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Satellite tracking involves sending electromagnetic signals to Earth. Both the orbit of the

spacecraft and the electromagnetic signals themselves are affected by the curvature

of spacetime. The arrival time of the pulses is compared to the ticks of local clocks

to reconstruct the orbital path of the satellite to high accuracy, and implicitly measure

general relativistic effects. In particular, Schwarzschild space curvature (static) and

frame-dragging (stationary) due to the planet’s spin affect the satellite’s orbit. The

dominant relativistic effect on the path of the signal photons is Shapiro delays due to

static space curvature. We compute these effects for some current and proposed space

missions, using a Hamiltonian formulation in four dimensions. For highly eccentric orbits,

such as in the Junomission and in the Cassini Grand Finale, the relativistic effects have a

kick-like nature, which could be advantageous for detecting them if their signatures are

properly modeled as functions of time. Frame-dragging appears, in principle, measurable

by Juno and Cassini, though not by Galileo 5 and 6. Practical measurement would

require disentangling frame-dragging from the Newtonian “foreground” such as the

gravitational quadrupole which has an impact on both the spacecraft’s orbit and the

signal propagation. The foreground problem remains to be solved.

Keywords: frame dragging, planetary spin, general relativity, higher order general relativistic effects, Junomission,

Cassini Grand Finale

1. INTRODUCTION

General relativity (GR) describes gravitation as a consequence of a curved four dimensional
spacetime (Iorio, 2015; Debono and Smoot, 2016). In most astrophysical systems, however,
dynamics are dominated by Newtonian physics and GR only provides very small perturbations.
Near a mass M, the relativistic perturbations on an orbiting or passing body depend mostly on
the pericenter distance, which we call p, in units of the gravitational radius GM/c2. Newtonian
effects are of order O(p−1/2). The largest relativistic perturbation is time dilation, and is of
O(p−1). Space curvature, referring to space-space terms in the metric tensor, enters dynamics at
O(p−3/2). AtO(p−2) mixed space-timemetric terms enter the dynamics; these correspond to frame-
dragging effects, in which a spinning mass drags spacetime in its vicinity and thereby affects the
orbit and orientation of objects in its gravitational field. Gravitational radiation corresponds to
dynamical effects of O(p−3). In post-Newtonian notation, X PN (e.g., 1 PN, 2 PN, . . . ) corresponds
to O(p−X−1/2). In the Solar System, p is very large in gravitational terms: ∼108 or more. In close
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binary systems p can be much less. In binary pulsars the
combination of comparatively low p ∼ 105 with the long-term
stability of pulsar timing enables the measurement of relativistic
effects down to gravitational radiation (Taylor, 1994; Kramer
et al., 2006).

All the same effects are, in principle, present for artificial Earth
satellites, but since p ∼ 109, they are much weaker. Nonetheless,
until now the frame-dragging effect of the Earth’s spin has been
detected in two different ways: (1) the LAGEOS and LARES
satellites used laser ranging to measure orbital perturbations
from frame-dragging (Ciufolini and Pavlis, 2004; Ciufolini et al.,
2016) (some aspects are still controversial Iorio et al., 2011;
Renzetti, 2013, 2015; Iorio, 2017); (2) Gravity Probe B measured
the effects of frame-dragging on the orientation of onboard
gyroscopes (Everitt et al., 2011). GPS satellites are well known
to be sensitive to time dilation (Ashby, 2003) and upcoming
missions will put even more precise clocks in orbit. In the
Atomic Clock Ensemble in Space (ACES) mission (Cacciapuoti
and Salomon, 2011), two atomic clocks will be brought to the
ISS in order to perform such experiments. However, the ISS is
not the optimal place to probe GR and a dedicated satellite on a
highly eccentric orbit would be desirable. Its proximity to Earth
and high velocity at pericenter would boost relativistic effects
and therefore improve the measurements. Several such satellites
equipped with an onboard atomic clock and a microwave or
optical link on very eccentric orbits, such as STE-QUEST, have
been discussed and studied (Altschul et al., 2015). Such missions
would not only be very interesting to probe gravity but also have
a plethora of applications, e.g., in geophysics (Bondarescu et al.,
2012, 2015).

Missions like Juno and Cassini present new possibilities for
measuring relativistic effects around the giant planets in our Solar
System. The basic idea goes back to the early days of general
relativity, when Lense and Thirring (Lense and Thirring, 1918)
showed that the orbital plane of a satellite precesses about the spin
axis of the planet—that is what we now call frame-dragging— and
identified the expected precession of Amalthea’s orbit by 1′ 53′′

per century as the most interesting case. Recent work has drawn
attention to the corresponding precession in the case of Juno
(Iorio, 2010, 2013; Helled et al., 2011) and other systems (Iorio,
2005, 2011, 2012).

The classical Lense-Thirring precession is an orbit-averaged
effect. This comes with the problem that the very small precession
due to relativity is masked by much larger non-relativistic
precession, making it very hard to identify the relativistic
contribution. For example, most of Mercury’s observed
precession is due to Newtonian planetary perturbations, the
relativistic contribution being only about 7% of the total (Park
et al., 2017). It is better to have something with a specific time
dependence that can be filtered out.

Here, we extend the work of Angélil et al. for terrestrial
satellites (Angélil et al., 2014) and the Galactic center (Kannan
and Saha, 2009; Preto and Saha, 2009; Angélil and Saha, 2010;
Angélil and Saha, 2011, 2014; Angélil et al., 2010; Zhang
and Iorio, 2017) and apply it to other planets in the Solar
System. Since the orbits are dominated by Newtonian physics,
and relativity only contributes very small perturbations, their

investigation is numerically challenging. In earlier work (Angélil
et al., 2014) the orbits were therefore simulated with smaller
semi-major axes compared to the real orbit and then, by knowing
how the individual effects scale, the redshift curves were obtained
by correctly scaling up. Here, we use an arbitrary precision code
instead.

We look at an idealized model where a spacecraft sends
electromagnetic signals to a ground station. Comparing the
relativistic 4-momentum of the emitted photon to that of the
one received at the station allows determining a redshift z (see
Equation 3). Equivalently, one can consider an orbiting clock
which sends out signals corresponding to the ticks of the clock
(Angélil and Saha, 2010; Angélil et al., 2014). Then, the redshift
arises when two photons emitted by the spacecraft at an interval
of proper time 1τ travel through curved spacetime hitting the
observer with a difference in the arrival time 1t = 1τ (1 + z).
In both cases, a one-way signal transfer is considered. Typically,
satellite communication systems allow two-way signal transfer.
For a comparison of distant ground clocks like done with ACES,
this leads to a first order cancellation of the position errors of the
clocks (Duchayne et al., 2009).

To estimate the relativistic effects, we solve for the trajectory
of

1. the satellite in a curved spacetime, and
2. the photons (or propagating ticks from the frequency

standard) as they propagate to the receiving station

in a given gravitational field. Both the satellite and the photons
follow geodesics of the metric and can be obtained by integrating
the relativistic Hamiltonian, expanded in velocity orders. The
redshift depends on both the classical Doppler shift as well as
a number of relativistic effects. Both trajectories are generated
numerically via a simulation code that handles multiple scales
through variable precision. The effects are modulated by the
varying gravitational field.

The paper proceeds as follows: Section 2 describes the
approximations we make for the spacetime outside a planet. It
presents the Hamiltonian system that is being solved numerically
with the higher order relativistic effects, and their respective
scalings with orbital size. We then compute the magnitude of
the spin parameter, of Schwarzschild precession and frame-
dragging effects for the planets in our Solar System, and report
them relative to the effects around Earth for orbits of similar
proportionality. Sections 4.1 and 4.2 apply this formalism to the
Juno and Cassini Missions. Section 4.3 discusses the Galileo 5
and 6 satellites and other proposed Earth-bound missions. In
particular, it discusses the importance of eccentricity in detecting
relativistic effects.

Conclusions and potential future directions are presented in
Section 5.

2. GENERAL RELATIVISTIC EFFECTS

Calculating relativistic effects fundamentally involves two things:
the metric and the geodesic equations. The well-known epigram
by J.A. Wheeler states Spacetime tells matter how to move, matter
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tells spacetime how to curve. The metric is known explicitly in
terms of the masses, including mass multipoles, and spin rates.
The geodesic equation, in general, requires a numerical solution.
However, in special or approximate cases analytical solutions
also exist (Klioner and Kopeikin, 1992; Ashby and Bertotti, 2010;
D’Orazio and Saha, 2010; Hees et al., 2014; Crosta et al., 2015).

We wish to understand how different terms in the metric,
in particular the spin part, affect the observable redshift signal.
To do this, we will numerically integrate the geodesic equations
with different metric terms turned on and off and compare the
resulting redshift signal curves.

In Section 2.1 we briefly introduce the Hamiltonian formalism
and the formula for calculating the redshift. This is followed by
Section 2.2, which discusses the expansion of both the orbital
as well as the signal Hamiltonian. In Section 2.3 we discuss the
spin parameter and in Section 2.4 we discuss the cumulative
changes of the Keplerian elements due to orbital relativistic
effects. Finally, in Section 2.5 we investigate how the sizes of
the relativistic signals scale for the different planets in the Solar
System.

2.1. Basic Formulation
We work with the geodesic equations in four dimensions, in
Hamiltonian form. The independent variable is not time, but the
affine parameter, which is just the proper time in arbitrary units.
Although the formalism seems complex, it actually tends to lead
to simpler equations (Angélil and Saha, 2010; Angélil et al., 2014)
than other formulations.

For any spacetime metric, the geodesic equations may be
expressed in Hamiltonian form as

dxµ

dλ
= ∂H

∂pµ

dpµ

dλ
= − ∂H

∂xµ
(1)

where

H = 1
2 g

µν(xα)pµpν (2)

with xµ = (t, ri) being the four-dimensional coordinates, pµ =
(pt , pi) being the canonical momenta, and λ being the affine
parameter.

The satellite at position Er = (ri) orbiting with 4-velocity
u

µ
emit emits a photon with 4-momentum pemit

µ which arrives at

an observer (having velocity uν
obs) with momentum pobsν . The

redshift is then given by

z =
pemit
µ u

µ
emit

pobsν uν
obs

− 1. (3)

For a distant observer at rest, the redshift for orbital effects
reduces to

z = 1

c
utemit −

1

c
uLOSemit − 1, (4)

where uLOSemit is the satellite’s velocity along the line of sight.

2.2. The Expanded Hamiltonian
In this subsection we use geometrized units. That is, Er is measured
in units of GM/c2 where M is the planetary mass, while t is
measured in units of GM/c3. The momentum is dimensionless.
Since the orbits considered are close to Keplerian, the order-of-
magnitude relations

|Ep| ∼ υ

c
, r ∼

(υ

c

)−2
(5)

will hold, where v is the orbital speed. The time-momentum pt is
constant and its value only affects internal units of a calculation.
It is convenient to set pt = −1.

As usual in post-Newtonian celestial mechanics, we order
contributions in powers of υ/c. These correspond to different
physical effects. Moreover, the ordering in powers of υ/c
is different for the spacecraft orbit and the light signals.
Accordingly, we consider two Hamiltonians, as follows.

Horbit = Hequiv-prin +HSchwarzschild +Hspin

Hsignal = HMinkowski +HShapiro
(6)

Since there is only one spacetime, Horbit and Hsignal are just
different approximations to the same underlying Hamiltonian.

The orbit of the satellite is dominated by

Hequiv-prin = −p2t
2

+
(

−p2t U(Er )+ Ep 2

2

)

(7)

where U(Er) is minus the Newtonian gravitational potential, to
leading order 1/r but also including multipole moments Jn as
well as the tidal potential due to the Sun and other planets. The
first term on the right is of order unity, while the bracketed
part is of order v2/c2. This Hamiltonian leads to a Newtonian
orbit and redshift contribution of order v/c, together with a
time dilation effect of order v2/c2. Gravitational time dilation is
a basic consequence of the geometric description of spacetime,
i.e., the principle of equivalence. Indeed, Equation (7) is the
simplest Hamiltonian consistent with the equivalence principle
that gives the correct Newtonian limit. Moving clocks tick slower
than stationary ones. So do clocks in a gravitational field. For an
orbiting clock, both effects are equal to leading order. The ground
station will have its own time dilation too, of course, and the
difference is what matters. Time dilation causes the localization
of a satellite to be off by kilometers, which has already been taken
into account by the early phases of GPS. While this relativistic
effect is well established, the Galileo satellites will measure it to
unprecedented precision.

Since higher order relativistic effects cause small changes in
the redshift, they can be studied perturbatively. We investigate
each effect individually by adding it toHequiv-prin, and computing
the cumulative redshift. The redshift perturbation is obtained by
subtracting the redshift when the effect is artificially turned off.

The next contribution to Horbit is

HSchwarzschild = −p2t
r2

− Ep 2

r
(8)
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which introduces the effect of space curvature in the
Schwarzschild spacetime. It is easy to verify from Equation
(5) that the Hamiltonian terms are of order sυ4/c4, and they
contribute to redshift at order sυ3/c3, where s is the spin
parameter. Note that the s is larger for planets (∼102 − 103) than
for more compact systems like black holes (s ∼ 1) and thus the
spin terms are significantly larger than what one would expect
from just looking at velocity order.

The leading-order frame-dragging effect arises when adding
the term

Hspin = −2pt
r3

Ep · (Es× Er). (9)

This term is of order sυ5/c5 and contributes a redshift effect
of order sυ4/c4. Frame-dragging is due to the rotation of the
central mass, which spins with Es, and depends linearly on the spin
parameter s = |Es|. At next higher order, the dominant term is
a spin-squared term, i.e., it is proportional to s2 (Angélil et al.,
2014). This effect has never been measured before. But since s is
quite large for planets (see Table 1), probing this effect should be
within the scope of future satellite missions.

The leading multipole contribution comes from J2 in the
Newtonian Hamiltonian Equation (7) and scales as 1/r3.
Therefore, it has a different r-dependence as the relativistic effects
discussed here. The relativistic effect with the same r-scaling
would be the spin-squared effect.

The main contribution to the redshift comes from the velocity
along the line of sight. Therefore, in order to measure a certain
relativistic effect, it is desirable to have an orbit-observer-
configuration where the relativistic effect has a significant
contribution to the line of sight velocity. For first order spin, the
leading contribution is given by

1zspin = − 2

r2
Es · (r̂ × b̂), (10)

where b̂ is the unit vector pointing from the satellite toward the
observer. Interestingly, the spin related redshift contribution has
no explicit dependence on the satellite’s velocity.

The signal photons travel to leading order on a straight line.
The leading relativistic effect, leading to a slight bending, is
Shapiro delay. This part is best analyzed after transforming to a
Solar System frame. The signal Hamiltonian is given by the sum
of

HMinkowski = −p2t
2

+ Ep 2

2
(11)

and

HShapiro = −U(Ep )
(

p2t + Ep 2
)

. (12)

At the next order of expansion, further Shapiro-like terms as well
as spin terms appear. However, they are expected to be too small
to be measured. The effect of frame-dragging on light signals
was calculated, e.g., by Kopeikin (1997) and Wex and Kopeikin
(1999).

2.3. The Spin Parameter
The dimensionless spin parameter of a celestial body is given by

s = c

GM2

∫

ρ(Ex)ω(Ex) r2⊥ d3Ex . (13)

For solid-body rotation (ω = 2π/P, where P is the spin period)
the above expression reduces to

s = 2π ×MoI× c

gP
(14)

where

MoI = 1

MR2

∫

ρ(Ex) r2⊥ d3Ex (15)

is the dimensionless moment of inertia and g = GM/R2 is the
surface gravity, where R is the average radius of the body. For
realistic density and ω profiles

s ∼ c

gP
(16)

is still a useful rough estimate. It may be convenient to remember
it as the number of days needed to reach the speed of light from
an acceleration of one g.

For yet another interpretation of the spin parameter, let us
consider two speeds: the surface speed of a spinning planet vs ∼
R/P and the launching speed needed to send something into
orbit from the surface υ2

l
∼ gR. In terms of these speeds, the

approximate formula (16) becomes

s ∼ cvs

υ2
l

. (17)

The maximal-spinning situation vs ≈ υl corresponds to a planet
spinning so fast that it almost breaks up under centrifugal forces.
In this limit s ∼ c/υl. Recalling the orders in Hspin in Equation
(9), we can see that that Hamiltonian term would be of order
υ4/c4 and the corresponding redshift effect would be of order
υ3/c3. That is, for a low-orbiting spacecraft above a maximally-
spinning planet, relativistic spin effects will be comparable in size
to space-curvature effects.

2.4. Keplerian Elements
AKeplerian orbit is described by the Keplerian elements a, e,�, I,
and ω. While a and e describe the size and the eccentricity of the
ellipse, the three angles describe its orientation with respect to
some reference plane.

For a relativistic orbit this is not true anymore, as the
relativistic effects induce deviations from Keplerian motion.
In principle, however, it is still possible to determine the
instantaneous Keplerian elements at each point along the orbit:
These correspond to a Keplerian orbit having exactly the same
velocity as the relativistic one at a given position.

It is well-known that space curvature leads to a precession of
the pericenter

1ωSchwarzschild = GM

c2
6π

a(1− e2)
(18)
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TABLE 1 | Gravitational and spin parameters for the planets and the Moon.

Object U ≡ GM/(c2R) g ≡ GM/R2 [m/s2] MoI s Spin period [days]
1zSchw,Obj

1zSchw,Earth

1zSpin,Obj
1zSpin,Earth

Mercury 1.00× 10−10 3.7 0.35 35.2 58.65 5.5× 10−2 9.9× 10−4

Venus 5.98× 10−10 8.9 0.33 3.3 243.02 8.0× 10−1 3.3× 10−3

Earth 6.95× 10−10 9.8 0.3308 738.3 1.00 1.0 1.0

Moon 3.12× 10−11 1.6 0.394 194.8 27.32 9.5× 10−3 5.3× 10−4

Mars 1.40× 10−10 3.7 0.366 2, 093.5 1.02 9.1× 10−2 1.2× 10−1

Jupiter 2.02× 10−8 25.9 0.265 564.0 0.41 1.6× 102 6.4× 102

Saturn 7.00× 10−9 10.4 0.220 988.0 0.44–0.45 3.2× 101 1.4× 102

Uranus 2.52× 10−9 8.9 0.225 770.1 0.67–0.76 6.9 1.4× 101

Neptune 3.06× 10−9 11.1 0.236 691 0.63–0.71 9.2 1.8× 101

Sun 2.12× 10−6 273.7 0.07 0.2 25.05 1.7× 105 2.8× 103

For the gravitational potential U and acceleration g, values at the surface are given; values from orbit will be somewhat smaller. MoI values for the giant planets are

derived using interior models that reproduce the gravitational fields of the planets (Helled et al., 2015). All other quantities are derived using parameters provided by NASA

[http://nssdc.gsfc.nasa.gov/planetary/factsheet]. The two columns on the right give the ratio between the redshift signals of orbits around the respective object and the signals for

a similar orbit around Earth.

for one orbit.
However, ω is not shifted evenly along the orbit, in fact, there

is almost no shift during most of the orbit, but around pericenter
there is a kick-like shift. Similarly, there is a precession of the
pericenter due to frame-dragging (Lense and Thirring, 1918;
Mashhoon et al., 1984)

1ωSpin = −s
12π

√
GM cos I

[

a(1− e2)
]3/2

(19)

per orbit and also there is a precession of the longitude of the
ascending node

1�Spin = s
4π

√
GM

[

a(1− e2)
]3/2

(20)

per orbit. Figure 1 shows the precession of the longitude of the
ascending node together with the actual shift for a typical Juno
orbit.

Measuring time-averaged precessions is not actually a useful
strategy, because the slightest use of spacecraft engines changes
all the Keplerian elements. But similarly to the Keplerian
elements, relativistic effects affect the observed redshift in a kick-
like manner at pericenter. Therefore, relativistic effects influence
a single pericenter passage and when the instrument is accurate
enough, they can be probed as a function of time vs. waiting for
their build up over many orbits.

2.5. Scaling of Relativistic Effects
The size of the effects scale with the size of the orbit (Angélil
and Saha, 2010). For Schwarzschild space curvature and first
order spin, the respective scaling laws for the residual redshifts
are 1zSchwarzschild ∼ (rG/r)3/2 and 1zSpin ∼ s(rG/r)2 where
rG = GM/c2 is the gravitational radius. Writing distances in
terms of planetary radii r = αR, we obtain

1z1

1z2
=
(

s1

s2

)m ( r1G
r2G

r2

r1

)n

=
(

s1

s2

)m (U1

U2

α2

α1

)n

, (21)

where Ui = GMi/(Ric2) is the gravitational potential at the
surface of planet i and m = 0, 1 and n = 3/2, 2 for
Schwarzschild curvature and first order spin effect, respectively.
For similar orbits around different planets, i.e., α1 = α2

with the same eccentricity and identical Keplerian angles, this
reduces to 1z1/1z2 = (s1/s2)m(U1/U2)n. Thus, the higher the
compactnessM/R of a planet, the higher the relativistic effect. For
frame-dragging effects, the spin parameter has also to be taken
into account.

Using the expression above, we can compare the sizes of
relativistic effects of orbits around the planets, the Moon and the
Sun to terrestrial orbits. The ratio between the signals for similar
orbits is given in Table 1.

3. PLANETARY PARAMETERS

The planetary parameters relevant for calculating relativistic
effects are summarized in Table 1. The Moon and the Sun are
also included for comparison.

The values of the gravitational potential U at the surface are
ordered as one might expect. Jupiter with 2 × 10−8 has the
highest, while for the Earth the value is 30 times smaller.

The values of the spin parameter may be surprising. Black
holes must have s < 1 as is well known, but planets can have
s ≫ 1. Mars has the highest s ∼ 2090, while Venus has the lowest
s ∼ 3, but most planets have an s with a value that is typically
in the hundreds. Incidentally, the Sun’s spin parameter will be
small: The Sun has a much larger g than any planet, and it spins
differentially, roughly once a month; as a result, the Sun has a
much smaller s than the Earth. The uncertainty in s depends on
the uncertainties in the MoI and in the spin period.

Although neither the density profile nor internal differential
rotation can be measured directly, internal structure models
provide MoI values for the gas giants, and these are thought
to be accurate to a few percent (Helled, 2011; Helled
et al., 2011; Nettelmann et al., 2015). The Radau-Darwin
approximation (Zharkov and Trubitsyn, 1980) relates the MoI
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FIGURE 1 | Change of the longitude of the ascending node � for a typical

Juno orbit due to spin. The solid line shows the actual change of �, while the

dashed line represents the averaged change given by Equation 20.

to the gravitational quadrupole J2 and the ratio of centrifugal
to gravitational acceleration at the equator. In future it may
become possible to measure planetary MOI from precession
(Maistre et al., 2016). At present, the estimated MoI is∼0.265 for
Jupiter (Helled et al., 2011) and ∼0.220 for Saturn (Guillot and
Gautier, 2007; Helled, 2011). Evidently, Saturn is more centrally
condensed than Jupiter.

The rotation period remains somewhat uncertain for all
the giant planets other than Jupiter (Helled et al., 2009, 2010,
2015). Saturn’s internal rotation period is unknown to within
∼10 min. It has been acknowledged that the rotation period
is unknown since Cassini ’s Saturn kilometric radiation (SKR)
measured a rotation period of 10 h 47 m 6 s (Gurnett et al.,
2007), longer by about 8 min than the radio period of 10
h 39 m 22.4 s measured by Voyager (Ingersoll and Pollard,
1982). In addition, during Cassini ’s orbit around Saturn the
radio period was found to be changing with time. It then
became clear that SKR measurements do not represent the
rotation period of Saturn’s deep interior. Due to the alignment
of the magnetic pole with the rotation axis, Saturn’s rotation
period cannot be obtained from magnetic field measurements
(Sterenborg and Bloxham, 2010). Theoretical efforts to infer
the rotation period (Anderson and Schubert, 2007; Read et al.,
2009; Helled et al., 2015) indicate further sources of uncertainty.
Saturn’s rotation period is thought to be between ∼10 h 32 m
and ∼10 h 47 m. For Uranus and Neptune, the uncertainty
could be as large as 4 and 8%, respectively (Helled et al.,
2010).

A further complexity arises from the fact that the giant planets
could have non-body rotations (e.g., differential rotation on
cylinders/spheres) and/or deep winds. However, in that case, the
deviation from a mean solid-body rotation period is expected
to be small. Future space missions to Uranus and/or Neptune,
performing accurate measurements of their gravitational fields,
could be used to determine the spin parameter of these
planets.

4. RELATIVISTIC EFFECTS FOR CURRENT
AND PLANNED MISSIONS

We now determine the effects of relativity on the redshift signal
for different orbits around different planets. In Section 4.1 we
consider a typical orbit of the Juno spacecraft around Jupiter,
followed by a typical Cassini orbit around Saturn in Section 4.2.
Finally, in Section 4.3, we discuss terrestrial orbits.

4.1. Jupiter Orbit
On July 4, 2016, the Juno mission arrived at Jupiter and
started orbiting the planet. It is equipped to perform high
precision measurements (operating at X-band and Ka-band)
of its gravitational field. The 53-days orbits are polar with
perijove being at∼1.09 Jupiter radii and apojove at∼120 Jupiter
radii. Such orbits provide ideal conditions for gravitational field
measurements, and allow the spacecraft to avoid most of the
Jovian radiation field. After more than 4 years of measurementes
and ∼32 orbits around Jupiter, Juno is planned to make one
last orbit and then perform the deorbiting maneuver (see e.g.,
Matousek, 2007).

We compute the leading-order relativistic effects on the orbit
of the Juno mission. They measure the precession of the orbit
due to the curvature of the spacetime and contain a part that
accumulates as well as a transient part, which has never been
measured. The effect that occurs due to the Schwarzschild term
in the Hamiltonian produces aMercury-like precession (solid red
curve), while the other is referred to as frame-dragging due to
the spin of Jupiter. Measuring the latter directly constrains the
spin parameter of the planet, which is proportional to its moment
of inertial and angular momentum. It thus reveals important
information about the planet’s internal density structure that is
not necessarily identical to that contained in the gravitational
moments.

The Juno orbiter has already entered a highly elliptical polar
orbit around Jupiter. It is measuring deviations in the velocity
of the spacecraft ∼10µm/s (τ/60 s )−1/2. This corresponds to a
sensitivity to redshift change of 1z ∼ 3× 10−14.

At each pericenter passage of Juno, both the instantaneous
Keplerian elements and the orientation to the observer change.
Therefore, in order to discuss relativistic effects on the basis
of the Juno mission, we consider a typical orbit with average
values a = 60 × RJupiter, e = 0.981, � = 253◦, I = 93.3◦,
ω = 170◦ and observer position θobs = 92.9◦ (polar angle),
φobs = 15.0◦ (azimuthal angle). Figure 2 shows the characteristic
redshift curves for the different effects for such a Juno orbit. For
all science orbits, the sizes of the effects, in particular of the spin
effect, are similar.

Figure 3 shows the part in the redshift due to the presence
of Jupiter’s spin over one orbit. After pericenter passage, the
relativistic and the non-relativistic orbit are out of sync and a
comparison does not make sense anymore. The lower panel of
the figure zooms into the peak around pericenter, revealing that
the interesting time span is of order ∼1 h. This is the phase that
needs to be observed in order to seek the characteristic imprint of
frame-dragging in the redshift data.
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FIGURE 2 | Higher order relativistic effects for the Juno orbiter. The plot shows

the magnitude of the redshift signal due to the different relativistic effects. The

parameters chosen correspond to a typical science orbit. The curves change

slightly for other orbits, however, the order of magnitude of the effects is the

same. Also the Newtonian effect due to J2 is shown.

Over any one orbit, only one component of the spin vector
contributes at leading order, namely the spin component along

r̂peri × b̂ (see Equation 10). To be sensitive to all components

of the spin, orbits with different orientations of r̂peri × b̂ are
needed. Figure 4 shows the polar and azimuthal angles of this
vector for all the Juno science orbits. The orientations are varied,
and hence Juno is sensitive to all three components of the spin
vector.

The frame-dragging effect will, moreover, be a pathfinder
to measuring yet weaker effects. The spin terms depend on
the spin profile inside the planet. Measuring the spin profile
would therefore play a role in constraining planet properties and
formation models. Future deep-space missions could enable tests
of general relativity around other planets in the Solar System
whose composition and internal structure are unknown.

4.2. Saturn Orbit
The Cassini mission is planned to finish its exploration of
the Saturnian system with proximal orbits around Saturn
that will provide accurate measurements of the gravitational
field of the planet. The Cassini spacecraft is planned to
execute 22 highly inclined (63.4◦) orbits with a periapsis
of ∼1.02 Saturn radii (Edgington and Spilker, 2016). These
proximal orbits, known as Cassini Grand Finale, operating at
X-band, are also ideal for gravity measurements. They are
expected to provide range rate accuracies of ∼12 µm/s at
1,000 s integration times, being about four times noisier than
Juno.

Both the Juno and the Cassini spacecrafts will terminate
their operations by descending into the atmospheres of Jupiter
and Saturn, respectively, and will disintegrate and burn up in
order to fulfill the requirements of NASA’s Planetary Protection
Guidelines.

FIGURE 3 | (Upper) contribution to the redshift from frame-dragging by

Jupiter’s spin, for the same orbit as in Figure 2. The signal peaks at the orbit

pericenter passage. (Lower) zoom into pericenter passage.

Cassini has a sensitivity that is about 1 z ∼ 10−13.
Relativistic effects peak around the pericenter with the
frame-dragging effect of maximum amplitude ∼10−13

and the Schwarzschild curvature term of ∼10−11. Ideally,
the goal would be to resolve both the Schwarzschild and
frame-dragging parts of the precession as a function of
time. If they could be modeled effectively, they would less
likely be drowned by Newtonian noise than a cumulative
effect.

Figure 5 shows the corresponding curves for a typical Cassini
orbit. For Cassini, we chose the values a = 10× RSaturn, e = 0.9,
� = 175◦, I = 62◦, ω = 187◦, θobs = 63.3◦ and φobs = −5◦.

4.3. Earth Orbit
Next we discuss satellites in Earth orbit. To illustrate the
importance of eccentricity, Figure 6 shows the redshift curve
for a typical terrestrial satellite with a low eccentricity (e =
0.1561, a = 27′977 km) as for the Galileo 5 and 6 satellites and
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FIGURE 4 | Orientation of the vector r̂peri × b̂ for Juno science orbits. Here b̂ is

the line of sight to Juno, and θ ,φ in the Figure are with respect to to Jupiter’s

axis. The timing signal is sensitive to the planetary spin projected along these

various directions.

FIGURE 5 | Higher order relativistic effects for Cassini.

a high eccentricity (e = 0.779, a = 32′090 km) orbit, while
leaving all other Keplerian elements as well as the observer’s
position constant. However, the actual curve depends highly on
the orientation of the orbit and the position of the observer
and must be computed individually for each orbit-observer-
configuration. Also, that the visibility of the satellite around
pericenter might not be provided needs to be taken into account.
For the Galileo satellites, the curve would be significantly
flatter—without a clear peak around pericenter due to the low
eccentricity. The only relativistic effect besides time dilation that
is within the measurability range is the Schwarzschild space
curvature effect. It is expected that it will improve the currently
best measurement given by Gravity Probe A (Delva et al.,
2015).

FIGURE 6 | Redshift curves of terrestrial satellites. The dashed curves give the

results for an orbit with the semi-major axis and eccentricity corresponding to

the ones of the Galileo 5 and 6 satellites. The solid lines give the results for a

typical satellite with high eccentricity while all the other Keplerian elements and

the observer’s position were left the same.

5. CONCLUSIONS

A spinning body causes spacetime to rotate around it, thus
making nearby angular momentum vectors precess. This had
already been considered theoretically in the early days of
general relativity (Lense and Thirring, 1918). Only in recent
years, however, has the effect entered the experimental realm
(Ciufolini and Pavlis, 2004; Everitt et al., 2011; Ciufolini et al.,
2016).

Frame-dragging is usually thought of as a steady precession.
For highly eccentric orbits, however, this is far from the
case. While having a minor impact along most of the orbit,
frame-dragging kicks in around pericenter. This can be seen
in Figure 1 which shows the change of the longitude of
ascending node due to spin for some example orbits of the
Juno spacecraft. An analogous situation applies to the S stars in
orbit around the Galactic-center black hole (Angélil and Saha,
2014). We suggest that these pericenter-kicks could provide a
distinctive signature in timing signals obtained from spacecraft
tracking.

The frame-dragging contribution to the redshift of spacecraft
signals is

1zspin = −2

(

GM

c2r

)2

Es · (r̂ × b̂) (22)

(given in geometrized units as in Equation 10) where b̂ is the
line of sight to the spacecraft, and Es is the dimensionless spin
vector. Substituting the approximation expression Equation 16
for the spin parameter, and assuming that the spacecraft has a
low pericenter, so that rperi is of the same order as the planetary
radius, gives

1zspin ∼ GM

c3P
(23)
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where P is the spin period. Jupiter has GM/c3 ∼ 5 ns and P ∼
10 h, indicating1zspin ∼ 10−13. Furthermore, as Figure 3 shows,
the frame-dragging signal is concentrated over a duration of 2 h
around the pericenter.

In this paper we have modeled the effects of the curvature
of the spacetime on both the orbit of a spacecraft and on the
electromagnetic signals it sends to Earth. The aim is to quantify
how the different relativistic effects influence the observable
redshift signal. Geodesic equations are written in four dimensions
in Hamiltonian form. Orbit equations for a spacecraft are a
straightforward initial-value problem, while the equations for
light signals traveling between the spacecraft and the observer
form a boundary-value problem. Both sets of equations are solved
numerically, using extended-precision floating point arithmetic,
to compute redshift signals. Different metric terms are turned on
and off to compare the signatures of each effect on the signal. We
particularly focus on the spin terms, for which there are good
predictions for the planets in our solar system. The eccentricity
of the orbit can also increase the size of the terms by at least an
order of magnitude.

Figures 2, 5, 6 show example orbits of Juno, Cassini, and
the eccentric Galileo spacecraft, respectively. They also show the
effect of the quadrupole J2, which is orders of magnitude larger
than the spin effect, but has a different time dependence. For
the eccentric Galileo satellites, relativistic time dilation reaches
∼10−9 and is expected to be accurately measured; the leading
order effects of a Schwarzschild spacetime are ∼10−13 and will be

challenging; spin effects are two orders of magnitude smaller and
hence unlikely to be measured. For both Juno and Cassini, spin
effects reach∼10−13 which is well above timing uncertainties.

Measurability centers on whether the frame-dragging signal
can be disentangled from the much larger quadrupole and
other “foreground” effects (Finocchiaro et al., 2011; Tommei
et al., 2015; Serra et al., 2016). The specific and known time-
dependence of the frame-dragging signal offers some hope of
doing so, but the question remains open.
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