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Digitalization is influencing the design, development, and management of products 
across myriad industries, transforming traditional products into smart ones. Among 
digital technologies and models, the digital twin (DT) is regarded as an important 
contribution to the advancement of physical entity management. DTs are virtual 
representations of physical objects or systems, which are continuously updated 
with real-time data collected from their physical counterparts. Surprisingly, DT 
has yet to be applied in marketing. This study aims, accordingly, first, to introduce 
the DT concept and, second, to explore the human factor (human-in-the-loop) 
in DT. Third, elaborate on the DT cockpit (the DT’s interactive element) in the 
product management paradigm. Specifically, the authors use vehicles as a case 
study to show how interactive digital twins (IDTs) can be employed to predict and 
optimize vehicle performance, reliability, sustainability, and customer satisfaction. 
To conceptualize IDT for smart products and marketing analytics, the customer-
centric Technology Acceptance Model (TAM) is employed. As this is the first 
study to explore DT technology in marketing, the DT concept’s main attributes 
are discussed, significant contributions are suggested, and avenues for future 
research are delineated.
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Introduction

“Volvo, the renowned automobile company for ensuring the best passenger safety uses digital 
twins. They create virtual replicas to test and try out different materials and aerodynamics of new 
vehicle designs as well as in-vehicle communication components. This way, they can choose the 
ideal design that would improve performance, create fuel-efficient models, and enhance passenger 
satisfaction” (Blake et al., 2024, p. 44).

Intense competition, rapid technological development, and constantly changing consumer 
preferences are forcing marketing to be more efficient and agile in delivering products and 
value to customers. As a result, marketing is increasingly turning towards new-age 
technologies, such as artificial intelligence (AI), the Internet of Things (IoT), big data, 
blockchain, cloud and fog computing, mobile internet, drones, etc., to design smarter products 
and enhance interaction with stakeholders (Gnizy, 2024; Kumar and Kotler). The digital 
revolution, furthermore, has precipitated a sweeping shift from traditional product design and 
manufacturing to a smart product approach in which existing equipment, processes, software, 
and devices are retrofitted with smart sensors and other cyber-physical systems (CPS) (Kannan 
and Li, 2017; Paul et  al., 2024). With the prominence of personalization and customer 
engagement as go-to customer management strategies, marketers need to understand how to 
integrate the latest technological advances into their existing practices to seamlessly generate 
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actionable insights. Developments such as eased networking, declining 
computing prices, nanocomponents, and accretive device connectivity 
have enabled companies to seamlessly integrate and virtually replicate 
various tangible and intangible entities (Tao et al., 2018; Tao and Qi, 
2019; Timperi et al., 2023). The term ‘digital twin’ (DT) has been 
coined to refer to this type of modeling. By owning and controlling 
information of affiliated entities, DTs improve planning, management, 
and forecasting (Bala et  al., 2024; Reim et  al., 2023). Despite the 
considerable volume of recent research dedicated to DT 
implementation in business process management (Ivanov, 2024; 
Korepin et  al., 2024), the phenomenon remains woefully 
underexplored in marketing. The present study, therefore, seeks to 
introduce the marketing community to DT as a groundbreaking 
technology that promises to advance interactive marketing.

While AI, big data analytics, and the marketing Internet of Things 
(MIoT; Kumar and Kotler, 2024) have paved the way for the emergence 
and use of DTs as means of ‘twinning’ the lives of physical entities in 
a range of fields (Stacchio et al., 2022), the advent of eXtended Reality 
(XR) in industrial and consumer electronics has introduced novel 
paradigms that may be  used to visualize and interact with DTs. 
Indeed, XR technologies that support human-to-human interactions 
for training and remote assistance could transform DTs into 
collaborative intelligence tools (Wang et al., 2024b) that will enable 
human-machine interaction by voice, gesture, motion, touch, etc. 
Furthermore, as all these ‘smart devices’ and ‘smart things’ are 
connected, overviews can be aggregated into DTs (Kobayashi and 
Alam, 2024). Thus, a major issue in smart marketing concerns how 
emerging technologies can be integrated (Gnizy, 2024; Kannan and Li, 
2017) for unified decision-making and predictive maintenance 
(Monek and Fischer, 2025; Paul et  al., 2024). DT technology 
undoubtedly will play a central role in addressing such problems 
(Attaran et al., 2024).

The widespread digitization of products is creating vast digital 
traces of functions and services, which can be  transformed into 
valuable data. This data supports intelligent decision-making and cost-
effective business solutions, particularly in fast-moving industries 
such as automotive (Kaiser et  al., 2019). As vehicles increasingly 
become electric, digitized, interconnected, and intelligent (Wadhwa 
and Babbar, 2023), it is essential to adopt a human-centered approach 
that connects drivers, vehicles, and infrastructures. This approach 
must also account for non-driving activities in automated vehicles 
(AVs). A comprehensive strategy that integrates emerging technology-
based solutions, facilitated by advancements in sensor technology and 
data science, appears promising (Gupta et al., 2020; Varadarajan et al., 
2010). Given the need for highly automated vehicles to accommodate 
a range of technical and manual functions, these systems will demand 
unprecedented flexibility in the human-vehicle interface.

One way to address this issue is by using an interactive digital twin 
(ITD), which can monitor and simulate all human-vehicular 
interactions and communications. An umbrella term for IDT is DT 
cockpit (Bana et al., 2022), which provides a graphical user interface 
for visualization of data organized in digital shadows (Romero et al., 
2020) and models, and for interaction with DT services. Thus enabling 
stakeholders to access, adapt, and add information, as well as monitor 
and partially control the physical product. Since smart products 
generate vast quantities of data, reducing such data to an amount the 
DT can process is crucial. Thus, the digital shadow contains precisely 
the data the DT requires to perform its task (Romero et al., 2020). 

Moreover, shadows may contain information from different 
perspectives, e.g., systems (physical and organizations), processes, 
products, and humans (Davila-Gonzalez and Martin, 2024).

Smart marketing and smart products

Smart marketing is considered an important evolution, which is 
expected to drastically alter how consumers engage with marketing as 
we know it. For clarification, the term ‘smart’ in this context represents 
all things embedded in or enhanced by technology. Accordingly, 
whenever data are collected from different sensors, actuators, and 
machines within a marketing environment and access to and control 
of the data and the devices generating it are enabled through the 
internet, smart marketing is in play, and such a scenario may 
be termed a ‘marketing Internet of Things’ (MIoT; Kumar and Kotler, 
2024). The MIoT in this sense will focus mainly on the transfer and 
control of mission-critical information and responses and rely heavily 
on machine-to-machine communications. Recent developments in 
smart marketing include AI language models such as ChatGPT, 
Google Gemini, and Meta Llama, which can provide a vast array of 
new marketing data, as well as novel ways in which people interact 
with computers and each other. Modern smart marketing research 
frequently utilizes big data, derived from a vast number of observations 
across various subjects, brand SKUs, predictor variables, and periods. 
This data fills extensive databases, producing large volumes of diverse 
information. For instance, Amazon and AliExpress collect data on 
millions of product units, along with detailed demographic 
information. Similarly, retailers have access to extensive datasets, 
thanks to the deployment of RFID (Radio Frequency Identification) 
devices, product reviews, social networking sites, mobile marketing, 
e-commerce platforms, and customer requirements (Ivanov, 2024).

Smart products (or ‘product avatars’) also comprise cyber-physical 
systems, which contain semi-autonomous functions and can 
communicate with other products or other ecosystem components via 
internet-based services (Paul et  al., 2024). They differ from 
conventional products in their capabilities, which include intelligence, 
autonomy, and connectivity. An intelligent product possesses a unique 
computer-readable identifier, monitors its status and environment, 
stores data about itself, shares and receives information, and is capable 
of decision-making. Its intelligence comes from an embedded or 
remote computer with network access (Barricelli and Fogli, 2024).

Study objectives

Given the dearth of DT use in marketing hitherto, in the present 
study, we  advocate for the future deployment of IDT in smart 
marketing ecosystems. Inspired by recent successful DT 
applications, such as the digital twinning of Paris 2024 Olympic 
venues (Medium, 2024), which enable stakeholders to negotiate the 
uncertainty and difficulties inherent in organizing large-scale events 
while promoting sustainability and customer experience (CX), 
we propose a single DT framework that can synchronize data and 
communication protocols across multiple devices and stakeholders, 
to support data exchange and information interaction, between real 
products and their virtual twins in any scenario, anywhere, and at 
any time.
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Smart vehicles are examined here as a case study to demonstrate 
how IDT can be  employed to predict and optimize product 
performance, reliability, sustainability, and thus customer satisfaction. 
Furthermore, we  show how a complete IDT framework allows 
end-users to simulate future events, capturing interactions between 
consumers, the environment, and products, thereby enabling a better 
understanding of operational risks and the remaining useful life of 
products. While the automotive sector is used here as an illustrative 
case, the IDT cockpit framework is conceived as scalable and adaptable 
across industries with varying levels of technological complexity. In 
lower-complexity domains, such as smart home thermostats, lighting 
systems, or wearable devices, the cockpit can function as a streamlined 
interface, requiring less computational intensity while still delivering 
value through predictive maintenance, energy efficiency, and 
personalized user comfort. By tailoring the scope of integration to the 
specific industry context, the IDT cockpit demonstrates both cost-
effectiveness and adaptability, ensuring that its core principles remain 
valid across a wide spectrum of smart products. We follow the general 
frameworks and propositional inventories delineating a conceptual 
entity in marketing research (MacInnis, 2011). Thus, our study can 
be seen as one of envisioning, as MacInnis (2011) terms it, in that it 
seeks to call our attention to “what we have been missing and why it 
is important,” and “reveal what new questions can be  addressed” 
(p. 138).

To advance these objectives, precisely during an era in which 
marketing scholars are calling for more conceptual work (e.g., 
Deighton et al., 2021; Vargo and Koskela-Huotari, 2020), we first 
provide an overview of DT, IDT, and related concepts relevant to 
marketing management. Second, we  outline a conceptual 
framework for IDT-enabled smart product management using, for 
illustration purposes, the Technology Acceptance Model (TAM; 
Gonzalez, 2024; Lala, 2014). Third, we elaborate on theoretical and 
significant marketing applications. Fourth and finally, we identify 
several fundamental research challenges emanating from our 
conceptualization for the managerial exploitation of IDT in smart 
product monitoring. The study, we  suggest, goes beyond a 
literature review by offering compelling observations of marketing 
in the real world. Employing a multi-perspective approach, it aims 
to deliver valuable insights about IDT, lending perspective on 
several impacted interactive marketing areas. Specifically, we use 
motor vehicles as a case study to demonstrate how IDT can 
be employed to simulate the behavior of physical automobiles, 
predict and improve their performance, and optimize operation, 
reliability, sustainability, disposal, recycling, and customer 
satisfaction, ultimately leading to a more efficient and innovative 
automotive industry.

Among product management models, our conceptualization 
incorporates the consumer-centric TAM (Gonzalez, 2024) into the 
widely embraced five-dimensional DT model framework (5DT, 
Attaran et al., 2024, Ivanov, 2024, Korepin et al., 2024), enhanced by 
stakeholder intuition (human-in-the-loop, HITL; Retzlaff et al., 2024). 
This conceptualization, we maintain, can help marketing to take full 
advantage of the theoretical and practical benefits of the prescribed 
approach, while also highlighting important avenues for future 
research geared toward enhancing effective decision-making. Each of 
these endeavors requires additional details, which, due to 
considerations of readability and space constraints, we furnish in an 
extensive Web Appendix.

DT fundamentals

“Digital twin is revolutionizing industries” (Ma et al., 2024, p. 102).

The National Academies of Sciences, Engineering, and Medicine 
(NASEM) recently published a report titled Foundational Research 
Gaps and Future Directions for Digital Twins (National Academies of 
Sciences, Engineering, and Medicine, 2024, pp.  147–49), which 
underscores the scientific contributions and significance of Digital 
Twins (DTs). This report identifies key areas where DT technology can 
advance research and industry practices, emphasizing its role in 
enhancing the integration of digital and physical spaces, especially 
with the rise of the metaverse. Digital Twins (DTs) are cloud-based 
systems that integrate data from various smart, data-generating 
resources. In the context of smart products, DTs collect extensive 
product-related information, revolutionizing data integration and 
system modeling across industries such as healthcare, housing, 
manufacturing, and energy (Holmes et al., 2021). This technology 
allows for the creation, use, management, and maintenance of virtual 
counterparts (twins) of physical entities or systems, facilitating real-
time, two-way data exchanges (Bala et  al., 2024). Through the 
continuous collection of data via IoT sensing devices, DTs can 
dynamically simulate real objects and environments, constructing 
high-fidelity virtual models that accurately mirror their physical 
counterparts (Kobayashi and Alam, 2024; Wang and Wang, 2019).

Interactive Digital Twins (IDTs) are designed to significantly 
enhance human-machine interactions and inter-machine 
communications by dynamically emulating their real-world 
counterparts. These systems integrate both raw and processed data to 
reflect actual conditions accurately. With advanced simulation models, 
IDTs can monitor and control increasingly complex systems. 
Furthermore, IDTs are equipped with basic analytical models and 
software that allow for rigorous analysis and prediction of system 
conditions under various scenarios. At their most advanced level, 
IDTs incorporate machine learning models that generate real-time 
insights, enabling immediate optimization of system performance 
(Turner et al., 2016). Table 1 summarizes the key characteristics of 
DTs, while Figure 1 visually illustrates the concept of IDTs. Additional 
elaborations can be found in Appendix 1.

What makes DT unique is the convergence of virtually all the 
latest cutting-edge technologies, including big data, the Internet of 
Things (IoT), social networks (SN), virtual reality (VR), augmented 
reality (AR), haptic interaction technology, voice interaction 
technology, gesture recognition technology (Kobayashi and Alam, 
2024), as well as the more recently developed DT cockpit (Bana et al., 
2022), driven by major advances in cognitive science, machine 
learning and AI. IDT integrates all the processes by which sensory 
input is transformed, elaborated, reduced, stored, recovered, and used.

Based on insights and simulations, DTs can recommend changes 
to their physical counterparts. Likewise, IDTs are dynamic models 
that serve as real-time symbiotic “virtual replicas” of real-world 
systems. Inter alia, they can leverage Dynamic Data Driven 
Applications Systems (DDDAS) bidirectional symbiotic sensing 
feedback loops to provide continuous updates. In this context, 
reconfiguration decisions may be  autonomous or interactive. For 
example, HITL-DDDAS systems generate considerable amounts of 
data useful for myriad applications, such as improving performance, 
predictive maintenance, training, etc. Consequently, IDT will be able 
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to steer simulation, measurement, analysis, management, and 
reconfiguration aimed at more accurate modeling and analysis. DT’s 
value spans a multitude of domains. For example, Korepin et al. (2024) 

have shown empirically that DTs tend to enhance companies’ 
operational efficiency, as evidenced by a high correlation between DT 
expenses and company revenues.

TABLE 1  Major IDT characteristics.

Characteristics Description

State The value of all parameters of both the physical and virtual twin in their environment

Physical process
The process in the real-system environment that will change or

impact the state of the physical twin

Virtual process The process in the virtual environment (e.g., research) that will change or impact the state of the virtual twin

Virtual environment The technology-based environment in which the virtual twin exists

Physical entity (twin) The real entity (e.g., products, consumers, firms, devices)

Virtuality The virtual digital twin synchronized with the physical entity at a twinning rate

Synchronization and integration 

(twinning)
Real-time integration and convergence of physical systems and their digital counterparts

Twinning rate The rate or frequency at which synchronization occurs

Networking devices Physical or cloud-based communication devices for data exchange

Cloud computing
The delivery of computing services, including servers, storage, databases, networking, software, research, and intelligence, over the 

internet (“the cloud”) to offer faster innovation, flexible resources, and economies of scale

Data storage Acquiring historic data of an entity for data comprehension

Heterogeneous data Ability to handle large amounts of data from different sources and formats

Self-adjustment Self-adaptation and parameterization capabilities following changes in the system during its lifecycle

Information selection Identifying, extracting, and storing useful information

Pattern identification Identifying changes and trends via data analysis

Physical-to-virtual connection Data transfer from the physical entity to the virtual environment

Close-loop feedback Feedback is provided to the systems and other digital twins, using interfaces to assess the computing information

Metrology Measuring the current state of the physical/virtual entity

Optimization Achieving best outcomes while addressing data uncertainty

Simulation Representing current status and what-if scenarios

Location Enables users not co-located to collaborate in design and implementation

Physical Space

Real-Time Data

Analytics (e.g., Integration)

Sensors

Actuators

Cyber Space
Historical 

Data

Existing
Applications

INTERACTIVITY

Digital Twin

FIGURE 1

IDT visual illustration.
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In sum, IDTs are virtual representations or models of physical 
objects, systems, or processes, which are designed to be interactive, 
allowing users to engage with them in real-time and manipulate 
various parameters or elements to simulate different scenarios, analyze 
performance, or test important issues. IDTs are essentially DTs with 
an added layer of engagement. The interactive part takes this a step 
further. It allows users to not just observe the DT, but also interact 
with it while learning and adapting from its outcomes 
and recommendations.

Adaptive learning

Adaptive learning (Reim et al., 2023) is a crucial aspect of any DT 
approach. It refers to DTs’ ability to continuously learn from new data 
and update their models to improve accuracy and effectiveness over 
time. This process allows the system to adapt to changes detect 
emerging patterns and make it more robust against ever-evolving 
new technologies.

Human digital twin (HDT)

“Digital Twin is at the forefront of the Industry 4.0 revolution 
facilitated through advanced data analytics and the Internet of 
Things (IoT) connectivity” (Sharma et al., 2022, p. 101).

The term human digital twin (HDT), which extends the DT 
concept, has been applied recently in numerous domains, including 
medicine, manufacturing (Wang et al., 2024b), and sports performance 
(Barricelli and Fogli, 2024). A digital human can be defined as a life-
like being, powered by artificial AI, with the capability of conversing, 
interacting, and creating an emotional connection, like any other 
human being. HDTs have the potential to change the practice of 
human system integration as they employ real-time sensing and 
feedback to tightly couple measurements of human performance, 
behavior, and environmental influences throughout the life cycle. In 
recent years, a growing number of studies have borne witness to the 
fusion of human factors with advanced digital technologies such as 
the Internet of Things (IoT), artificial intelligence (AI), and eXtended 
reality (XR). For instance, unobtrusive, body-worn sensors, embedded 
in, among other things, inertial measurement units (IMUs) and 
wireless wearable electromyography (EMG) devices (Davila-Gonzalez 
and Martin, 2024), are utilized for on-site measurement, enabling 
biomechanical analysis during work. These innovations are invaluable 
as they facilitate the provision of accurate data for virtual-real mapping 
of humans throughout production or service stages (Wang 
et al., 2024a).

Similar to DT, HDT is presented in the literature as a replica, copy, 
or counterpart in cyberspace, or the digital world, of a real person in 
the physical world (Davila-Gonzalez and Martin, 2024; Wang et al., 
2024a). The HDT concept has been proposed as a critical method for 
realizing human-centricity in an array of smart applications (Ma et al., 
2024). HDTs are also distinguished from animated characters by one 
key characteristic, i.e., “the illusion that they are ‘just living life’ like 
the rest of us” (Bala et al., 2024, p. 340). Emotion AI (Petrescu and 
Krishen, 2023), also known as artificial emotional intelligence, refers 
to machines’ ability to measure, understand, simulate, and react to 

human emotions. Recently, AI researchers have made significant 
technical advancements, developing machines that are increasingly 
able to detect users’ emotions and adapt their responses. HDTs are 
considered powerful tools for designing personalized services and 
optimizing satisfaction and lifestyle. However, surprisingly, they have 
been almost wholly overlooked in marketing and consumer research.

Conceptual framework

Our novel conceptualization of an IDT-enabled TAM for smart 
products is depicted in Figure  2. To advance conceptualization, 
we have adopted the commonly used and validated five-dimensional 
DT model framework (5D-DT, Ma et al., 2024; Tao et al., 2018) along 
with the HITL concept, thereby integrating the most advanced data-
generating smart technologies, devices, and human intuition, to 
support TAM of a smart product. In this case, a motor vehicle. 
We propose a novel IDT framework that can synchronize the data and 
communication protocol across multiple devices to support data 
exchange between the real product and virtual product in any 
scenario, anywhere, and at any time. Our framework can support the 
synchronization of many different sensors and actuators. Furthermore, 
we show how a complete IDT framework allows end-users to simulate 
future events capturing the interactions between the environment, 
consumers, and products, enabling a better understanding of 
operational risks and the remaining useful life of assets.

While TAM and the five-dimensional DT model may appear to 
emphasize distinct domains, user perceptions of technology adoption 
on the one hand, and technical system architecture on the other, their 
integration is inherently complementary. TAM contributes the 
consumer-centric perspective, ensuring that smart product 
frameworks address perceived usefulness and ease of use, thereby 
supporting user acceptance. In parallel, the five-dimensional DT 
model provides the architectural and operational foundations required 
for system stability, real-time synchronization, and data-driven 
decision-making. By combining these two perspectives, the 
framework achieves a comprehensive balance between human 
adoption and technical robustness, bridging subjective perceptions 
with objective technological design.

Technology acceptance model (TAM)

The Technology Acceptance Model (TAM), one of the most 
influential theories explaining technology acceptance, posits that 
two primary factors tend to influence consumers’ intention to use a 
new smart product: (1) perceived usefulness, and (2) perceived ease 
of use (Gonzalez, 2024). Indeed, TAM has proven to be  a 
parsimonious model that explains much of the variance in users’ 
behavioral intention related to smart technology adoption and 
usage across a wide variety of contexts. Thus, TAM has been 
validated as a reliable theoretical model for exploring consumer 
acceptance of smart products and services, from smart watches to 
smart vehicles to smart homes to smart sharing (Yoon and Cho, 
2016). Indeed, it has been widely used hitherto by scholars to study 
the online service context, and in particular users’ behavioral 
patterns and willingness to pay, enjoying popularity in marketing 
specifically as a consumer-centric model (Ritz et  al., 2019). 
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Accordingly, TAM may be  considered uniquely suitable to the 
proposed framework.

The five-dimensional DT/IDT model

Among the various DT classifications, the five-dimensional model 
is the most commonly used (Attaran et al., 2024). It posits that DT 
architectures are comprised of five key components, the first of which 
is the physical entity, i.e., the real-world object (smart product) or 
system on which the DT is based. It can be anything from a simple 
machine to a complex infrastructure, such as a power grid. Sensors 
installed on the physical entity gather data about its operation, 
performance, and environment.

The second dimension is the digital model, the virtual counterpart 
of the physical entity. It is built using data collected from sensors and 
may include 3D models, mathematical equations, and software 
simulations. The digital model captures the essential characteristics 
and behavior of the physical entity in a virtual environment.

The third dimension is data connection, the vital link that ensures 
two-way interaction between the physical entity and the digital model. 
Real-time data from sensors flows into the digital model, keeping it 
updated on the physical entity’s current state. The digital model can 
also send commands back to the physical entity, thus influencing its 
operation in real-time.

The fourth dimension of the IDT model is services and analytics. 
Here data and insights from the digital model are used to furnish 
valuable services. These can include performance monitoring, 

anomaly detection, predictive maintenance, recommendations, and 
even optimization of the physical entity’s operation.

The fifth and final dimension is real-time feedback and 
optimization, which closes the loop, allowing the digital model to 
directly influence the physical entity.

IDT models and supporting 
technologies

The three major pillars of any Digital Twin (DT) are models, 
software, and supporting technologies. The primary advantage of an IDT 
lies in its ability to incorporate all design models according to predefined 
rules and a recommender system. Several model types are essential for 
enabling IDTs, each contributing unique strengths and fulfilling specific 
purposes. For example, the SMARTBUY geo-marketing model utilizes 
Wi-Fi access points (APs) installed on a store’s premises to detect 
customer proximity (Bourg et al., 2019). Six key models are crucial for 
the functionality of IDTs: data models, physical models, machine 
learning models, behavioral models, functional models, and virtual 
sensors models (Sharma et al., 2022; Stacchio et al., 2022). Each of these 
models is reviewed in detail in Appendix 2.

The IDT cockpit

The cockpit is the user interaction part of an IDT, it supplies the 
graphical user interface (GUI) for visualizing data ORGANIZED in 

FIGURE 2

Digital twin-enabled technology acceptance model (TAM) of a smart product.
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digital shadows, modeling, and interaction with IDT services 
(Kobayashi and Alam, 2024). Interactive technology refers to 
“methods, tools, or devices that allow various entities to engage in 
mediated communication to facilitate the planning and consummation 
of interactions between them” (Varadarajan et  al., 2010, p. 97). A 
cockpit can be seen as both a special service furnished by the IDT and 
an integrative front-end component for various specific services that 
the IDT offers. In short, the IDT cockpit provides a central hub for all 
the data and functionality associated with the IDT. Thus, IDTs 
highlight the bidirectional interaction that comprises feedback flows 
of information from the physical system to the virtual representation 
to update the latter, and from the virtual back to the physical system 
to enable decision-making, either automatically or with HITL. In 
other words, the virtual-to-physical interaction is the process that 
results in the transfer of information from the virtual representation 
back to the physical entity (Bana et al., 2022). This interaction closes 
the IDT loop by allowing the insights and decisions generated through 
the virtual representation to be realized in the physical system, either 
through actions that result in a change in the physical system or those 
used to collect additional information from the physical system to 
further update the virtual representation. The term cockpit has been 
adopted from the airline industry (Dalibor et al., 2020). Think of it like 
this: The physical airplane is the real world, the IDT is a complex 
computer model of the airplane, and the IDT cockpit is the flight deck 
where pilots can see all the information gathered from the models. By 
the IDT cockpit, ‘pilots’ can gain four key benefits. The first is 
improved monitoring: the condition of the airplane can be tracked in 
real-time to identify potential issues before they become problems. 
The second is enhanced decision-making: data collected from the IDT 
can be  used to make better decisions about how to operate and 
maintain the airplane. The third is reduced costs: by identifying and 
fixing problems early on, money can be saved on maintenance and 
repairs. The fourth is increased safety: IDT cockpits can help to 
improve safety by allowing operators to identify and mitigate potential 
risks. In sum, the cockpit is an information processing device that 
facilitates interaction between all items and stakeholders based on 
advances in human-machine interfaces. Thus, by using digital and 
other technologies, IDTs and stakeholders have myriad ways 
of interacting.

Human-computer interaction (HCI)
Human-computer interaction (HCI) is a dynamic approach that 

goes beyond traditional marketing to create a two-way conversation 
between DTs and consumers (Wu and Huang, 2023). It focuses on 
engaging consumers and encouraging active participation through 
interactive elements and personalized experiences. Like any user-
computer interface, it employs specific methods of interaction with 
the consumer. Progressively, over the years, there has been a shift 
from the “Hands & Touch” era, in which human-machine 
interaction was done manually through buttons, keyboards, and 
switches, to the “Mind & Body” era, in which, to support the flow 
of information being used as a user interface, the human body is 
utilized, for example, through visual or auditory messages (Diao 
et al., 2023). Voice user interfaces (VUI) are another technology that 
facilitates human-computer interaction. Effective VUIs allow users 
to request information through natural language without learning 
a specific query syntax. For well over a decade now, consumers have 
experienced VUIs through digital assistant (DA) technologies such 

as Siri, Alexa, and Google Assistant. Key aspects of human-
computer interaction include the following (Barricelli and Fogli, 
2024; Wang et al., 2024b):

Engagement: consumers actively interact with the IDTs, rather 
than passively receiving marketing messages. This can involve liking, 
sharing, commenting, or participating in discussions on social media, 
providing feedback, or actively seeking information.

Two-way communication: interactive consumer behavior involves 
a dialogue between consumers and IDTs. This can take place through 
comments, reviews, live chats, or forums where consumers can ask 
questions and receive responses in real-time. Co-creation: Consumers 
may actively participate in the creation or customization of IDT. For 
example, crowdsourcing ideas, voting on product features, or 
submitting user-generated content.

Feedback loop: HCI enables IDTs to gather feedback directly from 
consumers, allowing them to better understand consumer preferences, 
needs, and pain points. This feedback loop can inform IDT smart 
product development, marketing strategies, and customer 
service improvements.

Real-time interaction: IDT thrives on real-time interaction. This 
means that IDTs are responsive to customer inquiries and feedback 
and adapt their monitoring systems based on customers’ 
engagement data.

Focus on consumer-generated content: IDT encourages consumers 
to create and share content, including reviews, photos, videos, social 
media posts, etc. User-generated IDT can be  a powerful tool for 
building trust and credibility among customers.

Cross-user interaction: IDTs hold considerable potential for cross-
company (user) interaction. Indeed, shared IDTs can extend 
application boundaries to cross-marketing and enable data exchange 
between multiple stakeholders. Far from being limited to internal 
applications, IDTs represent a suitable instrument for cross-
marketing collaboration.

The cockpit IDT layer also provides a hub for machine-to-
machine (or system-to-system) interaction (Paul et al., 2024). Data 
interoperability is fundamental in the context of any DT because it 
allows effective data sharing, unlocking barriers to interactivity and 
understanding. Like DT, IDT is capable of optimizing the broader 
system beyond its boundaries by exchanging information with other, 
interconnected IDTs, thus allowing decisions to be taken jointly with 
the respective IDTs in the interconnected systems, leading to enhanced 
performance through joint optimization. Implementing IDT 
interoperability requires realizing data integration and data exchange 
(Bala et al., 2024).

IDT data fusion

“Digital Twins thrive on data integration” (Tao and Qi, 2019, 
p. 490).

Like all DTs, IDTs can integrate diverse technologies (de Koning 
et  al., 2023), models, and data from heterogeneous sources. For 
example, they can gather data from the Internet of Things, blockchain, 
AI, and supplier collaboration portals (Ivanov, 2024), to accurately 
simulate and assess smart product design decisions (Qi et al., 2021). 
One of the major pitfalls in marketing and consumer research arises 
from the daunting task of integrating and synchronizing the vast array 
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of consumer and product traces obtained from autonomous obtrusive 
and non-obtrusive data-generating devices (Bala et al., 2024). Thus, 
data integration is a crucial need in marketing research with multiple 
analytical implications in terms of conceptualization, illustration, 
convergent validation (triangulation), development of analytic density, 
and decision-making. Clearly, complex, diverse, and heterogeneous 
data may hinder marketing research, which relies on data gathered 
from smart sensors and other data-generating sources. This 
complexity elevates integration and interoperability challenges on 
both a syntactical and semantic level.

Simulation
IDTs for smart products are designed, among other capabilities, 

to simulate different smart product scenarios (Hutabarat et al., 2016). 
Understanding the fundamental differences between a typical 
simulation and an IDT is critical to the success of any IDT application. 
The former is an offline conditional experimentation (Ma et al., 2024), 
whereas the latter is a real-time event in which the quality of the IDT 
model determines how accurate any simulation will be. IDT 
technology explores how the users’ interaction is captured by MIoT 
sensors and actuators, while the loss of information between the real 
and simulated smart product is kept vanishingly small. With the aid 
of AR, discrete products’ events can be overlaid with simulation model 
layouts in real-time over the real product via smart devices. Case 
studies involving virtual reality (VR) representations of marketing 
settings boosted by motion and depth sensors, such as Kinect, might 
yield promising results (Turner et  al., 2016). IDT models can 
be constructed using real-product layouts for managerial control of 
discrete event simulation capturing real-time entity operation and 
voice commands (Wang et al., 2024b). In the case of vehicles, radio 
frequency identification (RFID) technologies may be used to monitor 
and manage facilities and services, focusing on the visualization of 
logistics trajectories (Zhong et al., 2016).

Real-time synchronization of heterogeneous data streams presents 
significant challenges, particularly in terms of latency, protocol 
compatibility, and system stability. To address these issues, IDT 
cockpits can leverage fog and edge computing architectures to enable 
local data processing, thereby reducing transmission delays. Adaptive 
buffering strategies further support resilience against fluctuating data 
loads, while standardized communication protocols such as MQTT 
or OPC-UA enhance interoperability across diverse devices. In 
complex environments such as congested urban traffic, system 
robustness is reinforced by prioritizing safety-critical data streams and 
employing redundancy mechanisms to maintain reliability. Together, 
these measures ensure that IDT cockpits achieve both timeliness and 
stability in real-world scenarios.

Human-in-the-loop (HITL)
Modeling and analysis of systems equipped with sensors and 

connected to the internet are becoming more automated and less 
human-dependent. However, bringing expert knowledge into the loop 
along with data obtained from Internet of Things (IoT) devices 
minimizes the risk of making poor and inexplicable decisions, and 
helps to assess the impact of different strategies before applying them 
in reality. While IDTs are more of a data-driven simulation of the 
physical smart product, IDTs can bring a human dimension into the 
modeling and simulation. IDTs demonstrate a close association with 
human-computer interaction (HCI) and human-machine interaction 

(HMI), both of which focus on establishing seamless interfaces 
between humans and IDTs (Barricelli and Fogli, 2024).

The ‘human-in-the-loop’ (HITL) concept is also known as 
interactive analytics, in which analytic algorithms occasionally consult 
human experts for feedback and course correction (Retzlaff et al., 
2024). In such cases, it becomes crucial to integrate human 
supervision, along with expert knowledge, experience, and 
justifications, into an IDT. This integration aims to enhance 
comprehension of the unknowns within (cyber)physical systems and 
to refine the design of the underlying data-driven methodology. The 
accuracy and reliability of IDT models depend heavily on the quality 
of the data they are fed. The consumer/human-in-the-loop approach 
is a unique ingredient that can ensure the success of these technologies.

Human intuition within IDT systems can be reflected through 
measurable proxies, such as gaze direction, voice tone, or physiological 
indicators, which are captured through sensors and translated into 
structured data streams. These signals provide real-time cues of user 
perception and situational awareness, enriching the simulation 
environment. When conflicts arise between algorithmic outputs and 
human inputs, for example, in emergency braking scenarios, 
arbitration is handled through a layered mechanism. In safety-critical 
cases, human intervention is prioritized to ensure trust and 
accountability. In less critical situations, algorithmic decision-making 
prevails, supported by adaptive learning that incorporates past 
interactions to refine system responses. This balanced approach 
preserves both human oversight and technical robustness.

As advanced technologies revolutionize TAM monitoring, HITL 
might be  a crucial element for comprehensive and effective IDT 
oversight. This approach is often used in situations in which AI 
systems are unable to make decisions or perform tasks autonomously 
due to complexity, uncertainty, or ethical considerations, which are 
typical in the automotive industry (Kaiser et al., 2018). HITL sources 
might encompass all relevant stakeholders, including experts, 
informed managers, employees, and most importantly, customers (Wu 
et  al., 2022). Current visual IDT allows for a vast upgrading of 
interactional capabilities, steering expert judgment through visually 
presented aspects of data characteristics (Diao et al., 2023).

HITL systems offer several benefits. First, they enhance accuracy and 
performance by enabling stakeholders to provide feedback and 
corrections to AI systems. Second, they can render IDT systems more 
transparent and explainable, which in turn can help to build trust and 
confidence in their use. Third, they can help ensure that product IDTs 
are used safely and ethically. Fourth, they allow stakeholders to stay 
informed about changes in regulatory requirements and make certain 
that the smart product complies with the latest standards. Fifth, they 
permit stakeholder involvement in monitoring and controlling the 
IDT. Sixth, HITL systems can help provide labels and annotations to 
unsupervised learning data, thus improving the accuracy of IDT models.

In complex smart products, human expertise is often necessary 
for handling intricate situations, making critical decisions, and 
adapting strategies based on contextual factors not fully captured by 
automated systems (Diao et al., 2023). For example, self-driving cars 
can use HITL in a machine/car-learning approach to ensure the safety 
of passengers and pedestrians. While the vehicle’s sensors detect 
obstacles, human drivers can provide additional feedback to ensure it 
make accurate real-time decisions. Finally, stakeholders can improve 
the IDT by providing information that is difficult to obtain via smart 
technologies (Murali et al., 2022).
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Recommendation models
A DT recommendation engine (RE) is a type of software that 

leverages the concept of IDT and recommendation algorithms to 
provide personalized recommendations or insights. Recommendation 
lists may include products, services, offers, vendor-web sites, etc. REs 
use algorithms that consider consumer data such as current position, 
purchase history, shopping lists, and browsing behavior (e.g., use of 
keywords for product searches or website views). In this context, 
curation tools, capable of searching large databases and creating 
recommendation shortlists, have become popular because they can 
save time, elevate brand visibility, and increase connection to 
customers. The techniques used in recommendation systems generally 
fall into three categories: (1) content-based filtering, which uses a 
single customer’s data, (2) collaborative filtering, the most prominent 
approach, which derives suggestions from many other customers, and 
(3) knowledge-based systems, which are based on specific customer 
queries, and generally employed in complex domains, where the first 
two techniques cannot be applied. This approach can be hybrid, for 
instance, where content-based filtering exploits individual metadata 
and collaborative filtering finds overlaps between customer 
preferences. Such systems build a profile of what a customer buys and 
then look at what other customers with similar profiles purchase. 
Content summarization is another fundamental tool that can support 
recommendation services (de Koning et al., 2023). Machine learning 
(ML) approaches have been developed as well to perform content-
based recommendations. For a detailed review of deep learning for 
recommendation systems (see Batmaz et al., 2019).

Task-specific models
Task-specific models (TSMs; Shi et al., 2023) refer to ML models 

that are designed and optimized for specific tasks or types of tasks. 
They are trained on data that are relevant to the particular task they 
are meant to perform, which allows them to achieve high performance 
and efficiency concerning the task in question. TSMs allow the IDT 
system to understand what steps need to be carried out, in what order, 
and under what conditions. They can refer to different activities such 
as decision-making, problem-solving, learning, and perception (Bala 
et al., 2024). Modern AI models can learn from millions of examples 
to help find new solutions to difficult problems. However, building 
new systems tends to take time and a large amount of data. The next 
evolution in AI will involve a shift from task-specific models to 
foundation models, large-scale models trained on massive sets of 
unlabeled data that can be adapted for various tasks with minimal 
fine-tuning (Yang et al., 2023). These advancements in AI, particularly 
the development of foundation models, align closely with the evolving 
landscape of IDT models and their supporting technologies. Together, 
they will create a fertile and cutting-edge domain for the advancement 
of smart product management and customer experience (CX) 
research.

IDTs for smart cars

“Cars are becoming computers on wheels” (Murali et  al., 2022, 
p. 211).

Driving is a social activity that involves endless interactions with 
other entities on the road. In recent years, the automotive industry has 

faced disruptive changes. Inter alia, it finds itself undergoing a 
revolutionary shift from offering goods and related services to offering 
data-supported services that meet customers’ needs. The transition 
toward e-mobility, autonomous driving, and ubiquitous connectivity 
will offer new value to stakeholders (Blake et al., 2024). Naturally, as 
in any other computerized system, autopilot or self-driving capabilities 
in motor vehicles are achieved through the integration of hardware 
and software components. The hardware comprises a suite of sensors 
and cameras, while the software employs sophisticated algorithms to 
create a neural network for data processing and decision-making. This 
process simulates the human brain and operates in a more precise and 
efficient manner. The focus of attention and available sensory modality 
of the driver, i.e., the most appropriate sensory channel for efficient 
interaction, are estimated based on the monitoring activities that are 
constantly running in the background. Among automakers, Tesla and 
Volvo reportedly are integrating DT technologies into every car it 
produce. The partner company that developed Tesla’s DT application, 
Thinkwik, has asserted that real-time mechanical issues in Tesla 
motors, regardless of their magnitude, are being fixed by simply 
downloading over-the-air (OTA) software updates (Moiz and 
Alalfi, 2023).

In theory, any car can be digitally ‘twinned’, that is, everything in 
the vehicle itself can have an IDT to which it is linked. Digital trace 
data encompasses a wide range of information, including web 
browsing history, location data, social media activity, communication 
data (e.g., emails), online purchases, app usage, device information, 
sensor data, network activity, and cognitive advanced driver assistance 
systems (ADAS) data (Diao et al., 2023). In the automotive industry, 
DTs are equivalent to a high-fidelity, virtual blueprint of the entire car 
and its performance, down to the smallest part. They are a dynamic 
tool that reflects every part of a vehicle in real-time, going beyond 
traditional modeling to yield insights unthinkable hitherto. Indeed, by 
creating virtual replicas of vehicles, stakeholders (manufacturers, 
retailers, service providers, managers, and customers) can experience 
a host of advantages previously beyond reach. Vehicle IDTs, for 
instance, allow for analysis of individual driving habits, thus 
optimizing vehicle performance based on actual usage patterns, with 
external source data (weather, traffic, etc.), visual analytics, automatic 
speech recognition (ASR), and ADAS software for detecting possible 
future threats all coming into play. Ultimately, IDTs will have the 
capacity to integrate all relevant consumer data, including personality 
traits and physiological data, and convert it into business value, while 
supporting various stakeholders’ decisions. Other notable technologies 
include radar and LiDAR (light detection and ranging) systems, as 
well as road operator cameras for managing traffic flow. General 
Motors (GM) has created digital twins to collect data about their 
equipment’s performance and predict maintenance issues. As a result, 
they can proactively tackle these issues, thus increasing the 
equipment’s lifespan (Moiz and Alalfi, 2023).

Consumers are increasingly demanding vehicles that are 
intelligent and user-friendly, that is, smart cars. Automotive 
smartification involves equipping vehicles with photographic lenses, 
laser radar, and other sensing apparatuses, which are coupled with 
operating systems and AI chips to achieve data access, interconnection, 
and automated driving. Thus, embedded in the smart vehicle’s ‘cockpit’ 
is an elaborate sensing and monitoring system, which acts as its ‘five 
senses,’ incorporating in-vehicle, smartphone and individual user 
device sensors (e.g., pulse transmitter belts). The development of 
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smart cockpits thereby expedites the shift from a vehicle-centric to a 
consumer-centric model. Moreover, by improving chip performance 
to endow products with new functions, the driver-vehicle relationship 
can be radically redefined in conformance with the “decoupled-but-
collaborative software and hardware” model (Moiz and Alalfi, 2023). 
Indeed, in line with evolving industry demands, the smart cockpit 
system promises to transform the vehicle from an ordinary 
transportation tool into an ecosystem that integrates travel, life, and 
customers’ delight. The domain of interaction in particular involves 
the monitoring of sensation, perception, information exchange, 
inference, and decision-making (Barricelli and Fogli, 2024).

With the help of AI recognition technology, vehicles are invested 
with the ability to listen, speak, see, and think, just like people. Drivers 
normally must constantly gather information from various car sensors 
about their surroundings to make safe driving decisions. However, 
human drivers are also subject to limited perceptibility and 
distractions. Failing to know where entities are and predict what they 
will do is liable to result in serious safety hazards. Traditionally, the 
responsibility for avoiding such hazards rests solely with the driver. 
One of the chief advantages of IDT technology in this context lies in 
the fact can be transferred across different vehicles, bringing to bear 
interactions between driver, vehicle, and environment. With features 
such as sophisticated environmental awareness, accurate decision-
making logic, and collaborative and comprehensive controller units 
(Blake et al., 2024), IDT will enhance safe driving. Also, IDT enables 
driver-vehicle interaction using Conduct-by-Wire vehicle guidance, 
where the primary driving tasks (braking, accelerating, and steering) 
are assigned to the vehicle (Wadhwa and Babbar, 2023), and the 
driver’s input is automatically converted into a movement vector, with 
the primary driving tasks being performed without further driver 
assistance (Diao et al., 2023). IDTs that use the driver as a sensor will 
enable overtaking maneuvers when the sensors are blocked or suggest 
maneuvers to the vehicle.

Likewise, when an IDT interface has learned a specific driver’s 
preferences, it can enable similar functions in different vehicles. Thus, 
when the driver changes vehicle, the system can update the new 
vehicle using the most up-to-date personalized settings, regardless of 
the different interior layout. What will be transferred is not necessarily 
the layout of an icon, but the logic of how information should flow 
across the different sensory channels and displays (Chen et al., 2018). 
This clearly would have beneficial effects in terms of standardization 
and adoption of safety criteria for automated vehicle interfaces as well.

Furthermore, IDT interactive vehicle-to-vehicle (V2V; system-to-
systems interaction) technology allows profiles to be shared among 
neighboring vehicles and used to estimate the potential risks of 
collision depending on the actions taken by the drivers. Indeed, the 
IDT interface enables a high level of driver and passenger connectivity, 
which is particularly relevant for safety-oriented applications 
stemming from V2V or vehicle-to-infrastructure communication, in 
which the risks entailed in available actions are visualized to drivers 
so they can take appropriate action to avoid collision.

Voice-user interfaces (VUIs) are another advanced HCI 
technology of vital importance for smart car IDT, as they allow voice 
commands to be used to safely perform specific vehicle functions. 
Taking advantage of voice recognition and synthesized voice response, 
VUIs historically have opened up new horizons and opportunities for 
both conventional users and those with disabilities, thus making great 
strides in digital accessibility. In the automotive market, they are 

becoming an integral part of standard equipment, capable of 
recognizing drivers’ voices to enable them to safely access a range of 
services, often custom-tailored to the needs of each driver and with 
ample opportunity for customization. Adoption is facilitated by the 
increasing prevalence of connectivity that links more and more 
devices into daily experience, from the home to the car. This is a 
growing trend also due to the increasing pervasiveness of smart 
vehicles. Today it is possible to take Siri, Google Assistant or Alexa 
with us in the car (Diao et al., 2023).

A vehicle’s behavior is determined by its driving context, which 
includes road conditions, nearby elements, infrastructures (e.g., traffic 
lights), and even drivers’ mental states. With better sensors and 
connected technologies, vehicles’ capacity to read the driving context 
is improving. IDT technology offers context-based interpretations of 
data gathered from drivers, their vehicles, and the environment, as 
well as the interactions between them. For each entity, information is 
stored and updated over time, to allow driver reactions to be assessed 
about previous states and environmental conditions. The data 
obtained subsequently can be translated into a meaningful percept of 
the overall state, which in turn can be shared with other road users. 
Vehicle IDT will play a fundamental role in understanding and 
shaping the interactional dynamics between humans and smart 
vehicles. With increasing levels of automation, drivers will have more 
time and choice to perform various tasks other than driving, and this 
opens up new avenues for interaction (Diao et al., 2023).

Multimodal interaction

Multimodal systems in user interaction are defined by Murali 
et al. (2022) as “those that process two or more combined user input 
modes, such as speech, pen, touch, manual gestures, gaze, and head 
and body movements, in a coordinated manner with multimedia 
system output” (p. 201). As with mono-modal interaction, multimodal 
interaction can have multiple inputs and outputs, offering drivers 
different methods of interacting with vehicles depending on the 
driving situation and the driver’s cognitive state. Furthermore, the 
drawbacks of any single modality can be  compensated for using 
another modality. One modality may even correct or verify the 
outputs of another one. Multimodal inputs can be used for controlling 
vehicle functions in addition to selecting a particular task or object. 
For instance, a mixture of three modalities, voice, gaze, and 
movements, can be used to pick vehicle objects, such as side mirrors 
or windows, and then control these objects with gestures or speech 
(Blake et al., 2024).

Implicit versus explicit interactions

Typically, users can interact with an intelligent vehicle implicitly as 
well as explicitly (Diao et al., 2023). Implicit interactions are able to 
estimate and infer driver action states such as fatigue or drowsiness, 
cognitive state, emotions, and even posture or pose recognition, which 
can convey certain cues to the intelligent vehicle. The user might not 
be consciously aware that their actions are being interpreted as inputs. In 
explicit interaction, by contrast, these actions are clear, deliberate, and 
usually involve clear input devices or commands. The user communicates 
with the vehicle or vice versa using deliberate button clicks, voice 
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commands, gestures, and communication through haptic and display 
interfaces. The user is consciously aware of the interaction. Explicit 
interactions are intentional, while implicit interactions are inferred from 
actions that might not be intended as direct communication with the 
IDT system. Explicit interactions are usually visible and clear to the user, 
while implicit interactions are often subtle or hidden. Understanding the 
distinction between these types of interactions is crucial for designing 
smart products that can effectively and intuitively respond to user needs 
(see Appendix 3 for more on this subject).

Self-driving/autonomous vehicles (AV)
Self-driving/autonomous vehicles (AVs) of the future promise to 

change the face of transportation as we know it, and by extension our 
very lives. AVs exchange information with both other vehicles (V2V) 
and the infrastructure (V2I), while smartphone sensors and individual 
user device sensors (e.g., pulse transmitter belts) can boost the amount 
of available vehicle data. A typical smartphone, for example, contains 
an acceleration sensor, an ambient light sensor, a temperature sensor, 
a barometric sensor, a gyroscope sensor, a fingerprint sensor, a 
magnetic field sensor, and so on. Communication interfaces 
commonly found on smartphones include Wi-Fi, GPS, near-field 
communications (NFC), Bluetooth, and infrared (IR) LED, while 
numerous additional sensors are available for physiological 
measurements (Qi et al., 2021). However, in view of the fact that self-
driving vehicles need to interact and communicate with their 
surroundings, including people, vehicles, and roads, to efficiently 
operate, it is evident that interactive intelligence is also of vital 
importance. Thus, as self-driving capabilities advance, the focus on 
designing human-AV interfaces that support interactive systems will 
surely intensify. A vehicle that will be able to effectively and safely 
realize unmanned driving will need to interact not only with the 
passengers inside the vehicle, but also with pedestrians, other cars, and 
road conditions outside of the car. As the external environment is 
subject to a vast array of variables such as distance, noise, temperature, 
humidity, wind speed, etc., it is clear that the IDT smart car’s decisions 
and judgments will be determined by multiple factors, thus posing one 
of many challenges for the car industry. Regardless, the driver’s role 
will shift gradually from one of active control of the vehicle to one of 
supervision and intervention when necessary. Lastly, integrating 
blockchain technology into the IDT will help to secure vehicle data 
management and communication. For example, a DT of a vehicle 
connected to a blockchain network can be used to store and manage 
vehicle data securely, thus allowing automobile experts to track a 
vehicle’s performance and maintenance history in real-time.

In sum, more and more automakers are investing in research and 
development for human-vehicle interaction, to attract and satisfy 
customers. As such interaction becomes more humanized, vehicles 
will become more intelligent, convenient, and appealing. IDT provides 
a unique opportunity for drivers not only to interact with vehicles but 
also to interconnect with different vehicle components and to benefit 
from V2V. The advent of autonomous driving technology will 
fundamentally transform how consumers interact with their vehicles. 
As IDT technology is further integrated into smart vehicles, profound 
changes undoubtedly will occur in driving behavior and human-
vehicle interaction. The eventual mainstream adoption of IDT-enabled 
smart vehicles will not only transform automobiles from ‘vehicle-
centric’ means of transportation into ‘people-centric’ mobile spaces 
but also create a new ecology for cars and transportation services.

Dynamic adaptability is embedded in the IDT cockpit architecture 
through modular and evolutionary design. As new sensors, 
infrastructures, or communication technologies emerge, they can 
be integrated into the system via plug-and-play interfaces without the 
need to reconstruct the entire framework. Ontology-based mapping 
ensures that new data sources are semantically aligned with existing 
components, allowing the cockpit to maintain consistency and 
stability. This modular adaptability enables the IDT model to evolve 
continuously in response to technological and environmental 
advances, ensuring that the framework remains both flexible and 
future-proof.

Discussion

Digitalization has greatly simplified data collection and analysis 
methods, which used to be  too complex and/or only available to 
experts. DT is one of the leading data-directed decision-making 
concepts allowing businesses and manufacturers to simulate products 
to enhance their speed, cost-effectiveness, and quality. Our study 
shows that the proposed IDT-TAM framework can improve human-
smart product interaction and management requiring less specialist 
knowledge from stakeholders, and that IDT technologies offer a direct 
and intuitive method to users concerned with interactive and 
operational decision support. At the same time, integrating human 
expertise (HIDT) into the digital domain will significantly bolster 
IDT’s predictive analytics capabilities.

Digitalization has considerably simplified data collection and 
analysis, processes that were previously complex and largely limited 
to experts. Digital Twin (DT) technology is now recognized as a 
significant data-driven approach, allowing businesses and 
manufacturers to simulate products to improve product management 
and quality. Our study suggests that the proposed IDT-TAM 
framework can enhance human-smart product interaction and 
management, potentially reducing the need for specialized knowledge 
among stakeholders. Thus, IDT technologies may offer a more direct 
and intuitive method for users engaged in interactive and operational 
decision support. In this conceptual study, we have examined the 
current state of human-vehicle IDTs, with a focus on automotive 
sensing technologies and the methods for facilitating natural and 
intuitive interactions. The importance of interactive interfaces and the 
need for their development have been outlined. Additionally, we have 
reviewed state-of-the-art technologies that enable vehicles to 
understand implicit contextual cues and explicit interaction modes, 
such as speech and gesture recognition.

IDT technology uniquely focuses on bilateral interdependency 
between the physical twin and its virtual counterpart. This offers 
various inherent benefits, as the physical smart product can modify its 
real-time behavior concurrently in response to the feedback generated 
by the IDT. Conversely, it allows the simulation to precisely mirror the 
real-world condition of the physical product. As a consequence, for 
the car industry, IDT represents a holistic approach that aims to 
address the main human factors and challenges of smart vehicles. 
Specifically, an interface based on this approach surrounds the driver 
and continuously adapts to support any change in their psychophysical 
state. IDT is meant to increase situational awareness, minimize the 
obtrusiveness of traditional visual and auditory interfaces, and 
preserve the driver’s cognitive spare capacity for a prompt and smooth 
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transition of control while providing a comfortable and safe 
experience. In sum, IDT is a holistic interface designed to mediate the 
interactions between the driver and the vehicle IDT or any other 
connected smart entity, as well as between the vehicle and other 
stakeholders in the external environment (e.g., insurance agents).

Theoretical applications

“Digital twins are not just a fleeting trend but an essential 
component of sustainable innovation” (Stacchio et al., 2022, p. 498).

IDT development and implementation demands collaboration 
across multiple disciplines, including logistics, marketing, consumer 
behavior, data science, computer science, design, and domain-specific 
fields. Such interdisciplinary collaboration can foster innovation and 
knowledge exchange. IDT can accommodate existing smart product 
concepts such as life-cycle management, and TAM. Digital 
representations of physical products are expected to rapidly transform 
smart products. Their theoretical implications are vast and still being 
explored. IDT challenges our traditional understanding of the 
relationship between physical and digital worlds, but also potentially 
blurs the lines between the real and the simulated, raising questions 
about the nature of reality and representation. For instance, what does 
it mean for a product to be ‘real’ if it has a perfect digital counterpart? 
(Wang et al., 2024b). By designing and creating a dynamic copy of a 
smart product, IDT can introduce new properties that do not exist in 
the latter. This raises theoretical questions about their ontological 
status and implications for understanding the smart product world.

As this technology continues to develop, we can expect even more 
profound theoretical questions to emerge about the understanding of AI 
and virtual space and the role of the different stakeholders in it. As Götz 
et al. (2020) suggest, significant potential lies in a holistic approach to 
future digitization initiatives with blockchain-based IDTs, and in 
positioning the concept as a strategic, multifunctional tool for field 
support applications. Significantly, recent advances in fog computing in 
marketing (FC; Hornik et al., 2023; Kumar and Kotler, 2024) promise to 
shift IDT processing power and data storage away from centralized 
servers and into local networks where MIoT devices and other monitors 
are located. Also, with the advent of extended reality (XR; Stacchio et al., 
2022), an umbrella term encompassing various immersive technologies 
that blend physical and digital worlds, including virtual reality (VR), 
augmented reality (AR), and mixed reality (MR), new theoretical issues 
might emerge. For example, XR is enabling the creation of hybrid 
environments where real and virtual products coexist and interact with 
each other. An MR application, for instance, might allow consumers to 
place virtual smart products in their actual home or office to see how 
they might perform before purchasing them. Such emerging technologies 
will provide users with interactive experiences by integrating digital 
content into their real-world environments or by immersing them 
entirely in a simulated way, thus raising new theoretical questions.

Managerial applications

The introduction of IDTs will allow managers to transition to a 
predictive maintenance model, which can strike a balance between 
corrective and preventive maintenance. These efficiencies will enable 

faster time-to-market with better quality assurance. IDT devices allow 
outliers, defects, errors, and unexpected consumer behavior to 
be readily detected. For example, by monitoring and analyzing fuel 
consumption in various conditions and driving styles, IDTs can suggest 
optimizations, leading to significant fuel savings over time. Likewise, 
ensuring compliance with various regulations and standards will 
be simplified through IDTs, which maintain records and provide a 
transparent audit trail throughout the various stages of the vehicle’s 
lifecycle, from conception and design to manufacturing and distribution 
to use and eventual disposal. As such, automotive IDTs will serve as the 
central hub of vehicular information, which combines and updates data 
continuously from a wide range of sources, as a fore noted, as well as 
from consumer interactivity. Overall, IDTs offer a continuous feedback 
loop throughout product management, enabling data-driven decision-
making, optimization, and innovation. This will lead to improved 
design, production efficiency, customer safety and experience, and 
ultimately, sustainability. Thus, IDTs promise to play a major role in 
automotive TAM by improving predictions and enhancing productivity, 
profitability, and efficiency. Indeed, by capturing intricate details, 
analyzing them for deeper insights, and applying knowledge gained 
from consumers’ interactions, IDTs will offer a roadmap to a future in 
which motor vehicles are not just smarter but also more resilient, safe, 
and consumer-centric. The automotive industry can leverage IDTs to 
provide personalized experiences and services to customers. In other 
words, by tracing or interacting with customers, individual driving 
patterns, preferences, and needs can be better understood, thus allowing 
automakers to tailor recommendations, optimize vehicle settings, and 
enhance the overall driving experience. Integration of IDT technology 
enables a holistic understanding of the monitored vehicle, leading to 
improved decision-making, efficiency gains, and the ability to 
proactively address challenges in real-time (Bana et al., 2022).

Several emerging technologies are currently being tested that have 
the potential to significantly enhance automotive IDTs. For instance, 
voice-based infotainment systems like Apple CarPlay and Android Auto 
(Moiz and Alalfi, 2023) will allow stakeholders to interact with drivers 
verbally while collecting cognitive and emotional data during driving. 
This will lead to a deeper understanding of the driving experience and 
behavior. Additionally, new algorithms are being developed to estimate 
and measure mental states and consumer behavior through various 
indicators, including speech analysis, facial expressions, gestures, 
posture, movement, and eye tracking, as well as internet and 
smartphone activity (Bala et al., 2024). IDTs will enable more accurate 
simulation and integration of these technologies, particularly in the 
context of autonomous driving. However, it is important to note that 
most current car IDT systems rely on centralized architectures, which 
have limitations in ensuring trusted data provenance, secure and 
tamper-proof data storage, and reliable traceability. To address these 
challenges, key technologies such as blockchain and especially Fog 
Computing are being explored as solutions.

Fog computing-enabled IDTs

Fog computing (FC) is a distributed computing architecture that 
sits between the cloud and data-generating devices. It works by 
bringing some of the processing power and storage closer to where the 
data is created, rather than relying solely on the cloud. FC provides the 
distributed computing infrastructure and capabilities that enable 
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real-time data processing, reduced latency, improved scalability, 
enhanced privacy, and local decision-making for IDTs. This will make 
it a key enabler for realizing the full potential of IDTs in TAM 
applications (for a recent review, see Hornik et al., 2023; Kumar and 
Kotler, 2024; and for more on DT applications, see Appendix 4).

Study limitations

Although the use of theoretical models like TAM is beneficial in 
developing IDT’s applicability to product management, it is important 
to highlight the drawbacks. For example, it must be acknowledged that 
while extensive support can be found for the use of the TAM models, 
there is paucity in the marketing literature that can furnish a basis for 
more advanced IDT applications.

The adoption of IDT technology in this context also comes with 
its own set of challenges. Ensuring data privacy and security is crucial, 
as IDTs often involve the representation of sensitive personal and 
financial information. Also, it cannot be ignored that AI-enabled IDT 
is still in its nascent stage. Overall, many research questions remain 
unanswered. An acknowledgment of the aforementioned challenges 
is imperative, toward filling at least some of the gaps in the literature.

Future research

“The development, maintenance, and evolution of digital twins are 
still challenging research areas” (Bana et al., 2022, p. 69).

Although algorithmic improvement is noteworthy in the case of 
IDTs, the application of the IDT paradigm in product TAM is a 
completely new development, which exposes a stark gap in the 
research literature. Thus, accuracy measures (e.g., mean absolute error, 
root-mean-square error) should be deployed to check the robustness 
of the proposed framework (Ma et al., 2024). Notably, as well, the 
framework presented avoids distinct sub-categories of its dimensions 
to reduce complexity and leave room for individual focuses on current 
and future applications. A refinement of the model, consequently, can 
be  part of future work. When using the proposed framework in 
specific domains with defined modeling techniques and associated 
tools, specific integration and interaction issues will emerge, thus 
opening up important research directions concerning data integration, 
accuracy and reliability, scalability, data privacy and security, and user 
adoption. Accordingly, among the many relevant research questions 
that might be posed in future research are the following:

RQ1: How would TAM and IDT collaboration resonate with 
different stakeholders?

RQ2: How can the interplay of human (HITL) and machine-
generated IDT content be investigated?

RQ3: How can marketing research scale decision-makers’ relative 
trust in different data-generating devices?

RQ4: Although IDT has strong data-collection and integration 
capabilities, very often data contexts are lost, thus creating 

problems in modeling, especially as concerns emotional data 
(Diao et al., 2023). How, then, can data loss be prevented/reduced 
in an IDT for TAM?

RQ5: There is a long tradition in marketing and consumer 
behavior showing different responses to different products (e.g., 
high/low involvement, hedonic/utilitarian). Do the same 
differences apply to IDT-based TAM?

RQ6: IDT has proven to be an interdisciplinary paradigm. When 
conducting IDT research, how can marketing benefit from allied 
disciplines (e.g., economics, computer science, psychology, 
sociology)?

RQ7: How can research integrate useful knowledge extracted 
from observations of varying natures (traceability 
information, structural/environment constraints, quality 
measures) with previous external IDT knowledge to refine a 
TAM predictive model and enhance or adapt a TAM 
prescriptive model?

RQ8: As the components contained in IDT usually have different 
properties, the structure of each part and the interaction between 
different parts tend to be different (Ma et al., 2024). How, then, 
can ontology-based IDT provide reliable guidance for the 
implementation of IDT, as well as a way to specify the various 
components and the relations among them?

RQ9: How can human-machine interfaces (HMIs) in smart 
products foster trust through transparency and explain ability of 
actions and intentions?

RQ10: Being connected to their physical twins, among other 
things, through (manual) use of recorded data, smart 
product IDTs generally must deal with missing data. In this 
case, appropriate techniques for data imputation, which fills 
in the missing data, should be  explored (Ivanov, 2024). 
Likewise, datasets are liable to contain noisy data points 
whose distributions are difficult to estimate due to various 
approaches for constructing the data. What kind of robust 
algorithms, then, should be  developed for such 
unpredictable noises?

In the future, product IDT research will progress inevitably 
toward training personnel on new processes, strategies, or 
equipment within a secure virtual environment (Bala et  al., 
2024). This will help enhance stakeholders’ skills and reduce the 
likelihood of errors in real operations. Likewise, it will entail 
investigating the long-term consequences of IDT 
implementation, as well as implementation barriers in specific 
market settings. Finally, conducting case studies across diverse 
product domains holds significant promise for assessing the 
practical implementation, advantages, and challenges of 
ontology-based IDTs, thus yielding valuable insights for real-
world adoption. Grappling with these challenges seems well 
worth the effort given what appears to be  IDT technology’s 
numerous benefits.
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Conclusion

The use of DT technology has been hailed as a 
groundbreaking development in numerous domains. DT holds 
immense potential in the metaverse, making it possible to 
interact with digital versions of people, places, objects, and 
products of any kind. However, its promise in marketing, smart 
product management, and research remains far from being 
realized. By simulating a physical smart product, such as a 
motor vehicle, in digital form, it can create prototypes with 
unprecedented accuracy, allowing for analysis and gathering of 
meaningful feedback before physical production has even 
begun. If done properly, the value of the enriched data obtained 
promises to be  inherently greater than the sum of any single 
dataset values combined in the process. Our analysis has shown 
that HITL-embedded IDTs offer powerful tools for investigating 
and optimizing automotive TAM. Motor vehicle IDTs, for 
example, have the potential to transform TAM or any other 
product model, by providing managers with a new way of 
understanding and interacting with cars and their customers. By 
bridging the gap between the physical and digital worlds, 
managers will be able to improve product research, performance, 
reliability, sustainability, customer safety, and satisfaction, 
ultimately leading to more efficient and innovative 
smart marketing.

Author contributions

MR: Writing – review & editing, Supervision, Formal analysis, 
Conceptualization. JH: Project administration, Methodology, 
Writing – original draft, Investigation, Conceptualization.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Correction note

This article has been corrected with minor changes. These changes 
do not impact the scientific content of the article.

Generative AI statement

The authors declare that no Gen AI was used in the creation of 
this manuscript.

Any alternative text (alt text) provided alongside figures in this 
article has been generated by Frontiers with the support of artificial 
intelligence and reasonable efforts have been made to ensure accuracy, 
including review by the authors wherever possible. If you identify any 
issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/frai.2025.1685702/
full#supplementary-material

References
Attaran, S., Attaran, M., and Celik, B. G. (2024). Digital twins and industrial internet 

of things: uncovering operational intelligence in industry 4.0. Decis. Anal. J. 10:100398. 
doi: 10.1016/j.dajour.2024.100398

Bala, I., Mondal, S., and Bepar, D. i. (2024). “Digital twins for industry 4.0 and 5.0” in 
Artificial intelligence for intelligent systems. eds. I. U. Khan, M. Ouaissa and M. Ouaissa 
(London: CRC Press), 324–342.

Bana, D., Michael, J., Rumpe, B., Varga, S., and Weske, M. (2022). Process-aware 
digital twin cockpit synthesis from event logs. J. Comput. Lang. 70:101121. doi: 
10.1016/j.cola.2022.101121

Barricelli, B. R., and Fogli, D. (2024). Digital twins in human computer interaction: a 
systematic review. Int. J. Hum. Comput. Int. 40, 79–97. doi: 10.1080/10447318.2022.2118189

Batmaz, Z., Yurekli, A., and Bilge, A. (2019). A review on deep learning for recommender 
systems: challenges and remedies. Artif. Intell. Rev. 52, 1–37. doi: 10.1007/s10462-018-9654-y

Blake, I., Junglas, I., and Tazkarji, M. (2024). On the road to an automotive digital 
twin. Commun. Assoc. Inf. Syst. 54, 42–44.

Bourg, L., Chatzidimitris, T., Chatzigiannakis, I., and Gavalas, D. (2019). Enhanced buying 
experiences in smart cities: The SMARTBUY approach. In Ambient Intelligence – 15th 
European Conference, AmI 2019, Rome, Italy, November 13–15, 2019, Proceedings, Lecture 
Notes in Computer Science, vol. 11912, 108–122. Cham: Springer, doi: 
10.1007/978-3-030-34255-5_8

Chen, X., Kang, E., Shiraishi, S., Preciado, V. M., and Jiang, Z. (2018). “Digital 
behavioral twins for safe connected cars,” in Proceedings of the 21th ACM/IEEE 
international conference on model driven engineering languages and systems, 144–153.

Dalibor, M., Michael, J., Rumpe, B., Varga, S., and Wortmann, A. (2020). “Towards a 
model-driven architecture for interactive digital Twin cockpits,” in International 
Conference on Conceptual Modeling, 377–387. Cham: Springer International Publishing.

Davila-Gonzalez, S., and Martin, S. (2024). Human digital twin in industry 5.0: a 
holistic approach to worker safety and well-being through advanced AI and emotional 
analytics. Sensors 24, 655–667. doi: 10.3390/s24020655

de Koning, K., Broekhuijsen, J., Kühn, I., Ovaskainen, O., Taubert, F., Endresen, D., 
et al. (2023). Digital twins: dynamic model-data fusion for ecology. Trends Ecol. Evol. 
38, 916–926. doi: 10.1016/j.tree.2023.04.010

Deighton, J., Mela, C. F., and Moorman, C. (2021). Marketing thinking and doing. J. 
Mark. 85, 1–6. doi: 10.1177/0022242920977093

Diao, J., Tang, R., Gu, Y., Tian, S., and Jiang, Z. (2023). Cognitive-digital-twin-based 
driving assistance. IEEE Robot. Autom. Lett. 8, 5188–5195. doi: 10.1109/LRA. 
2023.3291895

Gnizy, I. (2024). When and how digital novel technologies matter to firm marketing 
performance. J. Mark. Anal. 12, 1–18.

https://doi.org/10.3389/frai.2025.1685702
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/frai.2025.1685702/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2025.1685702/full#supplementary-material
https://doi.org/10.1016/j.dajour.2024.100398
https://doi.org/10.1016/j.cola.2022.101121
https://doi.org/10.1080/10447318.2022.2118189
https://doi.org/10.1007/s10462-018-9654-y
https://doi.org/10.1007/978-3-030-34255-5_8
https://doi.org/10.3390/s24020655
https://doi.org/10.1016/j.tree.2023.04.010
https://doi.org/10.1177/0022242920977093
https://doi.org/10.1109/LRA.2023.3291895
https://doi.org/10.1109/LRA.2023.3291895


Rachamim and Hornik� 10.3389/frai.2025.1685702

Frontiers in Artificial Intelligence 15 frontiersin.org

Gonzalez, M. D. R. M. (2024). Technology acceptance in the literature from 2020 to 
2024. IPHO J. Adv. Res. Sci. Eng. 2, 13–18.

Götz, C. S., Karlsson, P., and Yitmen, I. (2020). Exploring applicability, interoperability 
and Integrability of Blockchain-based digital twins for asset life cycle management. 
Smart Sust. Built Environ. 11, 532–558.

Gupta, S., Leszkiewicz, A., Kumar, V., Bijmolt, T., and Potapov, D. (2020). Digital 
analytics: modeling for insights and new methods. J. Interact. Mark. 51, 26–43. doi: 
10.1016/j.intmar.2020.04.003

Holmes, D., Papathanasaki, M., Maglaras, L., Ferrag, M. A., Nepal, S., and Janicke, H. 
(2021). “Digital twins and cyber security–solution or challenge?” in 2021 6th South-East 
Europe Design Automation, Computer Engineering, Computer Networks and Social Media 
Conference (SEEDA-CECNSM), 1–8. IEEE.

Hornik, J., Rachamim, M., and Graguer, S. (2023). Fog computing: a platform for 
big-data marketing analytics. Front. Artif. Int. 6:1242574.

Hutabarat, W., Oyekan, J., Turner, C., Tiwari, A., Prajapat, N., and Gan, X. P. (2016). 
“Combining virtual reality enabled simulation with 3D scanning technologies 
towards smart manufacturing,” in 2016 winter simulation conference (WSC), 
2774–2785. IEEE.

Ivanov, D. (2024). Conceptualisation of a 7-element digital twin framework in supply 
chain and operations management. Int. J. Prod. Res. 62, 2220–2232. doi: 
10.1080/00207543.2023.2217291

Kaiser, C., Festl, A., Pucher, G., Fellmann, M., and Stocker, A. (2019). “The Vehicle 
Data Value Chain as a Lightweight Model to Describe Digital Vehicle Services,” in 
WEBIST, 68–79.

Kaiser, C., Stocker, A., Festl, A., Lechner, G., and Fellmann, M. (2018), “A research 
agenda for vehicle information systems,” in European Conference on Information Systems 
2018 Proceedings, 1-12.

Kannan, P. K., and Li, H. “. A.”. (2017). Digital marketing: a framework, review and 
research agenda. Int. J. Res. Mark. 34, 22–45. doi: 10.1016/j.ijresmar.2016.11.006

Kobayashi, K., and Alam, S. B. (2024). Explainable, interpretable, and trustworthy AI 
for an intelligent digital twin: a case study on remaining useful life. Eng. Appl. Artif. 
Intell. 129, 107–128.

Korepin, V., Mohamed, T. I., Zhaksylyk, A., and Liu, J. (2024). Implementation of 
digital twins as a tool for increasing the efficiency of business operations. Econ. Innov. 
New Technol. 22, 1–16.

Kumar, V., and Kotler, P. (2024). Transformative Marketing. London: Palgrave 
Publishing.

Lala, G. (2014). The emergence and development of the technology acceptance model 
(TAM). Marketing Inf. Decision 7, 149–160.

Ma, X., Qi, Q., and Tao, F. (2024). An ontology-based data-model coupling approach 
for digital twin. Robot. Comput. Integr. Manuf. 86:102649. doi: 10.1016/j.rcim.2023.102649

MacInnis, D. J. (2011). A framework for conceptual contributions in marketing. J. 
Mark. 75, 136–154. doi: 10.1509/jmkg.75.4.136

Medium (2024). Paris Olympic 2024: Digital twins technology will make Olympic 
games more efficient. Available online at: https://medium.com/@ayesha_59526/paris-
olympic-2024-digital-twins-technology-will-make-olympic-games-more-efficient-
ce6a07785e35#:~:text=How%20Digital%20Twins%20Enhance%20the,fix%20them%20
in%20real%2Dtime (accessed May 23, 2024).

Moiz, A., and Alalfi, M. H. (2023). “A survey of security vulnerabilities in android 
automotive apps,” in Proceedings of the 3rd International Workshop on Engineering and 
Cybersecurity of Critical Systems, 17–24.

Monek, G. D., and Fischer, S. (2025). Expert twin: A digital twin with an integrated 
fuzzy-based decision-making module. Decis. Mak. Appl. Manag. Eng. 1–21.

Murali, P. K., Kaboli, M., and Dahiya, R. (2022). Intelligent in-vehicle interaction 
technologies. Adv. Intell. Syst. 4, 210–222.

National Academies of Sciences, Engineering, and Medicine (2024). Foundational research 
gaps and future directions for digital twins. London: The National Academies Press.

Paul, J., Ueno, A., Dennis, C., Alamanos, E., Curtis, L., Foroudi, P., et al. (2024). Digital 
transformation: a multidisciplinary perspective and future research agenda. Int. J. 
Consum. Stud. 48:13015. doi: 10.1111/ijcs.13015

Petrescu, M., and Krishen, A. S. (2023). Hybrid intelligence: human–AI collaboration 
in marketing analytics. J. Mark. Anal. 11, 263–274. doi: 10.1057/s41270-023-00245-3

Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., et al. (2021). Enabling technologies 
and tools for digital twin. J. Manuf. Syst. 58, 3–21. doi: 10.1016/j.jmsy.2019.10.001

Reim, W., Andersson, E., and Eckerwall, K. (2023). Enabling collaboration on digital 
platforms: a study of digital twins. Int. J. Prod. Res. 61, 3926–3942. doi: 
10.1080/00207543.2022.2116499

Retzlaff, C. O., Das, S., Wayllace, C., Mousavi, P., Afshari, M., Yang, T., et al. (2024). 
Human-in-the-loop reinforcement learning: a survey and position on requirements, 
challenges, and opportunities. J. Artif. Intell. Res. 79, 359–415. doi: 10.1613/jair.1.15348

Ritz, W., Wolf, M., and McQuitty, S. (2019). Digital marketing adoption and success 
for small businesses: the application of the do-it-yourself and technology acceptance 
models. J. Res. Interact. Mark. 13, 179–203. doi: 10.1108/JRIM-04-2018-0062

Romero, D., Wuest, T., Harik, R., and Thoben, K.-D. (2020). Towards a cyber-physical 
PLM environment: the role of digital product models, intelligent products, digital twins, 
product avatars and digital shadows. IFAC-PapersOnLine 53, 10911–10916. doi: 
10.1016/j.ifacol.2020.12.2829

Sharma, A., Kosasih, E., Zhang, J., Brintrup, A., and Calinescu, A. (2022). Digital 
twins: state of the art theory and practice, challenges, and open research questions. J. 
Ind. Inf. Integr. 30:100383. doi: 10.1016/j.jii.2022.100383

Shi, Y., Shang, M., and Qi, Z. (2023). Intelligent layout generation based on deep 
generative models: a comprehensive survey. Inf. Fusion 100, 101–124.

Stacchio, L., Angeli, A., and Marfia, G. (2022). Empowering digital twins with 
extended reality collaborations. Virtual Reality Int. Hardware 4, 487–505. doi: 
10.1016/j.vrih.2022.06.004

Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., and Sui, F. (2018). Digital twin-driven 
product design, manufacturing, and service with big data. Int. J. Adv. Manuf. Technol. 
94, 3563–3576. doi: 10.1007/s00170-017-0233-1

Tao, F., and Qi, Q. (2019). Make More Digital Twins. Nature 573, 490–491. doi: 
10.1038/d41586-019-02849-1

Timperi, M., Kokkonen, K., Hannola, L., and Elfvengren, K. (2023). Impacts of digital 
twins on new business creation: insights from manufacturing industry. Meas. Bus. Excell. 
27, 433–448. doi: 10.1108/MBE-09-2022-0104

Turner, C. J., Hutabarat, W., Oyekan, J., and Tiwari, A. (2016). Discrete event 
simulation and virtual reality use in industry: new opportunities and future trends. IEEE 
Trans. Hum.-Mach. Syst. 46, 882–894. doi: 10.1109/THMS.2016.2596099

Varadarajan, R., Srinivasan, R., Vadakkepatt, G. G., and Yadav, M. S. (2010). 
Interactive technologies and retailing strategy: a review, conceptual framework and 
future research directions. J. Interact. Mark. 24, 96–110. doi: 10.1016/j.intmar.2010.02.004

Vargo, S. L., and Koskela-Huotari, K. (2020). Advancing conceptual-only articles in 
marketing. AMS Rev. 10, 1–5. doi: 10.1007/s13162-020-00173-w

Wadhwa, K., and Babbar, H. (2023). Digital twin in the motorized (automotive / 
vehicle) industry. Int. J. Perf. Eng. 19:568.

Wang, Y., Junhong Gao, T. C. E., Gong, C. Y., and Tsung-Hsien, W. (2024a). Does 
Blockchain technology need to be introduced in the closed-loop supply chain based on 
product lifecycle management? Comput. Ind. Eng. 22:109881. doi: 
10.1016/j.cie.2024.109881

Wang, J., Li, X., Wang, P., and Liu, Q. (2024b). Bibliometric analysis of digital twin 
literature: a review of influencing factors and conceptual structure. Tech. Anal. Strat. 
Manag. 36, 166–180. doi: 10.1080/09537325.2022.2026320

Wang, X. V., and Wang, L. (2019). Digital twin-based WEEE recycling, recovery and 
remanufacturing in the background of industry 4.0. Int. J. Prod. Res. 57, 3892–3902. doi: 
10.1080/00207543.2018.1497819

Wu, Y., and Huang, Z. (2023). “Research on Human-computer Interaction Design 
System based on Computer Artificial Intelligence technology,” in Proceedings of the 
Eleventh International Symposium of Chinese CHI, 20–24.

Wu, X., Xiao, L., Sun, Y., Zhang, J., Ma, T., and He, L. (2022). A survey of human-in-
the-loop for machine learning. Futur. Gener. Comput. Syst. 135, 364–381. doi: 
10.1016/j.future.2022.05.014

Yang, S., Nachum, O., Du, Y., Wei, J., Abbeel, P., and Schuurmans, D. (2023). 
Foundation models for decision making: problems, methods, and opportunities. arXiv 
preprint arXiv 2303, 41–66.

Yoon, S.-B., and Cho, E. (2016). Convergence adoption model (CAM) in the context 
of a smart Car service. Comput. Human Behav. 60, 500–507. doi: 
10.1016/j.chb.2016.02.082

Zhong, R. Y., Lan, S., Xu, C., Dai, Q., and Huang, G. Q. (2016). Visualization of RFID-
enabled shopfloor logistics big data in cloud manufacturing. Int. J. Adv. Manuf. Technol. 
84, 5–16. doi: 10.1007/s00170-015-7702-1

https://doi.org/10.3389/frai.2025.1685702
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org
https://doi.org/10.1016/j.intmar.2020.04.003
https://doi.org/10.1080/00207543.2023.2217291
https://doi.org/10.1016/j.ijresmar.2016.11.006
https://doi.org/10.1016/j.rcim.2023.102649
https://doi.org/10.1509/jmkg.75.4.136
https://medium.com/@ayesha_59526/paris-olympic-2024-digital-twins-technology-will-make-olympic-games-more-efficient-ce6a07785e35#:~:text=How%20Digital%20Twins%20Enhance%20the,fix%20them%20in%20real%2Dtime
https://medium.com/@ayesha_59526/paris-olympic-2024-digital-twins-technology-will-make-olympic-games-more-efficient-ce6a07785e35#:~:text=How%20Digital%20Twins%20Enhance%20the,fix%20them%20in%20real%2Dtime
https://medium.com/@ayesha_59526/paris-olympic-2024-digital-twins-technology-will-make-olympic-games-more-efficient-ce6a07785e35#:~:text=How%20Digital%20Twins%20Enhance%20the,fix%20them%20in%20real%2Dtime
https://medium.com/@ayesha_59526/paris-olympic-2024-digital-twins-technology-will-make-olympic-games-more-efficient-ce6a07785e35#:~:text=How%20Digital%20Twins%20Enhance%20the,fix%20them%20in%20real%2Dtime
https://doi.org/10.1111/ijcs.13015
https://doi.org/10.1057/s41270-023-00245-3
https://doi.org/10.1016/j.jmsy.2019.10.001
https://doi.org/10.1080/00207543.2022.2116499
https://doi.org/10.1613/jair.1.15348
https://doi.org/10.1108/JRIM-04-2018-0062
https://doi.org/10.1016/j.ifacol.2020.12.2829
https://doi.org/10.1016/j.jii.2022.100383
https://doi.org/10.1016/j.vrih.2022.06.004
https://doi.org/10.1007/s00170-017-0233-1
https://doi.org/10.1038/d41586-019-02849-1
https://doi.org/10.1108/MBE-09-2022-0104
https://doi.org/10.1109/THMS.2016.2596099
https://doi.org/10.1016/j.intmar.2010.02.004
https://doi.org/10.1007/s13162-020-00173-w
https://doi.org/10.1016/j.cie.2024.109881
https://doi.org/10.1080/09537325.2022.2026320
https://doi.org/10.1080/00207543.2018.1497819
https://doi.org/10.1016/j.future.2022.05.014
https://doi.org/10.1016/j.chb.2016.02.082
https://doi.org/10.1007/s00170-015-7702-1

	Digital twin-enabled interactive cockpits for smart products management and testing
	Introduction
	Smart marketing and smart products
	Study objectives
	DT fundamentals
	Adaptive learning

	Human digital twin (HDT)
	Conceptual framework
	Technology acceptance model (TAM)

	The five-dimensional DT/IDT model
	IDT models and supporting technologies
	The IDT cockpit
	Human-computer interaction (HCI)
	IDT data fusion
	Simulation
	Human-in-the-loop (HITL)
	Recommendation models
	Task-specific models

	IDTs for smart cars
	Multimodal interaction
	Implicit versus explicit interactions
	Self-driving/autonomous vehicles (AV)

	Discussion
	Theoretical applications
	Managerial applications
	Fog computing-enabled IDTs
	Study limitations

	Future research
	Conclusion

	References

