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With the advancement of autonomous driving technology, efficient and safe
lane-keeping has become one of the core issues in this field. Currently, Deep
Reinforcement Learning (DRL) methods still face challenges such as low training
efficiency, slow algorithm convergence, and a tendency to fall into local optima
when addressing lane-keeping issues. To address these challenges, a Prioritized
Experience Replay (PER) mechanism designed to adapt to the learning process of
the Twin Delayed Deep Deterministic Policy Gradient (TD3) is proposed, referred
to as PER-TD3, to enhance the learning efficiency and lane-keeping performance
of the vehicle in this work. It adjusts the probability of a selected sample by
utilizing the difference between the predicted Q value and the true Q value to
assign priority to different samples. By prioritizing samples with higher errors, the
algorithm can correct biases in decision-making more quickly, especially when
the vehicle deviates from its lane. In addition, introducing a probabilistic sampling
mechanism helps to enhance the diversity of samples, ensuring high-frequency
playback of high-value experiences, and enabling vehicles to learn accurate and
stable lane-keeping strategies in a shorter period. Validation experiments on the
TORCS platform demonstrate that the proposed framework can effectively solve
the problem of unbalanced training, which is common in DRL, enhances training
sample quality, accelerates algorithm convergence, and ultimately improves driving
performance while ensuring safety.

KEYWORDS

PER-TD3, sample optimization, lane keeping, autonomous driving, deep reinforcement
learning

1 Introduction

With the development of the autonomous driving, enhancing traffic safety and avoiding
accidents has become a shared consensus. Among various types of accidents, lane departure
incidents have a high proportion, increasing the risks of traffic collisions and rollover accidents
during lane changes. Lane-keeping, as one of the fundamental functions of autonomous
driving technology, is designed to automatically correct the driving direction and ensure that
vehicles remain within their lanes. Researching and achieving this function is a primary
condition for the development of autonomous driving technology. In recent years, as advanced
driver assistance systems (ADAS) have evolved rapidly (Bisoffi et al., 2017), vehicle lateral
control techniques, especially lane departure warning (LDW) and lane keeping assist systems
(LKAS), have become a research hotspot, but it is facing challenges including robustness
requirements to uncertainties in the traffic environment. Traditional rule-based control
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methods, such as linear quadratic regulators (Broggi et al., 1999),
fuzzy logic (Marino et al., 2011), and model predictive control can
provide policy options for autonomous driving vehicles (Zhang et al.,
2021). However, these approaches are hardly modeled accurately in
complex and variable driving environments.

Recently, research based on deep reinforcement learning (DRL)
for lane-keeping tasks has received considerable attention. For
example, Peng et al. (2021) proposed an end-to-end lane-keeping
framework based on the Dueling Deep Q-Network (DQN), which
uses camera images and vehicle motion information as the state space
to reduce variance and improve sampling efficiency. While these
studies demonstrate the potential of DRL in autonomous vehicle lane
keeping, the discussion of this problem and its practical significance
can be further expanded. In particular, current DRL methods often
face several challenges in lane-keeping scenarios, including sparse
reward signals, low sample efficiency, training imbalance, and
instability. This training imbalance primarily arises from the
insufficient utilization of high-quality data samples, which leads to
suboptimal learning efficiency and degraded algorithm performance.
Moreover, current mainstream random uniform sampling methods
often fail to fully exploit these valuable samples, negatively impacting
the real-time decision-making efficiency of autonomous vehicles.
Therefore, prioritizing samples becomes crucial, ensuring that high-
quality experiences are emphasized during training, which can
significantly improve learning efficiency, driving performance, and
safety (Yuan et al., 2021).

At present, some researchers have employed prioritized experience
replay mechanisms to address issues related to autonomous driving.
Specifically, Yuan et al. (2021) proposed a DQN model with a multi-
reward architecture (MRA) based on a PER mechanism for highway
driving decision-making, which effectively improved driving speed
and ensured driving safety. However, both the DQN algorithm and
current mainstream lane-keeping methods like Deep Deterministic
Policy Gradient (DDPG) suffer from inherent Q-value overestimation
due to offline learning methods. This occurs because actions selected
for updates are based on their potential value rather than real
interactions. The TD3 algorithm addresses this by using target
networks and minimization operations to reduce Q-value
overestimation. Compared with the above approaches, combining
standard PER with TD3 leverages TD3’s double-critic architecture and
target policy smoothing, which allows key samples to be more
adaptively utilized during training. This integration results in
enhanced sample efficiency, more stable learning dynamics, and
superior lane-keeping performance, particularly in scenarios with
highly imbalanced training data and continuous action spaces.

To sum up, combining the above discussion, the contribution of
this work is as follows:

We propose the PER-TD3 framework for hybrid autonomous
lane-keeping, designed to enhance sample quality and driving
efficiency while ensuring safety and optimizing overall traffic flow.

Lane-keeping efficiency for autonomous vehicles is optimized by
prioritizing samples based on temporal-difference error, leveraging
probabilistic sampling for diversity, and refining importance sampling
weights to enhance training accuracy.

Experimental results show that the framework surpasses
benchmark algorithms like DDPG and TD3 in key autonomous
driving metrics, including reward, safe driving distance, and lane-
keeping performance such as deflection angle and lateral distance.
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2 Related work
2.1 Rule-based lane keeping

At the beginning, autonomous driving research relied mainly on rule-
based strategies in which perception and control were considered as
separate modules. For example, Broggi et al. (1999) developed a
proportional (P) controller to correct the lateral deviation of the vehicle.
To enhance the control effectiveness, a proportional integral derivative
(PID) controller will often also be introduced to perform the lateral
regulation of the vehicle (Marino et al., 2011). Wu et al. (2008) proposed
a lateral controller design that includes full state feedback. Wang et al.
(2020) used a sliding mode control strategy to implement the lane keeping
function. In addition to these, several other traditional control techniques
such as linear quadratic Gaussian (LQG), H infinity (H) control, adaptive
control, and fuzzy control are also available. However, the aforementioned
classical control methods rely on current and historical feedback signals,
and this reliance may lead to slow or insufficiently stable control signal
generation. In contrast, model predictive control (MPC) generates
optimal control signals based on vehicle dynamics and various types of
constraints in a limited time, thus optimizing the overall control effect
(Zhang et al., 2021). However, classical control algorithms usually utilize
preset parameters and lack the ability to study and adapt to new scenarios.
Most of these architectures are based on precise mathematical models, but
the actual driving environment is much more complex than these models
can describe, and thus these methods may not perform efficiently enough
when dealing with changing road conditions.

2.2 Al-based lane keeping

Consequently, researchers have been focusing on the application of
Al in autonomous driving. Hua et al. (2022) employed the DDPG
algorithm to control autonomous driving vehicles, customizing the actor
and critic structures in the algorithm specifically for the TORCS
environment (Wymann et al.,, 2000). By evaluating the performance of the
algorithm through a number of different driving trajectories, to further
validate its effectiveness. Peng et al. (2023) combines the techniques of
transfer learning and deep reinforcement learning to conduct innovative
research on the challenges encountered in the lane keeping task, especially
the low sample efficiency and high time cost. Eventually, the learning
speed of the algorithm is accelerated and the efficiency and performance
of the overall framework is improved. Zhou et al. (2023) combines a
robust x-aware network with transfer learning and fine-tuning techniques
to propose an advanced lane keeping assistance system designed for
autonomous driving vehicles to accurately predict steering angles. By
analyzing photographic images, the model effectively learns human
driving knowledge and provides an accurate estimate of the steering angle
required to safely maintain the lane.

More recently, some researchers have been considering training
directly in the real world. Hong et al. (2024) applied the DDPG algorithm
for the first time to a fully autonomous driving vehicle operating in a real-
world environment. By randomly initializing the model parameters,
which enabled the system to perform lane-keeping tasks in very few
driving instances, by simply utilizing monocular camera images as inputs,
to learn and master a strategy for performing the lane-keeping task. In
addition to this, existing research is focused on understanding and
predicting driver behavior and decision-making processes by focusing on
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driver intent. The system proposed by Wei et al. (2024) integrates adaptive
driver characteristics to align with individual driving habits and
intentions. A new lane departure decision model is proposed that utilizes
temporal and spatial domain fusion to efficiently identify the driver’s
intent to change lanes, thereby informing the system decision (Yin et al,,
2020). Kendall et al. (2019) neural adaptive control based Lane Keeping
Assist System (LKAS). The proposed control strategy synergizes a
non-deterministic adaptive control design scheme, adaptive radial basis
function based neural network (RBENN), to capture the human driver’s
lane keeping steering behavior.

However, these cutting-edge scientific efforts have also encountered
a common challenge: the efficiency of data samples. The development of
autonomous driving systems relies on a large number of high-quality data
samples for training and optimization, but the reality is that collecting
these data is both expensive and complex. Especially in autonomous
driving technology, the high cost of acquiring real driving data must
be coupled with the high quality and diversity of the data in order to
develop models that can be widely adapted. This requires researchers to
not only interact with the environment on a large scale to collect data, but
also to manually filter and process the data to ensure that the training uses
high-quality samples. Only in this way can the training efficiency and
performance of driving strategies be effectively improved, thus ensuring
the safety and reliability of autonomous driving.

3 Materials and methods
3.1 Markov decision process (MDP)

Reinforcement Learning (RL) tasks are usually described using
MDP. The specific details are described as follows.

State space: The state information of the network input is derived
from the observation of the vehicle and its surroundings by the TORCS
environment used, which contains the following aspects, such as
acceleration, brake, clutch, gear, steering wheel and other information,
and the input state is set to be continuous. As shown in Table 1.

Action space: The output action space is continuous, with the
steering wheel ranging from —1 to 1. Additionally, the action space
includes throttle acceleration, where 0 means no acceleration and 1
means maximum acceleration, as well as the braking status. As shown
in Table 2.

Reward function: The reward function is designed by considering the
following aspects. First, collisions are still the primary concern, as they are
one of the most critical events to avoid during task execution. A negative
reward is given when a collision occurs. Second, for the lane-keeping task,
it is important to ensure that the vehicle remains within the lane and does
not cross the yellow lines on either side of the road. A negative reward is
given if the vehicle goes beyond the designated lane. Finally, the rewards
during the vehicles movement are considered: a positive reward is given
for any positional movement of the vehicle, while a penalty is applied if
the vehicle is detected to be stationary. The specific formulations of
positive and negative rewards are defined in Equations 1-4:

Rdamage =-2 (1)
Routiane =—200 (2)
Rstatic =2 ®)
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TABLE 1 Partial status information.

Angle [~m, 7]
SpeedX (=00, +00) (km/h)
SpeedY (—00, +o0) (km/h)
SpeedZ (=00, +o0) (km/h)
Track (0, 200)
Rpm [0, +o0] (rpm)
WheelSpinVel [0, +o0] (rad/s)
Damage [0, +o0]
DistFromStart [0, +o0] (m)
DistRaced [0, +o0] (m)
Focus [0,200] (m)
Fuel [0, +o0] (L)
Gear [-1,0,1,2,3,4,5,6]
Z (=00, +90) (m)

TABLE 2 The information of action.

Parameter Configuration
Steering of the vehicle [-1,1]
Throttle of the vehicle [0, 1]
Brake [0,1]
R forward = 5 4)

This reward is calculated at each step and then a summing
operation is performed in each episode to get the final reward value,
as shown in Equation 5.

Reotar = Rdamage + Routline + Rstatic + Rforward (5)

3.2 The proposed framework: PER-TD3

The overall framework is shown in Figure 1. Initially, data samples in
the form of quadruples (s, a, 75, 5., 1) are generated by the ego vehicle and
environment interaction and stored in the experience pool. As
interactions continue, the experience pool accumulates more samples of
varying importance levels, the important samples are filtered and sent to
the network for training. Preferential experience sampling, based on
TD-error, prioritizes samples with larger discrepancies between predicted
and true Q-values. It is defined as shown in Equation 6:

S =1 +7Q(s141) - Q(s¢) (6)

where 7., 1+ aQ(s,, ;) is the true value and Q(s,) is the estimated
value. However, this mechanism prioritizes the samples with the
maximum TD error, which improves the training efficiency but may
reduce the diversity of samples and introduce the risk of network
overfitting. To overcome the aforementioned challenges, we introduce
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FIGURE 1
The structure of PER-TD3.

probabilistic sampling, an approach maintains a positive relationship
between sample priority and TD-error. The probability of sampling
each sample can be defined as shown in Equation 7:

P(i)=pi" 1 2 pf ™
k

where the role of « is to adjust the degree of prioritization, then
pY indicates the priority of data sample i. When the value of « is 0, it
corresponds to uniform sampling, as shown in Equation 8:

P(i) ®)

1
k

this sampling approach ensures all samples are replayed by
avoiding neglect of those with low TD-error. There are two ways of
defining for p{*, namely proportional prioritization and ranking-based
prioritization. The former defines the priority of the samples as shown

in Equation 9:
P(i)= 9)

o +¢&

where 6; denotes the error, ¢ is a tiny positive number, is used to
ensure that each sample can be sampled once. The ranking-based
approach defines the sample priority as shown in Equation 10:
1
P(i)=

B rank(i) (10)

where rank(i) is the ranking of the ith sample after sorting the
samples based on TD-error. It uses an indirect ranking method,
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dividing probability intervals based on rankings and uniformly
sampling from each interval. In this study, however, we adopt the
proportional prioritization method (Proportional Prioritization)
instead of the ranking-based approach, as preliminary tests showed
that it provides more stable convergence for lane-keeping tasks in
continuous action spaces. The above methods improve the quality
of the samples sent to network training, but at the same time, may
lead to a biased expectation of the Q-value. Therefore, importance
sampling weights are introduced as shown in Equation 11:

i

this weight is employed to balance unbiased and high utilization.

1 1

ﬁ:m (11)

If the value of 3 is 1, it means that the nonuniform probability is fully
compensated. With stability in view, the maxw, are utilized to
normalize the weights so that there is only downward scaling of what
they are updating.

Enter the above sample into the network to complete the next
training. During the update phase, the Actor target network and the
two Critic target networks employ a soft update approach to iteratively
adjust network parameters. It is expressed as shown in Equation 12:

’

6, <16, +(1-7)6, (12)

where i takes the value of 1 or 2 and ¢ is the update factor to
be satisfied much less than 1. The Critic network updates
parameters iteratively by minimizing the loss function, which is
computed using the target Q-value and predicted Q-value as
shown in Equation 13:

1(0) =]l 1))

(13)
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where y(t) represents the target Q-value, Q(st a1 6 ) is the output
obtained from two Critic networks optimized by the adaptive learning
rate. The Actor network parameters o is updated based on the Q-value
gradient completion of the Critic networks. Its loss gradient can
be defined as shown in Equation 14:

(14)

n VaQ(s,a\ﬁ,-)| o
vJ _1 s—sl,a—,u(sl)
(¢) n =t V¢,U/(5 | ¢)|S:S’

where VaQ(s,|a,| 6;) is the gradient of the Q-value of the Critic
network. V4 ,u'(s \ ¢) is the gradient of the Actor network. To enhance
method robustness, noise is added to the Actor target network. a
represents random noise added to ensure comprehensive data training
during the process, as shown in Equation 15:

H(se)=p(seldp)+e (15)

Combining with Equation 3, the sampling weights are shown below,
where 4 is a hyperparameter used to smooth out high variance weights
and moderate the influence of prior experience playback on results. The
loss function of its Critic network is shown in Equation 16. The above
algorithm is detailed in Algorithm 1.

; 2
L(6)=E wj[’t +ymin; ;. Q[St+1y|at >|‘91:J_Q(St’|at>|0i)] (16)

10.3389/frai.2025.1688764

4 Results
4.1 Simulation settings

In order to realize the real-time interaction between vehicles and
lanes, TORCS is selected as the simulation environment for this
problem (Wymann et al., 2000). We choose CG Speedway number 1
which is relatively closer to the real track. As shown in Figure 2. The
experiment was done on i7-11700 k CPU device with 32 GB of
RAM. As shown in Tables 3, 4.

4.2 Experimental evaluation indicators

Reward: Since the framework as a whole is still designed based
on reinforcement learning, its core is still the interaction between
the agent and the environment, which guides the next action
through the reward value. Therefore, the reward value remains the
most critical evaluation indicator in our study, which represents the
level at which our trained agent perform the autonomous driving
lane keeping task.

Safe driving distance: In conjunction with the design of our algorithm,
the current turn of the agent vehicle is terminated if a collision occurs
during training, and the setting of the safe driving distance represents the
normal collision-free forward movement of the vehicle. Therefore, this
indicator and the performance of the algorithm, as well as the safety of the
vehicle to perform lane keeping, constitute a positive correlation, which
is also one of the key indicators reflecting the performance of
the algorithm.

Initialization parameters
for each episode C [I, M] do

for each step C [1,T] do
Select action a, = u(s¢|@;) + €

Calculate action as follows

Calculation of loss of sum

if t mod d then
Calculate Loss

end if
end if
Input the next state
end for
end for

Default data structure prioritization playback for the experience pool SumTree

Getting the initial state of the vehicle from the TORCS

Execute the a,, in state s;, and obtain reward r; , next state s;,
Save the above transition (S, a;, I'y, Se.1) to prioritized playback pool SumTree
if Volume of experience pool data >1000 then

Select a random batch m of transitions from SumTree

a; = p(ser1l9iq) + clip(N(0,0), — ¢, ¢)
Calculate the target Q value and update the parameters using Adam

Recalculate the TD-error for all samples as follows & = y(t) — Q(s, a¢|6;)
Update the priority of all nodes in the SumTree according to equation (6)

Update the parameters using Adam
Update the target network parameters

ALGORITHM 1
Framework of PER-TD3.
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FIGURE 2

Torcs interface.
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Angle of divergence: Since we are validating our designed PER-TD3
algorithm based on a lane keeping task, we want the agent vehicle to
stay in the middle of the road as much as possible to ensure driving
safety. Therefore, the closer the deflection angle is to 0, the better the
algorithm performance is represented.

Distance between vehicles and yellow lines at each end of the road:
Referring to the design of evaluation indicators by other researchers
in the field, we introduced the distance between the vehicle and the
yellow line at each end of the road to assess the effectiveness of lane
keeping enforcement. The distance between the vehicle and the
yellow line on the left side was set as positive, and the distance

TABLE 3 The track parameters of CG speedway number 1.

Parameter Configuration

Track length 2,057.56 m
Track width 15m
Pothole 20

TABLE 4 The description of experimental parameters.

10.3389/frai.2025.1688764

between the vehicle and the yellow line on the right side was set as
negative. This indicator takes the absolute value of both sides to
make the difference, and the smaller the result, the better the
performance of the algorithm.

4.3 Experimental effect analysis
1 Analyzing driving effects based on autonomous driving

Figure 3 shows the performance of the algorithm in terms of
reward value. When the training starts pre-training, the results are not
very good, but as the training of the network continues, the ability of
the network to generate actions continues to improve, and the
corresponding reward value continues to increase. Figure 4 illustrates
the distance a vehicle can safely travel. It reflects the maximum
distance at which the intelligent body vehicle performing the lane
keeping task can safely travel without collision in each round. Similar
to the overall trend of the reward value, the distance value also
increases gradually with the increasing number of training rounds to
reach a decent level and converge.

Parameter Configuration 2 Analysis based on the performance of specific lane
Minimum batch size 128 keeping tasks
Discount factor 0.99
Figure 5 depicts the degree of deviation of the autonomous
Updating factor T 0.01 driving vehicle from the road during the forward progress and
Experience playback pool capacity 10° the gradual equalization of the distance of vehicles from the two
Actor network learning rate 0.001 ends of the road, indicating a gradual improvement in safety. In
Critic network learning rate 0.002 the pre-training period, the value fluctuates around 0, indicating
that lane deviation occurs from time to time, and along with the
Delayed update 3 continuous training of the network, the deviation becomes less.
800
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FIGURE 4
Safe driving distance for the PER-TD3.
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In the above section, we give the evaluation criteria from
different aspects of the autonomous driving lane keeping problem,
establish a complete evaluation system, and show the experimental
results of the algorithms. Next, we present a comparison with the
effects of other algorithms, chosen from the same classic and
commonly used algorithms, such as TD3 and DDPG algorithms.
Figures 6, 7 shows the completion of these two algorithms
performing the lane keeping task in the same environment. The first
row of them shows the results of TD3 algorithm and the second row
shows the results of DDPG algorithm. From the above figure, it can
be seen that the traditional TD3 algorithm and the DDPG
algorithm, although they can also successfully accomplish the lane

Frontiers in Artificial Intelligence
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keeping task, are not as good as the PER-TD3 algorithm in terms of
execution results and algorithm performance.

In the following, we make a detailed comparative analysis of the
several algorithms from different perspectives. In order to evaluate the
effect of our experiment more visually, we show it on a graph.

The first contrast is in terms of the reward function. As shown in
Figure 8, the PER-TD3 algorithm has improved in terms of reward
value as a result of the incorporation of the prioritized playback
mechanism. In addition, it is able to converge faster than the other two
algorithms, as can be seen in Figure 8 presents the cumulative reward
learning curves over 500 training episodes. The PER-TD?3 algorithm
stabilizes at a relatively high level, while TD3 requires more episodes
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to converge and achieves slightly lower performance. DDPG exhibitsa  different random seeds, demonstrating the reliability of the results.
larger performance gap due to the persistent overestimation problem.  Figure 9 compares the safe driving distances, which are directly related
These trends are consistent across multiple independent runs with  to the reward function. Across repeated experiments, the PER-TD3
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algorithm consistently achieves significantly longer safe driving Figure 10 illustrates steering angle control, where smaller absolute
distances without collisions compared to TD3 and DDPG, confirming  deviations from the road center axis correspond to higher safety. After
its superior performance in maintaining safety. convergence, the PER-TD3 algorithm maintains steering angles close
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to zero, indicating precise lane keeping. TD3 performs moderately
well in this indicator, while DDPG exhibits larger deviations and
requires more training episodes to converge. These patterns remain
stable across multiple runs, demonstrating the robustness of the
proposed method. Figure 11 shows the absolute distances between the
vehicle and the yellow lane boundaries (positive left, negative right).
The PER-TD3 distances converge between 0 and 0.1, outperforming
TD3 and DDPG, whose distances remain above 0.1. This consistent
behavior across multiple training runs further highlights the stability
and generalizability of the PER-TD3 approach.

Overall, the experimental results demonstrate that the
PER-TD3 method consistently outperforms baseline algorithms
in terms of cumulative reward, safe driving distance, steering
precision, and lane boundary control. The trends observed across
multiple independent runs indicate both the reliability and
generalization capability of the proposed approach.

5 Discussion

In this paper, a novel driving task framework PER-TD3
incorporating sample optimization is proposed to specifically
solve the lane keeping problem in autonomous driving. Based on
the traditional TD3 algorithm, by introducing Prioritized
Experience Replay (PER), this framework significantly improves
the utilization of high-quality samples and optimizes the
algorithm’s performance. The faster convergence is mainly
attributed to the prioritized sampling mechanism, which provides
better gradient signals by focusing updates on high-TD-error
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transitions, while the adaptive sampling mechanism reduces
variance across different training stages, thereby enabling more
efficient accomplishment of the autonomous driving task.
Meanwhile, this paper also compares the new framework with the
existing mainstream TD3 algorithm and DDPG algorithm. The
experimental results show that PER-TD3 shows significant
improvement in several key performance indicators, such as
reward value, safe driving distance, deflection angle, and the
distance between the vehicle and the yellow line at the road edge,
thus verifying the effectiveness of the algorithm and ensuring the
safety of autonomous driving vehicles. In our future research
work, we are also committed to integrating the latest improvement
techniques of DQN into the PER-TD3 framework to enhance the
algorithm’s decision-making and adaptability in dealing with
complex environments as well as to develop a multitask learning
strategy, which enables autonomous driving vehicles to
simultaneously learn tasks such as overtaking and lane changing,
on-ramp merging, and emergency obstacle avoidance, thus
enhancing the framework’s versatility and practicality. Finally,
we intend to investigate methods for transferring the learned
policies from simulation to real-world driving scenarios,
including domain adaptation and transfer learning techniques, to
bridge the gap between simulated and real-world environments.
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