations to reinforce the practical
applicability and generalizability of the proposed hybrid approach.
Opverall, this study represents a significant step toward enhancing the
precision, reliability, and interpretability of Al-driven ovarian tumor
diagnostics, which may lead to earlier and more accurate clinical
diagnoses, improved patient outcomes, and more efficient

clinical management.
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