:' frontiers ‘ Frontiers in Artificial Intelligence

@ Check for updates

OPEN ACCESS

EDITED BY
Tamara Gajic,
Serbian Academy of Sciences and Arts, Serbia

REVIEWED BY

David Luis La Red Martinez,
National University of the Northeast,
Argentina

Kai Wang,

Xi‘an Jiaotong University, China

*CORRESPONDENCE
Jacob Hornik
hornik@tauex.tau.ac.il

RECEIVED 14 August 2025
ACCEPTED 30 September 2025
PUBLISHED 17 October 2025
CORRECTED 22 October 2025

CITATION

Rachamim M and Hornik J (2025) Digital
twin-enabled interactive cockpits for smart
products management and testing.

Front. Artif. Intell. 8:1685702.

doi: 10.3389/frai.2025.1685702

COPYRIGHT

© 2025 Rachamim and Hornik. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Frontiers in Artificial Intelligence

TYPE Conceptual Analysis
PUBLISHED 17 October 2025
pol 10.3389/frai.2025.1685702

Digital twin-enabled interactive
cockpits for smart products
management and testing

Matti Rachamim® and Jacob Hornik?*

!Matti Rachamim, Graduate School of Business Administration, Bar-Ilan University, Ramat-Gan, Israel,
2Jacob Hornik, Coller School of Management, Tel-Aviv University, Tel-Aviv, Israel

Digitalization is influencing the design, development, and management of products
across myriad industries, transforming traditional products into smart ones. Among
digital technologies and models, the digital twin (DT) is regarded as an important
contribution to the advancement of physical entity management. DTs are virtual
representations of physical objects or systems, which are continuously updated
with real-time data collected from their physical counterparts. Surprisingly, DT
has yet to be applied in marketing. This study aims, accordingly, first, to introduce
the DT concept and, second, to explore the human factor (human-in-the-loop)
in DT. Third, elaborate on the DT cockpit (the DT's interactive element) in the
product management paradigm. Specifically, the authors use vehicles as a case
study to show how interactive digital twins (IDTs) can be employed to predict and
optimize vehicle performance, reliability, sustainability, and customer satisfaction.
To conceptualize IDT for smart products and marketing analytics, the customer-
centric Technology Acceptance Model (TAM) is employed. As this is the first
study to explore DT technology in marketing, the DT concept's main attributes
are discussed, significant contributions are suggested, and avenues for future
research are delineated.
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Introduction

“Volvo, the renowned automobile company for ensuring the best passenger safety uses digital
twins. They create virtual replicas to test and try out different materials and aerodynamics of new
vehicle designs as well as in-vehicle communication components. This way, they can choose the
ideal design that would improve performance, create fuel-efficient models, and enhance passenger
satisfaction” (Blake et al., 2024, p. 44).

Intense competition, rapid technological development, and constantly changing consumer
preferences are forcing marketing to be more efficient and agile in delivering products and
value to customers. As a result, marketing is increasingly turning towards new-age
technologies, such as artificial intelligence (AI), the Internet of Things (IoT), big data,
blockchain, cloud and fog computing, mobile internet, drones, etc., to design smarter products
and enhance interaction with stakeholders (Gnizy, 2024; Kumar and Kotler). The digital
revolution, furthermore, has precipitated a sweeping shift from traditional product design and
manufacturing to a smart product approach in which existing equipment, processes, software,
and devices are retrofitted with smart sensors and other cyber-physical systems (CPS) (Kannan
and Li, 2017; Paul et al., 2024). With the prominence of personalization and customer
engagement as go-to customer management strategies, marketers need to understand how to
integrate the latest technological advances into their existing practices to seamlessly generate
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actionable insights. Developments such as eased networking, declining
computing prices, nanocomponents, and accretive device connectivity
have enabled companies to seamlessly integrate and virtually replicate
various tangible and intangible entities (Tao et al., 2018; Tao and Qi,
2019; Timperi et al., 2023). The term ‘digital twin’ (DT) has been
coined to refer to this type of modeling. By owning and controlling
information of affiliated entities, DTs improve planning, management,
and forecasting (Bala et al., 2024; Reim et al., 2023). Despite the
considerable volume of recent research dedicated to DT
implementation in business process management (Ivanov, 2024;
Korepin et al, 2024), the phenomenon remains woefully
underexplored in marketing. The present study, therefore, seeks to
introduce the marketing community to DT as a groundbreaking
technology that promises to advance interactive marketing.

While AJ, big data analytics, and the marketing Internet of Things
(MIoT; Kumar and Kotler, 2024) have paved the way for the emergence
and use of DTs as means of ‘twinning’ the lives of physical entities in
arange of fields (Stacchio et al., 2022), the advent of eXtended Reality
(XR) in industrial and consumer electronics has introduced novel
paradigms that may be used to visualize and interact with DTs.
Indeed, XR technologies that support human-to-human interactions
for training and remote assistance could transform DTs into
collaborative intelligence tools (Wang et al., 2024b) that will enable
human-machine interaction by voice, gesture, motion, touch, etc.
Furthermore, as all these ‘smart devices’ and ‘smart things’ are
connected, overviews can be aggregated into DTs (Kobayashi and
Alam, 2024). Thus, a major issue in smart marketing concerns how
emerging technologies can be integrated (Gnizy, 2024; Kannan and Li,
2017) for unified decision-making and predictive maintenance
(Monek and Fischer, 2025; Paul et al, 2024). DT technology
undoubtedly will play a central role in addressing such problems
(Attaran et al., 2024).

The widespread digitization of products is creating vast digital
traces of functions and services, which can be transformed into
valuable data. This data supports intelligent decision-making and cost-
effective business solutions, particularly in fast-moving industries
such as automotive (Kaiser et al., 2019). As vehicles increasingly
become electric, digitized, interconnected, and intelligent (Wadhwa
and Babbar, 2023), it is essential to adopt a human-centered approach
that connects drivers, vehicles, and infrastructures. This approach
must also account for non-driving activities in automated vehicles
(AVs). A comprehensive strategy that integrates emerging technology-
based solutions, facilitated by advancements in sensor technology and
data science, appears promising (Gupta et al., 2020; Varadarajan et al.,
2010). Given the need for highly automated vehicles to accommodate
a range of technical and manual functions, these systems will demand
unprecedented flexibility in the human-vehicle interface.

One way to address this issue is by using an interactive digital twin
(ITD), which can monitor and simulate all human-vehicular
interactions and communications. An umbrella term for IDT is DT
cockpit (Bana et al., 2022), which provides a graphical user interface
for visualization of data organized in digital shadows (Romero et al.,
2020) and models, and for interaction with DT services. Thus enabling
stakeholders to access, adapt, and add information, as well as monitor
and partially control the physical product. Since smart products
generate vast quantities of data, reducing such data to an amount the
DT can process is crucial. Thus, the digital shadow contains precisely
the data the DT requires to perform its task (Romero et al., 2020).
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Moreover, shadows may contain information from different
perspectives, e.g., systems (physical and organizations), processes,
products, and humans (Davila-Gonzalez and Martin, 2024).

Smart marketing and smart products

Smart marketing is considered an important evolution, which is
expected to drastically alter how consumers engage with marketing as
we know it. For clarification, the term ‘smart’ in this context represents
all things embedded in or enhanced by technology. Accordingly,
whenever data are collected from different sensors, actuators, and
machines within a marketing environment and access to and control
of the data and the devices generating it are enabled through the
internet, smart marketing is in play, and such a scenario may
be termed a ‘marketing Internet of Things’ (MIoT; Kumar and Kotler,
2024). The MIoT in this sense will focus mainly on the transfer and
control of mission-critical information and responses and rely heavily
on machine-to-machine communications. Recent developments in
smart marketing include AI language models such as ChatGPT,
Google Gemini, and Meta Llama, which can provide a vast array of
new marketing data, as well as novel ways in which people interact
with computers and each other. Modern smart marketing research
frequently utilizes big data, derived from a vast number of observations
across various subjects, brand SKUs, predictor variables, and periods.
This data fills extensive databases, producing large volumes of diverse
information. For instance, Amazon and AliExpress collect data on
millions of product units, along with detailed demographic
information. Similarly, retailers have access to extensive datasets,
thanks to the deployment of RFID (Radio Frequency Identification)
devices, product reviews, social networking sites, mobile marketing,
e-commerce platforms, and customer requirements (Ivanov, 2024).

Smart products (or ‘product avatars’) also comprise cyber-physical
systems, which contain semi-autonomous functions and can
communicate with other products or other ecosystem components via
internet-based services (Paul et al, 2024). They differ from
conventional products in their capabilities, which include intelligence,
autonomy, and connectivity. An intelligent product possesses a unique
computer-readable identifier, monitors its status and environment,
stores data about itself, shares and receives information, and is capable
of decision-making. Its intelligence comes from an embedded or
remote computer with network access (Barricelli and Fogli, 2024).

Study objectives

Given the dearth of DT use in marketing hitherto, in the present
study, we advocate for the future deployment of IDT in smart
marketing ecosystems. Inspired by recent successful DT
applications, such as the digital twinning of Paris 2024 Olympic
venues (Medium, 2024), which enable stakeholders to negotiate the
uncertainty and difficulties inherent in organizing large-scale events
while promoting sustainability and customer experience (CX),
we propose a single DT framework that can synchronize data and
communication protocols across multiple devices and stakeholders,
to support data exchange and information interaction, between real
products and their virtual twins in any scenario, anywhere, and at
any time.
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Smart vehicles are examined here as a case study to demonstrate
how IDT can be employed to predict and optimize product
performance, reliability, sustainability, and thus customer satisfaction.
Furthermore, we show how a complete IDT framework allows
end-users to simulate future events, capturing interactions between
consumers, the environment, and products, thereby enabling a better
understanding of operational risks and the remaining useful life of
products. While the automotive sector is used here as an illustrative
case, the IDT cockpit framework is conceived as scalable and adaptable
across industries with varying levels of technological complexity. In
lower-complexity domains, such as smart home thermostats, lighting
systems, or wearable devices, the cockpit can function as a streamlined
interface, requiring less computational intensity while still delivering
value through predictive maintenance, energy efficiency, and
personalized user comfort. By tailoring the scope of integration to the
specific industry context, the IDT cockpit demonstrates both cost-
effectiveness and adaptability, ensuring that its core principles remain
valid across a wide spectrum of smart products. We follow the general
frameworks and propositional inventories delineating a conceptual
entity in marketing research (MacInnis, 2011). Thus, our study can
be seen as one of envisioning, as Maclnnis (2011) terms it, in that it
seeks to call our attention to “what we have been missing and why it
is important;,” and “reveal what new questions can be addressed”
(p. 138).

To advance these objectives, precisely during an era in which
marketing scholars are calling for more conceptual work (e.g.,
Deighton et al., 2021; Vargo and Koskela-Huotari, 2020), we first
provide an overview of DT, IDT, and related concepts relevant to
marketing management. Second, we outline a conceptual
framework for IDT-enabled smart product management using, for
illustration purposes, the Technology Acceptance Model (TAM;
Gonzalez, 20245 Lala, 2014). Third, we elaborate on theoretical and
significant marketing applications. Fourth and finally, we identify
several fundamental research challenges emanating from our
conceptualization for the managerial exploitation of IDT in smart
product monitoring. The study, we suggest, goes beyond a
literature review by offering compelling observations of marketing
in the real world. Employing a multi-perspective approach, it aims
to deliver valuable insights about IDT, lending perspective on
several impacted interactive marketing areas. Specifically, we use
motor vehicles as a case study to demonstrate how IDT can
be employed to simulate the behavior of physical automobiles,
predict and improve their performance, and optimize operation,
reliability, sustainability, disposal, recycling, and customer
satisfaction, ultimately leading to a more efficient and innovative
automotive industry.

Among product management models, our conceptualization
incorporates the consumer-centric TAM (Gonzalez, 2024) into the
widely embraced five-dimensional DT model framework (5DT,
Attaran et al., 2024, Ivanov, 2024, Korepin et al., 2024), enhanced by
stakeholder intuition (human-in-the-loop, HITL; Retzlaff et al., 2024).
This conceptualization, we maintain, can help marketing to take full
advantage of the theoretical and practical benefits of the prescribed
approach, while also highlighting important avenues for future
research geared toward enhancing effective decision-making. Each of
these endeavors requires additional details, which, due to
considerations of readability and space constraints, we furnish in an
extensive Web Appendix.
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DT fundamentals
| “Digital twin is revolutionizing industries” (Ma et al., 2024, p. 102).

The National Academies of Sciences, Engineering, and Medicine
(NASEM) recently published a report titled Foundational Research
Gaps and Future Directions for Digital Twins (National Academies of
Sciences, Engineering, and Medicine, 2024, pp. 147-49), which
underscores the scientific contributions and significance of Digital
Twins (DTs). This report identifies key areas where DT technology can
advance research and industry practices, emphasizing its role in
enhancing the integration of digital and physical spaces, especially
with the rise of the metaverse. Digital Twins (DTs) are cloud-based
systems that integrate data from various smart, data-generating
resources. In the context of smart products, DTs collect extensive
product-related information, revolutionizing data integration and
system modeling across industries such as healthcare, housing,
manufacturing, and energy (Holmes et al., 2021). This technology
allows for the creation, use, management, and maintenance of virtual
counterparts (twins) of physical entities or systems, facilitating real-
time, two-way data exchanges (Bala et al, 2024). Through the
continuous collection of data via IoT sensing devices, DTs can
dynamically simulate real objects and environments, constructing
high-fidelity virtual models that accurately mirror their physical
counterparts (Kobayashi and Alam, 2024; Wang and Wang, 2019).

Interactive Digital Twins (IDTs) are designed to significantly
enhance human-machine interactions and inter-machine
communications by dynamically emulating their real-world
counterparts. These systems integrate both raw and processed data to
reflect actual conditions accurately. With advanced simulation models,
IDTs can monitor and control increasingly complex systems.
Furthermore, IDTs are equipped with basic analytical models and
software that allow for rigorous analysis and prediction of system
conditions under various scenarios. At their most advanced level,
IDTs incorporate machine learning models that generate real-time
insights, enabling immediate optimization of system performance
(Turner et al., 2016). Table 1 summarizes the key characteristics of
DTs, while Figure 1 visually illustrates the concept of IDTs. Additional
elaborations can be found in Appendix 1.

What makes DT unique is the convergence of virtually all the
latest cutting-edge technologies, including big data, the Internet of
Things (IoT), social networks (SN), virtual reality (VR), augmented
reality (AR), haptic interaction technology, voice interaction
technology, gesture recognition technology (Kobayashi and Alam,
2024), as well as the more recently developed DT cockpit (Bana et al.,
2022), driven by major advances in cognitive science, machine
learning and Al IDT integrates all the processes by which sensory
input is transformed, elaborated, reduced, stored, recovered, and used.

Based on insights and simulations, DTs can recommend changes
to their physical counterparts. Likewise, IDTs are dynamic models
that serve as real-time symbiotic “virtual replicas” of real-world
systems. Inter alia, they can leverage Dynamic Data Driven
Applications Systems (DDDAS) bidirectional symbiotic sensing
feedback loops to provide continuous updates. In this context,
reconfiguration decisions may be autonomous or interactive. For
example, HITL-DDDAS systems generate considerable amounts of
data useful for myriad applications, such as improving performance,
predictive maintenance, training, etc. Consequently, IDT will be able
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TABLE 1 Major IDT characteristics.

Characteristics Description

State The value of all parameters of both the physical and virtual twin in their environment

The process in the real-system environment that will change or
Physical process

impact the state of the physical twin
Virtual process The process in the virtual environment (e.g., research) that will change or impact the state of the virtual twin
Virtual environment The technology-based environment in which the virtual twin exists
Physical entity (twin) The real entity (e.g., products, consumers, firms, devices)
Virtuality The virtual digital twin synchronized with the physical entity at a twinning rate
Synchronization and integration

Real-time integration and convergence of physical systems and their digital counterparts
(twinning)
Twinning rate The rate or frequency at which synchronization occurs
Networking devices Physical or cloud-based communication devices for data exchange

The delivery of computing services, including servers, storage, databases, networking, software, research, and intelligence, over the
Cloud computing

internet (“the cloud”) to offer faster innovation, flexible resources, and economies of scale
Data storage Acquiring historic data of an entity for data comprehension
Heterogeneous data Ability to handle large amounts of data from different sources and formats
Self-adjustment Self-adaptation and parameterization capabilities following changes in the system during its lifecycle
Information selection Identifying, extracting, and storing useful information
Pattern identification Identifying changes and trends via data analysis
Physical-to-virtual connection Data transfer from the physical entity to the virtual environment
Close-loop feedback Feedback is provided to the systems and other digital twins, using interfaces to assess the computing information
Metrology Measuring the current state of the physical/virtual entity
Optimization Achieving best outcomes while addressing data uncertainty
Simulation Representing current status and what-if scenarios
Location Enables users not co-located to collaborate in design and implementation

Cyber Space
Physical Space
Sensors
/]
\1 Real-Time Data > “Digital Twin
<Analytics (e.g., Integratiod)\
Actuators
FIGURE 1
IDT visual illustration.

to steer simulation, measurement, analysis, management, and  have shown empirically that DTs tend to enhance companies’
reconfiguration aimed at more accurate modeling and analysis. DT’s  operational efficiency, as evidenced by a high correlation between DT
value spans a multitude of domains. For example, Korepin et al. (2024)  expenses and company revenues.
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In sum, IDTs are virtual representations or models of physical
objects, systems, or processes, which are designed to be interactive,
allowing users to engage with them in real-time and manipulate
various parameters or elements to simulate different scenarios, analyze
performance, or test important issues. IDTs are essentially DTs with
an added layer of engagement. The interactive part takes this a step
further. It allows users to not just observe the DT, but also interact
with it while learning and adapting from its outcomes
and recommendations.

Adaptive learning

Adaptive learning (Reim et al., 2023) is a crucial aspect of any DT
approach. It refers to DTS’ ability to continuously learn from new data
and update their models to improve accuracy and effectiveness over
time. This process allows the system to adapt to changes detect
emerging patterns and make it more robust against ever-evolving
new technologies.

Human digital twin (HDT)

“Digital Twin is at the forefront of the Industry 4.0 revolution
facilitated through advanced data analytics and the Internet of
Things (IoT) connectivity” (Sharma et al., 2022, p. 101).

The term human digital twin (HDT), which extends the DT
concept, has been applied recently in numerous domains, including
medicine, manufacturing (Wang et al., 2024b), and sports performance
(Barricelli and Fogli, 2024). A digital human can be defined as a life-
like being, powered by artificial A, with the capability of conversing,
interacting, and creating an emotional connection, like any other
human being. HDTs have the potential to change the practice of
human system integration as they employ real-time sensing and
feedback to tightly couple measurements of human performance,
behavior, and environmental influences throughout the life cycle. In
recent years, a growing number of studies have borne witness to the
fusion of human factors with advanced digital technologies such as
the Internet of Things (IoT), artificial intelligence (AI), and eXtended
reality (XR). For instance, unobtrusive, body-worn sensors, embedded
in, among other things, inertial measurement units (IMUs) and
wireless wearable electromyography (EMG) devices (Davila-Gonzalez
and Martin, 2024), are utilized for on-site measurement, enabling
biomechanical analysis during work. These innovations are invaluable
as they facilitate the provision of accurate data for virtual-real mapping
of humans throughout production or service stages (Wang
et al., 2024a).

Similar to DT, HDT is presented in the literature as a replica, copy,
or counterpart in cyberspace, or the digital world, of a real person in
the physical world (Davila-Gonzalez and Martin, 2024; Wang et al.,
2024a). The HDT concept has been proposed as a critical method for
realizing human-centricity in an array of smart applications (Ma et al.,
2024). HDTs are also distinguished from animated characters by one
key characteristic, i.e., “the illusion that they are just living life’ like
the rest of us” (Bala et al., 2024, p. 340). Emotion AI (Petrescu and
Krishen, 2023), also known as artificial emotional intelligence, refers
to machines’ ability to measure, understand, simulate, and react to
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human emotions. Recently, AI researchers have made significant
technical advancements, developing machines that are increasingly
able to detect users’ emotions and adapt their responses. HDTs are
considered powerful tools for designing personalized services and
optimizing satisfaction and lifestyle. However, surprisingly, they have
been almost wholly overlooked in marketing and consumer research.

Conceptual framework

Our novel conceptualization of an IDT-enabled TAM for smart
products is depicted in Figure 2. To advance conceptualization,
we have adopted the commonly used and validated five-dimensional
DT model framework (5D-DT, Ma et al., 2024; Tao et al., 2018) along
with the HITL concept, thereby integrating the most advanced data-
generating smart technologies, devices, and human intuition, to
support TAM of a smart product. In this case, a motor vehicle.
We propose a novel IDT framework that can synchronize the data and
communication protocol across multiple devices to support data
exchange between the real product and virtual product in any
scenario, anywhere, and at any time. Our framework can support the
synchronization of many different sensors and actuators. Furthermore,
we show how a complete IDT framework allows end-users to simulate
future events capturing the interactions between the environment,
consumers, and products, enabling a better understanding of
operational risks and the remaining useful life of assets.

While TAM and the five-dimensional DT model may appear to
emphasize distinct domains, user perceptions of technology adoption
on the one hand, and technical system architecture on the other, their
integration is inherently complementary. TAM contributes the
consumer-centric perspective, ensuring that smart product
frameworks address perceived usefulness and ease of use, thereby
supporting user acceptance. In parallel, the five-dimensional DT
model provides the architectural and operational foundations required
for system stability, real-time synchronization, and data-driven
decision-making. By combining these two perspectives, the
framework achieves a comprehensive balance between human
adoption and technical robustness, bridging subjective perceptions
with objective technological design.

Technology acceptance model (TAM)

The Technology Acceptance Model (TAM), one of the most
influential theories explaining technology acceptance, posits that
two primary factors tend to influence consumers’ intention to use a
new smart product: (1) perceived usefulness, and (2) perceived ease
of use (Gonzalez, 2024). Indeed, TAM has proven to be a
parsimonious model that explains much of the variance in users’
behavioral intention related to smart technology adoption and
usage across a wide variety of contexts. Thus, TAM has been
validated as a reliable theoretical model for exploring consumer
acceptance of smart products and services, from smart watches to
smart vehicles to smart homes to smart sharing (Yoon and Cho,
2016). Indeed, it has been widely used hitherto by scholars to study
the online service context, and in particular users’ behavioral
patterns and willingness to pay, enjoying popularity in marketing
specifically as a consumer-centric model (Ritz et al, 2019).
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Real Smart Product

FIGURE 2

Digital twin-enabled technology acceptance model (TAM) of a smart product.

Accordingly, TAM may be considered uniquely suitable to the
proposed framework.

The five-dimensional DT/IDT model

Among the various DT classifications, the five-dimensional model
is the most commonly used (Attaran et al., 2024). It posits that DT
architectures are comprised of five key components, the first of which
is the physical entity, i.e., the real-world object (smart product) or
system on which the DT is based. It can be anything from a simple
machine to a complex infrastructure, such as a power grid. Sensors
installed on the physical entity gather data about its operation,
performance, and environment.

The second dimension is the digital model, the virtual counterpart
of the physical entity. It is built using data collected from sensors and
may include 3D models, mathematical equations, and software
simulations. The digital model captures the essential characteristics
and behavior of the physical entity in a virtual environment.

The third dimension is data connection, the vital link that ensures
two-way interaction between the physical entity and the digital model.
Real-time data from sensors flows into the digital model, keeping it
updated on the physical entity’s current state. The digital model can
also send commands back to the physical entity, thus influencing its
operation in real-time.

The fourth dimension of the IDT model is services and analytics.
Here data and insights from the digital model are used to furnish
valuable services. These can include performance monitoring,
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anomaly detection, predictive maintenance, reccommendations, and
even optimization of the physical entity’s operation.

The fifth and final dimension is real-time feedback and
optimization, which closes the loop, allowing the digital model to
directly influence the physical entity.

IDT models and supporting
technologies

The three major pillars of any Digital Twin (DT) are models,
software, and supporting technologies. The primary advantage of an IDT
lies in its ability to incorporate all design models according to predefined
rules and a recommender system. Several model types are essential for
enabling IDTs, each contributing unique strengths and fulfilling specific
purposes. For example, the SMARTBUY geo-marketing model utilizes
Wi-Fi access points (APs) installed on a store’s premises to detect
customer proximity (Bourg et al., 2019). Six key models are crucial for
the functionality of IDTs: data models, physical models, machine
learning models, behavioral models, functional models, and virtual
sensors models (Sharma et al., 2022; Stacchio et al., 2022). Each of these
models is reviewed in detail in Appendix 2.

The IDT cockpit

The cockpit is the user interaction part of an IDT, it supplies the
graphical user interface (GUI) for visualizing data ORGANIZED in
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digital shadows, modeling, and interaction with IDT services
(Kobayashi and Alam, 2024). Interactive technology refers to
“methods, tools, or devices that allow various entities to engage in
mediated communication to facilitate the planning and consummation
of interactions between them” (Varadarajan et al., 2010, p. 97). A
cockpit can be seen as both a special service furnished by the IDT and
an integrative front-end component for various specific services that
the IDT offers. In short, the IDT cockpit provides a central hub for all
the data and functionality associated with the IDT. Thus, IDTs
highlight the bidirectional interaction that comprises feedback flows
of information from the physical system to the virtual representation
to update the latter, and from the virtual back to the physical system
to enable decision-making, either automatically or with HITL. In
other words, the virtual-to-physical interaction is the process that
results in the transfer of information from the virtual representation
back to the physical entity (Bana et al., 2022). This interaction closes
the IDT loop by allowing the insights and decisions generated through
the virtual representation to be realized in the physical system, either
through actions that result in a change in the physical system or those
used to collect additional information from the physical system to
further update the virtual representation. The term cockpit has been
adopted from the airline industry (Dalibor et al., 2020). Think of it like
this: The physical airplane is the real world, the IDT is a complex
computer model of the airplane, and the IDT cockpit is the flight deck
where pilots can see all the information gathered from the models. By
the IDT cockpit, ‘pilots’ can gain four key benefits. The first is
improved monitoring: the condition of the airplane can be tracked in
real-time to identify potential issues before they become problems.
The second is enhanced decision-making: data collected from the IDT
can be used to make better decisions about how to operate and
maintain the airplane. The third is reduced costs: by identifying and
fixing problems early on, money can be saved on maintenance and
repairs. The fourth is increased safety: IDT cockpits can help to
improve safety by allowing operators to identify and mitigate potential
risks. In sum, the cockpit is an information processing device that
facilitates interaction between all items and stakeholders based on
advances in human-machine interfaces. Thus, by using digital and
other technologies, IDTs and stakeholders have myriad ways
of interacting.

Human-computer interaction (HCI)

Human-computer interaction (HCI) is a dynamic approach that
goes beyond traditional marketing to create a two-way conversation
between DTs and consumers (Wu and Huang, 2023). It focuses on
engaging consumers and encouraging active participation through
interactive elements and personalized experiences. Like any user-
computer interface, it employs specific methods of interaction with
the consumer. Progressively, over the years, there has been a shift
from the “Hands & Touch” era, in which human-machine
interaction was done manually through buttons, keyboards, and
switches, to the “Mind & Body” era, in which, to support the flow
of information being used as a user interface, the human body is
utilized, for example, through visual or auditory messages (Diao
etal., 2023). Voice user interfaces (VUI) are another technology that
facilitates human-computer interaction. Effective VUIs allow users
to request information through natural language without learning
a specific query syntax. For well over a decade now, consumers have
experienced VUTIs through digital assistant (DA) technologies such
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as Siri, Alexa, and Google Assistant. Key aspects of human-
computer interaction include the following (Barricelli and Fogli,
2024; Wang et al., 2024b):

Engagement: consumers actively interact with the IDTS, rather
than passively receiving marketing messages. This can involve liking,
sharing, commenting, or participating in discussions on social media,
providing feedback, or actively seeking information.

Two-way communication: interactive consumer behavior involves
a dialogue between consumers and IDTs. This can take place through
comments, reviews, live chats, or forums where consumers can ask
questions and receive responses in real-time. Co-creation: Consumers
may actively participate in the creation or customization of IDT. For
example, crowdsourcing ideas, voting on product features, or
submitting user-generated content.

Feedback loop: HCI enables IDTs to gather feedback directly from
consumers, allowing them to better understand consumer preferences,
needs, and pain points. This feedback loop can inform IDT smart
product development, marketing strategies, and customer
service improvements.

Real-time interaction: IDT thrives on real-time interaction. This
means that IDTs are responsive to customer inquiries and feedback
and adapt their monitoring systems based on customers’
engagement data.

Focus on consumer-generated content: IDT encourages consumers
to create and share content, including reviews, photos, videos, social
media posts, etc. User-generated IDT can be a powerful tool for
building trust and credibility among customers.

Cross-user interaction: IDTs hold considerable potential for cross-
company (user) interaction. Indeed, shared IDTs can extend
application boundaries to cross-marketing and enable data exchange
between multiple stakeholders. Far from being limited to internal
applications, IDTs represent a suitable instrument for cross-
marketing collaboration.

The cockpit IDT layer also provides a hub for machine-to-
machine (or system-to-system) interaction (Paul et al., 2024). Data
interoperability is fundamental in the context of any DT because it
allows effective data sharing, unlocking barriers to interactivity and
understanding. Like DT, IDT is capable of optimizing the broader
system beyond its boundaries by exchanging information with other,
interconnected IDTs, thus allowing decisions to be taken jointly with
the respective IDTs in the interconnected systems, leading to enhanced
performance through joint optimization. Implementing IDT
interoperability requires realizing data integration and data exchange
(Bala et al., 2024).

IDT data fusion

“Digital Twins thrive on data integration” (Tao and Qi, 2019,
p. 490).

Like all DTs, IDTs can integrate diverse technologies (de Koning
et al., 2023), models, and data from heterogeneous sources. For
example, they can gather data from the Internet of Things, blockchain,
Al and supplier collaboration portals (Ivanov, 2024), to accurately
simulate and assess smart product design decisions (Qi et al., 2021).
One of the major pitfalls in marketing and consumer research arises
from the daunting task of integrating and synchronizing the vast array
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of consumer and product traces obtained from autonomous obtrusive
and non-obtrusive data-generating devices (Bala et al., 2024). Thus,
data integration is a crucial need in marketing research with multiple
analytical implications in terms of conceptualization, illustration,
convergent validation (triangulation), development of analytic density,
and decision-making. Clearly, complex, diverse, and heterogeneous
data may hinder marketing research, which relies on data gathered
from smart sensors and other data-generating sources. This
complexity elevates integration and interoperability challenges on
both a syntactical and semantic level.

Simulation

IDTs for smart products are designed, among other capabilities,
to simulate different smart product scenarios (Hutabarat et al., 2016).
Understanding the fundamental differences between a typical
simulation and an IDT is critical to the success of any IDT application.
The former is an offline conditional experimentation (Ma et al., 2024),
whereas the latter is a real-time event in which the quality of the IDT
model determines how accurate any simulation will be. IDT
technology explores how the users’ interaction is captured by MIoT
sensors and actuators, while the loss of information between the real
and simulated smart product is kept vanishingly small. With the aid
of AR, discrete products’ events can be overlaid with simulation model
layouts in real-time over the real product via smart devices. Case
studies involving virtual reality (VR) representations of marketing
settings boosted by motion and depth sensors, such as Kinect, might
yield promising results (Turner et al, 2016). IDT models can
be constructed using real-product layouts for managerial control of
discrete event simulation capturing real-time entity operation and
voice commands (Wang et al., 2024b). In the case of vehicles, radio
frequency identification (RFID) technologies may be used to monitor
and manage facilities and services, focusing on the visualization of
logistics trajectories (Zhong et al., 2016).

Real-time synchronization of heterogeneous data streams presents
significant challenges, particularly in terms of latency, protocol
compatibility, and system stability. To address these issues, IDT
cockpits can leverage fog and edge computing architectures to enable
local data processing, thereby reducing transmission delays. Adaptive
buffering strategies further support resilience against fluctuating data
loads, while standardized communication protocols such as MQTT
or OPC-UA enhance interoperability across diverse devices. In
complex environments such as congested urban traffic, system
robustness is reinforced by prioritizing safety-critical data streams and
employing redundancy mechanisms to maintain reliability. Together,
these measures ensure that IDT cockpits achieve both timeliness and
stability in real-world scenarios.

Human-in-the-loop (HITL)

Modeling and analysis of systems equipped with sensors and
connected to the internet are becoming more automated and less
human-dependent. However, bringing expert knowledge into the loop
along with data obtained from Internet of Things (IoT) devices
minimizes the risk of making poor and inexplicable decisions, and
helps to assess the impact of different strategies before applying them
in reality. While IDTs are more of a data-driven simulation of the
physical smart product, IDTs can bring a human dimension into the
modeling and simulation. IDTs demonstrate a close association with
human-computer interaction (HCI) and human-machine interaction
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(HMI), both of which focus on establishing seamless interfaces
between humans and IDTs (Barricelli and Fogli, 2024).

The ‘human-in-the-loop’ (HITL) concept is also known as
interactive analytics, in which analytic algorithms occasionally consult
human experts for feedback and course correction (Retzlaff et al.,
2024). In such cases, it becomes crucial to integrate human
supervision, along with expert knowledge, experience, and
justifications, into an IDT. This integration aims to enhance
comprehension of the unknowns within (cyber)physical systems and
to refine the design of the underlying data-driven methodology. The
accuracy and reliability of IDT models depend heavily on the quality
of the data they are fed. The consumer/human-in-the-loop approach
is a unique ingredient that can ensure the success of these technologies.

Human intuition within IDT systems can be reflected through
measurable proxies, such as gaze direction, voice tone, or physiological
indicators, which are captured through sensors and translated into
structured data streams. These signals provide real-time cues of user
perception and situational awareness, enriching the simulation
environment. When conflicts arise between algorithmic outputs and
human inputs, for example, in emergency braking scenarios,
arbitration is handled through a layered mechanism. In safety-critical
cases, human intervention is prioritized to ensure trust and
accountability. In less critical situations, algorithmic decision-making
prevails, supported by adaptive learning that incorporates past
interactions to refine system responses. This balanced approach
preserves both human oversight and technical robustness.

As advanced technologies revolutionize TAM monitoring, HITL
might be a crucial element for comprehensive and effective IDT
oversight. This approach is often used in situations in which AI
systems are unable to make decisions or perform tasks autonomously
due to complexity, uncertainty, or ethical considerations, which are
typical in the automotive industry (Kaiser et al., 2018). HITL sources
might encompass all relevant stakeholders, including experts,
informed managers, employees, and most importantly, customers (Wu
et al., 2022). Current visual IDT allows for a vast upgrading of
interactional capabilities, steering expert judgment through visually
presented aspects of data characteristics (Diao et al., 2023).

HITL systems offer several benefits. First, they enhance accuracy and
performance by enabling stakeholders to provide feedback and
corrections to Al systems. Second, they can render IDT systems more
transparent and explainable, which in turn can help to build trust and
confidence in their use. Third, they can help ensure that product IDTs
are used safely and ethically. Fourth, they allow stakeholders to stay
informed about changes in regulatory requirements and make certain
that the smart product complies with the latest standards. Fifth, they
permit stakeholder involvement in monitoring and controlling the
IDT. Sixth, HITL systems can help provide labels and annotations to
unsupervised learning data, thus improving the accuracy of IDT models.

In complex smart products, human expertise is often necessary
for handling intricate situations, making critical decisions, and
adapting strategies based on contextual factors not fully captured by
automated systems (Diao et al., 2023). For example, self-driving cars
can use HITL in a machine/car-learning approach to ensure the safety
of passengers and pedestrians. While the vehicle’s sensors detect
obstacles, human drivers can provide additional feedback to ensure it
make accurate real-time decisions. Finally, stakeholders can improve
the IDT by providing information that is difficult to obtain via smart
technologies (Murali et al., 2022).
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Recommendation models

A DT recommendation engine (RE) is a type of software that
leverages the concept of IDT and recommendation algorithms to
provide personalized recommendations or insights. Recommendation
lists may include products, services, offers, vendor-web sites, etc. REs
use algorithms that consider consumer data such as current position,
purchase history, shopping lists, and browsing behavior (e.g., use of
keywords for product searches or website views). In this context,
curation tools, capable of searching large databases and creating
recommendation shortlists, have become popular because they can
save time, elevate brand visibility, and increase connection to
customers. The techniques used in recommendation systems generally
fall into three categories: (1) content-based filtering, which uses a
single customer’s data, (2) collaborative filtering, the most prominent
approach, which derives suggestions from many other customers, and
(3) knowledge-based systems, which are based on specific customer
queries, and generally employed in complex domains, where the first
two techniques cannot be applied. This approach can be hybrid, for
instance, where content-based filtering exploits individual metadata
and collaborative filtering finds overlaps between customer
preferences. Such systems build a profile of what a customer buys and
then look at what other customers with similar profiles purchase.
Content summarization is another fundamental tool that can support
recommendation services (de Koning et al., 2023). Machine learning
(ML) approaches have been developed as well to perform content-
based recommendations. For a detailed review of deep learning for
recommendation systems (see Batmaz et al., 2019).

Task-specific models

Task-specific models (TSMs; Shi et al., 2023) refer to ML models
that are designed and optimized for specific tasks or types of tasks.
They are trained on data that are relevant to the particular task they
are meant to perform, which allows them to achieve high performance
and efficiency concerning the task in question. TSMs allow the IDT
system to understand what steps need to be carried out, in what order,
and under what conditions. They can refer to different activities such
as decision-making, problem-solving, learning, and perception (Bala
etal., 2024). Modern AI models can learn from millions of examples
to help find new solutions to difficult problems. However, building
new systems tends to take time and a large amount of data. The next
evolution in AI will involve a shift from task-specific models to
foundation models, large-scale models trained on massive sets of
unlabeled data that can be adapted for various tasks with minimal
fine-tuning (Yang et al., 2023). These advancements in Al, particularly
the development of foundation models, align closely with the evolving
landscape of IDT models and their supporting technologies. Together,
they will create a fertile and cutting-edge domain for the advancement
of smart product management and customer experience (CX)
research.

IDTs for smart cars

“Cars are becoming computers on wheels” (Murali et al., 2022,
p.211).

Driving is a social activity that involves endless interactions with
other entities on the road. In recent years, the automotive industry has
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faced disruptive changes. Inter alia, it finds itself undergoing a
revolutionary shift from offering goods and related services to offering
data-supported services that meet customers’ needs. The transition
toward e-mobility, autonomous driving, and ubiquitous connectivity
will offer new value to stakeholders (Blake et al., 2024). Naturally, as
in any other computerized system, autopilot or self-driving capabilities
in motor vehicles are achieved through the integration of hardware
and software components. The hardware comprises a suite of sensors
and cameras, while the software employs sophisticated algorithms to
create a neural network for data processing and decision-making. This
process simulates the human brain and operates in a more precise and
efficient manner. The focus of attention and available sensory modality
of the driver, i.e., the most appropriate sensory channel for efficient
interaction, are estimated based on the monitoring activities that are
constantly running in the background. Among automakers, Tesla and
Volvo reportedly are integrating DT technologies into every car it
produce. The partner company that developed Tesla’s DT application,
Thinkwik, has asserted that real-time mechanical issues in Tesla
motors, regardless of their magnitude, are being fixed by simply
downloading over-the-air (OTA) software updates (Moiz and
Alalfi, 2023).

In theory, any car can be digitally ‘twinned, that is, everything in
the vehicle itself can have an IDT to which it is linked. Digital trace
data encompasses a wide range of information, including web
browsing history, location data, social media activity, communication
data (e.g., emails), online purchases, app usage, device information,
sensor data, network activity, and cognitive advanced driver assistance
systems (ADAS) data (Diao et al., 2023). In the automotive industry,
DTs are equivalent to a high-fidelity, virtual blueprint of the entire car
and its performance, down to the smallest part. They are a dynamic
tool that reflects every part of a vehicle in real-time, going beyond
traditional modeling to yield insights unthinkable hitherto. Indeed, by
creating virtual replicas of vehicles, stakeholders (manufacturers,
retailers, service providers, managers, and customers) can experience
a host of advantages previously beyond reach. Vehicle IDTs, for
instance, allow for analysis of individual driving habits, thus
optimizing vehicle performance based on actual usage patterns, with
external source data (weather, traffic, etc.), visual analytics, automatic
speech recognition (ASR), and ADAS software for detecting possible
future threats all coming into play. Ultimately, IDTs will have the
capacity to integrate all relevant consumer data, including personality
traits and physiological data, and convert it into business value, while
supporting various stakeholders’ decisions. Other notable technologies
include radar and LiDAR (light detection and ranging) systems, as
well as road operator cameras for managing traffic flow. General
Motors (GM) has created digital twins to collect data about their
equipment’s performance and predict maintenance issues. As a result,
they can proactively tackle these issues, thus increasing the
equipmentss lifespan (Moiz and Alalfi, 2023).

Consumers are increasingly demanding vehicles that are
intelligent and user-friendly, that is, smart cars. Automotive
smartification involves equipping vehicles with photographic lenses,
laser radar, and other sensing apparatuses, which are coupled with
operating systems and Al chips to achieve data access, interconnection,
and automated driving. Thus, embedded in the smart vehicle’s ‘cockpit’
is an elaborate sensing and monitoring system, which acts as its ‘five
senses, incorporating in-vehicle, smartphone and individual user
device sensors (e.g., pulse transmitter belts). The development of
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smart cockpits thereby expedites the shift from a vehicle-centric to a
consumer-centric model. Moreover, by improving chip performance
to endow products with new functions, the driver-vehicle relationship
can be radically redefined in conformance with the “decoupled-but-
collaborative software and hardware” model (Moiz and Alalfi, 2023).
Indeed, in line with evolving industry demands, the smart cockpit
system promises to transform the vehicle from an ordinary
transportation tool into an ecosystem that integrates travel, life, and
customers’ delight. The domain of interaction in particular involves
the monitoring of sensation, perception, information exchange,
inference, and decision-making (Barricelli and Fogli, 2024).

With the help of AI recognition technology, vehicles are invested
with the ability to listen, speak, see, and think, just like people. Drivers
normally must constantly gather information from various car sensors
about their surroundings to make safe driving decisions. However,
human drivers are also subject to limited perceptibility and
distractions. Failing to know where entities are and predict what they
will do is liable to result in serious safety hazards. Traditionally, the
responsibility for avoiding such hazards rests solely with the driver.
One of the chief advantages of IDT technology in this context lies in
the fact can be transferred across different vehicles, bringing to bear
interactions between driver, vehicle, and environment. With features
such as sophisticated environmental awareness, accurate decision-
making logic, and collaborative and comprehensive controller units
(Blake et al., 2024), IDT will enhance safe driving. Also, IDT enables
driver-vehicle interaction using Conduct-by-Wire vehicle guidance,
where the primary driving tasks (braking, accelerating, and steering)
are assigned to the vehicle (Wadhwa and Babbar, 2023), and the
driver’s input is automatically converted into a movement vector, with
the primary driving tasks being performed without further driver
assistance (Diao et al., 2023). IDTs that use the driver as a sensor will
enable overtaking maneuvers when the sensors are blocked or suggest
maneuvers to the vehicle.

Likewise, when an IDT interface has learned a specific driver’s
preferences, it can enable similar functions in different vehicles. Thus,
when the driver changes vehicle, the system can update the new
vehicle using the most up-to-date personalized settings, regardless of
the different interior layout. What will be transferred is not necessarily
the layout of an icon, but the logic of how information should flow
across the different sensory channels and displays (Chen et al., 2018).
This clearly would have beneficial effects in terms of standardization
and adoption of safety criteria for automated vehicle interfaces as well.

Furthermore, IDT interactive vehicle-to-vehicle (V2V; system-to-
systems interaction) technology allows profiles to be shared among
neighboring vehicles and used to estimate the potential risks of
collision depending on the actions taken by the drivers. Indeed, the
IDT interface enables a high level of driver and passenger connectivity,
which is particularly relevant for safety-oriented applications
stemming from V2V or vehicle-to-infrastructure communication, in
which the risks entailed in available actions are visualized to drivers
so they can take appropriate action to avoid collision.

Voice-user interfaces (VUIs) are another advanced HCI
technology of vital importance for smart car IDT, as they allow voice
commands to be used to safely perform specific vehicle functions.
Taking advantage of voice recognition and synthesized voice response,
VUISs historically have opened up new horizons and opportunities for
both conventional users and those with disabilities, thus making great
strides in digital accessibility. In the automotive market, they are
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becoming an integral part of standard equipment, capable of
recognizing drivers’ voices to enable them to safely access a range of
services, often custom-tailored to the needs of each driver and with
ample opportunity for customization. Adoption is facilitated by the
increasing prevalence of connectivity that links more and more
devices into daily experience, from the home to the car. This is a
growing trend also due to the increasing pervasiveness of smart
vehicles. Today it is possible to take Siri, Google Assistant or Alexa
with us in the car (Diao et al., 2023).

A vehicle’s behavior is determined by its driving context, which
includes road conditions, nearby elements, infrastructures (e.g., traffic
lights), and even drivers’ mental states. With better sensors and
connected technologies, vehicles’ capacity to read the driving context
is improving. IDT technology offers context-based interpretations of
data gathered from drivers, their vehicles, and the environment, as
well as the interactions between them. For each entity, information is
stored and updated over time, to allow driver reactions to be assessed
about previous states and environmental conditions. The data
obtained subsequently can be translated into a meaningful percept of
the overall state, which in turn can be shared with other road users.
Vehicle IDT will play a fundamental role in understanding and
shaping the interactional dynamics between humans and smart
vehicles. With increasing levels of automation, drivers will have more
time and choice to perform various tasks other than driving, and this
opens up new avenues for interaction (Diao et al., 2023).

Multimodal interaction

Multimodal systems in user interaction are defined by Murali
etal. (2022) as “those that process two or more combined user input
modes, such as speech, pen, touch, manual gestures, gaze, and head
and body movements, in a coordinated manner with multimedia
system output” (p. 201). As with mono-modal interaction, multimodal
interaction can have multiple inputs and outputs, offering drivers
different methods of interacting with vehicles depending on the
driving situation and the driver’s cognitive state. Furthermore, the
drawbacks of any single modality can be compensated for using
another modality. One modality may even correct or verify the
outputs of another one. Multimodal inputs can be used for controlling
vehicle functions in addition to selecting a particular task or object.
For instance, a mixture of three modalities, voice, gaze, and
movements, can be used to pick vehicle objects, such as side mirrors
or windows, and then control these objects with gestures or speech
(Blake et al., 2024).

Implicit versus explicit interactions

Typically, users can interact with an intelligent vehicle implicitly as
well as explicitly (Diao et al., 2023). Implicit interactions are able to
estimate and infer driver action states such as fatigue or drowsiness,
cognitive state, emotions, and even posture or pose recognition, which
can convey certain cues to the intelligent vehicle. The user might not
be consciously aware that their actions are being interpreted as inputs. In
explicit interaction, by contrast, these actions are clear, deliberate, and
usually involve clear input devices or commands. The user communicates
with the vehicle or vice versa using deliberate button clicks, voice
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commands, gestures, and communication through haptic and display
interfaces. The user is consciously aware of the interaction. Explicit
interactions are intentional, while implicit interactions are inferred from
actions that might not be intended as direct communication with the
IDT system. Explicit interactions are usually visible and clear to the user,
while implicit interactions are often subtle or hidden. Understanding the
distinction between these types of interactions is crucial for designing
smart products that can effectively and intuitively respond to user needs
(see Appendix 3 for more on this subject).

Self-driving/autonomous vehicles (AV)

Self-driving/autonomous vehicles (AVs) of the future promise to
change the face of transportation as we know it, and by extension our
very lives. AVs exchange information with both other vehicles (V2V)
and the infrastructure (V2I), while smartphone sensors and individual
user device sensors (e.g., pulse transmitter belts) can boost the amount
of available vehicle data. A typical smartphone, for example, contains
an acceleration sensor, an ambient light sensor, a temperature sensor,
a barometric sensor, a gyroscope sensor, a fingerprint sensor, a
magnetic field sensor, and so on. Communication interfaces
commonly found on smartphones include Wi-Fi, GPS, near-field
communications (NFC), Bluetooth, and infrared (IR) LED, while
numerous additional sensors are available for physiological
measurements (Qi et al., 2021). However, in view of the fact that self-
driving vehicles need to interact and communicate with their
surroundings, including people, vehicles, and roads, to efficiently
operate, it is evident that interactive intelligence is also of vital
importance. Thus, as self-driving capabilities advance, the focus on
designing human-AV interfaces that support interactive systems will
surely intensify. A vehicle that will be able to effectively and safely
realize unmanned driving will need to interact not only with the
passengers inside the vehicle, but also with pedestrians, other cars, and
road conditions outside of the car. As the external environment is
subject to a vast array of variables such as distance, noise, temperature,
humidity, wind speed, etc., it is clear that the IDT smart car’s decisions
and judgments will be determined by multiple factors, thus posing one
of many challenges for the car industry. Regardless, the driver’s role
will shift gradually from one of active control of the vehicle to one of
supervision and intervention when necessary. Lastly, integrating
blockchain technology into the IDT will help to secure vehicle data
management and communication. For example, a DT of a vehicle
connected to a blockchain network can be used to store and manage
vehicle data securely, thus allowing automobile experts to track a
vehicle’s performance and maintenance history in real-time.

In sum, more and more automakers are investing in research and
development for human-vehicle interaction, to attract and satisfy
customers. As such interaction becomes more humanized, vehicles
will become more intelligent, convenient, and appealing. IDT provides
a unique opportunity for drivers not only to interact with vehicles but
also to interconnect with different vehicle components and to benefit
from V2V. The advent of autonomous driving technology will
fundamentally transform how consumers interact with their vehicles.
As IDT technology is further integrated into smart vehicles, profound
changes undoubtedly will occur in driving behavior and human-
vehicle interaction. The eventual mainstream adoption of IDT-enabled
smart vehicles will not only transform automobiles from ‘vehicle-
centric’ means of transportation into ‘people-centric’ mobile spaces
but also create a new ecology for cars and transportation services.
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Dynamic adaptability is embedded in the IDT cockpit architecture
through modular and evolutionary design. As new sensors,
infrastructures, or communication technologies emerge, they can
be integrated into the system via plug-and-play interfaces without the
need to reconstruct the entire framework. Ontology-based mapping
ensures that new data sources are semantically aligned with existing
components, allowing the cockpit to maintain consistency and
stability. This modular adaptability enables the IDT model to evolve
continuously in response to technological and environmental
advances, ensuring that the framework remains both flexible and
future-proof.

Discussion

Digitalization has greatly simplified data collection and analysis
methods, which used to be too complex and/or only available to
experts. DT is one of the leading data-directed decision-making
concepts allowing businesses and manufacturers to simulate products
to enhance their speed, cost-effectiveness, and quality. Our study
shows that the proposed IDT-TAM framework can improve human-
smart product interaction and management requiring less specialist
knowledge from stakeholders, and that IDT technologies offer a direct
and intuitive method to users concerned with interactive and
operational decision support. At the same time, integrating human
expertise (HIDT) into the digital domain will significantly bolster
IDT’s predictive analytics capabilities.

Digitalization has considerably simplified data collection and
analysis, processes that were previously complex and largely limited
to experts. Digital Twin (DT) technology is now recognized as a
significant data-driven approach, allowing businesses and
manufacturers to simulate products to improve product management
and quality. Our study suggests that the proposed IDT-TAM
framework can enhance human-smart product interaction and
management, potentially reducing the need for specialized knowledge
among stakeholders. Thus, IDT technologies may offer a more direct
and intuitive method for users engaged in interactive and operational
decision support. In this conceptual study, we have examined the
current state of human-vehicle IDTs, with a focus on automotive
sensing technologies and the methods for facilitating natural and
intuitive interactions. The importance of interactive interfaces and the
need for their development have been outlined. Additionally, we have
reviewed state-of-the-art technologies that enable vehicles to
understand implicit contextual cues and explicit interaction modes,
such as speech and gesture recognition.

IDT technology uniquely focuses on bilateral interdependency
between the physical twin and its virtual counterpart. This offers
various inherent benefits, as the physical smart product can modify its
real-time behavior concurrently in response to the feedback generated
by the IDT. Conversely, it allows the simulation to precisely mirror the
real-world condition of the physical product. As a consequence, for
the car industry, IDT represents a holistic approach that aims to
address the main human factors and challenges of smart vehicles.
Specifically, an interface based on this approach surrounds the driver
and continuously adapts to support any change in their psychophysical
state. IDT is meant to increase situational awareness, minimize the
obtrusiveness of traditional visual and auditory interfaces, and
preserve the driver’s cognitive spare capacity for a prompt and smooth
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transition of control while providing a comfortable and safe
experience. In sum, IDT is a holistic interface designed to mediate the
interactions between the driver and the vehicle IDT or any other
connected smart entity, as well as between the vehicle and other
stakeholders in the external environment (e.g., insurance agents).

Theoretical applications

“Digital twins are not just a fleeting trend but an essential
component of sustainable innovation” (Stacchio et al., 2022, p. 498).

IDT development and implementation demands collaboration
across multiple disciplines, including logistics, marketing, consumer
behavior, data science, computer science, design, and domain-specific
fields. Such interdisciplinary collaboration can foster innovation and
knowledge exchange. IDT can accommodate existing smart product
concepts such as life-cycle management, and TAM. Digital
representations of physical products are expected to rapidly transform
smart products. Their theoretical implications are vast and still being
explored. IDT challenges our traditional understanding of the
relationship between physical and digital worlds, but also potentially
blurs the lines between the real and the simulated, raising questions
about the nature of reality and representation. For instance, what does
it mean for a product to be ‘real’ if it has a perfect digital counterpart?
(Wang et al., 2024b). By designing and creating a dynamic copy of a
smart product, IDT can introduce new properties that do not exist in
the latter. This raises theoretical questions about their ontological
status and implications for understanding the smart product world.

As this technology continues to develop, we can expect even more
profound theoretical questions to emerge about the understanding of AI
and virtual space and the role of the different stakeholders in it. As Gotz
etal. (2020) suggest, significant potential lies in a holistic approach to
future digitization initiatives with blockchain-based IDTs, and in
positioning the concept as a strategic, multifunctional tool for field
support applications. Significantly, recent advances in fog computing in
marketing (FC; Hornik et al., 2023; Kumar and Kotler, 2024) promise to
shift IDT processing power and data storage away from centralized
servers and into local networks where MIoT devices and other monitors
are located. Also, with the advent of extended reality (XR; Stacchio et al.,
2022), an umbrella term encompassing various immersive technologies
that blend physical and digital worlds, including virtual reality (VR),
augmented reality (AR), and mixed reality (MR), new theoretical issues
might emerge. For example, XR is enabling the creation of hybrid
environments where real and virtual products coexist and interact with
each other. An MR application, for instance, might allow consumers to
place virtual smart products in their actual home or office to see how
they might perform before purchasing them. Such emerging technologies
will provide users with interactive experiences by integrating digital
content into their real-world environments or by immersing them
entirely in a simulated way, thus raising new theoretical questions.

Managerial applications
The introduction of IDTs will allow managers to transition to a

predictive maintenance model, which can strike a balance between
corrective and preventive maintenance. These efficiencies will enable
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faster time-to-market with better quality assurance. IDT devices allow
outliers, defects, errors, and unexpected consumer behavior to
be readily detected. For example, by monitoring and analyzing fuel
consumption in various conditions and driving styles, IDTs can suggest
optimizations, leading to significant fuel savings over time. Likewise,
ensuring compliance with various regulations and standards will
be simplified through IDTs, which maintain records and provide a
transparent audit trail throughout the various stages of the vehicle’s
lifecycle, from conception and design to manufacturing and distribution
to use and eventual disposal. As such, automotive IDTs will serve as the
central hub of vehicular information, which combines and updates data
continuously from a wide range of sources, as a fore noted, as well as
from consumer interactivity. Overall, IDTs offer a continuous feedback
loop throughout product management, enabling data-driven decision-
making, optimization, and innovation. This will lead to improved
design, production efficiency, customer safety and experience, and
ultimately, sustainability. Thus, IDTs promise to play a major role in
automotive TAM by improving predictions and enhancing productivity,
profitability, and efficiency. Indeed, by capturing intricate details,
analyzing them for deeper insights, and applying knowledge gained
from consumers’ interactions, IDTs will offer a roadmap to a future in
which motor vehicles are not just smarter but also more resilient, safe,
and consumer-centric. The automotive industry can leverage IDTs to
provide personalized experiences and services to customers. In other
words, by tracing or interacting with customers, individual driving
patterns, preferences, and needs can be better understood, thus allowing
automakers to tailor recommendations, optimize vehicle settings, and
enhance the overall driving experience. Integration of IDT technology
enables a holistic understanding of the monitored vehicle, leading to
improved decision-making, efficiency gains, and the ability to
proactively address challenges in real-time (Bana et al., 2022).

Several emerging technologies are currently being tested that have
the potential to significantly enhance automotive IDTs. For instance,
voice-based infotainment systems like Apple CarPlay and Android Auto
(Moiz and Alalfi, 2023) will allow stakeholders to interact with drivers
verbally while collecting cognitive and emotional data during driving.
This will lead to a deeper understanding of the driving experience and
behavior. Additionally, new algorithms are being developed to estimate
and measure mental states and consumer behavior through various
indicators, including speech analysis, facial expressions, gestures,
posture, movement, and eye tracking, as well as internet and
smartphone activity (Bala et al., 2024). IDTs will enable more accurate
simulation and integration of these technologies, particularly in the
context of autonomous driving. However, it is important to note that
most current car IDT systems rely on centralized architectures, which
have limitations in ensuring trusted data provenance, secure and
tamper-proof data storage, and reliable traceability. To address these
challenges, key technologies such as blockchain and especially Fog
Computing are being explored as solutions.

Fog computing-enabled IDTs

Fog computing (FC) is a distributed computing architecture that
sits between the cloud and data-generating devices. It works by
bringing some of the processing power and storage closer to where the
data is created, rather than relying solely on the cloud. FC provides the
distributed computing infrastructure and capabilities that enable
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real-time data processing, reduced latency, improved scalability,
enhanced privacy, and local decision-making for IDTs. This will make
it a key enabler for realizing the full potential of IDTs in TAM
applications (for a recent review, see Hornik et al., 2023; Kumar and
Kotler, 2024; and for more on DT applications, see Appendix 4).

Study limitations

Although the use of theoretical models like TAM is beneficial in
developing IDT’s applicability to product management, it is important
to highlight the drawbacks. For example, it must be acknowledged that
while extensive support can be found for the use of the TAM models,
there is paucity in the marketing literature that can furnish a basis for
more advanced IDT applications.

The adoption of IDT technology in this context also comes with
its own set of challenges. Ensuring data privacy and security is crucial,
as IDTs often involve the representation of sensitive personal and
financial information. Also, it cannot be ignored that Al-enabled IDT
is still in its nascent stage. Overall, many research questions remain
unanswered. An acknowledgment of the aforementioned challenges
is imperative, toward filling at least some of the gaps in the literature.

Future research

“The development, maintenance, and evolution of digital twins are
still challenging research areas” (Bana et al., 2022, p. 69).

Although algorithmic improvement is noteworthy in the case of
IDTs, the application of the IDT paradigm in product TAM is a
completely new development, which exposes a stark gap in the
research literature. Thus, accuracy measures (e.g., mean absolute error,
root-mean-square error) should be deployed to check the robustness
of the proposed framework (Ma et al., 2024). Notably, as well, the
framework presented avoids distinct sub-categories of its dimensions
to reduce complexity and leave room for individual focuses on current
and future applications. A refinement of the model, consequently, can
be part of future work. When using the proposed framework in
specific domains with defined modeling techniques and associated
tools, specific integration and interaction issues will emerge, thus
opening up important research directions concerning data integration,
accuracy and reliability, scalability, data privacy and security, and user
adoption. Accordingly, among the many relevant research questions
that might be posed in future research are the following:

RQI: How would TAM and IDT collaboration resonate with
different stakeholders?

RQ2: How can the interplay of human (HITL) and machine-
generated IDT content be investigated?

RQ3: How can marketing research scale decision-makers’ relative
trust in different data-generating devices?

RQ4: Although IDT has strong data-collection and integration
capabilities, very often data contexts are lost, thus creating
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problems in modeling, especially as concerns emotional data
(Diao et al., 2023). How, then, can data loss be prevented/reduced
in an IDT for TAM?

RQ5: There is a long tradition in marketing and consumer
behavior showing different responses to different products (e.g.,
high/low involvement, hedonic/utilitarian). Do the same
differences apply to IDT-based TAM?

RQ6: IDT has proven to be an interdisciplinary paradigm. When
conducting IDT research, how can marketing benefit from allied
disciplines (e.g., economics, computer science, psychology,
sociology)?

RQ7: How can research integrate useful knowledge extracted

from observations of varying natures (traceability
information, structural/environment constraints, quality
measures) with previous external IDT knowledge to refine a
TAM predictive model and enhance or adapt a TAM

prescriptive model?

RQ8: As the components contained in IDT usually have different
properties, the structure of each part and the interaction between
different parts tend to be different (Ma et al., 2024). How, then,
can ontology-based IDT provide reliable guidance for the
implementation of IDT, as well as a way to specify the various
components and the relations among them?

RQY: How can human-machine interfaces (HMIs) in smart
products foster trust through transparency and explain ability of
actions and intentions?

RQ10: Being connected to their physical twins, among other
things, through (manual) use of recorded data, smart
product IDTs generally must deal with missing data. In this
case, appropriate techniques for data imputation, which fills
in the missing data, should be explored (Ivanov, 2024).
Likewise, datasets are liable to contain noisy data points
whose distributions are difficult to estimate due to various
approaches for constructing the data. What kind of robust
then, should be such

algorithms, developed for

unpredictable noises?

In the future, product IDT research will progress inevitably
toward training personnel on new processes, strategies, or
equipment within a secure virtual environment (Bala et al.,
2024). This will help enhance stakeholders’ skills and reduce the
likelihood of errors in real operations. Likewise, it will entail
IDT
implementation, as well as implementation barriers in specific

investigating the long-term consequences of
market settings. Finally, conducting case studies across diverse
product domains holds significant promise for assessing the
practical implementation, advantages, and challenges of
ontology-based IDTs, thus yielding valuable insights for real-
world adoption. Grappling with these challenges seems well
worth the effort given what appears to be IDT technology’s
numerous benefits.
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Conclusion

The use of DT technology has been hailed as a
groundbreaking development in numerous domains. DT holds
immense potential in the metaverse, making it possible to
interact with digital versions of people, places, objects, and
products of any kind. However, its promise in marketing, smart
product management, and research remains far from being
realized. By simulating a physical smart product, such as a
motor vehicle, in digital form, it can create prototypes with
unprecedented accuracy, allowing for analysis and gathering of
meaningful feedback before physical production has even
begun. If done properly, the value of the enriched data obtained
promises to be inherently greater than the sum of any single
dataset values combined in the process. Our analysis has shown
that HITL-embedded IDTs offer powerful tools for investigating
and optimizing automotive TAM. Motor vehicle IDTs, for
example, have the potential to transform TAM or any other
product model, by providing managers with a new way of
understanding and interacting with cars and their customers. By
bridging the gap between the physical and digital worlds,
managers will be able to improve product research, performance,
reliability, sustainability, customer safety, and satisfaction,
ultimately efficient and innovative

leading to more

smart marketing.
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