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Gravity deeply influences numerous biological events in living organisms. Variations in

gravity values induce adaptive reactions that have been shown to play important roles,

for instance in cell survival, growth, and spatial organization. In this paper, we summarize

effects of gravity values higher than that one experienced by cells and tissues on

Earth, i.e., hypergravity, with particular attention to the nervous and the musculoskeletal

systems. Besides the biological consequences that hypergravity induces in the living

matter, we will discuss the possibility of exploiting this augmented force in tissue

engineering and regenerative medicine, and thus hypergravity significance as a new

therapeutic approach both in vitro and in vivo.

Keywords: hypergravity, muscle, skeleton, neuronal system, immune system, tissue engineering

INTRODUCTION

Physical stimuli significantly influence biological events, triggering biochemical signals involved in
molecular cascades that result in altered cell migration, proliferation, and differentiation, and thus
in variations in tissue/organ architecture and function.

Among physical stimuli, gravity deeply models land-based organisms, affecting in particular
their musculoskeletal and nervous systems. Gravity is ubiquitous and influences tissue mechanical
environment by affecting cell weight, extracellular hydrostatic pressure, and fluid convection.
Since cell weight depends on the gravity force acting on cell mass, gravity variations can
directly affect cell/substrate interactions (e.g., adhesion), cytoskeletal conformation, activation of
stretch-activated receptors, transduction pathways and gene expression. Furthermore, indirect
effects of altered gravity, such as those mediated by the hydrostatic pressure and fluid shear flow,
strongly affect both in vitro and in vivo systems. An increasing number of researches has focused
on the effects of gravity variations on physiological processes. By simulating the presence of intense
gravitational vectors, for instance with the aid of large diameter centrifuges (Figures 1A,B), useful
insight on cellular physiology can be gained and even exploited to elaborate novel therapies.

NERVOUS SYSTEM

Hypergravity has strongly different effects on nervous cell cultures compared to whole organisms.
In intact rodents, hypergravity indeed over-activates the vestibular system, determines motion
sickness, and decreases animal activity/vestibular phasic input (Uno et al., 1997; Santucci et al.,
2000; Abe et al., 2010). Hypergravity also influences the autonomic nervous system (Hakeman and
Sheriff, 2003) and the renal sympathetic nerve (Morita et al., 2001), while mitigates detrimental
effects of microgravity in the autonomic cardiovascular control (Iwasaki et al., 2001).
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FIGURE 1 | Hypergravity experiments on cell cultures. Pictorial representation of a large diameter centrifuge, exploited for hypergravity investigations

(A) and a gondola of the large diameter centrifuge at the European Space Agency (B). Confocal fluorescence microscopy images of 72 h pre-differentiated PC12

neuron-like cells exposed to different gravity levels (1, 50, and 150g for 1 h), and fixed 48 h post-stimulus, showing different localization of the differentiation marker

(Continued)
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FIGURE 1 | Continued

(neurofilament 66, in red) within neurites and evidencing higher neurite length with increasing gravity level. In blue: nuclei. Scale bar is 50µm. (C) Reproduced and

adapted with permission from Hindawi (Genchi et al., 2015). Effect of hypergravity (2.9 g, 4 weeks) on bone structure of ovariectomized rats. Hematoxylin and eosin

staining of sections of the proximal femurs. Scale bar is 1mm. (D) Bone structure-related parameters in the bone histomorphometric analysis of the trabecular bone of

the distal femur. Control group: white bar, hypergravity group: solid bar. BV/TV: bone volume/tissue volume, Tb.N: trabecular number, Tb.Th: trabecular thickness,

Tb.Sp: trabecular separation. The data are presented as the average ± SD (n = 4). *p < 0.05 compared to control group, †p < 0.05 compared to sham group (E)

reproduced with permission from Elsevier (Ikawa et al., 2011). Immunohistochemistry images of skeletal muscle sections from rats born and reared in hypergravity

(2 g). 1–3 and 4–5, control and hypergravity (HG) soleus muscles, respectively; 6–10 and 11–15, control and HG plantaris muscles, respectively. Reactivity of the

antibodies is presented as follows: anti-MHC I (2, 4, 7, and 12), anti-MHC IIA (3, 8, and 13), anti-MHC IIB (9 and 14; black arrows indicate positive fibers), and anti

MHC II (5, 10, and 15); 1, 6, and 11 show the histochemical method that differentiates, by a dark color, fibers expressing MHC IIX. Scale bar is 140 µm. (F)

Reproduced with permission from the American Physiological Society (Picquet et al., 2002).

Orthostatic intolerance and motion sickness are detected
after parabolic/space-flights (Serrador et al., 2000; Schlegel
et al., 2001) possibly depending on a plastic alteration of the
vestibulo-cardiovascular reflex. Hypergravity-induced decrease
in sensitivity of the vestibular-cardiovascular reflex however
can efficiently be prevented with galvanic stimulation of the
vestibular system (Abe et al., 2009).

Hypergravity (4 g, 48 h) also influences synaptic plasticity of
the hippocampus, by inducing its long-term potentiation and
thus possibly affecting memory in rats (Ishii et al., 2004).

In humans, hypergravity determines increased
electroencephalography (EEG) activity in higher frequencies,
resulting in loss of consciousness/EEG slowing due to hypoxia
at 4 g (Marušič et al., 2014). Brain pre-frontal cortical activity
and oxygenation are, respectively, increased and diminished by
hypergravity exposure, with the former very likely related to
psychological stress (Smith et al., 2013).

Behavioral alterations with gender and age specificity are
found after hypergravity treatment in rats, mainly related to
neurotrophin secretion variations (Francia et al., 2004a,b, 2006;
Santucci et al., 2009).

Hypergravity acting on the vestibular system also induces an
irregular monoaminergic innervations to the spinal cord during
nervous system development (Giménez y Ribotta et al., 1998)
and an increase of the central serotonin (5-HT) concentration,
resulting in hypophagia (Abe et al., 2010).

Several attempts were done to decouple effects of hypergravity
on neural systems from other organs/systems, such as the
cardio-circulatory and the endocrine system. Many studies
were thus performed in vitro and on simple animal models.
Interestingly, Caenorhabditis elegans worms exposed to
strong hypergravity (100 g, 3 h) show well retained muscle
fiber organization/morphology, and functional integrity of the
serotonergic/chemosensory neurons (Ren et al., 1996; Schackwitz
et al., 1996; Kim et al., 2007). In C. elegans, feeding behavior is
also preserved, demonstrating retained coordination of sensory
and motor neurons with muscles.

Altered gravity can affect morphology and synaptogenesis
of neuronal networks in vitro (Gruener and Hoeger, 1990,
1991; Mitsuhara et al., 2013). For instance, co-cultures of spinal
neurons and myotomal myocytes demonstrate lack of synapse
formation under simulated microgravity conditions (Gruener
and Hoeger, 1990). Vice versa, we found that hypergravity
(150 g for 1 h) significantly accelerates PC12 neuron-like cell
differentiation and increases neurite extension (Figure 1C,

Genchi et al., 2015). These results are in line with those achieved
with human SH-SY5Y neuroblastoma cells (Rösner et al.,
2006) and are particularly interesting concerning neural tissue
engineering, where sustained neurite regeneration is required for
a fast recovery of function (Rossi et al., 2007).

BONE AND OTHER CONNECTIVE TISSUES

Mechanical loading is known to be the major stimulus
influencing bone deposition and remodeling (Klein-Nulend et al.,
2012). Recent literature demonstrates the beneficial effects of
hypergravity on bone extracellular matrix (ECM) deposition and
maintenance. Concerning organic ECM components, collagen I
α2 (Col I α2) mRNA level and total collagen biosynthesis are for
instance increased in human osteoblast-like cells by hypergravity
(13 g, 24 h; Gebken et al., 1999).

In MC3T3-E1 osteoblasts, collagen-processing enzyme lysyl
hydroxilase 2 is up-regulated at transcriptional and functional
level by hypergravity (20–40 g, 72 h), increasing collagen I cross-
linking. Collagen stabilizing lysyl oxidase transcription and
enzyme activity is also up-regulated. Hypergravity thus enhances
collagen immature and mature cross-linking, and the conversion
rates of immature cross-linking into mature compounds in vitro
(Saito et al., 2003).

In rhesus monkeys, hypergravity (2 g, 2 weeks) does not
significantly affect urinary excretion of hydroxyproline (marker
of total body collagen content). Degradation and excretion
of mature collagen markers hydroxylysyl pyridinoline and
lysylpyridinoline are instead increased during 1 g recovery.
This suggests increased collagen maturation and possible ECM
anabolism upon hypergravity stimulation in vivo (Martinez et al.,
2008).

Long-term moderate hypergravity (2 g, 28 days) increases
trabecular bone volume in ovariectomized adult rats by
suppressing bone formation and resorption (Figures 1D,E),
and by very likely inhibiting actin cortical ring formation in
osteoclasts (Ikawa et al., 2011).

Highly relevant to tissue engineering purposes, hypergravity
has also been show to promote stem cell osteo-differentiation. Rat
bone marrow cells under osteo-differentiative medium treated
at 12 g (24 h) indeed show enhanced gene transcription of
bone gamma-carboxyglutamic acid-containing protein (Bglap),
vitamin D receptor, Runt-related transcription factor 2 (Runx2)
and alkaline phosphatase (Alpl), suggesting higher ECM
mineralization (Morita et al., 2004). When exposed to 10 g (7
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days), they also show significantly enhanced transcription of
Runx2 and β-catenin, and of Bglap on a nanotextured substrate
(Prodanov et al., 2013).

Synergistic effects of hypergravity and osteo-inductive
nanoparticle administration are also reported for rat
mesenchymal stem cells (MSCs): transcription of Runx2,
Alpl, ColIα1 is significantly increased after 3 h of 20 g stimulation
and 2 days of recovery under differentiation. Ras homolog gene
family, member A (RhoA) transcription is also significantly
increased under proliferation. Moreover, intracellular collagen
I amount is increased, as well as area of calcium deposits
indicating improved ECM deposition/mineralization (Rocca
et al., 2015).

Overall, these results point to a higher and faster deposition of
both organic and inorganic components in mature bone cells and
in bone precursor cells, as well as to a limited bone resorption,
upon exposure to hypergravity. These findings support the use of
mild hypergravity as a physical stimulation for the achievement
of tissue constructs in vitro to be transplanted in the case of bone
defects (for instance due to trauma) and for direct stimulation of
whole organisms.

Concerning other connective tissues, hypergravity promotes
contrasting effects. Strong hypergravity (60 g obtained by
vibration, 81Hz, 2 days) indeed damages the Achilles tendon
in rats, leading to fibroblast hypercellularity and prolonged
secretive state (Hansson et al., 1988). Moderate hypergravity (2 g
obtained by vibration, 30Hz, 20min/day, 5 days/week, 5 weeks)
does not affect tensile/elastic properties of Achilles and patellar
tendon. Number of fibroblasts and ColIα1 mRNA expression
are instead beneficially increased (Keller et al., 2013). Increased
expression of ECM components (collagen II and aggrecan)
and of a transcriptional factor involved in ECM component
synthesis (sex determining region Y-box 9) is also found in
human chondrocytes exposed to 10 g for 10 min alternated to 1 g
exposure for 10min (Basile et al., 2009).

Based on these evidences, low hypergravity regimes seem to
support connective tissue deposition both in vitro and in vivo.

MUSCLE TISSUE

Hypergravity effects on heart muscle have been investigated
from structural up to functional level. In C57BL6J mouse
cardiomyocytes, hypergravity (2 g, 30 days) decreases the
transverse stiffness by 16%, and decreases actin and α-actinin
content in protein membranous fraction. After 12 h, α-actinin
-1 content decreases in the membranous fraction (by 27%) and
increases in the cytoplasmic fraction (by 28%) compared to the
samples soon after treatment (Ogneva et al., 2015).

In Xenopus embryos at gastrulation stage, hypergravity

(7 g, 96 h) increases ventricular cross-sectional area by >36%,

pointing to a significant cardiac hypertrophy (Duchman and
Wiens, 2012). In a mouse model, strong hypergravity (15 g,

5 min) negatively impacts on heart, but when associated to
preconditioning (2 exposures at 15 g, 30 s), it seems to protect
cardiac function, as assessed in terms of early diastolic and
systolic myocardial velocity (Lu et al., 2008).

Concerning tissue engineering applications of hypergravity,
2 g (1 or 3 days) and 5-azacytidine treatment enhances mRNA
and protein expression of cardiac muscle differentiation markers
(in particular, troponin T) in MSCs (Huang et al., 2009). Further,
it improves cardiac transcription factor expression/activity by
translocation of histone deacetylase 5 from the nucleus. When
treated cells are transplanted in a myocardial infarction model,
functional recovery is improved and infarct site is reduced (Ling
et al., 2011).

Final evidences on the safety of hypergravity treatment on
heart muscle are still missing, however the possibility to exploit
adaptive responses and stem cell potentialities encourage further
studies.

Many evidences in the literature can be found on skeletal
muscle, ranging from basic science studies to applications
in regenerative medicine. Hypergravity mostly affects skeletal
muscle contractile proteins. Moderate hypergravity (4 g, 6–
24 h) does not perturb C2C12 myoblast growth, cell cycle and
cyclin B/D expression (Damm et al., 2013). Higher hypergravity
values (10 and 20 g, 2 h) evaluated after 24 h instead determine
an increase in cell proliferation up to 3.5 times compared to
normal gravity, and increase actin filament thickness (during
proliferation) and myosin expression (during differentiation,
Ciofani et al., 2012).

Significant modifications to myosin expression can also be
found. Moderate hypergravity (2 g, 8 weeks) determines myosin
heavy chain (MHC) compositional changes in rat muscle,
increasing the slow MHC I isoform in the slow postural soleus
muscle and MHC IIb in the fast agonist plantaris muscle (Fuller
et al., 2006).

In rats exposed to 2 g hypergravity (19 days), the cross-
sectional area of intrafusal fibers does not change. In B1 fibers,
MHC I and α-cardiac MHC expression is significantly increased,
whereas MHC IIa and MHC slow-tonic expression is decreased.
In B2 fibers, MHC IIa (region A), slow-tonic (region A), and fast
myosins (regions A–C) expression is significantly decreased. In
chain fibers, MHC IIa and fast MHC expression is significantly
reduced (Picquet et al., 2003).

The same hypergravity protocol determines a lower body
growth than controls, but also an increase in the soleus muscle
mass (15%) in rats. Distribution of MHC and troponin T
isoforms is retained in both soleus and plantaris. The isoform
expression pattern of troponin subunits I and C (TnI and TnC)
is instead changed in a slow-to-fast manner (soleus only, Stevens
et al., 2003).

When muscle features are assessed in rats exposed from
conception to mature stage (100 days) to 2 g, muscle weight is
found to be decreased, whereas fiber cross-sectional area/muscle
weight, and relative maximal tension, is found to be increased
compared to control animals. The soleus muscle changes into a
slower type concerning contractile parameters andMHC content
(only MHC I isoform is present). The plantaris muscle instead
presents a faster contractile behavior, and shows a higher diversity
of hybrid fiber types expressing multiple MHC isoforms (MHC
IIB and MHC IIX, Figure 1F, Picquet et al., 2002).

Similar modifications to muscle weight and cross-sectional
area are found in another study, showing that the specific force
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of soleus fibers is increased, and correlates with the elevation of
Ca2+ affinity. Moreover, TnI and TnC isoforms undergo slow-to-
slower transitions. TnT 3f and TnT 1f expression is, respectively,
up- and down-regulated, whereas Mhc I and Mhc IIa mRNA
transcription is, respectively, up- and down-regulated (Bozzo
et al., 2004).

On the whole, hypergravity seems to induce a skeletal muscle
transition to slow type fibers, with similar effects over different
periods of exposure. This may prove useful in all those conditions
affecting specific subsets of contractile proteins in skeletal muscle,
as for instance sarcopenia related to aging or to spinal cord
trauma (Ciciliot et al., 2013), with particular relevance to whole
organism treatment protocols.

IMMUNE SYSTEM

Hypergravity effects on the immune system are controversial.
Hypergravity for instance triggers metabolic pathways involved
in cellular activation/cytokine secretion, and increases the
expression of growth factor and immunoregulatory molecule
receptors (Cogoli, 1993).

Concerning cell migration (crucial to continuous immune
surveillance), hypergravity (10 g, 1–10 days) determines earlier
human T lymphocyte motility on fibronectin-coated surfaces
compared to normal gravity (Galimberti et al., 2006). Moderate
hypergravity (1.8 g during parabolic flight), instead significantly
inhibits human neutrophil migration, underlying possible effects
on immunity of space crews (Lang et al., 2010). Concerning
interplay among different cellular components of the immune
system, hypergravity (10 g followed by 1 g recovery) enhances
human dendritic cell ability of activating lymphocyte T
proliferation and adhesion (over 85%) to human vascular smooth
muscle cells (Bellik et al., 2009).

Hypergravity also enhances rat macrophage oxidative burst
reaction in real/simulated conditions (Adrian et al., 2013),
while increasing human polymorphonuclear leukocyte (PMN)
number (Kaufmann et al., 2009) and sensitivity to adenosine
(limiting PMNoxidative function) in parabolic flight participants
(Kaufmann et al., 2011).

In a murine model of asthma, hypergravity (10 g, 4 h) causes
symptom exacerbation by increasing serum interleukin-5 levels
and by promoting pulmonary infiltration of inflammatory cells
(Jang et al., 2014).

When hypergravity alternates to microgravity as in parabolic
flights, the expression of important proteins involved in human T
lymphocyte activation and signal transduction is altered (Tauber
et al., 2015). Interestingly, simulated gravity profiles of Shuttle
show that hormonal alterations triggering changes in leucocyte
and lymphocyte subsets are mostly related to the hypergravity
conditions of Shuttle launch and landing (Stowe et al., 2008).

Hypergravity (2 g, 3 weeks) also influences genetic
rearrangements occurring during mouse embryonic/fetal
development to generate the T cell receptor-beta chain (TCRβ)
repertoire (used by T lymphocytes to bind and recognize
antigens). Hypergravity acts on the transcription of genes
involved in T lymphopoiesis resulting in a different TCRβ

repertoire, and thus in a possible different ability to recognize
different antigens than at 1 g (Ghislin et al., 2015).

Concerning its potential use as a therapeutic approach
in pathological conditions due to infection, hypergravity (4
g) is reported to enhance survival of drosophila flies (wild
type and rescued yuri mutant) infected with a pathogenic
fungus (Beauveria bassiana). Experiments also demonstrate
that hypergravity improves resistance to Toll-mediated fungal
infections (Taylor et al., 2014). Of course, studies of hypergravity
effects on different animal models under pathological conditions
induced by bacterial infection are strongly needed prior to
envision a realistic application of hypergravity as a therapeutic
approach.

OTHER BIO-MOLECULAR PROCESSES

When exposed to hypergravity, many cells exhibit different
proliferation and energy consumption than at 1 g. For instance,
hypergravity (10 g, 48 h) improves cell proliferation by 20–30%
in different cell types (Tschopp and Cogoli, 1983). Glucose
consumption at 10 g is reduced with respect to 1 g, whereas
the proliferation rate is enhanced. Hypergravity-induced
enhancement of proliferation can be related to DNA polymerase
α, which is crucial in eukayotic replication, and shows increased
activity by stimulation up to 4 g for 1 h (Takemura and Yoshida,
2001). This result may prove particularly useful to the in vitro
expansion of stem cells prior to commitment and following
implantation in regenerative medicine protocols.

Other examples of biological adaptations to hypergravity are
the remodeling of the ECM in dermal fibroblasts (20 g, 8 h;
Gaubin et al., 1995), the increased production of cAMP in normal
follicular thyroid cells treated with thyroid-stimulating hormone
(9 g, 1 h; Meli et al., 1999), and the up-regulated heat shock
protein 47 transcription in myoblasts culture and muscles (40 g,
2 h; Oguro et al., 2006). Moreover, mice exposed to moderate,
short-term hypergravity (3 g, 4 h) show a greater cyclooxygenase
2 (Cox-2) transcription in the heart with respect to control
animals (Oshima et al., 2005), while the marker expression is
reduced by long-term hypergravity exposure (24 h). Since COX-
2 has a cardio-protective role, the use of COX-2 inhibitors
and other drugs enhances the risk of infarct and stroke under
increased gravitational stress (Oshima et al., 2007).

Concerning liver functions, mice undergone a 3 g treatment
for 12 h demonstrate a significantly higher transcription and
expression of hepatic inducible nitric oxide synthase, suggesting
negative impact on liver functions (Kim et al., 2014).

Hypergravity also affects melanocyte functions: human
melanocytes stimulated for 24 h up to 5 g show a marked
increment of cyclic guanosine monophosphate (GMP) efflux,
which can be related to malignant conversions (Ivanova et al.,
2003, 2004).

CONCLUSIONS

This mini-review summarizes recent results of cells/organisms
exposure to hypergravity, with focus on cell transcriptional/
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translational events relevant to therapeutic approaches.
The main objective of the review was reporting on the
biological responses to hypergravity first in vitro then in
vivo. This was obviously done in view of the application of
hypergravity to the preparation on tissue constructs in vitro
to be then implanted in vivo. This application requires deep
knowledge of biological responses to hypergravity, which is
to date largely deficitary, since the body of evidences in the
literature comprises significantly different and hardly relatable
hypergravity conditions, and since a deep comprehension
of the adaptive responses to the return to normal gravity is
missing.

Reporting on the biological responses of specific tissues in
intact organisms to hypergravity is motivated by the possibility
to expose whole bodies to hypergravity conditions in order
to achieve therapeutic goals. This is another application of
hypergravity which we deem extremely useful for several disease

conditions (osteoporosis, muscular impairment etc.). In this
concern, the understanding of the interplay among different
anatomical systems during and after hypergravity exposure is
though entirely insufficient and deserves future efforts from
the scientific community for hypergravity to represent a really
feasible therapeutic approach.
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