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We present a long-term, multi-wavelength project to understand the epoch of fastest

growth of the most massive black holes by using a sample of 40 luminous quasars at z ≃

4.8. These quasars have rather uniform properties, with typical accretion rates and black

hole masses of L/LEdd ≃ 0.7 and MBH ≃ 109M⊙. The sample consists of “FIR-bright”

sources with a previous Herschel/SPIRE detection, suggesting SFR >1,000M⊙ yr−1, as

well as of “FIR-faint” sources for which Herschel stacking analysis implies a typical SFR

of ∼400M⊙ yr−1. Six of the quasars have been observed by ALMA in [C II] λ157.74µm

line emission and adjacent rest-frame 150µm continuum, to study the dusty cold ISM.

ALMA detected companion, spectroscopically confirmed sub-mm galaxies (SMGs) for

three sources—one FIR-bright and two FIR-faint. The companions are separated by

∼14–45 kpc from the quasar hosts, and we interpret them as major galaxy interactions.

Our ALMA data therefore clearly support the idea that major mergers may be important

drivers for rapid, early SMBH growth. However, the fact that not all high-SFR quasar

hosts are accompanied by interacting SMGs, and their ordered gas kinematics observed

by ALMA, suggest that other processes may be fueling these systems. Our analysis

thus demonstrates the diversity of host galaxy properties and gas accretion mechanisms

associated with early and rapid SMBH growth.

Keywords: sub-millimeter galaxies, galaxy mergers, quasars: supermassive black holes, Quasars: host galaxies,

high-redshift galaxies

1. INTRODUCTION

The highest-redshift quasars, observed at z ∼5–7 suggest that supermassive black holes (SMBHs)
withMBH ≃ 109M⊙ existed about 1 Gyr after the big bang, which challenges our understanding of
BH formation and early growth, and how these processes relate to the galaxies that host the earliest
SMBHs.

In order to account for the observed high BH masses of the earliest quasars, many models
have promoted the possibility of high-mass BH seed formation, in dense stellar populations in
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proto-galaxies and/or through the direct collapse of gaseous
halos (see, e.g., Natarajan, 2011; Volonteri, 2012, for reviews).
Regardless of the seed mass, the subsequent BH growth must
proceed at high accretion rates and high duty cycles. The former
is indeed directly observed, as the accretion rate of high-z quasars
approaches L/LEdd ≃ 1 (e.g., Kurk et al., 2007; Willott et al.,
2010; De Rosa et al., 2011; Trakhtenbrot et al., 2011). The
latter requirement is found to be somewhat more challenging.
One way to efficiently fuel SMBH accretion is through major
mergers of gas rich galaxies (Sanders et al., 1988; Hopkins et al.,
2006). Suchmergers would be more common in dense large-scale
environments. Moreover, several simulations have suggested that
over-dense large-scale environments would expedite the growth
of the most massive early BHs, as large amounts of inter galactic
gas could stream onto the SMBHs host galaxies (Dekel et al., 2009;
Di Matteo et al., 2012; Dubois et al., 2012; Costa et al., 2014).

Regardless of the exact mechanism driving the nearly
continuous SMBH fueling, the low angular momentum gas
is expected to trigger intense star formation (SF) throughout
the host, and any interacting galaxy. Several observations
of high-redshift quasars (including our own; see §2) have
indeed identified intense SF, with growth rates exceeding
SFR ∼1,000M⊙ yr−1 (e.g., Mor et al., 2012; Netzer et al., 2014,
2016). Although these high SFRs are suggestive ofmerger activity,
the low spatial resolution of the far-IR (FIR) data prohibited any
detailed investigation of this possibility. Other dedicated searches
for close companions have identified some examples of major
mergers (Wagg et al., 2012), but most searches did not yield
convincing evidence for merger activity (e.g., Willott et al., 2005).
Similarly, wide-field imaging campaigns aimed at determining
whether high-z quasars are found in over-dense large-scale
environments yielded ambiguous results (Willott et al., 2005; Kim
et al., 2009; Husband et al., 2013; Bañados et al., 2013; Simpson
et al., 2014).

Here we describe a pilot study with ALMA that aims to
identify major galaxy-galaxy interactions among a sample of
six fast-growing SMBHs at z ≃ 4.8. The full presentation of
this study was recently published in The Astrophysical Journal
(Trakhtenbrot et al., 2017, T17 hereafter), and here we only
provide a brief summary of the sample, the ALMA observations,
and our main results. The interested reader is encouraged to
refer to T17 for any additional details. Throughout this work, we
assume a cosmological model with �3 = 0.7, �M = 0.3, and
H0 = 70 km s−1 Mpc−1.

2. SAMPLE AND ALMA OBSERVATIONS

Our sample of six quasars is drawn from a larger sample of
40 sources at z ≃ 4.8, for which reliable estimates of MBH,
L/LEdd, and integrated host SFRs are available through our long-
term, multi-wavelength observational effort, conducted using
the VLT, Gemini, Spitzer, and Herschel facilities. The z ≃

4.8 quasars typically have MBH ≃ 109M⊙ and L/LEdd ≃

0.7, and the sample covers a rather limited range in these
two quantities (see Trakhtenbrot et al., 2011, T11 hereafter).
The host galaxies, on the other hand, exhibit a wide range in

SFRs. While ∼75% of the systems have SFR ∼ 400M⊙ yr−1,
as determined from Herschel stacking analysis (“FIR-faint”
systems), the outstanding 25% are individually detected and have
SFR ∼1,000–4,000M⊙ yr−1 (“FIR-bright” systems; see Netzer
et al., 2014, 2016). The Herschel data available prior to the
ALMA campaign is therefore suggestive of a scenario where
major mergers may be in play in at least in a fraction of these
systems. The six quasars selected for our pilot ALMA study are
equally split between “FIR-bright” and “FIR-faint” subsets, in an
attempt to address this possibility.

The ALMA band-7 observations were designed to detect
and resolve, at kpc scales, the emission from the prominent
[C II] λ157.74µm line and the adjacent continuum. While the
continuum emission probes the spatial distribution of cold dusty
ISM in the quasar hosts, the [C II] emission line—which is an
efficient ISM coolant—probes their kinematics and can be used to
spectroscopically confirm the nature of any companion galaxies
(e.g., Maiolino et al., 2009; Wagg et al., 2012; Wang et al., 2013;
Neri et al., 2014). We used the extended C34-4 configuration
of ALMA, providing a resolution of ∼0.′′3 at 330 GHz. This
corresponds to about 2 kpc at z ≃ 4.8. The ALMA field of
view covers distances of ∼6.′′8, or almost 50 kpc, from the quasar
locations. The chosen spectral setup provided four windows, each
covering 1,875 MHz (∼1,650 km s−1), at a resolution of ∼30
km s−1. On-source integrations lasted between 11 and 54 min,
with longer integrations for the “FIR-faint” sources. The resulting
limiting flux densities were Fν ∼ (4.2–9.2)×10−2 mJy/beam
(rms). At the redshifts of the quasars, and under reasonable
assumptions regarding the possible shapes of their FIR SEDs, this
corresponds to lower limits of roughly 4–11M⊙ yr−1 kpc−2 (at
the 3σ level).

3. RESULTS

The host galaxies of all six quasars are robustly detected, and
(marginally) resolved, in both continuum and [C II] emission.
As an example, we show inf Figure 1 the continuum and [C II]
emission maps of one of the “FIR-faint” sources in our sample,
SDSS J092303.53+024739.5 (zQSO = 4.6589; J0923 hereafter).

In what follows, we highlight our main findings from the
analysis of these data. We demonstrate these findings using
different diagrams for the aforementioned source J0923. We note
that many of the choices we made through the analysis of the
ALMA data were motivated by recent sub-mm studies of z & 5
quasars (Wang et al., 2013; Willott et al., 2015; Venemans et al.,
2016). The reader is referred to T17 for a detailed discussion of
our analysis and assumptions.

3.1. Quasar Hosts
We measure a wide range in (spatially-integrated) 345 GHz
continuum flux densities, between Fν ≃ 1.6–18.5 mJy. This
wide range in continuum levels is reminiscent of that of the
FIR luminosities and SFRs measured from the Herschel/SPIRE
data (which covered rest-frame wavelengths of ∼45–90 µm).
Indeed, we find that the new ALMA continuum measurements
are generally in very good agreement with the Herschel
measurements, under reasonable assumptions regarding the
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FIGURE 1 | Maps of the dust continuum (left) and [C II] λ157.74µm line (right) emission for one of the quasars in our sample, SDSS J092303.53+024739.5 at

zQSO = 4.6589. Both the quasar host (marked as “QSO”) and a sub-mm companion galaxy (“SMG”) are robustly detected and marginally resolved (see the

synthetized ALMA beam at the bottom right of each panel). The companion galaxy is separated by 36.5 kpc and 246 kms−1 from the quasar host.

shape of the FIR SED, namely a gray-body with dust temperature
Td = 47 K and β = 1.6. Some sources require somewhat
warmer dust temperatures (up to Td ≃ 60 K). Moreover, most
sources are consistent with the FIR SED templates of Chary and
Elbaz (2001). Importantly, we note that the ALMA continuum
measurements for the FIR-faint sources, are consistent with the
extrapolation of the stacking measurements of the Herschel data,
thus reassuring that our interpretation of the Herschel results was
robust. Figure 2 demonstrates these findings for J0923.

By combining the new ALMA continuum measurements and
the assumed FIR SEDs, we estimate (spatially integrated) total
FIR luminosities of L(8–1,000µm) ≃ (1.9–35.5) × 1012 L⊙.
These luminosities translate to host SFRs in the range SFR ∼

190–3,500M⊙ yr−1. This is, again, consistent with our Herschel-
based findings, but now robustly resolving the hosts, which is
crucial in several cases (see §3.2 below).

The spatially resolved [C II] line emission maps allow us to
study the kinematics of the hosts, and estimate their dynamical
masses. Most sources (at least four out of six) show [C II] velocity
gradients that are consistent with rotation, as shown in the left
panel of Figure 3 for J0923. We therefore assume a simple model
of an inclined rotating disk for the [C II]-emitting ISM in the
hosts. Following common practices with similar data, we can
then deduce dynamical host masses, by combining the size of the
[C II]-emitting region (D[C II]) with the typical velocity of the gas
(FWHM[C II]), corrected for the inclination of the disk (i):

Mdyn = 9.8× 108
(

D[C II]

kpc

) [

FWHM[C II]

100 km s−1

]2

sin−2 (i) M⊙ .

(1)
The inclination of each system is estimated from the spatial
shape (morphology) of the [C II] emitting region, available
from our resolved ALMA data (i.e., the major-to-minor axis
ratio).

FIGURE 2 | The FIR SED of J0923. The new ALMA continuum measurement

(red) is broadly consistent with the previous Herschel data (based on stacking

analysis; black squares). Blue squares show the Herschel data after

correcting for the fraction of the flux that comes from the companion galaxy.

The solid black line traces a gray-body SED with Td = 47 K and β = 1.6, while

the dotted lines trace different temperatures. The dashed lines illustrate several

relevant templates from Chary and Elbaz (2001).

The resulting dynamical masses cover a rather limited range,
Mdyn ≃ (3.7–7.4) × 1010M⊙. By assuming that the dynamical
masses are dominated by the stellar components, and considering
the wide range in SFRs, this means that the lower-SFR (FIR-
faint) hosts are consistent with the so-called “main sequence”
of SF galaxies (e.g., Speagle et al., 2014; Steinhardt et al.,
2014, and references therein), while the high-SFR (FIR-bright)
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FIGURE 3 | Velocity maps of the [C II] λ157.74µm emission line for J0923 (left) and J1341 (right), with the velocities indicated by color and the [C II] flux contours

overlaid (note that the contour levels differ between the two sources). The kinematics of the cold gas in the host galaxies appears to be dominated by rotation.

hosts would lie above it. Moreover, given the narrow range
in MBH and L/LEdd of the quasars themselves, it appears that
these host properties are not directly linked to the SMBH
properties.

3.2. Companion Galaxies
Our most intriguing finding is related to the detection of several
gas rich companions, which are likely interacting with the quasar
hosts.

We robustly detect companion galaxies for three of the
six quasar hosts, in both continuum and [C II] emission.
These companions are separated by ∼14–45 kpc and |1v| <

450 km s−1 from the quasar hosts, thus being truly physically
related to the quasars systems. An additional continuum source
that lacks [C II] emission is detected ∼25 kpc away from
one of the FIR-bright systems, which also has a more distant
spectroscopically-confirmed companion. Figure 4 demonstrates
the spectral proximity of the companion of J0923 to the quasar
host.

Following the same procedures as those used for the quasar
hosts, we find that the companion galaxies have continuum fluxes
that translate to SFRs of ≃ 100–200M⊙ yr−1, and dynamical
masses of Mdyn ≃ (2.1–10.7) × 1010M⊙. Compared to the
respective quasar host masses, the companions have mass ratios
|q| . 2:1, suggestive of major galaxy interactions. Moreover,
the companion galaxies are consistent with being on the main
sequence of SF galaxies.

4. DISCUSSION AND CONCLUSION

The most intriguing finding of our ALMA study is the
identification of spectroscopically-confirmed companion
galaxies for three out of the six quasar hosts in our sample.
Considering the small field of view (FoV) of our ALMA data
(∼13.5′′or∼100 kpc in diameter), the number of sub-mm bright

galaxies we find is much higher than what is found in “blind”
surveys. For example, surveys of rest-frame UV selected SF
galaxies predict roughly 0.01 galaxies with SFR ≃ 100M⊙ yr−1

in a single ALMA FoV (e.g., Bouwens et al., 2015; Stark, 2016).
Even more complete surveys of [C II]-emitting galaxies at
z & 5 predict of about 0.05 galaxies per each of our ALMA
pointings (e.g., Aravena et al., 2016). We therefore conclude that
fast-growing z ∼ 5 SMBHs reside in over-dense environments in
the early universe, and that their fast accumulation of mass may
be related to enhanced major-merger activity. Further support
for this scenario was recently presented in a large ALMA study
of z ∼ 6 quasars, using identical methods to those we used in our
study (Decarli et al., 2017).

The naive expectation from the previously available Herschel

data would be that the high-SFR (FIR-bright) systems would

be associated with major mergers, while the lower-SFR (FIR-
faint) systems would show no signs of interaction. Our ALMA
data show a very different picture. Two of the three companions
are found near FIR-faint systems, and only one is associated
with a FIR-bright system. Conversely, two of the three FIR-
bright systems in our sample are not associated with companion,
interacting galaxies. Although in principle these quasar hostsmay
be in an advanced merger stage (which would remain unresolved
in our data), the signatures of rotationally-dominated gas
structures would not support this scenario.. This is exemplified
in the system J1341, which has SFR ≃3,000M⊙ yr−1, and shows
signatures of rotation-dominated gas and no companion galaxies
(see Figure 3, right). The two lower-SFR systemswith companion
galaxies are expected to experience a later increase in SFR. This
means that the low SFRs we deduced for the “FIR-faint” T11
z ≃ 4.8 systems cannot be simply due to the onset of “AGN
feedback” in the final stages of an episode of SMBH and host
growth. However, a larger sample is needed to clarify which of
all these processes dominates the growth of the general z ∼ 5
SMBH population.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 4 November 2017 | Volume 4 | Article 49

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Trakhtenbrot et al. Quasar Hosts and Mergers at High z

FIGURE 4 | Spatially-integrated spectra of the [C II] emission line in the quasar host (left) and the interacting companion (right) of J0923. The relative velocities (top

x-axis) are calculated relative to the rest-frame UV Mg II λ2798 broad emission line of the quasar. These data confirm the physical association of the companion source

to the quasar host.

The companion galaxies detected with ALMAwere not seen in
our Spitzer data. Given their SFRs and (dynamical) masses, and
what is known about the population of rest-frame UV selected
SF galaxies at z ≃ 4.8 (e.g., Steinhardt et al., 2014; Stark, 2016),
we conclude that this is due to significant dust obscuration. This
may explain the fact that many previous studies were unable to
identify companions and/or over-dense environments for z &

5 quasars. High resolution, spectroscopic sub-mm observations
are therefore crucial for the study of mergers and environments
among the highest-redshift quasars.

We are currently leading an ALMA cycle-4 program that
would provide similar data for a dozen additional z ≃ 4.8
quasars from the T11 sample, bringing the total number of
such quasars with resolved host ISM kinematics, and close
companion mapping, to 18. Analysis of the ALMA data for the
12 additional sources is ongoing. Moreover, we were recently
awarded HST/WFC3/IR time to map the stellar component in
the host galaxies, and in the close companions of the six quasars
described here. The HST data will also probe the larger-scale
environments of the quasars, out to ∼400 kpc, allowing us to
detect any additional (unobscured) companions that may be
present in this field.
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