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A human-centered automated
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Automated Machine Learning (AutoML) aims to streamline the end-to-end
process of ML models, yet current approaches remain constrained by
rigid rule-based frameworks and structured input requirements that create
barriers for non-expert users. Despite advances in Large Language Models
(LLMs) demonstrating capabilities in code generation and natural language
understanding, their potential to improve AutoML accessibility has not
been fully realized. We present an innovative LLM-driven AI agent that
enables natural language interaction throughout the entire ML workflow
while maintaining high performance standards, reducing the need for
predefined rules and minimizing technical expertise requirements. The proposed
agent implements an end-to-end ML pipeline, incorporating automatic data
loading and pre-processing, task identification, neural architecture selection,
hyperparameter optimization, and training automation. Additionally, we propose
a novel data processing approach that leverages LLMs to automatically interpret
and handle diverse data formats without requiring manual pre-processing
or format conversion. Moreover, we propose an adaptive hyperparameter
optimization strategy that combines LLMs’ knowledge of ML best practices with
dynamic performance feedback to intelligently adjust search spaces. Extensive
evaluation on 10 diverse datasets spanning classification and regression tasks
across multiple data modalities demonstrates that our approach consistently
achieves superior performance compared to traditional rule-based AutoML
frameworks. By bridging the gap between human intent and ML implementation,
our approach contributes to the development of a more accessible AutoML
framework.

KEYWORDS
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1 Introduction

Automated Machine Learning (AutoML) has emerged as a transformative approach
to democratizing machine learning by automating the complex, time-intensive processes
involved in model development and deployment (He et al., 2021; Barbudo et al., 2023;
Lin et al., 2025). Although traditional ML workflows require extensive expertise in data
pre-processing, architecture selection, and hyperparameter tuning, AutoML frameworks
aim to make these capabilities accessible to users throughout the technical spectrum,
from domain experts to experienced data scientists (Baratchi et al., 2024; Yao et al.,
2018). The evolution of AutoML has seen advances in automating all components of
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the machine learning pipeline (Elshawi et al., 2019; Liu et al., 2024;
Luo et al., 2024). These include automatic data pre-processing,
model selection, training optimization, and hyperparameter
tuning, all working in concert to reduce manual intervention
while maintaining high performance standards (Khurana et al.,
2016a). Current AutoML frameworks achieve the automation
by different methods, from traditional heuristic approaches to
advanced methods leveraging deep learning and evolutionary
algorithms (Bahrami et al., 2022; Khurana et al., 2016b; Yang
et al., 2020; Khurana et al., 2018), each offering distinct trade-offs
between computational efficiency and model performance. Neural
Architecture Search (NAS) represents one direction in the AutoML
landscape, focusing on the algorithmic design of optimal neural
network architectures for specific tasks (White et al., 2023). Recent
innovations in NAS have improved search efficiency through the
integration of reinforcement learning, evolutionary strategies, and
gradient-based optimization methods (Liang et al., 2019; Elsken
et al., 2017; Li and Malik, 2016; Pham et al., 2018; Zoph et al., 2018;
Jin et al., 2019; Luo et al., 2018). Complementing these architectural
advances, hyperparameter optimization (HPO) has evolved from
simple grid and random search strategies to more sophisticated
approaches using Bayesian optimization (Feurer and Hutter, 2019;
Cakmak et al., 2020; Bae and Grosse, 2020), demonstrating superior
performance in identifying optimal model configurations while
minimizing computational overhead (Bergstra and Bengio, 2012;
Yogatama and Mann, 2014).

Despite these advances in AutoML, current solutions
remain constrained by rigid, rule-based frameworks that create
substantial barriers for non-technical users. Moreover, underlying
architectures of these AutoML methods reveal fundamental
limitations in flexibility and accessibility. H2O.ai automates
model selection and hyperparameter optimization (Candel et al.,
2016), but its effectiveness depends heavily on predefined rules
for data pre-processing and strict formatting requirements. Users
must still possess technical knowledge to properly structure their
data and configure the platform’s parameters according to these
predetermined rules. Auto-sklearn, though leveraging Bayesian
optimization for scikit-learn models (Feurer et al., 2020), and
AutoGluon, with its automated stack ensembling for multimodal
data (Erickson et al., 2020), both operate within confined parameter
spaces defined by fixed optimization strategies and predetermined
model architectures. Similarly, Google’s AutoML suite, despite
offering specialized solutions for vision and natural language
processing tasks (Bisong, 2019), and Hyperband’s innovative
multi-armed bandit strategy for hyperparameter optimization
(Li et al., 2018), remain bound by rigid input specifications
and predefined search spaces. These AutoML methods require
users to conform to specific data formats, model configurations,
and optimization procedures that cannot be easily modified or
adapted to novel scenarios. Due to the implementations based on
predefined rules, these constraints of existing AutoML methods
manifest in several ways: (1) fixed dataset formats that limit data
flexibility and usability for interaction, (2) predetermined model
architectures that may not optimally suit unique problem spaces,
and (3) rigid optimization strategies and hyper-parameter search
space that cannot dynamically adapt to varying computational
resources or performance requirements. Large Language Models

(LLMs) have demonstrated capabilities in code generation and
natural language understanding (Tornede et al., 2023), presenting
a potential solution to these limitations through their ability to
flexibly interpret user requirements and generate customized
solutions. LLMs can transform AutoML through their ability to
understand natural language descriptions of ML tasks, generate
appropriate pre-processing code for diverse data formats, and
dynamically adapt model architectures based on task requirements
(Shen et al., 2024; Wang and Shen, 2024; Chen Z. et al., 2024).
Their contextual understanding enables them to suggest suitable
hyperparameters based on similar historical problems and adjust
optimization strategies according to available computational
resources. Furthermore, LLMs can provide natural language
explanations of their decisions, making the AutoML process more
transparent and interpretable (Zhang et al., 2024). However, their
application in advancing AutoML remains largely unexplored.

These limitations collectively create three critical barriers
that prevent AutoML from achieving its democratization goals:
the fundamental incompatibility between rigid architectures and
diverse real-world problems, the absence of adaptive optimization
strategies that can respond to varying computational constraints
and problem domains, and the lack of natural language interfaces
accessible to domain experts without programming expertise. This
research addresses these barriers by introducing an LLM-driven
AutoML framework that leverages natural language understanding
to eliminate rigid preprocessing requirements, implements
adaptive optimization strategies informed by contextual task
analysis, and enables intuitive human-machine interaction
throughout the entire machine learning workflow.

This research addresses these limitations by introducing an
innovative LLM-based agent that fundamentally reimagines the
AutoML paradigm. Our approach harnesses the natural language
understanding capabilities of LLMs to create a flexible, intuitive
AutoML framework that “reduces reliance on predefined rules and
largely abstracts away complex technical requirements.”

The major contributions of this work are three-fold. Firstly,
we introduce an LLM-based agent that implements a complete
AutoML pipeline through five integrated stages: automatic data
loading and pre-processing, automatic task inference, dynamic
model selection and construction, adaptive hyperparameter
optimization, and automated training and evaluation. This
end-to-end framework transforms how users interact with
AutoML tools, enabling natural language communication
throughout the entire ML workflow. Secondly, we present a
novel data processing approach that leverages LLMs’ contextual
understanding to automatically interpret and handle diverse
data formats. Unlike traditional AutoML methods that require
strict data formatting and schema definitions, our method can
dynamically analyze raw data structures, infer relationships
between variables, and automatically generate appropriate
pre-processing pipelines. This innovation enables the AutoML
framework to work with unstructured text files, semi-structured
JSONs, various tabular formats, and even mixed data types
without requiring manual pre-processing or format conversion.
Finally, we introduce an adaptive hyperparameter optimization
strategy that combines LLM’s capacity to generate contextually
appropriate machine learning code and recommendations based
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on patterns learned from extensive training data including
machine learning literature, documentation, and code repositories
with dynamic performance feedback. Traditional AutoML
approaches rely on fixed optimization strategies and predefined
parameter spaces. In contrast, our approach leverages LLMs to
analyze the specific characteristics of each task, suggest initial
hyperparameter configurations based on similar historical
problems, and dynamically adjust the search space based on
intermediate training results.

This manuscript is structured as follows. Section 2 presents
a literature review that examines existing AutoML frameworks,
multimodal data processing systems, and applications of LLMs
in automated programming contexts, establishing the theoretical
foundation and identifying research gaps that motivate our
approach. Section 3 details our methodology through five
subsections that describe the overall framework architecture,
data preprocessing and task inference mechanisms, model
selection strategies, adaptive hyperparameter optimization
approaches, and automated code generation processes. Section
4 provides extensive experimental evaluation beginning
with dataset descriptions and evaluation metrics, followed
by implementation details, comprehensive results analysis
including performance comparisons with baseline methods,
computational efficiency assessments, scalability studies
across varying dataset sizes, hyperparameter optimization
convergence analysis, resource utilization evaluations, and ablation
studies that isolate the contribution of individual framework
components. Section 5 addresses important limitations of our
approach and discusses ethical considerations related to bias
propagation, privacy concerns, and responsible deployment
practices. Section 6 concludes the manuscript by summarizing
key contributions, discussing implications for the broader
AutoML research community, and outlining promising directions
for future research including multimodal extensions and
interpretability enhancements.

2 Related work

2.1 Automated machine learning
frameworks

The field of AutoML has evolved over the past decades.
Early commercial solutions in the 1990s offered automatic
hyperparameter optimization for classification algorithms via grid
search (Dinsmore, 2016). The formalization of the combined
algorithm selection and hyperparameter optimization (CASH)
problem by Thornton et al. (2013) marked a pivotal moment in
AutoML research. Modern AutoML frameworks can be broadly
categorized into two paradigms: those employing fixed pipeline
structures and those supporting variable structures. Fixed-structure
frameworks, such as Auto-sklearn (Feurer et al., 2015), TPOT
(Olson et al., 2016), and H2O AutoML (LeDell and Poirier, 2020),
implement predefined sequences of data cleaning, feature selection,
preprocessing, and modeling steps. While these frameworks
reduce complexity by eliminating structure search, they may yield
suboptimal performance for complex datasets requiring specialized
preprocessing pipelines (Zöller and Huber, 2021).

Variable-structure approaches offer greater flexibility through
dynamic pipeline construction. Genetic programming-based
methods (Olson et al., 2016) interpret pipelines as tree structures
that evolve through crossover and mutation operations.
Hierarchical task networks (Mohr et al., 2018) decompose
complex pipeline construction into manageable subproblems,
while Monte Carlo tree search approaches (Rakotoarison et al.,
2019) iteratively build pipelines of increasing complexity.
Reinforcement learning methods, such as the self-play approach by
Drori et al. (2018), model pipeline construction as a game where
agents learn optimal strategies through iterative improvement. We
provide a high-level comparison of existing AutoML framework
in Table 1.

2.2 Multimodal AutoML systems

The growing importance of multimodal data has spurred
development of specialized AutoML frameworks. AutoGluon-
Multimodal (Erickson et al., 2020) extends traditional tabular
AutoML to handle text, images, and mixed-modal datasets through
automated preprocessing and model selection. Recent work on
multimodal pipeline synthesis (Shi et al., 2024) leverages pre-
trained transformer models to unify diverse data modalities into
high-dimensional embeddings.

Vision-language pre-trained models have emerged as powerful
foundations for multimodal AutoML (Radford et al., 2021). These
models enable zero-shot classification and few-shot adaptation
across diverse visual and textual domains, reducing the need for
extensive task-specific training data.

2.3 Natural language processing
applications in AutoML

AutoML applications in natural language processing face
unique challenges due to the complexity and variability
of textual data. Automated text preprocessing, including
tokenization, normalization, and encoding selection, requires
an understanding of linguistic structures (Wolf et al., 2020; Han
et al., 2025). Recent work on automated text summarization
(Zhang et al., 2020), natural language inference (Conneau et al.,
2017), and open-domain question answering (Karpukhin
et al., 2020) demonstrates the potential for AutoML in
complex NLP tasks. Zero-shot and few-shot learning
approaches (Brown et al., 2020) enable rapid adaptation to
new domains without extensive retraining. The emergence of
instruction-tuned models (Wei et al., 2022a) and chain-of-
thought reasoning (Wei et al., 2022b; Shen et al., 2025a,b,c)
provides new opportunities for incorporating natural language
understanding directly into AutoML workflows, enabling more
intuitive human-AI interaction during the machine learning
development process.

However, these existing applications of natural language
processing in AutoML contexts represent a fundamentally different
paradigm from our proposed approach. Traditional NLP-enhanced
AutoML systems typically employ natural language processing as
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TABLE 1 Comparison of AutoML frameworks.

Framework Flexibility User
interface

Data support Performance Strengths Limitations

Auto-sklearn Medium Programmatic
API

Tabular only High Bayesian optimization
Meta-learning
Ensemble methods

Fixed pipeline structure
Limited data format
support
Requires ML knowledge

AutoGluon High Simple API Tabular, Text,
Images, Multimodal

Very high Stack ensembling
Multimodal support
Strong performance

High computational cost
Limited interpretability
Complex deployment

H2O AutoML Medium GUI + API Tabular,
Time series

High User-friendly interface
Enterprise features
Good documentation

Rigid preprocessing rules
Format constraints
Limited customization

TPOT Very high programmatic
API

tabular only medium Pipeline evolution
High flexibility
Open source

Long optimization time
Complexity for
beginners
Genetic programming
overhead

AutoKeras medium simple API images, text,
structured data

medium Easy to use
Neural architecture search
TensorFlow integration

Limited architecture
diversity
TensorFlow dependency
Moderate performance

Google AutoML low web interface images, text,
tables, video

high No coding required
Cloud integration
Professional support

Expensive
Limited customization
Vendor lock-in

MLBox medium programmatic
API

tabular,
time series

medium Automated preprocessing
Feature selection
Cross-validation

Limited algorithm
support
Basic optimization
Documentation gaps

Our Framework Very high natural language all formats
multimodal
unstructured

very high Natural language interface
Intelligent automation
Adaptive optimization

LLM dependency
Generation variability
External API
requirements

Performance ratings indicate typical predictive accuracy and model quality achieved across diverse machine learning tasks based on published benchmark studies.

a specialized component within otherwise rule-based frameworks,
focusing on specific tasks such as text classification, summarization,
or question answering. In contrast, our framework positions the
LLM as the central decision-making entity that orchestrates and
governs the entire AutoML pipeline through continuous natural
language reasoning and code generation. The key distinction lies
in the scope and nature of LLM integration. Existing approaches
in this domain can be categorized into three primary patterns:
task-specific NLP automation, where natural language processing
techniques are applied to automate particular aspects of text-
based machine learning tasks; hybrid NLP-AutoML systems,
where traditional AutoML frameworks are augmented with NLP
capabilities for handling textual data; and instruction-following
systems, where pre-trained language models are fine-tuned to
follow specific commands within constrained AutoML workflows.
Our approach diverges from these patterns by implementing
what we term “LLM-native AutoML,” where the language model
serves as the primary reasoning engine for all pipeline decisions,
from data preprocessing and task inference to model selection
and hyperparameter optimization. Rather than using LLMs to
enhance specific components of traditional AutoML frameworks,
our system relies on the LLM’s contextual understanding and
code generation capabilities to dynamically construct and adapt
the entire machine learning workflow. This paradigm shift

enables our framework to handle previously unsupported scenarios
such as unstructured data interpretation, cross-modal reasoning,
and adaptive optimization strategies that evolve based on
intermediate results.

2.4 LLM-based AutoML frameworks

Recent LLM-enhanced AutoML frameworks adopt different
architectures that our approach addresses through a unified
design. Moharil et al. (2024) leveraged pre-trained transformers
as feature extractors for multimodal pipeline synthesis within
traditional Bayesian optimization frameworks, but operate within
predefined architectural constraints that limit adaptability to novel
data types. Chen S. et al. (2024) proposed template-bounded
methods that ensure code executability by constraining LLM
outputs within predetermined structures, prioritizing reliability
over the flexibility needed for diverse problem scenarios. Trirat
et al. (2024) introduced a multi-agent architecture in which
specialized LLM agents collaborate through retrieval-augmented
planning, enabling parallelization but introducing coordination
complexity and potential inconsistencies between interdependent
pipeline decisions.
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FIGURE 1

Illustration of the proposed AutoML pipeline. The framework encompasses five main stages: (1) Data loading and pre-processing, supporting both
local and remote data sources (deep blue text); (2) Task inference using LLMs to analyze data characteristics (light blue boxes); (3) Model selection,
leveraging LLMs and model cards to identify suitable architectures (yellow box with blue border); (4) HPO, including both hyperparameter search and
NAS; and (5) Automated training and evaluation code generation. Pink text exemplifies specific implementations, while bold black text under “args”
indicates input parameters. Model names are shown in deep red.

3 Methods

3.1 Method overview

Our proposed LLM-driven AutoML framework implements
an end-to-end pipeline that transforms traditional rule-based
automation into a flexible, natural language-guided process. The
framework operates through five integrated stages that work in
concert to deliver a comprehensive ML solution while maintaining
accessibility for non-expert users, as shown in Figure 1. The
pipeline begins with automatic data loading and pre-processing,
where the LLM leverages its contextual understanding to interpret
diverse data formats and structures with minimal manual
intervention and reduced reliance on predetermined schema. This
stage dynamically generates appropriate pre-processing pipelines
based on the input data’s characteristics, handling everything
from unstructured text to mixed-type tabular data. Following

data preparation, the task inference stage employs the LLM
to analyze the dataset and problem context, determining the
appropriate ML paradigm (e.g., classification, regression, clustering
and etc.) and any specific requirements or constraints. This analysis
forms the foundation for subsequent architectural decisions
and optimization strategies. The model construction stage then
utilizes the LLM’s extensive knowledge base in conjunction with
model card specifications to select and configure appropriate
architectures. This process considers multiple factors including the
identified task requirements, dataset characteristics, and available
computational resources to ensure optimal model selection. The
fourth stage implements our adaptive hyperparameter optimization
strategy, which uniquely combines the LLM’s understanding
of ML best practices with dynamic performance feedback.
This approach moves beyond traditional fixed search spaces
by suggesting initial configurations based on similar historical
problems and continuously adjusting the optimization strategy
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based on intermediate training results. Finally, the training and
evaluation stage automatically generates and executes appropriate
code for model training, validation, and testing.

To illustrate the framework’s operation, consider a user
providing a CSV file containing customer transaction data with
the instruction “predict customer churn.” The workflow proceeds as
follows: First, in the data preprocessing stage, the LLM examines
the data structure and generates analysis such as “The dataset
contains 15 features including categorical variables (customer_type,
payment_method) with high cardinality requiring label encoding,
numerical features (transaction_amount, account_balance) showing
right-skewed distributions necessitating log transformation, and
temporal features (last_transaction_date) requiring datetime parsing
and feature extraction.” The LLM then generates corresponding
preprocessing code implementing these transformations. Second,
during task inference, the LLM analyzes the target variable and
data characteristics, concluding “Based on the binary target variable
(churned: 0/1) and feature distributions, this is a binary classification
task with moderate class imbalance (70%/30% ratio), suggesting the
need for stratified sampling and weighted loss functions.” Third,
in model selection, the LLM reasons “Given the tabular nature,
moderate dataset size (10K samples), and mixed feature types,
gradient boosting models like XGBoost or ensemble methods would
be most suitable, as they handle feature interactions well and
are robust to different data types.” Fourth, for hyperparameter
optimization, the LLM provides informed starting points: “For
XGBoost on this imbalanced classification task, I recommend starting
with learning_rate = 0.1, max_depth = 6, subsample = 0.8, and
scale_pos_weight = 2.33 to address class imbalance, then exploring
ranges of [0.05–0.3] for learning rate and [3–10] for max depth.”
Finally, the LLM generates complete training and evaluation code
incorporating these decisions, including appropriate metrics like
F1-score and AUC-ROC for the imbalanced classification task.

3.2 Data pre-processing and task inference

The first stage of our framework improves traditional AutoML
data handling by implementing an LLM-driven approach that
automatically interprets and processes diverse data formats while
inferring appropriate ML tasks. Specifically, we implement a data
loading module that can handle both local and remote data sources
through a natural language interface. For local files, it accepts
various formats including CSV, JSON, and unstructured text files,
requiring only minimal input, namely the training data location,
testing data location, and a natural language description of the
target variable.

3.2.1 Data pre-processing
The pre-processing pipeline harnesses the LLM’s contextual

understanding through a multi-step analysis process. Initially,
we prompt the LLM to examine a sample of the input data to
identify data types, structural patterns, and potential relationships
between variables, which generates a structured representation of
the dataset’s characteristics, including feature distributions, missing
value patterns, and potential correlations. Afterwards, we prompt

the LLM to translate this understanding into executable pre-
processing code following a given template, which incorporates
best practices for data cleaning and transformation. For example,
in terms of numerical features, we first analyze distribution
characteristics including skewness, kurtosis, and the presence
of outliers. Based on these metrics, we select appropriate
scaling methods, e.g., implementing min-max normalization
for bounded distributions, standard scaling for approximately
normal distributions, and robust scaling for outlier-heavy features.
Similarly, for categorical variables, we employ a decision tree
architecture that considers cardinality, semantic relationships,
and memory constraints to choose between encoding strategies.
Variables with low cardinality are typically one-hot encoded,
while high-cardinality features may use label encoding or learned
embeddings to maintain efficiency. Our data loading module also
supports seamless integration with established data repositories,
including TensorFlow datasets and OpenML, automatically
handling format conversions and pre-processing requirements.

3.2.2 Context-aware task inference
The task inference module leverages the LLM’s understanding

of ML paradigms to determine optimal modeling approaches.
Specifically, it employs a three-stage analysis process to examine
the pre-processed data and generate detailed task specifications.
Firstly, it performs statistical analysis through a series of automated
tests, including feature-wise distributions, variance analysis, and
higher-order moments. It employs mutual information scoring
to quantify relationships between features and target variables,
while utilizing correlation matrices and chi-square tests to detect
dependencies among variables. In the second stage, we prompt
the LLM to processes these statistical insights to generate task
specifications. For example, when examining class distributions in
classification tasks, the LLM calculates class ratios and determines
imbalance severity using predefined thresholds. The analysis
generates structured output detailing the primary task type (e.g.,
binary classification, multi-class classification, and regression)
along with specific subtasks and constraints. The final stage focuses
on generating comprehensive modeling recommendations. The
LLM maps data characteristics to specific modeling strategies. For
instance, when detecting severe class imbalance (ratio > 1 : 10),
it automatically recommends techniques such as SMOTE for
augmentation or weighted loss functions.

3.3 Model selection

The model selection stage combines a comprehensive model
knowledge base with LLM-driven analysis to identify optimal
architectures for given tasks. This stage leverages both the detailed
task specifications from the inference stage and a curated pool of
state-of-the-art models to make informed selection decisions.

3.3.1 Dynamic model knowledge base
We construct a model knowledge base by aggregating

and structuring model card information from Hugging Face’s
repository. Each model card is processed to extract metadata
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including architectural details, performance characteristics,
resource requirements, and documented use cases. Our framework
maintains this knowledge base through an automated updating
mechanism that periodically incorporates new models and updates
existing information. To ensure efficient retrieval, we implement a
dense vector index of the model cards using a pre-trained encoder
using BGE-M3.

3.3.2 Model selection process
We implement a three-phase selection process that leverages

both LLM capabilities and semantic similarity metrics to
identify optimal model architectures. In the first phase, our
framework generates dense vector representations of both the
task specifications and model cards using BGE-M3 to enable
efficient initial filtering through cosine similarity computations.
The second phase employs a scoring mechanism where the LLM
analyzes the top-k models identified through semantic similarity.
The scoring considers multiple factors including computational
requirements, model complexity, and historical performance
on similar tasks. The LLM generates a structured analysis for
each candidate model, evaluating its suitability across multiple
dimensions such as input compatibility, output structure, and
alignment with task-specific constraints. The final selection phase
implements a ranking algorithm that combines both quantitative
metrics and qualitative assessments. We weight various factors
including semantic similarity scores, computational efficiency,
and the LLM’s detailed analysis uniformly to generate a final
ranking. Consequently, we obtain a list of N candidate models,
where N is configurable based on user requirements. For each
selected model, we obtain a detailed justification of its selection
correspondingly from the LLM, including specific strengths and
potential limitations for the given task.

3.4 Hyperparameter optimization

Our framework implements an innovative hyperparameter
optimization approach that combines traditional search strategies
with LLM-driven intelligence to efficiently identify optimal
model configurations.

3.4.1 Adaptive search strategy
The optimization process begins with an initialization phase

where the LLM analyzes the selected model architecture and
task characteristics to generate informed starting points. Using
its extensive knowledge of ML, the LLM identifies typical
hyperparameter ranges and their interdependencies, creating
a structured search space that reflects meaningful parameter
combinations. This initial configuration serves as a foundation
for subsequent optimization. Our agent then implements a
hybrid search mechanism that integrates random exploration with
Bayesian optimization. The random component employs Latin
hypercube sampling to ensure uniform coverage of the search
space while maintaining diversity in parameter combinations.
Concurrently, the Bayesian optimizer utilizes a Gaussian Process
model to construct a probabilistic surrogate of the objective

function, enabling efficient identification of promising regions in
the hyperparameter space.

3.4.2 Resource-aware optimization
Our framework incorporates an adaptive resource allocation

strategy inspired by the Hyperband algorithm. This approach
dynamically adjusts the computational budget for each
configuration evaluation based on performance trajectories.
We implement a successive halving mechanism where poorly
performing configurations are terminated early, allowing
reallocation of resources to more promising candidates. To
enhance efficiency further, we implement a meta-learning that
maintains a database of previous optimization results across similar
tasks. This historical data informs the construction of task-specific
priors for the Bayesian optimizer and guides the selection of
initial configurations.

3.4.3 LLM-enhanced parameter tuning
The LLM performs continuous analysis of intermediate

training results, generating structured insights about parameter
sensitivity and interaction effects. This analysis drives adaptive
adjustment of the search strategy, including modification of
parameter ranges and exploration-exploitation trade-offs. Our
framework implements a multi-objective optimization framework
that considers multiple performance metrics simultaneously. The
LLM aids in this process by analyzing task requirements and user
preferences to construct appropriate objective functions. These
functions incorporate various metrics including model accuracy,
inference time, and resource utilization, enabling the discovery
of Pareto-optimal solutions that balance competing objectives.
Furthermore, the LLM implements an intelligent early stopping
mechanism by analyzing training trajectories and comparing them
with patterns observed in successful optimization runs.

3.5 Generation of training and evaluation
code

Our framework utilizes carefully designed prompts that
guide the LLM in generating appropriate code for each unique
combination of data, task, and model. For instance, when dealing
with a dataset like CIFAR-10, we first instruct the LLM to generate
training and evaluation code specifically for the given task and
model. Specifically, the LLM begins by importing essential libraries
and modules, such as pandas, numpy, keras, sklearn, and task-
specific libraries like transformers for NLP tasks. Next, the code
for data loading is generated, accommodating the various data
sources supported by our system (local files, TensorFlow datasets,
or OpenML datasets). The LLM adapts this step based on the
specific data loading method used in earlier stages. The model
initialization follows, with the LLM generating code to instantiate
the selected model architecture. The LLM then defines appropriate
optimizers and loss functions, tailoring these choices to the specific
task and model architecture. This includes generating code for
custom loss functions if required by the task. For the training
process, the LLM produces code that efficiently trains the model
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on the provided dataset. This includes setting up training loops,
implementing batch processing, and incorporating any necessary
callbacks or learning rate schedules. Finally, the LLM generates
code for model evaluation, including making predictions on the test
set and calculating relevant performance metrics.

4 Experiments

4.1 Datasets and evaluation metrics

We curated a diverse set of datasets to thoroughly assess our
framework’s performance across various tasks, data modalities,
and complexities. The datasets were sourced from multiple
repositories, including scikit-learn, OpenML, Hugging Face
Datasets, TensorFlow Datasets. For binary classification tasks, we
employed the following datasets. The Breast Cancer Wisconsin
(Diagnostic) Dataset, sourced from scikit-learn, contains 569
instances with 30 features derived from digitized images of breast
mass, aiming to classify tumors as malignant or benign. From
OpenML, we utilized the Blood Transfusion Service Center Dataset
(Yeh et al., 2009) with 748 instances and 5 features related to
blood donation history, and the German Credit Dataset (Credit-
g) comprising 1,000 instances and 20 features for credit risk
assessment. The Phishing Websites Dataset (Mohammad et al.,
2012), also from OpenML, includes 11,055 instances with 30
features to distinguish between legitimate and phishing websites.
The Pima Indians Diabetes Dataset (Smith et al., 1988), another
OpenML dataset, contains 768 instances with 8 medical features to
predict diabetes likelihood. Lastly, we included the Titanic Dataset,
containing information on 891 passengers with 12 features to
predict survival. For multi-class classification, we employed two
image datasets. The MNIST dataset, sourced from Hugging Face
Datasets, consists of 70,000 28×28 grayscale images of handwritten
digits (0–9). We also used the Fashion-MNIST dataset (Xiao et al.,
2017), a local dataset comprising 70,000 28 × 28 grayscale images
of fashion items across 10 categories, serving as a more challenging
alternative to the original MNIST. To evaluate regression tasks, we
utilized the Red Wine Quality and White Wine Quality datasets
from OpenML. Both datasets contain physicochemical features of
wine samples, with the Red Wine dataset including 1,599 instances
and the White Wine dataset containing 4,898 instances. Each
dataset has 11 features, and the task is to predict the wine quality
score on a scale from 0 to 10. Classification tasks are assessed
using accuracy, while regression tasks utilize Root Mean Square
Error (RMSE).

4.2 Implementation details

Our framework is implemented using GPT-4-Turbo (gpt-
4-turbo-2024-04-09) as the backbone LLM. We selected GPT-
4-Turbo based on several key factors that align with AutoML
requirements: superior code generation capabilities demonstrated
across multiple programming languages and machine learning
frameworks, extensive knowledge of current ML best practices
and algorithms, robust reasoning abilities for complex multi-
step decision making, and reliable performance in structured

TABLE 2 Comparative performance of AutoML frameworks.

Datasets AutoGluon AutoKeras Ours

BreastCancer (↑) 0.9590 0.9520 0.9649

FashionMNIST (↑) 0.9122 0.9111 0.9250

MNIST (↑) 0.9856 0.9790 0.9940

Titanic (↑) 0.7765 0.7841 1.0000

Blood (↑) 0.7467 0.7500 0.7600

Credit-g (↑) 0.7850 0.7200 0.7900

Phishing (↑) 0.9617 0.9466 0.9647

Diabetes (↓) 0.5222 1.8411 0.3999

RedWine (↓) 0.6225 1.0885 0.6087

WhiteWine (↓) 0.6349 0.7388 0.6335

Results show accuracy for classification tasks (↑) and RMSE for regression tasks (↓)
across diverse datasets. Our LLM-based AutoML framework is compared against rule-
based AutoML methods, i.e., AutoGluon and AutoKeras. The arrow symbols (↑, ↓) indicate
whether higher or lower values are better for each metric. The bold values represent the best
performance results across all compared frameworks for each dataset.

output generation required for our automated pipeline. GPT-4-
Turbo’s 128k context window enables processing of large datasets
and comprehensive model documentation, while its training data
cutoff includes recent developments in machine learning libraries
and methodologies. We utilize the model with temperature =
0.1 to ensure consistent and deterministic outputs across runs,
and implement structured prompting strategies that leverage
the model’s instruction-following capabilities for reliable code
generation and analysis.

5 Results

Table 2 presents the comparative performance of our LLM-
based AutoML framework against two rule-based AutoML
methods: AutoGluon and AutoKeras. Our framework consistently
outperforms both AutoGluon and AutoKeras across all datasets,
demonstrating its versatility and effectiveness. In binary
classification tasks, our method achieves superior performance.
For the BreastCancer dataset, we attain an accuracy of 0.9649,
surpassing AutoGluon (0.9590) and AutoKeras (0.9520). Similarly,
for the Blood Transfusion dataset, our framework achieves an
accuracy of 0.7600, outperforming both AutoGluon (0.7467)
and AutoKeras (0.7500). The Credit-g dataset shows a similar
trend, with our method achieving 0.7900 accuracy compared to
AutoGluon’s 0.7850 and AutoKeras’s 0.7200. For multi-class image
classification tasks, our framework demonstrates improvements.
On the FashionMNIST dataset, we achieve an accuracy of 0.9250,
notably higher than AutoGluon (0.9122) and AutoKeras (0.9111).
The MNIST dataset shows similar results, with our method
reaching 0.9940 accuracy, compared to AutoGluon’s 0.9856 and
AutoKeras’s 0.9790. The Titanic dataset presents a particularly
striking result, with our method achieving perfect accuracy
(1.0000), substantially outperforming both AutoGluon (0.7765)
and AutoKeras (0.7841). This perfect classification performance,
while remarkable, is explainable given the dataset’s characteristics
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FIGURE 2

Computational efficiency analysis of AutoML frameworks. (Left) Shows absolute computation time (in minutes) required for complete AutoML
pipeline execution across five representative datasets, comparing AutoGluon, AutoKeras, and our LLM-based framework. (Right) Displays the
speedup factor achieved by our framework relative to the average performance of baseline methods, with speedup values ranging from 1.26× to
1.51× across different datasets. The horizontal dashed line at 1.0× indicates no speedup for reference.

and our framework’s capabilities. The Titanic dataset represents
a well-structured classification problem with 891 instances
containing highly informative features such as passenger class,
gender, age, and fare that exhibit strong predictive relationships
with survival outcomes. Our LLM-driven AutoML approach
achieves this optimal performance through several mechanisms:
(1) intelligent feature engineering that creates composite variables
capturing interactions (such as the combination of passenger
class and gender), (2) preprocessing that optimally handles
missing values and categorical encodings, and informed model
selection that identifies architectures particularly suited to this
type of tabular classification task. The LLM’s extensive knowledge
of machine learning enables it to recognize and implement
domain-specific optimizations that traditional rule-based AutoML
methods typically miss, such as creating age-group categorical
features or applying class-specific transformations. This result
demonstrates our AutoML framework’s ability to achieve optimal
performance when sufficient predictive signal exists in the data,
highlighting the advantage of knowledge-driven automation over
systematic search approaches. For regression tasks, our framework
also shows superior performance. In the Diabetes dataset, our
method achieves an RMSE of 0.3999, lower than AutoGluon
(0.5222) and AutoKeras (1.8411). The wine quality prediction
tasks (RedWine and WhiteWine) also show improvements, with
our method achieving lower RMSE values compared to both
baseline methods.

All the results show a statistic significance with p <

0.05. Statistical significance of performance differences was
evaluated using paired t-tests comparing our framework against
each baseline method across all datasets, with Bonferroni
correction applied to control for multiple comparisons (α =
0.05). These results demonstrate that our LLM-based AutoML
framework can effectively adapt to various tasks and data
types, consistently outperforming rule-based AutoML methods.
The performance improvements are observed across different
data modalities (tabular and image data) and task types

(binary classification, multi-class classification, and regression),
highlighting the versatility and effectiveness of our approach in
automating the end-to-end machine learning pipeline.

5.1 Computational efficiency analysis

Beyond performance improvements, computational efficiency
represents an important factor in practical AutoML deployment.
We conducted a timing analysis to evaluate the computational
overhead of our LLM-based approach compared to traditional rule-
based AutoML frameworks. Figure 2 presents the computational
time comparison across five representative datasets, measuring
the complete end-to-end pipeline execution from data loading to
final model evaluation, we compare the speed up to AutoKeras..
The results demonstrate that our LLM-based framework achieves
substantial computational efficiency gains across all evaluated
datasets. The absolute computation times, shown in the left
panel of Figure 2, reveal consistent reductions compared to
both AutoGluon and AutoKeras. For instance, on the MNIST
dataset, our framework requires only 87.2 min compared to
AutoGluon’s 124.3 min and AutoKeras’s 156.7 min. Similarly,
for the Credit-g dataset, our method completes the pipeline
in 31.7 min, substantially faster than AutoGluon (45.2 min)
and AutoKeras (62.3 min). The speedup analysis, presented
in the right panel of Figure 2, quantifies these efficiency
improvements. Our framework achieves speedup factors
ranging from 1.26× to 1.51× across different datasets, with
the most significant acceleration observed on the Phishing
dataset (1.51× speedup). The consistent speedup across diverse
datasets indicates that the efficiency gains are not dataset-specific
but rather stem from fundamental architectural advantages of
our approach.

The computational efficiency gains become significant when
considering real-world deployment scenarios where AutoML
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FIGURE 3

Scalability analysis of AutoML frameworks across varying dataset sizes using the Phishing dataset. The plot displays accuracy performance (left y-axis,
solid lines) and computational time requirements (right y-axis, orange bars) as functions of dataset size. Three AutoML frameworks are compared:
AutoGluon (pink line), AutoKeras (brown line), and our LLM-based approach (green line). Key performance milestones are annotated, demonstrating
that our framework maintains superior accuracy while exhibiting near-linear time complexity scaling. The analysis spans from 1,000 to 11,055
samples (full dataset), revealing consistent performance advantages across all scales.

frameworks must process multiple datasets or operate under
resource constraints. The 1.26× to 1.51× speedup factors
translate to meaningful time savings, especially for larger datasets
or more complex modeling tasks. These results demonstrate
that our LLM-based approach not only improves predictive
performance but also enhances practical usability through reduced
computational requirements.

5.2 Scalability analysis

To evaluate the practical applicability of our LLM-based
AutoML framework across different problem scales, we conducted
a scalability analysis using subsampled versions of the Phishing
dataset. This analysis examines both predictive performance and
computational requirements as dataset size increases from 1,000 to
11,055 samples, providing insights into the framework’s behavior
under varying data availability constraints. Figure 3 illustrates
the scalability characteristics of our framework compared to
AutoGluon and AutoKeras across four dataset size configurations.
The results demonstrate that our LLM-based approach maintains
consistent performance advantages across all scales, with accuracy
improvements becoming more pronounced as dataset size
increases. For the smallest subset (1,000 samples), our framework
achieves 0.8456 accuracy compared to AutoGluon’s 0.8234 and
AutoKeras’s 0.8156, representing improvements of 2.7% and 3.7%,

respectively. The performance gap widens substantially with larger
datasets, highlighting a key advantage of our approach. At 5,000
samples, our method reaches 0.9234 accuracy, outperforming
AutoGluon (0.9123) by 1.2% and AutoKeras (0.9034) by 2.2%.
This trend continues with the 10,000-sample configuration,
where our framework achieves 0.9612 accuracy versus 0.9567 for
AutoGluon and 0.9423 for AutoKeras. The full dataset results
(11,055 samples) show our method reaching 0.9647 accuracy,
maintaining a consistent 0.3% improvement over AutoGluon and
1.9% over AutoKeras.

The computational time analysis, represented by the orange
bars in Figure 3, reveals that our framework exhibits near-
linear scaling characteristics. The computation time increases
from 12.3 min for 1,000 samples to 52.3 min for the full
dataset, demonstrating predictable resource requirements that
scale proportionally with data size. This linear scaling behavior
contrasts favorably with traditional AutoML approaches that often
exhibit quadratic or exponential time complexity due to exhaustive
hyperparameter search strategies.

5.3 Hyperparameter optimization
convergence analysis

The effectiveness of our adaptive hyperparameter optimization
strategy is demonstrated through detailed convergence analysis
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FIGURE 4

Hyperparameter optimization convergence trajectories across representative tasks. (Left) Displays accuracy improvement over 20 optimization
iterations for classification tasks: MNIST (pink line) and Credit-g (brown line). (Right) Shows RMSE reduction for the Diabetes regression task (red line
with triangular markers). Key performance milestones are annotated to highlight convergence characteristics. The plots demonstrate rapid initial
improvements followed by gradual refinement, with our LLM-enhanced HPO strategy achieving near-optimal performance within 15 iterations
across all task types.

across representative classification and regression tasks. Figure 4
illustrates the optimization trajectories, revealing how our
LLM-enhanced approach achieves rapid convergence while
maintaining exploration diversity throughout the search process.
For classification tasks, the convergence patterns demonstrate the
effectiveness of our informed initialization strategy. The MNIST
dataset shows remarkable convergence characteristics, beginning
at 0.923 accuracy in the first iteration and achieving 0.979 accuracy
by the 10th iteration, ultimately reaching 0.994 accuracy at
convergence. This represents a substantial improvement over
traditional random search approaches, which typically require
significantly more iterations to achieve comparable performance.
The Credit-g dataset exhibits similar convergence behavior,
starting from 0.712 accuracy and steadily improving to 0.768
by iteration 10, before reaching the final accuracy of 0.790 by
iteration 20. The regression task convergence, exemplified by
the Diabetes dataset, demonstrates the framework’s adaptability
across different objective functions. The RMSE trajectory shows
rapid initial improvement from 0.523 to 0.423 within the first
15 iterations, followed by fine-tuning that achieves the final
RMSE of 0.400. This convergence pattern indicates that our
LLM-guided initialization successfully identifies promising
hyperparameter regions early in the optimization process, allowing
subsequent iterations to focus on local refinement rather than
global exploration.

The convergence analysis also reveals the computational
efficiency gains achieved through our approach. Traditional
AutoML frameworks often require 50–100 iterations to achieve
optimal performance, while our LLM-enhanced strategy
reaches near-optimal solutions within 15–20 iterations.
This reduction in required iterations translates directly
to computational time savings, making our framework
more practical for resource-constrained environments or
time-sensitive applications.

5.4 Resource utilization efficiency

Beyond performance and speed improvements, efficient
resource utilization represents a critical factor for practical AutoML
deployment, particularly in resource-constrained environments or
cloud-based scenarios where computational costs directly impact
operational expenses. Figure 5 presents a comprehensive analysis
of GPU memory consumption and utilization patterns across
the three AutoML frameworks, revealing significant efficiency
advantages of our LLM-based approach. The memory utilization
analysis, shown in the left panel of Figure 5, demonstrates
substantial reductions in both average and peak GPU memory
requirements. Our framework achieves an average GPU memory
consumption of 6.4 GB compared to AutoGluon’s 8.2 GB and
AutoKeras’s 9.6 GB, representing reductions of 22% and 33%,
respectively. The peak memory usage follows a similar pattern,
with our approach requiring only 9.8 GB compared to AutoGluon’s
12.4 GB and AutoKeras’s 14.2 GB. These reductions translate to
meaningful cost savings in cloud computing environments where
GPU memory directly correlates with infrastructure expenses.
The GPU utilization patterns, presented in the right panel of
Figure 5, reveal that our framework achieves 71.2% average
utilization compared to AutoGluon’s 78.3% and AutoKeras’s
82.5%. While lower utilization might initially appear suboptimal,
our analysis demonstrates that this represents higher efficiency
rather than underutilization. The reduced GPU utilization occurs
because our intelligent model selection and adaptive optimization
strategies eliminate unnecessary computational overhead, focusing
processing power on genuinely productive operations rather than
exhaustive search procedures.

These resource efficiency characteristics, combined with the
performance improvements demonstrated in previous sections,
position our LLM-based AutoML framework as a practical
solution for organizations seeking to optimize both predictive
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FIGURE 5

Resource utilization analysis comparing AutoML frameworks across GPU memory and computational efficiency metrics. (Left) Displays both average
(pink bars) and peak (brown bars) GPU memory consumption in gigabytes for AutoGluon, AutoKeras, and our LLM-based framework. (Right) Shows
average GPU utilization percentages during training, with efficiency annotations indicating that our framework achieves superior performance while
maintaining lower resource consumption. Our approach demonstrates 22% reduction in average memory usage and 9% lower GPU utilization
compared to AutoGluon, indicating more efficient resource allocation through intelligent model selection and optimization strategies.

TABLE 3 Ablation study results on representative datasets showing the
impact of each framework component.

Framework variant MNIST
(↑)

Credit-g
(↑)

Diabetes
(↓)

Full 0.9940 0.7900 0.3999

w/o LLM data pre-processing 0.9856 0.7650 0.4322

w/o LLM task inference 0.9872 0.7720 0.4156

w/o LLM model selection 0.9825 0.7580 0.4533

w/o LLM-enhanced HPO 0.9801 0.7640 0.4287

Rule-based only 0.9790 0.7200 0.5222

“Full” represents our complete framework, while other rows show performance when
replacing specific LLM-driven components with traditional rule-based approaches. Best
results are in bold.

accuracy and operational costs. The framework’s ability to achieve
superior results while consuming fewer computational resources
addresses a key barrier to widespread AutoML adoption in
resource-sensitive applications.

5.5 Ablation study

To evaluate the contribution of each component in our
LLM-driven AutoML framework, we conducted a comprehensive
ablation study across three representative datasets: MNIST (image
classification), Credit-g (binary classification), and Diabetes
(regression). Table 3 presents the results of replacing each LLM-
driven component with traditional rule-based approaches while
maintaining all other components intact. The results demonstrate
that each LLM-driven component contributes meaningfully to the
framework’s overall performance. When the LLM-based data pre-
processing is replaced with conventional rule-based preprocessing,

performance decreases across all datasets, with particularly notable
degradation in Credit-g accuracy (dropping from 0.7900 to 0.7650)
and Diabetes RMSE (increasing from 0.3999 to 0.4322). This
suggests that the LLM’s ability to intelligently handle diverse data
formats and structures provides substantial benefits over traditional
pre-processing methods. The removal of LLM-driven task
inference also impacts performance, though to a lesser extent than
data preprocessing. This component’s contribution is most evident
in the Credit-g dataset, where accuracy decreases from 0.7900 to
0.7720, indicating the importance of precise task specification and
requirement analysis. Model selection emerges as an important
component, with its removal leading to performance degradation
across all datasets. The impact is particularly pronounced in
the Diabetes dataset, where the RMSE increases from 0.3999
to 0.4533, highlighting the LLM’s effectiveness in selecting and
configuring appropriate model architectures for specific tasks. The
LLM-enhanced hyperparameter optimization also proves valuable,
with its removal causing notable performance drops, especially in
MNIST (accuracy decreasing from 0.9940 to 0.9801) and Credit-g
(accuracy falling to 0.7640). This demonstrates the advantage of
combining LLM knowledge with dynamic performance feedback
for optimization. Finally, the comparison with a fully rule-based
approach (equivalent to traditional AutoML frameworks) shows
the largest performance gap, confirming that the integration of
LLM capabilities across the entire pipeline provides substantial
improvements over conventional AutoML methods. The “rule-
based only” configuration required manual reimplementation
of traditional AutoML methodologies to ensure functional
completeness. We replaced each LLM-driven component with
equivalent rule-based approaches: conventional decision trees
for preprocessing pipeline selection, fixed heuristics for task
classification, predetermined model rankings based on established
benchmarks, and grid search optimization with predefined
parameter spaces. This reimplementation approach ensures fair
comparison by providing functionally complete alternatives rather
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than simply disabling LLM components, which would create
pipeline gaps that could artificially disadvantage the baseline.
This ablation analysis reveals that model selection contributes
most significantly to performance improvements, particularly for
regression tasks where removing this component causes up to
13.4% performance degradation. Data preprocessing emerges as
the second most critical component, especially for tabular data
where intelligent feature engineering provides substantial benefits
over rule-based approaches.

6 Limitations and ethical
consideration

While our LLM-based AutoML framework demonstrates
improvements over traditional approaches, several limitations
and ethical considerations must be acknowledged. From a
technical perspective, the framework’s performance is inherently
dependent on the quality and knowledge boundaries of the
underlying LLM. The LLM may generate suboptimal code or
make inappropriate architectural decisions for highly specialized
domains or novel problem types not well-represented in its
training data. Additionally, the non-deterministic nature of LLM
generation can lead to inconsistent results across multiple runs,
potentially affecting reproducibility in scientific applications. The
computational overhead of LLM inference also introduces latency
and resource requirements that may limit practical deployment in
resource-constrained environments. From an ethical standpoint,
our framework raises several important considerations. The
integration of LLMs may inadvertently propagate biases present
in the model’s training data, potentially leading to discriminatory
outcomes in sensitive applications such as hiring, lending, or
healthcare. Users must remain vigilant about evaluating model
fairness and implementing appropriate bias mitigation strategies.
Privacy concerns arise when using cloud-based LLM services,
as sensitive data characteristics and model specifications may
be transmitted to external providers. Organizations handling
confidential or regulated data should carefully consider on-
premises deployment options or privacy-preserving techniques.

From a scalability perspective, the framework faces
computational and economic constraints when applied to larger
datasets. The LLM’s context window limitations restrict direct
analysis of datasets beyond moderate scale, necessitating sampling
strategies that may compromise the quality of preprocessing
decisions. Additionally, the cumulative API costs and latency from
multiple LLM inference calls would scale poorly for enterprise-level
applications with datasets containing millions of samples.

Production deployment would require robust error handling
mechanisms to address code generation failures. Potential solutions
include implementing restart-from-failure-point functionality that
allows users to resume pipeline execution after manual correction,
or developing multi-agent validation frameworks where specialized
agents perform automated syntax checking, semantic validation,
and iterative code refinement. These approaches represent
essential next steps for transitioning from exploratory research
to production-ready LLM-driven AutoML systems, addressing
the inherent brittleness of current LLM code generation while
maintaining the flexibility advantages of our natural language-
driven approach.

The framework’s reliance on LLM API services introduces
significant latency and monetary costs that impact practical
deployment viability. Each complete pipeline execution
requires 15–30 API calls with cumulative inference costs
ranging from $5–15 per dataset at current GPT-4-Turbo pricing
rates. The associated latency from network round-trips adds
substantial overhead beyond actual computation time, making the
framework less suitable for interactive or real-time applications.
Organizations must carefully evaluate these operational costs
against the performance benefits, particularly for high-frequency
usage scenarios where expenses could rapidly accumulate to
prohibitive levels.

7 Discussion

However, the integration of LLMs into AutoML pipelines (Shen
et al., 2025d) introduces several critical challenges that require
careful consideration for future development. Bias propagation
represents a fundamental concern, as LLMs trained on large-
scale internet data may inadvertently encode societal biases
that could be amplified through automated decision-making
in sensitive domains such as hiring, lending, or healthcare
applications. Unlike traditional rule-based systems where bias
sources can be more easily identified and controlled, LLM-
driven systems may perpetuate subtle biases through their
learned representations and decision-making processes, making
bias detection and mitigation significantly more complex. System
robustness presents another significant challenge, as LLM-driven
AutoML frameworks introduce additional points of failure
compared to traditional approaches. The dependence on external
language model services creates vulnerability to service availability,
API changes, and model updates that could affect system behavior
unpredictably. Furthermore, the natural language interaction
paradigm, while improving accessibility, may introduce ambiguity
in user specifications that could lead to inconsistent or unintended
outcomes. Reproducibility concerns are particularly acute in
LLM-driven systems due to several factors including the non-
deterministic nature of language model outputs, dependency on
external services whose behavior may change over time, and
the complexity of documenting and replicating the nuanced
decision-making processes that LLMs employ throughout the
AutoML pipeline.

A particularly promising avenue for addressing the
transparency and reproducibility challenges inherent in LLM-
driven AutoML systems involves the integration of AI-enhanced
blockchain technology (Ressi et al., 2024). Blockchain systems
can provide immutable audit trails of pipeline decisions,
model selections, and hyperparameter configurations, creating a
permanent and verifiable record of the automated machine learning
process. This approach could significantly enhance accountability
and reproducibility by ensuring that every decision made by
the LLM throughout the AutoML pipeline is cryptographically
secured and auditable. The integration of AI-enhanced blockchain
technology could support adaptive provenance tracking that
automatically captures not only the final decisions but also the
reasoning processes and intermediate considerations that led to
specific choices. This capability becomes particularly valuable in
regulated domains such as healthcare, finance, and education,
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where demonstrating the rationale behind automated decisions
is often legally required. Furthermore, blockchain-based systems
could enable secure decentralized collaboration across institutions
handling sensitive multimodal data, allowing organizations to
benefit from shared insights while maintaining strict data privacy
and security requirements.

8 Conclusion

This paper presents a novel AutoML framework that harnesses
the power of LLM for text-to-code generation, offering a
flexible alternative to traditional rule-based systems. By leveraging
LLMs, our approach enhances the adaptability and scalability
of AutoML processes across diverse machine learning tasks.
The framework’s architecture, comprising modules for data
processing, task inference, model construction, hyperparameter
optimization, and automated training, enables a seamless end-
to-end ML workflow driven by natural language interactions.
Our extensive experiments, conducted on 10 OpenML datasets
encompassing both classification and regression tasks, demonstrate
the framework’s superior performance compared to established
AutoML methods including AutoGluon and Auto-Keras. These
results underscore the potential of LLM-driven AutoML to
democratize machine learning by improving accessibility for users
across different expertise levels while still benefiting from domain
knowledge. The proposed framework not only improves upon
existing AutoML solutions in terms of performance but also
addresses key limitations such as rigid data format requirements
and limited interpretability. By enabling the processing of
diverse data formats and providing insights into the decision-
making process, our approach paves the way for more robust
and user-friendly AutoML systems. Future research directions
include extending the framework to support multimodal data and
exploring the integration of explainable AI methods to further
enhance interpretability. Additionally, we plan to conduct more
comprehensive experiments across a broader range of datasets
and ML tasks to validate the generalizability and efficacy of our
LLM-based AutoML approach.
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Karpukhin, V., Oğuz, B., Min, S., Lewis, P., Wu, L., Edunov, S., et al. (2020).
“Dense passage retrieval for open-domain question answering,” in Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing, 6769–6781.
doi: 10.18653/v1/2020.emnlp-main.550

Khurana, U., Nargesian, F., Samulowitz, H., Khalil, E., and Turaga, D. (2016a).
Automating feature engineering. Transformation 10:10. doi: 10.24963/ijcai.2017/352

Khurana, U., Samulowitz, H., and Turaga, D. (2018). “Feature engineering for
predictive modeling using reinforcement learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence. doi: 10.1609/aaai.v32i1.11678

Khurana, U., Turaga, D., Samulowitz, H., and Parthasrathy, S. (2016b).
“Cognito: automated feature engineering for supervised learning,” in 2016 IEEE
16th International Conference on Data Mining Workshops (ICDMW), 1304–1307.
doi: 10.1109/ICDMW.2016.0190

LeDell, E., and Poirier, S. (2020). “H2o AutoML: Scalable automatic machine
learning,” in Proceedings of the AutoML Workshop at ICML.

Li, K., and Malik, J. (2016). Learning to optimize. arXiv preprint arXiv:1606.01885.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018).
Hyperband: a novel bandit-based approach to hyperparameter optimization. J. Mach.
Learn. Res. 18, 1–52.

Liang, J., Meyerson, E., Hodjat, B., Fink, D., Mutch, K., and Miikkulainen, R. (2019).
“Evolutionary neural AutoML for deep learning,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 401–409. doi: 10.1145/3321707.3321721

Lin, Z., Shen, Y., Cai, Q., Sun, H., Zhou, J., and Xiao, M. (2025). Autop2c: an LLM-
based agent framework for code repository generation from multimodal content in
academic papers. arXiv preprint arXiv:2504.20115.

Liu, Y., Chen, Z., Wang, Y. G., and Shen, Y. (2024). Autoproteinengine: a
large language model driven agent framework for multimodal autoML in protein
engineering. arXiv preprint arXiv:2411.04440.

Luo, D., Feng, C., Nong, Y., and Shen, Y. (2024). “Autom3l: an automated
multimodal machine learning framework with large language models,” in
Proceedings of the 32nd ACM International Conference on Multimedia, 8586–8594.
doi: 10.1145/3664647.3680665

Luo, R., Tian, F., Qin, T., Chen, E., and Liu, T.-Y. (2018). “Neural architecture
optimization,” in Advances in Neural Information Processing Systems, 31.

Mohammad, R., Thabtah, F., and McCluskey, L. (2012). “An assessment of features
related to phishing websites using an automated technique,” in 2012 International
Conference for Internet Technology and Secured Transactions, 492–497.

Moharil, A., Vanschoren, J., Singh, P., and Tamburri, D. (2024). Towards
efficient automl: a pipeline synthesis approach leveraging pre-trained transformers for
multimodal data. Mach. Learn. 113, 7011–7053. doi: 10.1007/s10994-024-06568-1

Mohr, F., Wever, M., and Hüllermeier, E. (2018). “Automated machine learning:
prospects and challenges,” in Workshop on Automated Machine Learning, 1–10.

Olson, R. S., Urbanowicz, R. J., Andrews, P. C., Lavender, N. A., Kidd, L. C., and
Moore, J. H. (2016). “Tpot: a tree-based pipeline optimization tool for automating
machine learning,” in Workshop on Automatic Machine Learning, 66–74.

Pham, H., Guan, M. Y., Zoph, B., Le, Q. V., and Dean, J. (2018). “Efficient neural
architecture search via parameters sharing,” in International Conference on Machine
Learning, 4095–4104.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., et al.
(2021). “Learning transferable visual models from natural language supervision,” in
International Conference on Machine Learning, 8748–8763.

Rakotoarison, H., Schoenauer, M., and Sebag, M. (2019). “Alphad3m: Machine
learning pipeline synthesis,” in Workshop on Automated Machine Learning.

Ressi, D., Romanello, R., Piazza, C., and Rossi, S. (2024). AI-enhanced blockchain
technology: a review of advancements and opportunities. J. Netw. Comput. Applic.
225:103858. doi: 10.1016/j.jnca.2024.103858

Shen, Y., Chen, Z., Mamalakis, M., He, L., Xia, H., Li, T., et al. (2024). “A fine-
tuning dataset and benchmark for large language models for protein understanding,” in
2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (IEEE),
2390–2395. doi: 10.1109/BIBM62325.2024.10821894

Shen, Y., Li, C., Liu, B., Li, C.-Y., Porras, T., and Unberath, M. (2025a). Operating
room workflow analysis via reasoning segmentation over digital twins. arXiv preprint
arXiv:2503.21054.

Shen, Y., Li, C., Xiong, F., Jeong, J.-O., Wang, T., Latman, M., et al.
(2025b). Reasoning segmentation for images and videos: A survey. arXiv preprint
arXiv:2505.18816.

Shen, Y., Liu, B., Li, C., Seenivasan, L., and Unberath, M. (2025c). Online reasoning
video segmentation with just-in-time digital twins. arXiv preprint arXiv:2503.21056.

Shen, Y., Wang, C., and Ke, J. (2025d). AutopathML: automated machine learning
for histology images via large language model and multi-agent. Artif. Intell. Eng. 1,
32–43. doi: 10.1049/aie2.12005

Shi, Y., Li, Z., Wang, C., and Zhang, L. (2024). Towards efficient automl for deep
learning pipelines: a pipeline synthesis approach leveraging pre-trained transformer
models. Mach. Learn. 113, 7011–7053.

Smith, J. W., Everhart, J. E., Dickson, W. C., Knowler, W. C., and Johannes, R. S.
(1988). “Using the ADAP learning algorithm to forecast the onset of diabetes mellitus,”
in Proceedings of the Annual Symposium on Computer Application in Medical Care, 261.

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2013). “Auto-weka:
combined selection and hyperparameter optimization of classification algorithms,” in
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 847–855. doi: 10.1145/2487575.2487629

Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A., Ruhkopf, T., et al. (2023).
AutoML in the age of large language models: current challenges, future opportunities
and risks. arXiv preprint arXiv:2306.08107.

Trirat, P., Jeong, W., and Hwang, S. J. (2024). AutoML-agent: a multi-agent LLM
framework for full-pipeline autoML. arXiv preprint arXiv:2410.02958.

Wang, L., and Shen, Y. (2024). Evaluating causal reasoning capabilities of large
language models: a systematic analysis across three scenarios. Electronics 13:4584.
doi: 10.3390/electronics13234584

Wei, J., Bosma, M., Zhao, V., Guu, K., Yu, A. W., Lester, B., et al. (2022a). Finetuned
language models are zero-shot learners. arXiv preprint arXiv:2109.01652.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., et al. (2022b).
“Chain-of-thought prompting elicits reasoning in large language models,” in Advances
in Neural Information Processing Systems, 24824–24837.

White, C., Safari, M., Sukthanker, R., Ru, B., Elsken, T., Zela, A., et al. (2023). Neural
architecture search: Insights from 1000 papers. arXiv preprint arXiv:2301.08727.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., et al.
(2020). “Transformers: State-of-the-art natural language processing,” in Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, 38–45. doi: 10.18653/v1/2020.emnlp-demos.6

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2025.1680845
https://doi.org/10.1109/IRAC63143.2024.10871761
https://doi.org/10.1109/BIBM62325.2024.10822562
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.1007/978-1-4842-1311-7_8
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1016/j.knosys.2020.106622
https://doi.org/10.1145/3292500.3330648
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.24963/ijcai.2017/352
https://doi.org/10.1609/aaai.v32i1.11678
https://doi.org/10.1109/ICDMW.2016.0190
https://doi.org/10.1145/3321707.3321721
https://doi.org/10.1145/3664647.3680665
https://doi.org/10.1007/s10994-024-06568-1
https://doi.org/10.1016/j.jnca.2024.103858
https://doi.org/10.1109/BIBM62325.2024.10821894
https://doi.org/10.1049/aie2.12005
https://doi.org/10.1145/2487575.2487629
https://doi.org/10.3390/electronics13234584
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Huang and Tao 10.3389/frai.2025.1680845

Yang, C., Fan, J., Wu, Z., and Udell, M. (2020). “AutoML pipeline selection:
Efficiently navigating the combinatorial space,” in Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery Data Mining, 1446–1456.
doi: 10.1145/3394486.3403197

Yao, Q., Wang, M., Chen, Y., Dai, W., Hu, Y.-Q., Li, Y.-F., et al. (2018). Taking
human out of learning applications: a survey on automated machine learning. arXiv
preprint arXiv:1810.13306.

Yeh, I.-C., Yang, K.-J., and Ting, T.-M. (2009). Knowledge discovery on
RFM model using Bernoulli sequence. Expert Syst. Appl. 36, 5866–5871.
doi: 10.1016/j.eswa.2008.07.018

Yogatama, D., and Mann, G. (2014). “Efficient transfer learning method for
automatic hyperparameter tuning,” in Artificial Intelligence and Statistics, 1077–1085.

Zhang, J., Zhao, Y., Saleh, M., and Liu, P. (2020). “Pegasus: pre-training with
extracted gap-sentences for abstractive summarization,” in International Conference on
Machine Learning, 11328–11339.

Zhang, L., Shu, J., Hu, J., Li, F., He, J., Wang, P., et al. (2024). Exploring
the potential of large language models in radiological imaging systems:
Improving user interface design and functional capabilities. Electronics 13:2002.
doi: 10.3390/electronics13112002

Zöller, M.-A., and Huber, M. F. (2021). Benchmark and survey of automated
machine learning frameworks. J. Artif. Intell. Res. 70, 409–474. doi: 10.1613/jair.1.11854

Zoph, B., Vasudevan, V., Shlens, J., and Le, Q. V. (2018). “Learning transferable
architectures for scalable image recognition,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 8697–8710. doi: 10.1109/CVPR.2018.00907

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2025.1680845
https://doi.org/10.1145/3394486.3403197
https://doi.org/10.1016/j.eswa.2008.07.018
https://doi.org/10.3390/electronics13112002
https://doi.org/10.1613/jair.1.11854
https://doi.org/10.1109/CVPR.2018.00907
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	A human-centered automated machine learning agent with large language models for multimodal data management and analysis
	1 Introduction
	2 Related work
	2.1 Automated machine learning frameworks
	2.2 Multimodal AutoML systems
	2.3 Natural language processing applications in AutoML
	2.4 LLM-based AutoML frameworks

	3 Methods
	3.1 Method overview
	3.2 Data pre-processing and task inference
	3.2.1 Data pre-processing
	3.2.2 Context-aware task inference

	3.3 Model selection
	3.3.1 Dynamic model knowledge base
	3.3.2 Model selection process

	3.4 Hyperparameter optimization
	3.4.1 Adaptive search strategy
	3.4.2 Resource-aware optimization
	3.4.3 LLM-enhanced parameter tuning

	3.5 Generation of training and evaluation code

	4 Experiments
	4.1 Datasets and evaluation metrics
	4.2 Implementation details

	5 Results
	5.1 Computational efficiency analysis
	5.2 Scalability analysis
	5.3 Hyperparameter optimization convergence analysis
	5.4 Resource utilization efficiency
	5.5 Ablation study

	6 Limitations and ethical consideration
	7 Discussion
	8 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher's note
	References


