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With the advancement of autonomous driving technology, efficient and safe 
lane-keeping has become one of the core issues in this field. Currently, Deep 
Reinforcement Learning (DRL) methods still face challenges such as low training 
efficiency, slow algorithm convergence, and a tendency to fall into local optima 
when addressing lane-keeping issues. To address these challenges, a Prioritized 
Experience Replay (PER) mechanism designed to adapt to the learning process of 
the Twin Delayed Deep Deterministic Policy Gradient (TD3) is proposed, referred 
to as PER-TD3, to enhance the learning efficiency and lane-keeping performance 
of the vehicle in this work. It adjusts the probability of a selected sample by 
utilizing the difference between the predicted Q value and the true Q value to 
assign priority to different samples. By prioritizing samples with higher errors, the 
algorithm can correct biases in decision-making more quickly, especially when 
the vehicle deviates from its lane. In addition, introducing a probabilistic sampling 
mechanism helps to enhance the diversity of samples, ensuring high-frequency 
playback of high-value experiences, and enabling vehicles to learn accurate and 
stable lane-keeping strategies in a shorter period. Validation experiments on the 
TORCS platform demonstrate that the proposed framework can effectively solve 
the problem of unbalanced training, which is common in DRL, enhances training 
sample quality, accelerates algorithm convergence, and ultimately improves driving 
performance while ensuring safety.
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1 Introduction

With the development of the autonomous driving, enhancing traffic safety and avoiding 
accidents has become a shared consensus. Among various types of accidents, lane departure 
incidents have a high proportion, increasing the risks of traffic collisions and rollover accidents 
during lane changes. Lane-keeping, as one of the fundamental functions of autonomous 
driving technology, is designed to automatically correct the driving direction and ensure that 
vehicles remain within their lanes. Researching and achieving this function is a primary 
condition for the development of autonomous driving technology. In recent years, as advanced 
driver assistance systems (ADAS) have evolved rapidly (Bisoffi et al., 2017), vehicle lateral 
control techniques, especially lane departure warning (LDW) and lane keeping assist systems 
(LKAS), have become a research hotspot, but it is facing challenges including robustness 
requirements to uncertainties in the traffic environment. Traditional rule-based control 
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methods, such as linear quadratic regulators (Broggi et al., 1999), 
fuzzy logic (Marino et al., 2011), and model predictive control can 
provide policy options for autonomous driving vehicles (Zhang et al., 
2021). However, these approaches are hardly modeled accurately in 
complex and variable driving environments.

Recently, research based on deep reinforcement learning (DRL) 
for lane-keeping tasks has received considerable attention. For 
example, Peng et al. (2021) proposed an end-to-end lane-keeping 
framework based on the Dueling Deep Q-Network (DQN), which 
uses camera images and vehicle motion information as the state space 
to reduce variance and improve sampling efficiency. While these 
studies demonstrate the potential of DRL in autonomous vehicle lane 
keeping, the discussion of this problem and its practical significance 
can be further expanded. In particular, current DRL methods often 
face several challenges in lane-keeping scenarios, including sparse 
reward signals, low sample efficiency, training imbalance, and 
instability. This training imbalance primarily arises from the 
insufficient utilization of high-quality data samples, which leads to 
suboptimal learning efficiency and degraded algorithm performance. 
Moreover, current mainstream random uniform sampling methods 
often fail to fully exploit these valuable samples, negatively impacting 
the real-time decision-making efficiency of autonomous vehicles. 
Therefore, prioritizing samples becomes crucial, ensuring that high-
quality experiences are emphasized during training, which can 
significantly improve learning efficiency, driving performance, and 
safety (Yuan et al., 2021).

At present, some researchers have employed prioritized experience 
replay mechanisms to address issues related to autonomous driving. 
Specifically, Yuan et al. (2021) proposed a DQN model with a multi-
reward architecture (MRA) based on a PER mechanism for highway 
driving decision-making, which effectively improved driving speed 
and ensured driving safety. However, both the DQN algorithm and 
current mainstream lane-keeping methods like Deep Deterministic 
Policy Gradient (DDPG) suffer from inherent Q-value overestimation 
due to offline learning methods. This occurs because actions selected 
for updates are based on their potential value rather than real 
interactions. The TD3 algorithm addresses this by using target 
networks and minimization operations to reduce Q-value 
overestimation. Compared with the above approaches, combining 
standard PER with TD3 leverages TD3’s double-critic architecture and 
target policy smoothing, which allows key samples to be  more 
adaptively utilized during training. This integration results in 
enhanced sample efficiency, more stable learning dynamics, and 
superior lane-keeping performance, particularly in scenarios with 
highly imbalanced training data and continuous action spaces.

To sum up, combining the above discussion, the contribution of 
this work is as follows:

We propose the PER-TD3 framework for hybrid autonomous 
lane-keeping, designed to enhance sample quality and driving 
efficiency while ensuring safety and optimizing overall traffic flow.

Lane-keeping efficiency for autonomous vehicles is optimized by 
prioritizing samples based on temporal-difference error, leveraging 
probabilistic sampling for diversity, and refining importance sampling 
weights to enhance training accuracy.

Experimental results show that the framework surpasses 
benchmark algorithms like DDPG and TD3  in key autonomous 
driving metrics, including reward, safe driving distance, and lane-
keeping performance such as deflection angle and lateral distance.

2 Related work

2.1 Rule-based lane keeping

At the beginning, autonomous driving research relied mainly on rule-
based strategies in which perception and control were considered as 
separate modules. For example, Broggi et  al. (1999) developed a 
proportional (P) controller to correct the lateral deviation of the vehicle. 
To enhance the control effectiveness, a proportional integral derivative 
(PID) controller will often also be  introduced to perform the lateral 
regulation of the vehicle (Marino et al., 2011). Wu et al. (2008) proposed 
a lateral controller design that includes full state feedback. Wang et al. 
(2020) used a sliding mode control strategy to implement the lane keeping 
function. In addition to these, several other traditional control techniques 
such as linear quadratic Gaussian (LQG), H infinity (H) control, adaptive 
control, and fuzzy control are also available. However, the aforementioned 
classical control methods rely on current and historical feedback signals, 
and this reliance may lead to slow or insufficiently stable control signal 
generation. In contrast, model predictive control (MPC) generates 
optimal control signals based on vehicle dynamics and various types of 
constraints in a limited time, thus optimizing the overall control effect 
(Zhang et al., 2021). However, classical control algorithms usually utilize 
preset parameters and lack the ability to study and adapt to new scenarios. 
Most of these architectures are based on precise mathematical models, but 
the actual driving environment is much more complex than these models 
can describe, and thus these methods may not perform efficiently enough 
when dealing with changing road conditions.

2.2 AI-based lane keeping

Consequently, researchers have been focusing on the application of 
AI in autonomous driving. Hua et  al. (2022) employed the DDPG 
algorithm to control autonomous driving vehicles, customizing the actor 
and critic structures in the algorithm specifically for the TORCS 
environment (Wymann et al., 2000). By evaluating the performance of the 
algorithm through a number of different driving trajectories, to further 
validate its effectiveness. Peng et al. (2023) combines the techniques of 
transfer learning and deep reinforcement learning to conduct innovative 
research on the challenges encountered in the lane keeping task, especially 
the low sample efficiency and high time cost. Eventually, the learning 
speed of the algorithm is accelerated and the efficiency and performance 
of the overall framework is improved. Zhou et al. (2023) combines a 
robust x-aware network with transfer learning and fine-tuning techniques 
to propose an advanced lane keeping assistance system designed for 
autonomous driving vehicles to accurately predict steering angles. By 
analyzing photographic images, the model effectively learns human 
driving knowledge and provides an accurate estimate of the steering angle 
required to safely maintain the lane.

More recently, some researchers have been considering training 
directly in the real world. Hong et al. (2024) applied the DDPG algorithm 
for the first time to a fully autonomous driving vehicle operating in a real-
world environment. By randomly initializing the model parameters, 
which enabled the system to perform lane-keeping tasks in very few 
driving instances, by simply utilizing monocular camera images as inputs, 
to learn and master a strategy for performing the lane-keeping task. In 
addition to this, existing research is focused on understanding and 
predicting driver behavior and decision-making processes by focusing on 
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driver intent. The system proposed by Wei et al. (2024) integrates adaptive 
driver characteristics to align with individual driving habits and 
intentions. A new lane departure decision model is proposed that utilizes 
temporal and spatial domain fusion to efficiently identify the driver’s 
intent to change lanes, thereby informing the system decision (Yin et al., 
2020). Kendall et al. (2019) neural adaptive control based Lane Keeping 
Assist System (LKAS). The proposed control strategy synergizes a 
non-deterministic adaptive control design scheme, adaptive radial basis 
function based neural network (RBFNN), to capture the human driver’s 
lane keeping steering behavior.

However, these cutting-edge scientific efforts have also encountered 
a common challenge: the efficiency of data samples. The development of 
autonomous driving systems relies on a large number of high-quality data 
samples for training and optimization, but the reality is that collecting 
these data is both expensive and complex. Especially in autonomous 
driving technology, the high cost of acquiring real driving data must 
be coupled with the high quality and diversity of the data in order to 
develop models that can be widely adapted. This requires researchers to 
not only interact with the environment on a large scale to collect data, but 
also to manually filter and process the data to ensure that the training uses 
high-quality samples. Only in this way can the training efficiency and 
performance of driving strategies be effectively improved, thus ensuring 
the safety and reliability of autonomous driving.

3 Materials and methods

3.1 Markov decision process (MDP)

Reinforcement Learning (RL) tasks are usually described using 
MDP. The specific details are described as follows.

State space: The state information of the network input is derived 
from the observation of the vehicle and its surroundings by the TORCS 
environment used, which contains the following aspects, such as 
acceleration, brake, clutch, gear, steering wheel and other information, 
and the input state is set to be continuous. As shown in Table 1.

Action space: The output action space is continuous, with the 
steering wheel ranging from −1 to 1. Additionally, the action space 
includes throttle acceleration, where 0 means no acceleration and 1 
means maximum acceleration, as well as the braking status. As shown 
in Table 2.

Reward function: The reward function is designed by considering the 
following aspects. First, collisions are still the primary concern, as they are 
one of the most critical events to avoid during task execution. A negative 
reward is given when a collision occurs. Second, for the lane-keeping task, 
it is important to ensure that the vehicle remains within the lane and does 
not cross the yellow lines on either side of the road. A negative reward is 
given if the vehicle goes beyond the designated lane. Finally, the rewards 
during the vehicle’s movement are considered: a positive reward is given 
for any positional movement of the vehicle, while a penalty is applied if 
the vehicle is detected to be  stationary. The specific formulations of 
positive and negative rewards are defined in Equations 1–4:

	 = −2damageR 	 (1)

	 = −200outlaneR 	 (2)

	 = −2staticR 	 (3)

	 = 5forwardR 	 (4)

This reward is calculated at each step and then a summing 
operation is performed in each episode to get the final reward value, 
as shown in Equation 5.

	 = + + +total damage outline static forwardR R R R R 	 (5)

3.2 The proposed framework: PER-TD3

The overall framework is shown in Figure 1. Initially, data samples in 
the form of quadruples (st, at, rt, st + 1) are generated by the ego vehicle and 
environment interaction and stored in the experience pool. As 
interactions continue, the experience pool accumulates more samples of 
varying importance levels, the important samples are filtered and sent to 
the network for training. Preferential experience sampling, based on 
TD-error, prioritizes samples with larger discrepancies between predicted 
and true Q-values. It is defined as shown in Equation 6:

	 ( ) ( )δ γ+ += + −1 1t t t tr Q s Q s 	 (6)

where rt + 1+ ãQ(st + 1) is the true value and Q(st) is the estimated 
value. However, this mechanism prioritizes the samples with the 
maximum TD error, which improves the training efficiency but may 
reduce the diversity of samples and introduce the risk of network 
overfitting. To overcome the aforementioned challenges, we introduce 

TABLE 1  Partial status information.

Parameter Configuration

Angle [−π, π]

SpeedX (−∞, +∞) (km/h)

SpeedY (−∞, +∞) (km/h)

SpeedZ (−∞, +∞) (km/h)

Track (0, 200)

Rpm [0, +∞] (rpm)

WheelSpinVel [0, +∞] (rad/s)

Damage [0, +∞]

DistFromStart [0, +∞] (m)

DistRaced [0, +∞] (m)

Focus [0, 200] (m)

Fuel [0, +∞] (L)

Gear [−1, 0, 1, 2, 3, 4, 5, 6]

Z (−∞, +∞) (m)

TABLE 2  The information of action.

Parameter Configuration

Steering of the vehicle [−1, 1]

Throttle of the vehicle [0, 1]

Brake [0, 1]
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probabilistic sampling, an approach maintains a positive relationship 
between sample priority and TD-error. The probability of sampling 
each sample can be defined as shown in Equation 7:

	
( ) α α= ∑i k

k
P i p p∣

	
(7)

where the role of α is to adjust the degree of prioritization, then 
α
ip  indicates the priority of data sample i. When the value of α is 0, it 

corresponds to uniform sampling, as shown in Equation 8:

	
( ) = 1P i

k 	
(8)

this sampling approach ensures all samples are replayed by 
avoiding neglect of those with low TD-error. There are two ways of 
defining for α

ip , namely proportional prioritization and ranking-based 
prioritization. The former defines the priority of the samples as shown 
in Equation 9:

	 ( ) δ ε= +iP i 	 (9)

where δi denotes the error, ε is a tiny positive number, is used to 
ensure that each sample can be  sampled once. The ranking-based 
approach defines the sample priority as shown in Equation 10:

	
( ) ( )

=
1P i

rank i 	
(10)

where rank(i) is the ranking of the ith sample after sorting the 
samples based on TD-error. It uses an indirect ranking method, 

dividing probability intervals based on rankings and uniformly 
sampling from each interval. In this study, however, we adopt the 
proportional prioritization method (Proportional Prioritization) 
instead of the ranking-based approach, as preliminary tests showed 
that it provides more stable convergence for lane-keeping tasks in 
continuous action spaces. The above methods improve the quality 
of the samples sent to network training, but at the same time, may 
lead to a biased expectation of the Q-value. Therefore, importance 
sampling weights are introduced as shown in Equation 11:

	 ( )

β

ω
 

=   
 

1 1,i N P i 	
(11)

this weight is employed to balance unbiased and high utilization. 
If the value of β is 1, it means that the nonuniform probability is fully 
compensated. With stability in view, the maxiωi are utilized to 
normalize the weights so that there is only downward scaling of what 
they are updating.

Enter the above sample into the network to complete the next 
training. During the update phase, the Actor target network and the 
two Critic target networks employ a soft update approach to iteratively 
adjust network parameters. It is expressed as shown in Equation 12:

	 ( )θ τθ τ θ′ ′← + −1i i i	 (12)

where i takes the value of 1 or 2 and ô  is the update factor to 
be  satisfied much less than 1. The Critic network updates 
parameters iteratively by minimizing the loss function, which is 
computed using the target Q-value and predicted Q-value as 
shown in Equation 13:

	
( ) ( )( )θ θ = −  

2,i t t t iL E v Q s a∣
	

(13)

FIGURE 1

The structure of PER-TD3.

https://doi.org/10.3389/frai.2025.1688764
https://www.frontiersin.org/journals/Artificial-intelligence
https://www.frontiersin.org


Peng et al.� 10.3389/frai.2025.1688764

Frontiers in Artificial Intelligence 05 frontiersin.org

where y(t) represents the target Q-value, ( )θs ,at t iQ ∣  is the output 
obtained from two Critic networks optimized by the adaptive learning 
rate. The Actor network parameters ö  is updated based on the Q-value 
gradient completion of the Critic networks. Its loss gradient can 
be defined as shown in Equation 14:

	

( )
( ) ( )

( )
µ

φ

θ
φ

µ φ
= =

= =

 ∇
 ∇ =  ′ ∇
 

∑
,

1

,1 i i

i

n a i s s a s

j s s

Q s a
J

n s

∣

∣
	

(14)

where ( )θ∇ ,| ,|a iQ s a  is the gradient of the Q-value of the Critic 
network. ( )φµ φ∇ ′ s∣  is the gradient of the Actor network. To enhance 
method robustness, noise is added to the Actor target network. å 
represents random noise added to ensure comprehensive data training 
during the process, as shown in Equation 15:

	 ( ) ( )µ µ φ ε′ = +t t ts s∣ 	 (15)

Combining with Equation 3, the sampling weights are shown below, 
where â  is a hyperparameter used to smooth out high variance weights 
and moderate the influence of prior experience playback on results. The 
loss function of its Critic network is shown in Equation 16.  The above 
algorithm is detailed in Algorithm 1.

	

( ) ( )θ ω γ θ θ⋅
+

    = + −         

2˜
,1:2 1min ,| ,| ,| ,|ti j t i t i t t iL E r Q s a Q s a

	

(16)

4 Results

4.1 Simulation settings

In order to realize the real-time interaction between vehicles and 
lanes, TORCS is selected as the simulation environment for this 
problem (Wymann et al., 2000). We choose CG Speedway number 1 
which is relatively closer to the real track. As shown in Figure 2. The 
experiment was done on i7-11700  k CPU device with 32 GB of 
RAM. As shown in Tables 3, 4.

4.2 Experimental evaluation indicators

Reward: Since the framework as a whole is still designed based 
on reinforcement learning, its core is still the interaction between 
the agent and the environment, which guides the next action 
through the reward value. Therefore, the reward value remains the 
most critical evaluation indicator in our study, which represents the 
level at which our trained agent perform the autonomous driving 
lane keeping task.

Safe driving distance: In conjunction with the design of our algorithm, 
the current turn of the agent vehicle is terminated if a collision occurs 
during training, and the setting of the safe driving distance represents the 
normal collision-free forward movement of the vehicle. Therefore, this 
indicator and the performance of the algorithm, as well as the safety of the 
vehicle to perform lane keeping, constitute a positive correlation, which 
is also one of the key indicators reflecting the performance of 
the algorithm.

ALGORITHM 1

Framework of PER-TD3.
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FIGURE 3

Reward values for the PER-TD3.

FIGURE 2

Torcs interface.
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Angle of divergence: Since we are validating our designed PER-TD3 
algorithm based on a lane keeping task, we want the agent vehicle to 
stay in the middle of the road as much as possible to ensure driving 
safety. Therefore, the closer the deflection angle is to 0, the better the 
algorithm performance is represented.

Distance between vehicles and yellow lines at each end of the road: 
Referring to the design of evaluation indicators by other researchers 
in the field, we introduced the distance between the vehicle and the 
yellow line at each end of the road to assess the effectiveness of lane 
keeping enforcement. The distance between the vehicle and the 
yellow line on the left side was set as positive, and the distance 

between the vehicle and the yellow line on the right side was set as 
negative. This indicator takes the absolute value of both sides to 
make the difference, and the smaller the result, the better the 
performance of the algorithm.

4.3 Experimental effect analysis

	 1	 Analyzing driving effects based on autonomous driving

Figure 3 shows the performance of the algorithm in terms of 
reward value. When the training starts pre-training, the results are not 
very good, but as the training of the network continues, the ability of 
the network to generate actions continues to improve, and the 
corresponding reward value continues to increase. Figure 4 illustrates 
the distance a vehicle can safely travel. It reflects the maximum 
distance at which the intelligent body vehicle performing the lane 
keeping task can safely travel without collision in each round. Similar 
to the overall trend of the reward value, the distance value also 
increases gradually with the increasing number of training rounds to 
reach a decent level and converge.

	 2	 Analysis based on the performance of specific lane 
keeping tasks

Figure 5 depicts the degree of deviation of the autonomous 
driving vehicle from the road during the forward progress and 
the gradual equalization of the distance of vehicles from the two 
ends of the road, indicating a gradual improvement in safety. In 
the pre-training period, the value fluctuates around 0, indicating 
that lane deviation occurs from time to time, and along with the 
continuous training of the network, the deviation becomes less.

FIGURE 4

Safe driving distance for the PER-TD3.

TABLE 3  The track parameters of CG speedway number 1.

Parameter Configuration

Track length 2,057.56 m

Track width 15 m

Pothole 20

TABLE 4  The description of experimental parameters.

Parameter Configuration

Minimum batch size 128

Discount factor 0.99

Updating factor T 0.01

Experience playback pool capacity 106

Actor network learning rate 0.001

Critic network learning rate 0.002

Delayed update 3
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In the above section, we  give the evaluation criteria from 
different aspects of the autonomous driving lane keeping problem, 
establish a complete evaluation system, and show the experimental 
results of the algorithms. Next, we present a comparison with the 
effects of other algorithms, chosen from the same classic and 
commonly used algorithms, such as TD3 and DDPG algorithms. 
Figures  6, 7 shows the completion of these two algorithms 
performing the lane keeping task in the same environment. The first 
row of them shows the results of TD3 algorithm and the second row 
shows the results of DDPG algorithm. From the above figure, it can 
be  seen that the traditional TD3 algorithm and the DDPG 
algorithm, although they can also successfully accomplish the lane 

keeping task, are not as good as the PER-TD3 algorithm in terms of 
execution results and algorithm performance.

In the following, we make a detailed comparative analysis of the 
several algorithms from different perspectives. In order to evaluate the 
effect of our experiment more visually, we show it on a graph.

The first contrast is in terms of the reward function. As shown in 
Figure 8, the PER-TD3 algorithm has improved in terms of reward 
value as a result of the incorporation of the prioritized playback 
mechanism. In addition, it is able to converge faster than the other two 
algorithms, as can be seen in Figure 8 presents the cumulative reward 
learning curves over 500 training episodes. The PER-TD3 algorithm 
stabilizes at a relatively high level, while TD3 requires more episodes 

FIGURE 6

Results for TD3 indicators.

FIGURE 5

Angle of deviation and lateral distance for the PER-TD3.
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to converge and achieves slightly lower performance. DDPG exhibits a 
larger performance gap due to the persistent overestimation problem. 
These trends are consistent across multiple independent runs with 

different random seeds, demonstrating the reliability of the results. 
Figure 9 compares the safe driving distances, which are directly related 
to the reward function. Across repeated experiments, the PER-TD3 

FIGURE 8

Reward values for the baseline.

FIGURE 7

Results for DDPG indicators.
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algorithm consistently achieves significantly longer safe driving 
distances without collisions compared to TD3 and DDPG, confirming 
its superior performance in maintaining safety.

Figure 10 illustrates steering angle control, where smaller absolute 
deviations from the road center axis correspond to higher safety. After 
convergence, the PER-TD3 algorithm maintains steering angles close 

FIGURE 10

Angle of deviation for the baseline.

FIGURE 9

Safe driving distance for the baseline.
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to zero, indicating precise lane keeping. TD3 performs moderately 
well in this indicator, while DDPG exhibits larger deviations and 
requires more training episodes to converge. These patterns remain 
stable across multiple runs, demonstrating the robustness of the 
proposed method. Figure 11 shows the absolute distances between the 
vehicle and the yellow lane boundaries (positive left, negative right). 
The PER-TD3 distances converge between 0 and 0.1, outperforming 
TD3 and DDPG, whose distances remain above 0.1. This consistent 
behavior across multiple training runs further highlights the stability 
and generalizability of the PER-TD3 approach.

Overall, the experimental results demonstrate that the 
PER-TD3 method consistently outperforms baseline algorithms 
in terms of cumulative reward, safe driving distance, steering 
precision, and lane boundary control. The trends observed across 
multiple independent runs indicate both the reliability and 
generalization capability of the proposed approach.

5 Discussion

In this paper, a novel driving task framework PER-TD3 
incorporating sample optimization is proposed to specifically 
solve the lane keeping problem in autonomous driving. Based on 
the traditional TD3 algorithm, by introducing Prioritized 
Experience Replay (PER), this framework significantly improves 
the utilization of high-quality samples and optimizes the 
algorithm’s performance. The faster convergence is mainly 
attributed to the prioritized sampling mechanism, which provides 
better gradient signals by focusing updates on high-TD-error 

transitions, while the adaptive sampling mechanism reduces 
variance across different training stages, thereby enabling more 
efficient accomplishment of the autonomous driving task. 
Meanwhile, this paper also compares the new framework with the 
existing mainstream TD3 algorithm and DDPG algorithm. The 
experimental results show that PER-TD3 shows significant 
improvement in several key performance indicators, such as 
reward value, safe driving distance, deflection angle, and the 
distance between the vehicle and the yellow line at the road edge, 
thus verifying the effectiveness of the algorithm and ensuring the 
safety of autonomous driving vehicles. In our future research 
work, we are also committed to integrating the latest improvement 
techniques of DQN into the PER-TD3 framework to enhance the 
algorithm’s decision-making and adaptability in dealing with 
complex environments as well as to develop a multitask learning 
strategy, which enables autonomous driving vehicles to 
simultaneously learn tasks such as overtaking and lane changing, 
on-ramp merging, and emergency obstacle avoidance, thus 
enhancing the framework’s versatility and practicality. Finally, 
we  intend to investigate methods for transferring the learned 
policies from simulation to real-world driving scenarios, 
including domain adaptation and transfer learning techniques, to 
bridge the gap between simulated and real-world environments.
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Lateral distance for the baseline.
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