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Background: Accurate prediction of kidney graft failure at different phases 
post-transplantation is critical for timely intervention and long-term allograft 
preservation. Traditional survival models offer limited capacity for dynamic, 
time-specific risk estimation. Machine learning (ML) approaches, with their 
ability to model complex patterns, present a promising alternative.
Methods: This study developed and dynamically evaluated phase-specific 
ML models to predict kidney graft failure across five post-transplant intervals: 
0–3 months, 3–9 months, 9–15 months, 15–39 months, and 39–72 months. 
Clinically relevant retrospective data from deceased donor kidney transplant 
recipients were used for training and internal validation, with performance further 
confirmed on a blinded external validation cohort. Predictive performance was 
assessed using ROC AUC, F1 score, and G-mean.
Results: The ML models demonstrated varying performance across time intervals. 
Short-term predictions in the 0–3 month and 3–9 month intervals yielded 
moderate accuracy (ROC AUC = 0.73 ± 0.07 and 0.72 ± 0.04, respectively). The 
highest predictive accuracy observed in mid-term or the 9–15-month window 
(ROC AUC = 0.92 ± 0.02; F1 score = 0.85 ± 0.03), followed by the 15–39-month 
period (ROC AUC = 0.84 ± 0.04; F1 score = 0.76 ± 0.04). Long-term prediction 
from 39 to 72  months was more challenging (ROC AUC = 0.70 ± 0.07; F1 
score = 0.65 ± 0.06).
Conclusion: Phase-specific ML models offer robust predictive performance for 
kidney graft failure, particularly in mid-term periods, supporting their integration 
into dynamic post-transplant surveillance strategies. These models can aid 
clinicians in identifying high-risk patients and tailoring follow-up protocols to 
optimize long-term transplant outcomes.
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1 Introduction

Chronic kidney diseases (CKD) affect an estimated 9.1% of the 
global population, potentially indicating a trend of increasing 
prevalence or growing burden of CKD (Bikbov et al., 2020). Of note, 
this prevalence is very likely an underestimate owing to the lack of 
early kidney disease detection and screening programs in many parts 
of the world, which results in large-scale unawareness of the burden 
and prevalence of earlier stages of CKD. Further progression of CKD 
commonly ends up with End-stage kidney disease (ESKD) that affects 
patients’ quality and length of life, representing a large portion of 
healthcare expenditure for renal replacement therapy or kidney 
transplantation (Jha et al., 2023; Zhang et al., 2023). The number of 
people receiving renal replacement therapy exceeds 2.5 million and is 
projected to double to 5.4 million by 2030 (Bikbov et  al., 2020). 
However, in many countries, there is a shortage of renal replacement 
and kidney transplantation services, and an estimated 2.3–7.1 million 
adults have died prematurely from lack of access to this treatment 
(Mudiayi et al., 2022; Bikbov et al., 2020). Kidney transplantation is 
one of the most effective methods of treating ESKD.

In clinical graft outcome prediction studies frequently uses the 
Cox proportional hazards (PH) model to estimate kidney graft 
survival (Poggio et al., 2021; Huang et al., 2022). The Cox PH model, 
a classical time-to-event analysis approach, models the hazard 
function as a function of time and remains widely utilized due to its 
robustness, reliability, and interpretability for clinicians. However, 
conventional models have limitations in capturing non-linear 
relationships and high-dimensional interactions among predictors 
(Mulugeta et al., 2025). As a result, existing clinical risk scores and 
Cox-based tools only achieve modest accuracy in predicting graft 
outcomes (typically with ROC AUC in the 0.60–0.70 range; Naqvi 
et al., 2021). This moderate performance underlines the need for more 
powerful prognostic methods to better stratify transplant patients by 
graft failure risk.

In recent years, machine learning (ML) approaches have gained 
attention in transplant medicine for their potential to improve 
predictive performance. ML algorithms can automatically learn 
complex patterns from large datasets without relying on a priori 
assumptions, which is advantageous given the multifactorial nature of 
graft failure (Naqvi et al., 2021). Several studies have reported that 
ML-based models outperform traditional Cox models in 
discrimination and overall accuracy for graft survival prediction. For 
example, Naqvi et al. developed ML models on a national transplant 
registry and achieved area-under-the-curve values of ~0.82 for 1-year 
and ~0.81 for long-term graft survival, significantly higher than those 
of earlier risk prediction tools (Naqvi et  al., 2021). Another key 
consideration is that most prognostic models for kidney graft survival 
is whether traditional or ML-based have been static, using only 
baseline variables at transplant to predict outcomes far in the future 
(Huang et al., 2022). In practice, transplant recipients undergo regular 
follow-up, during which their clinical parameters (e.g., renal function, 
immunosuppressive levels, etc.) evolve over time. Ignoring these 
longitudinal changes can limit predictive accuracy (Huang et  al., 
2022). To address this, dynamic prediction models and updated risk 
estimates in patient data are necessary. This study aimed to develop 
and dynamically assess phase-specific machine learning models for 
the prediction of kidney graft failure across five clinically relevant 
post-transplant intervals.

2 Materials and methods

2.1 Data source and justification of study 
period

This study is predicated upon data derived from the United States 
National Kidney Transplantation Database (UNOS/OPTN), spanning 
the years 2015 to 2021. The selection of this specific time frame is 
justified by several factors. Firstly, the implementation of new clinical 
guidelines for kidney transplantation in 2015 renders the data from 
this period particularly relevant for contemporary research 
(Abramowicz et al., 2015). Secondly, utilizing data from the most 
recent five-year period facilitates the training of ML models with more 
representative information, thereby enhancing the accuracy of 
predictions. For the data analysis, we included pre-operative patients’ 
and donors’ data (waiting list records), and follow-up data from 
recipients (Salybekov et al., 2024).

2.2 Study cohort and data selection criteria

Selected transplant recipients and donors were between 18 to 
80 years old and had undergone a primary kidney transplantation. In 
our study, we set inclusion and exclusion criteria to minimize potential 
biases and ensure the analysis was conducted on a cohort most 
representative of the target patient population (TRIPOD+AI, 2015; 
von Elm et al., 2007). To ensure our reporting was comprehensive and 
transparent, we followed the TRIPOD+AI checklist, which is provided 
in its entirety in Supplementary Table 1. This approach adhered to 
ethical guidelines for patient data utilization, ensuring privacy and 
responsible research practices (Salybekov et al., 2025).

Considering the STROBE guidelines, the study design aimed to 
ensure transparency and completeness in reporting the results 
(Salybekov et al., 2024; von Elm et al., 2007). Specifically, the following 
cases were excluded to enhance the precision of our findings:

	•	 Patient deaths unrelated to kidney failure or transplant rejection.
	•	 Pediatric patients.
	•	 Patients from ethnic minority groups.
	•	 Repeated kidney and simultaneous kidney-pancreas transplant 

recipients were excluded to focus on initial transplantation 
outcomes and evaluate current treatment effectiveness and 
complication risk factors.

Prior to imputation, features with more than 30% missing values 
were removed. This threshold was chosen based on previous research 
in similar domains (Abdollahzade et  al., 2025; Taherkhani et  al., 
2021; Chang et al., 2019). The remaining missing values were imputed 
using multiple imputation chained equations (MICE) via the 
miceforest package. The MICE algorithm is effective for handling 
missing values up to 50% (Junaid et al., 2025), making it a suitable 
method for this analysis. Undersampling was conducted to control 
data imbalance, such as the number of observations in the majority 
class was reduced to match that of the minority class through 
RandomUnderSampling. The iteration rate was set to 100 repetitions. 
It is important to acknowledge that while imputation is necessary for 
model training, it carries the potential to introduce bias, particularly 
if some patient information was deliberately omitted (Shadbahr et al., 
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2023). In our study, imputation was conducted to ensure data 
completeness for model training purposes, and the potential impact 
on diagnostic classification was subsequently considered during 
result interpretation.

The dataset was stratified into five distinct cohorts based on post-
transplantation preliminary statistical findings as 0–3, 3–9, 9–15, 
15–39, and 39–72 months, respectively. For each cohort, repetitive 
samples were generated by selecting data from a single randomly 
selected patient visit within the specified period. Regarding the 15–39 
and 39–72 months cohorts, three patient records per subject were 
included. This multi-stage analytical approach enabled the 
identification of latent patterns that might have remained undetected 
in a single time-point analysis. Essentially, this methodology serves as 

a form of dynamic prediction, allowing for the continuous adjustment 
of prognostic models in real time by accounting for patient condition 
fluctuations (Raynaud et al., 2021).

2.3 Model development and evaluation

In accordance with the procedure outlined in Figure  1, four 
distinct modeling approaches were investigated. First, standalone ML 
models were developed through a sequential process. The dataset was 
initially partitioned into training and testing subsets, with 10% 
reserved for testing. This ensures unbiased evaluation. The remaining 
training set underwent stratified 5-fold cross-validation 

FIGURE 1

(A) Shows a flowchart of a machine learning process, including stages for data collection (UNOS/OPTN 2015–2020), preprocessing (data cleaning and 
transformation), models (ML, Cox), and evaluation (AUC, F1, G-Mean), connected by arrows indicating the sequence of steps; (B) Presents a timeline for 
model predictions, categorized into cohorts (short-term, mid-term, and long-term) and time intervals in months (0–3, 3–9, 9–15 for short-term, 15–
39 for mid-term, and 39–72 for long-term).
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(StratifiedKFold). This process divided the training data into five 
equally sized “folds,” maintaining class proportions in each. For each 
iteration, one-fold served as the validation set, while the other four 
were used for model training. This method provides a reliable 
performance estimate and helps mitigate overfitting. Subsequently, 
feature selection was performed on the combined train+validation set 
using the three commonly used ML algorithms, namely RF (Random 
Forest), XGB (XGBoost), and LGBM (LightGBM), along with an 
ensemble model that was subsequently trained to compare the overall 
performance. These algorithms were implemented in Python using the 
packages sklearn (v. 1.5.2), xgboost (v. 2.1.2), and lightgbm (v. 4.3.0), 
respectively. Second, a standalone Cox Proportional Hazards 
Regression (Cox PHR) model was implemented as a baseline for time-
to-event analysis. Model training and optimal hyperparameter tuning 
were performed using the GridSearchCV approach (González-Castro 
et  al., 2024) with fivefold cross-validation. The mean ROC-AUC 
served as the primary performance metric, ensuring robust and 
reliable model evaluation. In addition, F1 and G-Mean scores were 
employed to assess the overall predictive capability of the 
trained models.

2.4 Statistical methods

To facilitate more in-depth analysis, a Cox proportional hazards 
regression model was utilized to calculate the concordance index (CI), 
thereby providing an additional layer of statistical validation. A 
significance level of 0.05 was adopted for hypothesis testing, which is 
standard practice in statistical research and ensures robust conclusions 
regarding the significance of the results. All statistical analyses and ML 
model development were conducted using Python v. 3.11.5  
(Python, 2023).1

3 Results

3.1 Patient demographic data

Clinically relevant data from transplant recipients and donors 
spanning the period 2015–2020 were employed to develop the 
predictive model, followed by its evaluation using a test cohort. 
Additionally, a blinded external validation cohort was utilized to 
further substantiate the model’s performance. The baseline 
characteristics of the study cohorts were stratified across five-time 
intervals: 0–3 months (N = 298), 3–9 months (N = 362), 
9–15 months (N = 828), 15–39 months (N = 617), and 
39–72 months (N = 452). The mean age of recipients (R) all in five 
consequative time period are without statistical significance, 
ranging from 51 ± 14 to 54 ± 13 years, while the donors (D) showed 
a slightly younger profile with mean ages between 40 ± 13 and 
43 ± 13 years. Body Mass Index for both recipients and donors 
demonstrated minimal variation across the time points, averaging 
around 28–29 kg/m2. All baseline characteristics of R and D are 
shown in Table 1.

1  https://www.Python.Org

3.2 Prediction of short-term graft failure 
within the first three months

In this study, we compared the predictive outcomes of the classical 
Cox PHR with the three ML algorithms. Figure 2A illustrates that the 
among ML model, LGBM classifier achieved the better prediction 
accuracy of graft failure during the 0–3-month period. For the training 
set, the model showed strong performance with a Mean ROC AUC of 
0.97 ± 0.01, a Mean F1 score of 0.93 ± 0.01, and a Mean G-mean of 
0.93 ± 0.01. On the test set, the model achieved a Mean ROC AUC of 
0.73 ± 0.07, a Mean F1 score of 0.68 ± 0.06, and a Mean G-mean of 
0.67 ± 0.07.

3.3 Prediction of short-term graft failure 
risk within a 3- to 9-month timeframe

Similarly, within 3 months, our ML model LGBM classifier 
exhibited considerable proficiency in predicting graft failure within 
the 3–9-month timeframe than other models (Figure  2B). 
Performance on the training data was robust, with an average F1 score 
of 0.95 ± 0.01, an average G-mean of 0.95 ± 0.01, and an average ROC 
AUC of 0.98 ± 0.00. When evaluated on external validational test data, 
the model’s predictive ability remained robust, yielding an average F1 
score of 0.64 ± 0.05, an average G-mean of 0.67 ± 0.05, and an average 
ROC AUC of 0.72 ± 0.04.

3.4 Prediction of short-term graft failure 
risk within a 9- to 15-month timeframe

The ML model particularly LGBM classifier distinguished itself in 
accurately forecasting graft failure across the 9–15-month period 
(Figure 2C). Its performance on the training data was exceptional, 
marked by an average F1 score of 0.97 ± 0.01, an average G-mean of 
0.97 ± 0.01, and an average ROC AUC of 0.99 ± 0.00. On the 
independent test set, the model continued to show strong predictive 
power, achieving an average F1 score of 0.85 ± 0.03, an average 
G-mean of 0.86 ± 0.03, and an average ROC AUC of 0.92 ± 0.02. 
These outcomes highlight the enhanced predictive power of ML 
models for predicting of kidney graft failure within this 
specific timeframe.

3.5 Prediction of mid-term graft failure risk 
within a 15- to 39-month timeframe

To identify baseline relationships between variables spanning an 
interval from 15 to 39 months, we implemented a dynamic patient 
monitoring strategy. This dynamic prognostic approach demonstrated 
high performance in predicting graft failure using the ML model 
(Figure 3). Specifically, on the training dataset, the model achieved a 
mean F1 value of 0.94 ± 0.01, a mean G value of 0.94 ± 0.01, and a 
mean ROC AUC of 0.98 ± 0.00. For the testing set, the model achieved 
a mean F1 value of 0.76 ± 0.04, a mean G value of 0.75 ± 0.04, and a 
mean ROC AUC of 0.84 ± 0.04. The ML model demonstrated superior 
prognostic value and the inclusion of dynamic data significantly 
improved the prediction accuracy for up to 3 years.
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3.6 Prediction of long-term graft failure 
risk within a 39- to 72-month timeframe

For the analysis covering the period within a 39- to 72-month 
timeframe, the ML model continued to exhibit its predictive 
capabilities. On the training data, the model achieved an average F1 

score of 0.92 ± 0.01, an average G-mean of 0.92 ± 0.01, and an average 
ROC AUC of 0.96 ± 0.01. When evaluated on the test set, the 
performance was marked by an average F1 score of 0.65 ± 0.06, an 
average G-mean of 0.65 ± 0.07, and an average ROC AUC of 
0.70 ± 0.07. These results further support the utility of the ML 
approach in long-term graft failure prediction (Figure 4).

A. B. C.

Mean F1 train = 0.93 ± 0.01
Mean F1 test = 0.68 ± 0.06
Mean G-mean train = 0.93 ± 0.01
Mean G-mean test = 0.67 ± 0.07
Mean ROC AUC train = 0.97 ± 0.01
Mean ROC AUC test = 0.73 ± 0.07

Mean F1 train = 0.95 ± 0.01
Mean F1 test = 0.64 ± 0.05
Mean G-mean train = 0.95 ± 0.01
Mean G-mean test = 0.67 ± 0.05
Mean ROC AUC train = 0.98 ± 0.00
Mean ROC AUC test = 0.72 ± 0.04

Mean F1 train = 0.97 ± 0.01
Mean F1 test = 0.85 ± 0.03
Mean G-mean train = 0.97 ± 0.01
Mean G-mean test = 0.86 ± 0.03
Mean ROC AUC train = 0.99 ± 0.00
Mean ROC AUC test = 0.92 ± 0.02

FIGURE 2

The ROC curves of the machine learning model (LGBM) for predicting short-term graft failure. (A) The 0–3 month period. (B) For the 3–9 month 
period. (C) The 9–15 month period.

TABLE 1  Baseline characteristics for the study cohorts.

Name of the 
features

From 0 to 
3 months 
(N = 298)

From 3 months 
to 9 months 

(N = 362)

From 9 months to 
15 months 
(N = 828)

From 15 months 
to 39 months 

(N = 617)

From 39 months 
to 72 months 

(N = 452)

Age (R) 52 ± 14 54 ± 13 53 ± 14 52 ± 14 51 ± 14

Age (D) Baseline 42 ± 13 42 ± 14 43 ± 13 41 ± 13 40 ± 13

BMI (R) 29 ± 5 29 ± 5 29 ± 6 29 ± 5 28 ± 5

BMI (D) Baseline 29 ± 7 29 ± 7 29 ± 7 28 ± 6 29 ± 7

Creatinine (R) 6 ± 3 2 ± 2 3 ± 2 2 ± 1 2 ± 1

Creatinine (D) 

Baseline

1 ± 1 1 ± 1 1 ± 2 1 ± 1 1 ± 1

Gender (R)

  Male 196 ± 5 222 ± 7 512 ± 9 380 ± 0 272 ± 7

  Female 102 ± 5 140 ± 7 316 ± 9 237 ± 0 180 ± 7

Gender (D)

  Male 188 ± 5 214 ± 6 497 ± 10 387 ± 0 281 ± 7

  Female 110 ± 5 148 ± 6 331 ± 10 230 ± 0 171 ± 7

Race

  White 192 ± 6 197 ± 7 460 ± 11 325 ± 2 209 ± 7

  Black 88 ± 5 144 ± 6 315 ± 10 246 ± 2 208 ± 7

  Asian 18 ± 3 21 ± 4 53 ± 6 46 ± 1 35 ± 4

* (D) Baseline means values before transplantation.
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4 Discussion

This study demonstrates the utility of ML algorithms, particularly 
the Light Gradient Boosting Machine (LGBM) model for predicting 
phase-specific graft failure following deceased donor kidney 
transplantation. By utilizing clinically relevant donor and recipient 
data from a 2015–2020 cohort and stratifying outcomes across five 
discrete post-transplant intervals, our findings support the integration 
of ML models into transplant decision-making frameworks, 
particularly when dynamic monitoring and phase-specific risk 
assessment are required.

The LGBM model demonstarted relatively improved prediction 
of graft failure across all timeframes among Ml and traditional 
statistcial model, with especially high accuracy in the 9–15-month and 
15–39-month intervals, where AUCs reached 0.92 and 0.84 on the test 
sets, respectively. These results are in line with previous findings that 
demonstrate the advantages of gradient boosting algorithms in 
capturing complex, nonlinear interactions between clinical variables 
(Huang et al., 2022; Raynaud et al., 2021). The peak performance 
observed in the 9–15-month interval may be  attributed to the 
availability of informative early post-transplant data that are predictive 
of subclinical or emerging chronic injury. During this period, patients 
often experience immunologic changes, subtle declines in graft 
function, or delayed complications, all of which may be imperceptible 
to traditional linear models but readily learnable by ML classifiers. 
We observed that model performance was substantially boosted when 
incorporating dynamic post-transplant data. The inclusion of 
follow-up clinical markers at 1 year and 2 years post-transplant, led to 
the highest predictive accuracy in the mid-term periods. Specifically, 
the model’s performance peaked in the 9–15-month window (test 

AUC ~ 0.92, F1 ~ 0.85), and remained high for the 15–39-month 
window (AUC ~ 0.84 on the test set). In contrast, prediction of graft 
failure based solely on baseline variables (e.g., at transplantation for 
0–3 months, or even projecting out to 5 years without interim 
updates) was less accurate (test AUC in the ~0.65–0.73 range). This 
pattern underscores the value of updating risk predictions with 
intermediate clinical data. In essence, our findings support a dynamic 
prognostic strategy: by integrating time-updated patient information, 
the model can more effectively identify patients at risk of graft failure 
up to 3 years post-transplant. This result is consistent with prior 
evidence that incorporating post-transplant variables (such as the 
patient’s serum creatinine at 3–12 months) markedly improves long-
term graft survival predictions (Yoo et al., 2017; Lenain et al., 2021).

The performance of our model aligns with, and in some aspects 
exceeds, results reported in previous studies on graft outcome 
prediction. A recent systematic review and meta-analysis of 27 studies 
found that ML models achieved an overall mean AUC of 
approximately 0.82 for predicting kidney graft survival (Ravindhran 
et  al., 2023). In our work, the mid-term prognostic models 
(particularly the 9–15-month risk model) surpassed this benchmark, 
achieving an AUC above 0.90, while even our longer-term model 
(predicting 5–6-year failure risk) attained a comparable discrimination 
(~0.70–0.72) to other state-of-the-art approaches (Lenain et al., 2021). 
These findings underscore that our ML framework is competitive with 
the best-performing models in the literature. Moreover, our results 
extend and strengthen the growing body of evidence favoring 
ML-based approaches in transplant outcome modeling. While 
conventional Cox models offer transparency and interpretability, their 
assumption of linearity and constant hazard ratios over time limits 
their utility in dynamic clinical contexts. Prior studies have reported 

Mean F1 train = 0.94 ± 0.01
Mean F1 test = 0.76 ± 0.04
Mean G-mean train = 0.94 ± 0.01
Mean G-mean test = 0.75 ± 0.04
Mean ROC AUC train = 0.98 ± 0.00
Mean ROC AUC test = 0.84 ± 0.04

FIGURE 3

The ROC curve of the machine learning model (LGBM) for the 
prediction of graft failure for mid-term (for the 15–39 months).

Mean F1 train = 0.92 ± 0.01
Mean F1 test = 0.65 ± 0.06
Mean G-mean train = 0.92 ± 0.01
Mean G-mean test = 0.65 ± 0.07
Mean ROC AUC train = 0.96 ± 0.01
Mean ROC AUC test = 0.70 ± 0.07

FIGURE 4

The ROC curve of the machine learning model (LGBM) for the 
prediction of graft failure for long-term (for the 39–72 months).
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modest performance for static models, with C-indices 0.55 when 
applied to long-term graft outcomes (Huang et al., 2022). In contrast, 
our LGBM-based model achieved comparable or higher performance 
with enhanced adaptability across timeframes.

Beyond raw performance metrics, an important aspect of our 
analysis is the clinical relevance of the predictors identified by the ML 
models. The features with highest importance in our models (Figure 5) 
are largely consistent with known risk factors for graft loss in majority 
case the early and late post-transplant periods, the best-performing 
LGBM model identified key predictors of graft failure were serum 
creatinine levels, the body mass index, Kidney Donor Profile Index 
(KDPI), Estimated Post-Transplant Survival (EPTS) score, donor/
recipient age, donor bilirubin, donor hematocrit and blood urea 
nitrogen. Among these, serum creatinine emerged as a particularly 
significant biomarker. It is routinely utilized in clinical practice as an 
indicator of renal function and serves as a reliable marker for 
monitoring allograft health (Josephson, 2011). Although elevated 
serum creatinine levels typically reflect impaired kidney function, 
individuals with higher pre-transplant serum creatinine, which is 
often indicative of greater muscle mass, have been associated with 
improved graft and patient survival outcomes following 
transplantation (Streja et al., 2011). Interestingly, the KDPI and EPTS 
had a strong predictive power in ML models in all five timeframes. A 
lower percentage in both the KDPI and the EPTS score is indicative 
of a longer anticipated post-transplant survival, while higher 
percentage scores are associated with reduced post-transplant survival 
(Prunster et al., 2023; EPTS, 2020). For example, a KDPI score of 0% 
reflects a donor kidney with superior predicted allograft survival 
compared to all other donor kidneys transplanted within the same 
calendar year. Conversely, a KDPI score of 100% denotes a kidney 
with the poorest expected allograft survival relative to other kidneys 
transplanted during that period (KDPI, 2020). Previous research has 

suggested that individuals of Black race may have a higher 
susceptibility to graft failure following kidney transplantation 
compared to White individuals (Kwan et al., 2018; Becerra et al., 2022; 
DiFranza et al., 2024). However, there is a notable paucity of studies 
that concurrently examine all three major ethnic groups; to our 
knowledge, this study is the first to conduct a comparative analysis 
across these three populations. Future research should prioritize the 
inclusion of diverse populations to ensure fairness and the broader 
applicability of predictive models for all patient groups.

This study is not without limitations. The retrospective design, 
although valuable for model development, inherently introduces bias 
and limits causal inference. A notable limitation of our study is the 
absence of formal clinical impact evaluation metrics, such as decision 
curve analysis or clinical impact curves. While our phase-based 
models demonstrated strong predictive performance, we  did not 
assess their net clinical benefit or decision-making utility in practice. 
Future work will incorporate these methods, particularly during 
external validation, to more rigorously quantify the real-world clinical 
applicability of our models. Another limitation is the absence of 
longitudinal biomarker, immunologic, or histopathological data, 
which are increasingly recognized as potent predictors of graft survival 
(Raynaud et al., 2021; Zhunussov et al., 2025). Future research should 
focus on integrating temporal biomarker dynamics, histopathology, 
and genomics into model training pipelines to enhance long-term 
predictive validity. Additionally, deployment in prospective clinical 
settings with real-time data ingestion and clinician feedback will 
be essential for assessing the real-world utility and trustworthiness of 
these AI-assisted models. It’s crucial to acknowledge that the decision 
to exclude patients from ethnic minority groups from the primary 
cohort study warrants careful ethical consideration (Salybekov et al., 
2025). Such exclusion could limit the generalizability of the findings 
and potentially exacerbate existing healthcare disparities. One of our 

FIGURE 5

Venn diagram of 10 important features of a machine learning model (LGBM). (A) For short-term. (B) For all short-term, mid-term, and long-term.
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main limitations is that we  have not yet confirmed how well this 
model will work in practice in a clinical setting. This will be a major 
focus of the next phase of the study.

In conclusion, this discussion highlights that our ML-based 
predictive model, validated on multi-year and multi-ethnic transplant 
cohorts, offers a sophisticated and evidence-backed tool for 
forecasting kidney graft outcomes. It aligns with and builds upon 
findings in the literature: dynamic, data-driven predictions can 
significantly outperform static models (Huang et  al., 2022) and 
provide actionable insights to guide patient management (Raynaud 
et al., 2021). By stratifying risk from the early postoperative period 
through the mid- to long-term, such models enable a proactive 
approach to allograft care. With ongoing refinement and integration 
into clinical workflows, predictive analytics in transplantation has the 
potential to extend graft survival and ultimately improve the lives of 
kidney transplant recipients.
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