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Space is a challenging environment for the human body, due to the combined effects

of reduced gravity (microgravity) and cosmic radiation. Known effects of microgravity

range from the blood redistribution that affects the cardiovascular system and the eye to

muscle wasting, bone loss, anemia, and immune depression. About cosmic radiation, the

shielding provided by the spaceship hull is far less efficient than that afforded at ground

level by the combined effects of the Earth atmosphere and magnetic field. The eye and

its nervous layer (the retina) are affected by both microgravity and heavy ions exposure.

Considering the importance of sight for long-term manned flights, visual research aimed

at devising measures to protect the eye from environmental conditions of the outer

space represents a special challenge to meet. In this review we focus on the impact

of microgravity on embryonic development, discussing the roles of mechanical forces in

the context of the neutral buoyancy the embryo experiences in the womb. At variance

with its adverse effects on the adult human body, simulated microgravity may provide a

unique tool for understanding the biomechanical events involved in the development and

assembly in vitro of three-dimensional (3D) ocular tissues. Prospective benefits are the

development of novel safety measures to protect the human eye from cosmic radiation

in microgravity during long-term manned spaceflights in the outer space, as well as the

generation of human 3D-retinas with its supporting structures to develop innovative and

effective therapeutic options for degenerative eye diseases.
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THE HUMAN BODY IN SPACE FACES THE CHALLENGES POSED
BY MICROGRAVITY AND COSMIC RADIATION

Microgravity and cosmic radiation pose significant health hazards to astronauts during
long-duration spaceflights and are of special concern for the prospective exploration of the outer
space.

Although the word microgravity conveys the notion of a dramatically reduced force of gravity,
at the low Earth orbit (LEO, about 370 km of altitude) gravity is nearly 89% of its ground level.
However, an apparent centrifugal force related to the speed of the orbiting spaceship (about

http://www.frontiersin.org/Astronomy_and_Space_Sciences
http://www.frontiersin.org/Astronomy_and_Space_Sciences/editorialboard
http://www.frontiersin.org/Astronomy_and_Space_Sciences/editorialboard
http://www.frontiersin.org/Astronomy_and_Space_Sciences/editorialboard
http://www.frontiersin.org/Astronomy_and_Space_Sciences/editorialboard
https://doi.org/10.3389/fspas.2017.00002
http://crossmark.crossref.org/dialog/?doi=10.3389/fspas.2017.00002&domain=pdf&date_stamp=2017-04-25
http://www.frontiersin.org/Astronomy_and_Space_Sciences
http://www.frontiersin.org
http://www.frontiersin.org/Astronomy_and_Space_Sciences/archive
https://creativecommons.org/licenses/by/4.0/
mailto:giancarlo.demontis@farm.unipi.it
https://doi.org/10.3389/fspas.2017.00002
http://journal.frontiersin.org/article/10.3389/fspas.2017.00002/abstract
http://loop.frontiersin.org/people/262841/overview
http://loop.frontiersin.org/people/104322/overview
http://loop.frontiersin.org/people/265516/overview


Andreazzoli et al. Microgravity and 3D Tissue Generation

28,000 km/h) balances gravity. Therefore, microgravity indicates
the condition of weightlessness experienced by astronauts inside
the spaceship.

Microgravity adverse effects on the human body range from
endothelial cells (Versari et al., 2013) and blood distribution
to endocrine and reflex mechanisms controlling body water
homeostasis and blood pressure (Taibbi et al., 2013; Nelson et al.,
2014). Long-duration spaceflights also cause muscle wasting
(Gopalakrishnan et al., 2010), severe bone loss (Keyak et al.,
2009), immune depression (Cogoli et al., 1984; Cogoli, 1993;
Battista et al., 2012; Gasperi et al., 2014), and ophthalmic
problems (Nelson et al., 2014).

Astronauts also face the hazard posed by the cosmic radiation,
as they lack the protection afforded by the combined effects of
the Earth atmosphere and magnetic field. Astronauts are exposed
to high energy heavy ions of the cosmic radiation (Pinsky et al.,
1975; Casolino et al., 2003b), as suggested by properties and
relative abundance of particles inside space vehicles (Benton
et al., 1975; Pinsky et al., 1975; Casolino et al., 2003a,b; Di Fino
et al., 2011).

MICROGRAVITY, ADULT STEM CELLS,
AND TISSUE RENEWAL

Studies aimed at evaluating the link between microgravity and
impaired tissue renewal by adult stem cells generated conflicting
results, with methodological differences between simulated
microgravity (SMG) and real microgravity aboard spacecrafts
representing a confounding factor. We will now summarize the
main features of devices used to generate SMG, such as clinostat,
random positioning machine (RPM), rotating wall vessel (RWV;
for a review see Herranz et al., 2013).

In the clinostat, the gravity force still acts on cells but its
direction changes rhythmically, due to the rotation around a
single axis oriented 90◦ to the gravity vector (Dedolph and
Dipert, 1971), thus averaging the gravity vector to zero. The
critical point is the minimal presentation time, the minimum
amount of time the gravity vector has to keep a steady orientation
to generate a response (Brown et al., 1976). In plants, this
time ranges from <20 to over 200 s but is 2 or more order of
magnitude shorter in mammalian cells, which therefore require
a fast rotating clinostat (Cogoli, 1992). The RPM nullifies the
average gravity vector, although over a limited space, by rotating
randomly and at variable speeds on multiple axes. Therefore,
RPM is suitable for small samples, and rather than a true
microgravity cells will experience continuous changes of the
gravity vector that in plants may approximate real microgravity
(Hoson et al., 1997).

On the other hand, the RWV incubator keeps cells in
suspension by causing the fluid to move around them
(Hammond and Hammond, 2001). The device needs a fine
tuning to strike a balance between multiple factors, such as the
revolving speed of the RWV, the radius of cells/aggregates and
the difference in densities between cells and fluid. Interestingly,
the streaming fluid generatesmechanical forces (i.e., shear stress),
but also increases oxygen and nutrients available to cells cultured

in the RWV, by relieving them from the diffusion-limit that
holds in static cultures (Kwon et al., 2008). Thus, the RWV may
favor the growth of larger tissue aggregates (Lelkes et al., 1998;
Barzegari and Saei, 2012) compared to static culture conditions
(Mueller-Klieser et al., 1986; Sutherland et al., 1986). RWV
culturing may prove advantageous for tissue with high metabolic
rates, such as the retina (Ye et al., 2010), which must support the
high costs of ion transport in darkness (Demontis et al., 1995)
and phototransduction in light (Demontis et al., 1997). Improved
culturing of stem cells-derived photoreceptors may also enhance
their light responsiveness (Demontis et al., 2012; Zhong et al.,
2014).

Data indicate differences between real and SMG on the rate
of proliferation, stemness, cell cycle kinetics, and differentiative
potentials of cell types as diverse as hematopoietic stem cells
(CD34+), osteoblasts, and multilineage (mesenchymal) stem
cells. For instance, the proliferation of CD34+ was reduced
during LEO flights compared to ground controls, with the
differentiation toward the macrophage at the expense of
human myeloid and erythroid pre-cursors (Davis et al., 1996).
On the other hand, despite similarly reduced proliferation
during a comparable time span, SMG (RWV) was reported
to steer human CD34+ cells toward the myeloid fate,
an effect associated with slowed S-phase of the cell cycle
(Plett et al., 2004). At variance with the above findings,
CD34+ cells increased their proliferation rate when cultured
in RWV in the presence of VEGF, and differentiated into
endothelial precursors (Chiu et al., 2005). Similar conflicting
results were generated using multilineages bone marrow
mesenchymal stem cells (MSCs). Human MSCs cultured in
SMG (clinostat) increased proliferation and differentiate toward
a chondrogenic phenotype upon transplantation in cartilage-
deficient rats (Yuge et al., 2006). In contrast, rat MSCs in SMG
(clinostat) reduce their proliferation and ability to differentiate
toward a chondrogenic fate (Yan et al., 2015). In mouse,
bone resorption in microgravity associates with the down-
regulated expression of genes involved in early mesenchymal
and erythropoietic differentiation, and maintained stem cells
markers expression (Blaber et al., 2014). When cultured in 1
g, cells previously exposed to microgravity display an increased
mesenchymal and hematopoietic differentiation, suggesting that
microgravity causes an accumulation of undifferentiated pre-
cursors (Blaber et al., 2014). A role for the autophagic control of
osteoclastogenesis in response to microgravity has been proposed
for mouse bone (Sambandam et al., 2014). A recent review
by Ulbrich et al. (2014) details the impact of simulated and
real microgravity on bone and mesenchymal cells and their
osteogenic potential.

It is important to note that differences between either real
or SMG may not be apparent at the morphological level.
For instance, thyroid cancer cells formed spheroids of similar
morphology (although slightly dissimilar in size) under both real
(Pietsch et al., 2013) and SMG (Grimm et al., 2002;Ma et al., 2014;
Warnke et al., 2014). However, at the level of gene or protein
dosage, it becomes evident that at least in some systems space
flight and ground simulators exert different effects (Hammond
et al., 1999). These differences may be relevant for complex
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and sophisticated biological systems, such as stem cells in their
niche.

Last, spaceflight and clinostat did not change the secretion
of growth factors such as EGF and VEGF, at variance with
RPM (Warnke et al., 2014). Therefore, different simulators may
cause different effects and introduce confounding effects in the
analysis of the impact of real microgravity on the proliferation
and differentiation of adult stem cells toward specific cell fate.

Flight-associated stress is an additional confounding factor
that may contribute to suppressing lymphoid tissue response
to immunological challenging (Fitzgerald et al., 2009) and the
immune depression observed in astronauts (Cogoli et al., 1984;
Cogoli, 1993) also through apoptotic death (Battista et al.,
2012).

MICROGRAVITY, EMBRYONIC STEM
CELLS, AND DEVELOPMENT

In addition to adult stem cells, microgravity may also affect
embryonic development.

Spaceflight preserves the stemness of mouse embryonic stem
(ES) cells-derived progenitors and inhibits the expression of
markers of terminal differentiation for tissues derived from
the three primary germ layers (Blaber et al., 2015). However,
differences in the proliferation rate of mouse embryonic stem
(ES) cells cultured in SMG were shown to be transient, subsiding
after the 2nd day, with no difference in cell cycle kinetics
compared to 1 g controls (Wang et al., 2011). The reduced
implantation efficiency of either zygotes or blastocysts generated
in SMG (Wakayama et al., 2009) may also indicate an effect
on ES cells that impacts on early developmental stages of
mammalian embryos. However, the impaired viability of RWV-
cultured embryos may result from the shear stress-triggered (Xie
et al., 2006) increase in NO free radicals (Cao et al., 2007), and is
therefore unclear whether the adverse effects on implantation are
caused bymicrogravity rather than by a side effect of the culturing
system.

Studies also addressed the effects of microgravity on the
early stages of embryonic development of fish, amphibian, and
birds. In amphibia, the most consistent changes reported at early
developmental stages for oocytes developing in microgravity are
the abnormal division plane of the zygote and an increased
thickness of the roof of the blastocoel cavity at the gastrulae
stage (Souza et al., 1995). Additional examples of adverse
effects of microgravity on early embryonic development are the
high mortality observed in chicken eggs raised in microgravity
from oviposition time, due to the yolk failure to float in the
albumen, thus preventing the chorioallantoic membranes from
establishing a functional contact with the shell (Suda, 1998;
Pearson, 2004).

At the hatching tadpole stage, amphibian embryos raised in
SMG had enlarged head and eyes (Neff et al., 1993), with opposite
effects observed under increased gravity. These phenotypes
may relate to the effects of microgravity on the cytoskeleton
(summarized in Crawford-Young, 2006). A further, not mutually
exclusive, possibility is that the observed phenotypes could result

from an altered proliferation of the anterior neural system.
However, the observation that adult frogs raised in microgravity
are indistinguishable from those raised in 1 g might indicate
that, similarly to mouse ES cells, the effects of microgravity
are transient (Neff et al., 1993). In general agreement with
this notion, abnormalities of cytoplasm movements, and cell
adhesion in response to microgravity were found temporary
and, in general, reversible (Gualandris-Parisot et al., 2002).
Furthermore, there is evidence that in embryonic tissues the
effects of microgravity on gene expression may depend on
the developmental time, with changes in β-actin expression in
zebrafish embryos raised in microgravity peaking in the time
window spanning 24–72 h post-fertilization (Shimada et al.,
2005).

These data may indicate that, similar to mouse ES cells,
fish and amphibians embryos either adapt to microgravity
during early development, or their susceptivity to microgravity
is restricted over an early and short time span, making later
developmental stages resilient to long-lasting changes in the
force of gravity. The similarity of the embryonic responses to
microgravity is somewhat surprising, considering that amphibia
and fish develop in water, protected from themultiplemechanical
forces acting upon mammalian embryos. However, analysis of
the embryonic development in mammals reveals some surprising
analogies with the conditions occurring in fish and amphibia.

GRAVITY, BUOYANCY, AND EARLY
EMBRYONIC DEVELOPMENT

As shown in Figure 1, when the zygote reaches the uterus,
about 5–6 days after fertilization, a characteristic structural
rearrangement converts a compact mass of cells to a hollow
sphere filled with fluid, the blastocyst. At this stage, at one pole
of the blastocyst lies an inner mass of pluripotent stem (PS) cells,
which will generate all the embryo tissues and extraembryonic
membranes except for the chorion, which will give rise to the
placenta. After the blastocyst implants in the uterine wall, the
inner cell mass will organize into the hypoblast and the epiblast
epithelial layers, the latter lining an additional cavity that will fill
up with the amniotic fluid (AF).

Therefore, the complex biomechanical rearrangement of
the embryo from flat germ layers (ectoderm, mesoderm, and
endoderm) into three-dimensional (3D) organs and tissues do
occur while immersed in the AF. As highlighted in Figure 1,
every immersed body will experience a gravity-opposing force
or buoyant force. Whether this upward-directed force prevents
the body from sinking will depend on the difference between
the densities of the liquid and of that of the immersed
body, the well-known Archimedes’ principle or physical law of
buoyancy. AF composition is similar to adult blood plasma, being
mostly water with salts and proteins, and its relative density
is close to 1 (Underwood et al., 2005). Intriguingly, relative
densities of embryo tissues are lower than in the adult, with
the newborn value close to 1.00, lower than the adult value
of 1.07 (Weststrate and Deurenberg, 1989). Therefore, during
a time window going from about 10 days post fertilization
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FIGURE 1 | (A–D) Schematic representation of the main embryonic

developmental stages. Two-cell zygote (A); compact cell mass at morula (B);

blastocyst stages (C); with trophoblast cells (brown) encircling a cavity filled by

fluid (blue) where the inner cell mass (pink) sits at one pole. In (A,B) cells are

encased by the zona pellucida (gray). Zygote development up to the blastocyst

stage does occur before implantation. (D) Formation of hypoblast (gray) and

epiblast (green) layers after implantation. The initial amniotic cavity is delimited

by epiblast cells and filled with fluid (blue). The cavity above the hypoblast is

the yolk sac, which fills up with the yolk (yellow) and regresses at later

developmental stages. (E) A boat in the fluid will sink or float, depending on

the difference between the force of gravity (downward pointing yellow arrow)

and the buoyant force (upward pointing blue arrow). The rigid hull absorbs the

opposing forces and people inside the floating boat do experience gravity. (F)

A cell mass (pink) immersed in a fluid (blue) that has access to the interstitial

fluid between cells. (G) The orange arrow plots the timeline of organ

morphogenesis between implantation and the 20th week when skin

keratinization starts. The yellow arrow plots the time of amniotic fluid formation.

Blue dashed lines plot 1-week intervals till the 8th week when fetal life starts.

up to the 20th week the increase in AF volume matches
that of the embryo (Underwood et al., 2005). Therefore,
embryonic development takes place in a condition of neutral
buoyancy, i.e., the buoyant force just matches and opposes
gravity, due to the similar densities of the embryo and the
AF he is immersed in (Sekulic et al., 2005). This condition
of neutral buoyancy is likely to progressively vanish after the
20th week when the AF volume decreases and the increase
in the size of the fetus reduce its buoyancy (Sekulic et al.,
2005).

Importantly, in case the immersed body has rigid walls that
absorb the buoyant force, objects inside do not experience
a condition of neutral buoyancy, i.e., they still feel the full

FIGURE 2 | (A–C) Schematic representation of the main steps in retinal

formation. Optic vesicles form by evagination (A), and then flatten upon the

formation of hinges, where cells undergo apical constriction (B). The next step

(C) is the invagination starting at the hinge region (gray), driven by the

proliferation of neural retina pre-cursors (pink) illustrated in the box in (B,C).

Pigment epithelium-fated cells are black-lined. (D) Schematic drawing of the

effects of substrate shapes on stem cell differentiation. Multilineage cells

(green) may take either an adipogenic (yellow) or osteogenic (purple) fate at

concave or convex shapes, respectively.

force of gravity, as in the case of people sitting in a floating
boat. On the other hand, if the immersed body lacks a hard
shell then the buoyant force will be transmitted to the fluid
inside and is expected to relieve tissues from the influence of
gravity. Interestingly, in the human embryo skin keratinization
starts at about the 20th week (Underwood et al., 2005) so
that the extracellular fluid in the interstitial spaces between
cells is in contact with the AF. Intriguingly, the development
of most 3D structures in the developing embryo takes place
in the time window between 1 and 20 weeks, when AF is in
contact with the extracellular spaces and may generate a buoyant
force to relieve cells from gravity. Note that for the buoyant
force to effectively counteract gravity, subcellular compartments
should have the same densities, a notion consistent with data
from magnetic levitation experiments (Valles and Guevorkian,
2002).

MECHANICAL FORCES AND FATE
ASSIGNMENT

Insights into the possible role of microgravity during
organogenesis may come from the analysis of the biomechanics
of 3D tissue generation in vitro. Figure 2 illustrates the
development of the retina as assessed in vitro (Sasai et al.,
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2012), from either mouse ES (Eiraku et al., 2011), or human
iPS cells (Nakano et al., 2012). The three main developmental
steps involved in retina formation involve the generation
of the dome-shaped optic vesicle, which will flatten before
invaginating toward the innermost part of the vesicle. The
critical event in the invagination is the apical constriction
of the cells of the epithelial layer at a special transition
zone, to form a mechanical hinge between the pigmented
epithelium- and retinal-fated epithelial layers. After the
invagination, the growth of the retinal-fated layer is sensitive to
inhibitors of the mitotic fuse indicating a role for the pressure
exerted by the expansion of the proliferating epithelium, thus
highlighting the importance of cell proliferation for 3D tissue
development.

On the other hand, the biomechanical events involved
in the folding and bending of epithelial sheets, with the
generation of concave and convex surfaces, should also consider
the roles of mechanical forces as morphogens that affect
cell fate. Multilineage MSCs cultured in medium containing
differentiation factors favoring both adipose as well as bone tissue
development could be coaxed toward either an adipogenic or
an osteogenic fate using sinusoidally-shaped adhesive surfaces.
Specifically, they are mostly fated to adipose cells at the concave
edges, while taking an osteogenic fate at the convex edges
(Ruiz and Chen, 2008). Intriguingly, the stronger mechanical
forces exerted at the convex than at the concave edges
are critical for steering MSCs toward the osteogenic fate
(Ruiz and Chen, 2008). Substrate stiffness is also important
in steering MSCs fate (Engler et al., 2006), and recent
evidence indicates its involvement with 3D topography in
controlling the stemness of ES cells (Lü et al., 2014). These
data suggest that tensile gradients may operate as mechanical
morphogens.

The notion of mechanical morphogens may provide a
different perspective on the biomechanical events taking place
in 3D tissue development. The conceptual framework based on
quantitative models (Keller and Shook, 2011; Fletcher et al.,
2014) of the complex spatial and temporal dynamics (Eiraku
et al., 2012) underlying epithelial sheets folding in 3D structures
during embryonic development focuses on wedges formation
in response to chemical morphogens gradients. In turn, it
is conceivable that wedges formation prompted by chemical
morphogens may trigger forces that operate as mechanical
morphogens, which will act synergically with their chemical
triggers. This positive feedback may force fate assignments
by letting cells overcome a barrier in their developmental
landscape. According to this view, during the early stages of
embryonic development of 3D body structures, the buoyant
force may increase the overall efficiency of the process by
relieving the perturbing effects of gravity on mechanical
morphogens.

3D-TISSUE GENERATION IN
MICROGRAVITY: IMPACT ON OUTER
SPACE EXPLORATION AND QUALITY OF
LIFE OF AN AGING POPULATION

If microgravity were to play a role in embryonic development
beyond the unleashing of the full potential of mechanical
morphogens, it could be the delaying of stem cells differentiation
while maintaining them in a proliferative state. In the newt,
the retina grows through adult life, and both spaceflight and
SMG promote retinal regeneration in response to damage via
an increased cell proliferation in the early stages of regeneration
during spaceflight (Grigoryan et al., 1998, 2002). The expected
consequence of an expanded progenitors pool would be the
increased size of developing tissues. Indeed, in a clinical
condition known as microcephaly, a genetic defect leading to
an earlier than usual differentiation of radial glia progenitors
reduces the generation of neurons required to populate and build
up the cortex (Lancaster et al., 2013), ending up with reduced
cortical size. According to this notion, exploiting inducible PS
cells (iPS) technology (Takahashi et al., 2007; Nakagawa et al.,
2008), it would be possible to generate larger human 3D retinas
in microgravity. Human retinas generated in microgravity might
be used to address the roles of microgravity and cosmic radiation
in eye damage associated with prolonged manned space flights
(Nelson et al., 2014).

Understanding the possible role of microgravity in 3D tissue
development may foster either regenerative medicine approaches
or the development of improved assays to evaluate safety and
efficacy of new therapeutic agents for degenerative diseases.
Novel approaches may be of special importance for retinal
degenerations, such as retinitis pigmentosa and age-related
macular degenerations (Caras et al., 2014; Zarbin, 2016), which
represent a significant cause of blindness and presently lack
proven effective therapeutic options (Zarbin et al., 2014).

AUTHOR CONTRIBUTIONS

MA, DA, VB, and GD conceived, wrote, and critically revised
the paper and approved its final version. Authors agree to be
accountable for all aspects of the work in ensuring that questions
related to the accuracy or integrity of any part of the work are
appropriately investigated and resolved.

ACKNOWLEDGMENTS

This paper relies on the work on regenerative approaches in
retinal degenerations, which is supported by a grant from
Fondazione Roma to VB, DA, MA, and GD (Retinite pigmentosa
(RP) call for proposal 2013—Project RP-2013-00000013).

REFERENCES

Barzegari, A., and Saei, A. A. (2012). An update to space biomedical

research: tissue engineering in microgravity bioreactors. Bioimpacts 2, 23–32.

doi: 10.5681/bi.2012.003

Battista, N., Meloni, M. A., Bari, M., Mastrangelo, N., Galleri, G.,

Rapino, C., et al. (2012). 5-Lipoxygenase-dependent apoptosis of

human lymphocytes in the International Space Station: data from

the ROALD experiment. FASEB J. 26, 1791–1798. doi: 10.1096/fj.11-

199406

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 5 April 2017 | Volume 4 | Article 2

https://doi.org/10.5681/bi.2012.003
https://doi.org/10.1096/fj.11-199406
http://www.frontiersin.org/Astronomy_and_Space_Sciences
http://www.frontiersin.org
http://www.frontiersin.org/Astronomy_and_Space_Sciences/archive


Andreazzoli et al. Microgravity and 3D Tissue Generation

Benton, E. V., Henke, R. P., and Bailey, J. V. (1975). Heavy cosmic-ray exposure of

Apollo astronauts. Science 187, 263–265. doi: 10.1126/science.1111101

Blaber, E. A., Dvorochkin, N., Torres, M. L., Yousuf, R., Burns, B. P., Globus,

R. K., et al. (2014). Mechanical unloading of bone in microgravity reduces

mesenchymal and hematopoietic stem cell-mediated tissue regeneration. Stem

Cell Res. 13, 181–201. doi: 10.1016/j.scr.2014.05.005

Blaber, E. A., Finkelstein, H., Dvorochkin, N., Sato, K. Y., Yousuf, R.,

Burns, B. P., et al. (2015). Microgravity reduces the differentiation and

regenerative potential of embryonic stem cells. Stem Cells Dev. 24, 2605–2621.

doi: 10.1089/scd.2015.0218

Brown, A. H., Dahl, A. O., and Chapman, D. K. (1976). Limitation on the use of

the horizontal clinostat as a gravity compensator. Plant Physiol. 58, 127–130.

doi: 10.1104/pp.58.2.127

Cao, Y. J., Fan, X. J., Shen, Z., Ma, B. H., and Duan, E. K. (2007).

Nitric oxide affects preimplantation embryonic development in a rotating

wall vessel bioreactor simulating microgravity. Cell Biol. Int. 31, 24–29.

doi: 10.1016/j.cellbi.2006.09.003

Caras, I. W., Littman, N., and Abo, A. (2014). Proceedings: debilitating eye

diseases. Stem Cells Transl. Med. 3, 1393–1397. doi: 10.5966/sctm.2014-0221

Casolino, M., Bidoli, V., De Grandis, E., De Pascale, M. P., Furano, G.,

Morselli, A., et al. (2003a). Study of the radiation environment on MIR

space station with SILEYE-2 experiment. Adv. Space Res. 31, 135–140.

doi: 10.1016/S0273-1177(02)00880-3

Casolino, M., Bidoli, V., Morselli, A., Narici, L., De Pascale, M. P., Picozza, P., et al.

(2003b). Space travel: dual origins of light flashes seen in space.Nature 422:680.

doi: 10.1038/422680a

Chiu, B., Wan, J. Z., Abley, D., and Akabutu, J. (2005). Induction of vascular

endothelial phenotype and cellular proliferation from human cord blood

stem cells cultured in simulated microgravity. Acta Astronaut. 56, 918–922.

doi: 10.1016/j.actaastro.2005.01.018

Cogoli, A. (1993). Space flight and the immune system. Vaccine 11, 496–503.

doi: 10.1016/0264-410X(93)90217-L

Cogoli, A., Tschopp, A., and Fuchs-Bislin, P. (1984). Cell sensitivity to gravity.

Science 225, 228–230. doi: 10.1126/science.6729481

Cogoli, M. (1992). The fast rotating clinostat: a history of its use in gravitational

biology and a comparison of ground-based and flight experiment results.

ASGSB Bull. 5, 59–67.

Crawford-Young, S. J. (2006). Effects of microgravity on cell cytoskeleton and

embryogenesis. Int. J. Dev. Biol. 50, 183–191. doi: 10.1387/ijdb.052077sc

Davis, T. A., Wiesmann, W., Kidwell, W., Cannon, T., Kerns, L., Serke, C., et al.

(1996). Effect of spaceflight on human stem cell hematopoiesis: suppression of

erythropoiesis and myelopoiesis. J. Leukoc. Biol. 60, 69–76.

Dedolph, R. R., and Dipert, M. H. (1971). The physical basis of gravity

stimulus nullification by clinostat rotation. Plant Physiol. 47, 756–764.

doi: 10.1104/pp.47.6.756

Demontis, G. C., Aruta, C., Comitato, A., De Marzo, A., and Marigo, V.

(2012). Functional and molecular characterization of rod-like cells from retinal

stem cells derived from the adult ciliary epithelium. PLoS ONE 7:e33338.

doi: 10.1371/annotation/ca21f359-8e8e-4c3d-8308-e0f20fc446bb

Demontis, G. C., Longoni, B., Gargini, C., and Cervetto, L. (1997). The energetic

cost of photoreception in retinal rods of mammals.Arch. Ital. Biol. 135, 95–109.

Demontis, G. C., Ratto, G. M., Bisti, S., and Cervetto, L. (1995). Effect of

blocking the Na+/K+ ATPase on Ca2+ extrusion and light adaptation in

mammalian retinal rods. Biophys. J. 69, 439–450. doi: 10.1016/S0006-3495(95)

79917-9

Di Fino, L., Casolino, M., De Santis, C., Larosa, M., La Tessa, C., Narici, L., et al.

(2011). Heavy-ion anisotropy measured by ALTEA in the International Space

Station. Radiat. Res. 176, 397–406. doi: 10.1667/RR2179.1

Eiraku, M., Adachi, T., and Sasai, Y. (2012). Relaxation-expansion model

for self-driven retinal morphogenesis: a hypothesis from the perspective

of biosystems dynamics at the multi-cellular level. Bioessays 34, 17–25.

doi: 10.1002/bies.201100070

Eiraku, M., Takata, N., Ishibashi, H., Kawada, M., Sakakura, E., Okuda, S., et al.

(2011). Self-organizing optic-cup morphogenesis in three-dimensional culture.

Nature 472, 51–56. doi: 10.1038/nature09941

Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006). Matrix

elasticity directs stem cell lineage specification. Cell 126, 677–689.

doi: 10.1016/j.cell.2006.06.044

Fitzgerald, W., Chen, S., Walz, C., Zimmerberg, J., Margolis, L., and Grivel, J.-C.

(2009). Immune suppression of human lymphoid tissues and cells in rotating

suspension culture and onboard the International Space Station. In Vitro Cell.

Dev. Biol. Anim. 45, 622–632. doi: 10.1007/s11626-009-9225-2

Fletcher, A. G., Osterfield, M., Baker, R. E., and Shvartsman, S. Y. (2014).

Vertex models of epithelial morphogenesis. Biophys. J. 106, 2291–2304.

doi: 10.1016/j.bpj.2013.11.4498

Gasperi, V., Rapino, C., Battista, N., Bari, M., Mastrangelo, N., Angeletti,

S., et al. (2014). A functional interplay between 5-lipoxygenase and

mu-calpain affects survival and cytokine profile of human Jurkat T

lymphocyte exposed to simulated microgravity. Biomed. Res. Int. 2014:782390.

doi: 10.1155/2014/782390

Gopalakrishnan, R., Genc, K. O., Rice, A. J., Lee, S. M., Evans, H. J., Maender,

C. C., et al. (2010). Muscle volume, strength, endurance, and exercise loads

during 6-month missions in space. Aviat. Space Environ. Med. 81, 91–102.

doi: 10.3357/ASEM.2583.2010

Grigoryan, E. N., Anton, H. J., and Mitashov, V. I. (1998). Microgravity effects

on neural retina regeneration in the newt. Adv. Space Res. 22, 293–301.

doi: 10.1016/S0273-1177(98)80023-9

Grigoryan, E. N.,Mitashov, V. I., and Anton, H. J. (2002). Urodelean amphibians in

studies on microgravity: effects upon organ and tissue regeneration. Adv. Space

Res. 30, 757–764. doi: 10.1016/S0273-1177(02)00392-7

Grimm,D., Kossmehl, P., Shakibaei, M., Schulze-Tanzil, G., Pickenhahn, H., Bauer,

J., et al. (2002). Effects of simulated microgravity on thyroid carcinoma cells. J.

Gravit. Physiol. 9, P253–P256.

Gualandris-Parisot, L., Husson, D., Bautz, A., Durand, D., Kan, P., Aimar, C., et al.

(2002). Effects of space environment on embryonic growth up to hatching of

salamander eggs fertilized and developed during orbital flights. Biol. Sci. Space

16, 3–11. doi: 10.2187/bss.16.3

Hammond, T. G., and Hammond, J. M. (2001). Optimized suspension culture: the

rotating-wall vessel. Am. J. Physiol. Renal Physiol. 281, F12–F25.

Hammond, T. G., Lewis, F. C., Goodwin, T. J., Linnehan, R. M., Wolf, D. A., Hire,

K. P., et al. (1999). Gene expression in space.Nat. Med. 5:359. doi: 10.1038/7331

Herranz, R., Anken, R., Boonstra, J., Braun, M., Christianen, P. C., de Geest, M.,

et al. (2013). Ground-based facilities for simulation of microgravity: organism-

specific recommendations for their use, and recommended terminology.

Astrobiology 13, 1–17. doi: 10.1089/ast.2012.0876

Hoson, T., Kamisaka, S., Masuda, Y., Yamashita, M., and Buchen, B. (1997).

Evaluation of the three-dimensional clinostat as a simulator of weightlessness.

Planta 203(Suppl.), S187–S197. doi: 10.1007/pl00008108

Keller, R., and Shook, D. (2011). The bending of cell sheets–from folding to rolling.

BMC Biol. 9:90. doi: 10.1186/1741-7007-9-90

Keyak, J. H., Koyama, A. K., LeBlanc, A., Lu, Y., and Lang, T. F. (2009).

Reduction in proximal femoral strength due to long-duration spaceflight. Bone

44, 449–453. doi: 10.1016/j.bone.2008.11.014

Kwon, O., Devarakonda, S. B., Sankovic, J. M., and Banerjee, R. K. (2008). Oxygen

transport and consumption by suspended cells in microgravity: a multiphase

analysis. Biotechnol. Bioeng. 99, 99–107. doi: 10.1002/bit.21542

Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles,

M. E., et al. (2013). Cerebral organoids model human brain development and

microcephaly. Nature 501, 373–379. doi: 10.1038/nature12517

Lelkes, P. I., Galvan, D. L., Hayman, G. T., Goodwin, T. J., Chatman, D. Y., Cherian,

S., et al. (1998). Simulated microgravity conditions enhance differentiation of

cultured PC12 cells towards the neuroendocrine phenotype. In Vitro Cell. Dev.

Biol. Anim. 34, 316–325. doi: 10.1007/s11626-998-0008-y

Lü, D., Luo, C., Zhang, C., Li, Z., and Long, M. (2014). Differential

regulation of morphology and stemness of mouse embryonic stem

cells by substrate stiffness and topography. Biomaterials 35, 3945–3955.

doi: 10.1016/j.biomaterials.2014.01.066

Ma, X., Pietsch, J., Wehland, M., Schulz, H., Saar, K., Hübner, N., et al.

(2014). Differential gene expression profile and altered cytokine secretion

of thyroid cancer cells in space. FASEB J. 28, 813–835. doi: 10.1096/fj.13-

243287

Mueller-Klieser,W., Freyer, J. P., and Sutherland, R.M. (1986). Influence of glucose

and oxygen supply conditions on the oxygenation of multicellular spheroids.

Br. J. Cancer 53, 345–353. doi: 10.1038/bjc.1986.58

Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T.,

et al. (2008). Generation of induced pluripotent stem cells without Myc from

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 6 April 2017 | Volume 4 | Article 2

https://doi.org/10.1126/science.1111101
https://doi.org/10.1016/j.scr.2014.05.005
https://doi.org/10.1089/scd.2015.0218
https://doi.org/10.1104/pp.58.2.127
https://doi.org/10.1016/j.cellbi.2006.09.003
https://doi.org/10.5966/sctm.2014-0221
https://doi.org/10.1016/S0273-1177(02)00880-3
https://doi.org/10.1038/422680a
https://doi.org/10.1016/j.actaastro.2005.01.018
https://doi.org/10.1016/0264-410X(93)90217-L
https://doi.org/10.1126/science.6729481
https://doi.org/10.1387/ijdb.052077sc
https://doi.org/10.1104/pp.47.6.756
https://doi.org/10.1371/annotation/ca21f359-8e8e-4c3d-8308-e0f20fc446bb
https://doi.org/10.1016/S0006-3495(95)79917-9
https://doi.org/10.1667/RR2179.1
https://doi.org/10.1002/bies.201100070
https://doi.org/10.1038/nature09941
https://doi.org/10.1016/j.cell.2006.06.044
https://doi.org/10.1007/s11626-009-9225-2
https://doi.org/10.1016/j.bpj.2013.11.4498
https://doi.org/10.1155/2014/782390
https://doi.org/10.3357/ASEM.2583.2010
https://doi.org/10.1016/S0273-1177(98)80023-9
https://doi.org/10.1016/S0273-1177(02)00392-7
https://doi.org/10.2187/bss.16.3
https://doi.org/10.1038/7331
https://doi.org/10.1089/ast.2012.0876
https://doi.org/10.1007/pl00008108
https://doi.org/10.1186/1741-7007-9-90
https://doi.org/10.1016/j.bone.2008.11.014
https://doi.org/10.1002/bit.21542
https://doi.org/10.1038/nature12517
https://doi.org/10.1007/s11626-998-0008-y
https://doi.org/10.1016/j.biomaterials.2014.01.066
https://doi.org/10.1096/fj.13-243287
https://doi.org/10.1038/bjc.1986.58
http://www.frontiersin.org/Astronomy_and_Space_Sciences
http://www.frontiersin.org
http://www.frontiersin.org/Astronomy_and_Space_Sciences/archive


Andreazzoli et al. Microgravity and 3D Tissue Generation

mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106. doi: 10.1038/

nbt1374

Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., et al.

(2012). Self-formation of optic cups and storable stratified neural retina from

human ESCs. Cell Stem Cell 10, 771–785. doi: 10.1016/j.stem.2012.05.009

Neff, A. W., Yokota, H., Chung, H. M., Wakahara, M., and Malacinski,

G. M. (1993). Early amphibian (anuran) morphogenesis is sensitive to

novel gravitational fields. Dev. Biol. 155, 270–274. doi: 10.1006/dbio.1993.

1024

Nelson, E. S., Mulugeta, L., and Myers, J. G. (2014). Microgravity-induced fluid

shift and ophthalmic changes. Life 4, 621–665. doi: 10.3390/life4040621

Pearson, J. (2004). The effects of simulated microgravity on avian embryonic

development. Biol. Sci. Space 18, 122–123.

Pietsch, J., Ma, X., Wehland, M., Aleshcheva, G., Schwarzwälder, A., Segerer, J.,

et al. (2013). Spheroid formation of human thyroid cancer cells in an automated

culturing system during the Shenzhou-8 Space mission. Biomaterials 34,

7694–7705. doi: 10.1016/j.biomaterials.2013.06.054

Pinsky, L. S., Osborne, W. Z., Hoffman, R. A., and Bailey, J. V. (1975).

Light flashes observed by astronauts on Skylab 4. Science 188, 928–930.

doi: 10.1126/science.188.4191.928

Plett, P. A., Abonour, R., Frankovitz, S. M., and Orschell, C. M. (2004). Impact of

modeled microgravity on migration, differentiation, and cell cycle control of

primitive human hematopoietic progenitor cells. Exp. Hematol. 32, 773–781.

doi: 10.1016/j.exphem.2004.03.014

Ruiz, S. A., and Chen, C. S. (2008). Emergence of patterned stem cell

differentiation within multicellular structures. Stem Cells 26, 2921–2927.

doi: 10.1634/stemcells.2008-0432

Sambandam, Y., Townsend, M. T., Pierce, J. J., Lipman, C. M., Haque, A.,

Bateman, T. A., et al. (2014). Microgravity control of autophagy modulates

osteoclastogenesis. Bone 61, 125–131. doi: 10.1016/j.bone.2014.01.004

Sasai, Y., Eiraku, M., and Suga, H. (2012). In vitro organogenesis in

three dimensions: self-organising stem cells. Development 139, 4111–4121.

doi: 10.1242/dev.079590

Sekulic, S. R., Lukac, D. D., and Naumovic, N. M. (2005). The fetus cannot

exercise like an astronaut: gravity loading is necessary for the physiological

development during second half of pregnancy. Med. Hypotheses 64, 221–228.

doi: 10.1016/j.mehy.2004.08.012

Shimada, N., Sokunbi, G., and Moorman, S. J. (2005). Changes in gravitational

force affect gene expression in developing organ systems at different

developmental times. BMC Dev. Biol. 5:10. doi: 10.1186/1471-213X-5-10

Souza, K. A., Black, S. D., and Wassersug, R. J. (1995). Amphibian development

in the virtual absence of gravity. Proc. Natl. Acad. Sci. U.S.A. 92, 1975–1978.

doi: 10.1073/pnas.92.6.1975

Suda, T. (1998). Lessons from the space experiment SL-J/FMPT/L7: the effect of

microgravity on chicken embryogenesis and bone formation. Bone 22, 73S–78S.

doi: 10.1016/s8756-3282(98)00021-0

Sutherland, R. M., Sordat, B., Bamat, J., Gabbert, H., Bourrat, B., and Mueller-

Klieser, W. (1986). Oxygenation and differentiation in multicellular spheroids

of human colon carcinoma. Cancer Res. 46, 5320–5329.

Taibbi, G., Cromwell, R. L., Kapoor, K. G., Godley, B. F., and Vizzeri, G. (2013).

The effect of microgravity on ocular structures and visual function: a review.

Surv. Ophthalmol. 58, 155–163. doi: 10.1016/j.survophthal.2012.04.002

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., et al.

(2007). Induction of pluripotent stem cells from adult human fibroblasts by

defined factors. Cell 131, 861–872. doi: 10.1016/j.cell.2007.11.019

Ulbrich, C., Wehland, M., Pietsch, J., Aleshcheva, G., Wise, P., van Loon,

J., et al. (2014). The impact of simulated and real microgravity on

bone cells and mesenchymal stem cells. Biomed Res. Int. 2014:928507.

doi: 10.1155/2014/928507

Underwood, M. A., Gilbert, W.M., and Sherman, M. P. (2005). Amniotic fluid: not

just fetal urine anymore. J. Perinatol. 25, 341–348. doi: 10.1038/sj.jp.7211290

Valles, J. M. Jr., and Guevorkian, K. (2002). Low gravity on earth by magnetic

levitation of biological material. J. Gravit. Physiol. 9, P11–P14.

Versari, S., Longinotti, G., Barenghi, L., Maier, J. A., and Bradamante, S. (2013).

The challenging environment on board the International Space Station affects

endothelial cell function by triggering oxidative stress through thioredoxin

interacting protein overexpression: the ESA-SPHINX experiment. FASEB J. 27,

4466–4475. doi: 10.1096/fj.13-229195

Wakayama, S., Kawahara, Y., Li, C., Yamagata, K., Yuge, L., and Wakayama,

T. (2009). Detrimental effects of microgravity on mouse preimplantation

development in vitro. PLoS ONE 4:e6753. doi: 10.1371/journal.pone.0

006753

Wang, Y., An, L., Jiang, Y., and Hang, H. (2011). Effects of simulated

microgravity on embryonic stem cells. PLoS ONE 6:e29214.

doi: 10.1371/journal.pone.0029214

Warnke, E., Pietsch, J., Wehland, M., Bauer, J., Infanger, M., Görög, M., et al.

(2014). Spheroid formation of human thyroid cancer cells under simulated

microgravity: a possible role of CTGF and CAV1. Cell Commun. Signal. 12:32.

doi: 10.1186/1478-811X-12-32

Weststrate, J. A., and Deurenberg, P. (1989). Body composition in children:

proposal for a method for calculating body fat percentage from total body

density or skinfold-thickness measurements. Am. J. Clin. Nutr. 50, 1104–1115.

Xie, Y., Wang, F., Zhong, W., Puscheck, E., Shen, H., and Rappolee, D. A. (2006).

Shear stress induces preimplantation embryo death that is delayed by the

zona pellucida and associated with stress-activated protein kinase-mediated

apoptosis. Biol. Reprod. 75, 45–55. doi: 10.1095/biolreprod.105.049791

Yan, M., Wang, Y., Yang, M., Liu, Y., Qu, B., Ye, Z., et al. (2015). The effects

and mechanisms of clinorotation on proliferation and differentiation in

bone marrow mesenchymal stem cells. Biochem. Biophys. Res. Commun. 460,

327–332. doi: 10.1016/j.bbrc.2015.03.034

Ye, X., Wang, Y., and Nathans, J. (2010). The Norrin/Frizzled4 signaling pathway

in retinal vascular development and disease. Trends Mol. Med. 16, 417–425.

doi: 10.1016/j.molmed.2010.07.003

Yuge, L., Kajiume, T., Tahara, H., Kawahara, Y., Umeda, C., Yoshimoto,

R., et al. (2006). Microgravity potentiates stem cell proliferation while

sustaining the capability of differentiation. Stem Cells Dev. 15, 921–929.

doi: 10.1089/scd.2006.15.921

Zarbin, M. (2016). Cell-based therapy for degenerative retinal disease. Trends Mol.

Med. 22, 115–134. doi: 10.1016/j.molmed.2015.12.007

Zarbin, M. A., Casaroli-Marano, R. P., and Rosenfeld, P. J. (2014). Age-

related macular degeneration: clinical findings, histopathology and imaging

techniques. Dev. Ophthalmol. 53, 1–32. doi: 10.1159/000358536

Zhong, X., Gutierrez, C., Xue, T., Hampton, C., Vergara, M. N., Cao, L.

H., et al. (2014). Generation of three-dimensional retinal tissue with

functional photoreceptors from human iPSCs. Nat. Commun. 5:4047.

doi: 10.1038/ncomms5047

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2017 Andreazzoli, Angeloni, Broccoli and Demontis. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) or licensor are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 7 April 2017 | Volume 4 | Article 2

https://doi.org/10.1038/nbt1374
https://doi.org/10.1016/j.stem.2012.05.009
https://doi.org/10.1006/dbio.1993.1024
https://doi.org/10.3390/life4040621
https://doi.org/10.1016/j.biomaterials.2013.06.054
https://doi.org/10.1126/science.188.4191.928
https://doi.org/10.1016/j.exphem.2004.03.014
https://doi.org/10.1634/stemcells.2008-0432
https://doi.org/10.1016/j.bone.2014.01.004
https://doi.org/10.1242/dev.079590
https://doi.org/10.1016/j.mehy.2004.08.012
https://doi.org/10.1186/1471-213X-5-10
https://doi.org/10.1073/pnas.92.6.1975
https://doi.org/10.1016/s8756-3282(98)00021-0
https://doi.org/10.1016/j.survophthal.2012.04.002
https://doi.org/10.1016/j.cell.2007.11.019
https://doi.org/10.1155/2014/928507
https://doi.org/10.1038/sj.jp.7211290
https://doi.org/10.1096/fj.13-229195
https://doi.org/10.1371/journal.pone.0006753
https://doi.org/10.1371/journal.pone.0029214
https://doi.org/10.1186/1478-811X-12-32
https://doi.org/10.1095/biolreprod.105.049791
https://doi.org/10.1016/j.bbrc.2015.03.034
https://doi.org/10.1016/j.molmed.2010.07.003
https://doi.org/10.1089/scd.2006.15.921
https://doi.org/10.1016/j.molmed.2015.12.007
https://doi.org/10.1159/000358536
https://doi.org/10.1038/ncomms5047
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Astronomy_and_Space_Sciences
http://www.frontiersin.org
http://www.frontiersin.org/Astronomy_and_Space_Sciences/archive

	Microgravity, Stem Cells, and Embryonic Development: Challenges and Opportunities for 3D Tissue Generation
	The Human Body In Space Faces The Challenges Posed By Microgravity And Cosmic Radiation
	Microgravity, Adult Stem Cells, And Tissue Renewal
	Microgravity, Embryonic Stem Cells, And Development
	Gravity, Buoyancy, And Early Embryonic Development
	Mechanical Forces And Fate Assignment
	3D-Tissue Generation In Microgravity: Impact On Outer Space Exploration And Quality Of Life Of An Aging Population
	Author Contributions
	Acknowledgments
	References


