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On the Selection of High-z Quasars
Using LOFAR Observations
Edwin Retana-Montenegro* and Huub Röttgering

Leiden Observatory, Leiden University, Leiden, Netherlands

We present a method to identify candidate quasars which combines optical/infrared

color selection with radio detections from the Low Frequency ARray (LOFAR) at 150

MHz. We apply this method in a region of 9 square degrees located in the Boötes

field, with a wealth of multi-wavelength data. Our LOFAR imaging in the central region

reaches a rms noise of ∼ 50µJy with a resolution of 5′′. This is so deep that we also

routinely detect, “radio-quiet” quasars. We use quasar spectroscopy from the literature

to calculate the completeness and efficiency of our selection method. We conduct our

analysis in two redshift intervals, 1 < z < 2 and 2 < z < 3. For objects at 1.0 < z < 2.0,

we identify 51% of the spectroscopic quasars, and 80% of our candidates are in the

spectroscopic sample; while for objects at 2.0 < z < 3.0 these numbers are 62 and

30%, respectively. We investigate the effect of the radio spectral index distribution on our

selection of candidate quasars. For this purpose, we calculate the spectral index between

1,400 and 150 MHz, by combining our LOFAR-Boötes data with 1.4 GHz imaging of the

Boötes field obtained with the Westerbork Synthesis Radio Telescope (WSRT), which

has a rms noise of σ ∼ 28µJy with a resolution of 13′′ × 27′′. We find that 27% of the

candidate quasars are detected at 1,400 MHz, and that these detected objects have a

spectral index distribution with a median value of α = −0.73±0.07. Using a flux density

threshold of S150MHz = 1.50mJy, so that all the α > −1.0 sources can be detected in the

WSRT-Boötes map, we find that the spectral index distribution of the 21 quasars in the

resulting sample is steeper than the general LOFAR-WSRT spectral index distribution

with a median of α = −0.80 ± 0.06. As the upcoming LOFAR wide area surveys are

much deeper than the traditional 1.4 GHz surveys like NVSS and FIRST, this indicates

that LOFAR in combination with optical and infrared will be an excellent fishing ground

to obtain large samples of quasars.

Keywords: quasars, active galactic nuclei, surveys, radio, extragalactic astronomy, photometry, spectroscopy

1. INTRODUCTION

In recent years, large spectroscopically confirmed quasar samples have become available (Croom
et al., 2005; Schneider et al., 2010; Pâris et al., 2017). These quasar samples enabled statistical
studies related to many topics, including the relation between the black holes (BHs) and their host
galaxies (Kauffmann et al., 2003), BH growth across cosmic time (McLure and Dunlop, 2004), and
the quasar environments (Ross et al., 2009; Retana-Montenegro and Röttgering, 2017). With the
next generation of wide-field surveys such as Pan-STARRS (Kaiser et al., 2002, 2010), Dark Energy
Survey (DES, Flaugher, 2005), and the future Large Synoptic Survey Telescope (LSST, Tyson, 2002),
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such studies will be extended to the fainter quasars. A challenge in
properly exploiting these surveys is the identification of quasars
without spectroscopic observations.

Quasar surveys historically made use of the ultraviolet-excess
(UVX) of the typical quasar spectrum (Sandage et al., 1965;
Richards et al., 2002). This translates into a set of optical and
near-infrared color cuts chosen to separate quasars from stars.
However, for z > 2 quasars this selection begins to fail as one
approaches the flux limit, due to photometric errors broadening
the stellar locus, and quasar and stellar color distributions
blending. The necessity to increase the efficiency of quasar
surveys has led to the development of new selection techniques
(MacLeod et al., 2010b; Yèche et al., 2010; Bovy et al., 2011;
Kirkpatrick et al., 2011; Palanque-Delabrouille et al., 2011).

A way to separate high-z quasars from stars is to complement
optical/infrared color cuts with a radio detection. By imposing a
radio detection the stellar contamination is reduced significantly,
as radio stars are very rare (Kimball et al., 2009). This approach
has been successful in discovering quasars that otherwise might
have been missed using typical color selection (McGreer et al.,
2009; Bañados et al., 2015) such as red and dusty quasars
(Glikman et al., 2004, 2012, 2013) and rare high-z quasars (Hook
et al., 2002; McGreer et al., 2006; Zeimann et al., 2011).

LOFAR is a new European radio interferometer operating
at frequencies 15–240 MHz (van Haarlem et al., 2013) and
represents a milestone in terms of radio survey speed compared
to existing telescopes. The LOFAR Surveys Key Science Project
aims to carry out a tiered survey. At Tier-1 level, the LOFAR
Two-metre Sky Survey (LoTSS, Shimwell et al. 2017) aims
to cover the whole northern sky down to ∼100µJy rms.
Deeper tiers cover smaller areas in fields with extensive multi-
wavelength data (see Röttgering et al., 2011) with the LOFAR
Boötes field the first of these deep fields to reach Tier-2
depth (Retana-Montenegro and Röttgering, in preparation).
These surveys will open the low-frequency electromagnetic
spectrum for exploration, allowing unprecedented studies of
the radio population across cosmic time and opening up new
parameter space for searches for rare, unusual objects such
as high-z radio quasars in a systematic way. Perhaps, one of
the most tantalizing prospects are the 21 cm absorption line
measurements using LOFAR along sight lines toward z > 6 radio
quasars.

One of the possibilities to increase the efficiency in the
selection of quasars is by combining optical/infrared quasar
selection techniques with LOFAR radio data. With its high
sensitivity, LOFAR should detect significantly more quasars in
comparison with previous shallower radio surveys. Here we
describe a method to select candidate quasars that combines
optical/infrared color cuts with LOFAR radio detection.

2. METHODS

2.1. Method Overview
Candidate quasars are selected by complementing optical and
near-infrared color cuts with a LOFAR detection. The selection
method is summarized in the following points:

• Optical color cuts to select Lyα break objects, and to separate
quasars from stars.

• Mid-infrared color cuts to identify the presence of AGN-
heated dust, and to reduce the contamination from low-z
star-forming galaxies.

• Imposing a LOFAR 5σ detection. This point guarantees that
stellar contamination in the sample is negligible.

• Fitting the UV/optical to MIR SEDs of the candidate quasars
sample to quasar templates. This allows us to select the best
candidates and further eliminate nonquasar contaminants
from the sample.

2.2. Optical Selection
2.2.1. Selection of Lyα Break Objects
The use of color selection to identify high-z objects was first
proposedmore than four decades ago (e.g., Meier, 1976a,b). Since
then this approach has been applied successfully to select quasars
up to z & 6 (Fan et al., 2001; Willott et al., 2007). The multi-
color selection for finding high-z quasars usually employs at least
3 bands: one containing the Lyα emission line, one blueward (the
dropout band), and one redward. This translates into a set of
colors that can be to used to locate the Lyα emission line.

2.2.2. Separating Quasars and Stars
Although, quasars are starlike in appearance their radiation
mechanisms are different to those of stellar sources. Stars
have approximately single-temperature black-body spectral
energy distributions (SEDs) (Bisnovatyi-Kogan, 2001), whereas
energetic processes sculpt the distinctive power-law SEDs of
quasars (Davidson and Netzer, 1979). These differences in the
SEDs imply that stars and quasars occupy different regions in
colorspace (Fan, 1999). Thus, in principle, optical color cuts can
be chosen to reject the majority of stars.

2.3. Mid-Infrared Selection
Although, stellar contamination is reduced using the previous
points, some contamination will still remain from other objects
like compact low-z star-forming galaxies. These star-forming
systems present optical red colors mimicking those of quasars,
which is likely caused by a strong Balmer break or dust-extincted
continuum. Here, we impose the color cuts proposed by Lacy
et al. (2007) and Donley et al. (2012) to the Spitzer/IRAC
photometry to reduce contamination by star-forming galaxies in
our quasar sample.

2.4. LOFAR Detection
With increasing redshift the Lyα emission moves through and
out of the blueward optical bands, resulting in quasars having
similar colors to stars. Thus, a selection method based only on
color cuts becomes less efficient at higher redshifts, as quasars
occupy regions that overlap with those occupied by a significant
fraction of stellar sources. This is worst at 2.2 < z < 3.0,
where the optical colors of quasars become indistinguishable
from those of stars (Fan, 1999; Richards et al., 2002, 2006). An
alternative approach to improve the quasar selection in these
regions is the incorporation of information provided by radio
surveys (Richards et al., 2002; Ross et al., 2012). The number
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of radio stars with faint optical fluxes is very small (Kimball
et al., 2009), therefore, by imposing a radio detection the stellar
contamination becomes negligible in our sample.

2.5. Visual Inspection
We carry out a visual inspection of the imaging data for each
candidate quasar. This process allows us to reject contaminants
such as low-z galaxies and objects with photometry contaminated
by nearby bright objects. We accept candidate quasars with the
following characteristics: stellar optical morphology; no bright
neighbors in close proximity; and no blending issues. The radio
counterparts in the LOFAR map are also examined to reject
artifacts or misclassified radio-lobes.

2.6. Fitting the UV/Optical to MIR Spectral
Energy Distributions of the Candidate
Quasar Sample
Our selection method exploits a variety of quasar observational
properties to identify them in our survey data. We apply color
cuts that diminish the fraction of stars and star-forming galaxies
in our samples. However, these procedures do not completely
eliminate confusion with other types of objects. Therefore, as
a final confirmation we fit quasar templates to their SEDs. We
build SEDs spanning from the optical/UV to the MIR range to
identify the candidate quasars. These SEDs are fitted to the quasar
templates from the AGN template library presented by Salvato
et al. (2009).

The SED fits are inspected visually. We look for the following
unequivocal features in the SEDs of quasars: (i) the strong break
by absorption at 1215Å (rest-frame), (ii) the Lyα emission line,
and (iii) a rising or flat power-law in the IRAC bands. We
examine each SED to assess the overall quality of the fit. In this
way, we are able to eliminate nonquasar contaminants.

3. RESULTS

3.1. Selecting Candidate Quasars in the
NDWFS-Boötes Field
In this section, we apply the selection method using the Boötes
ancillary data and our Tier-2 LOFAR catalog following the points
aforementioned.

3.1.1. Data
The 9.2 deg2 region in Boötes covered by the NOAO Deep Wide
Field Survey (NDWFS, Jannuzi and Dey 1999) has optical data
available on the Uspec,Bw,R, I, and Z bands. All these filters are
standard except the Uspec and Bw, which have better efficiency
and a more uniform wavelength coverage than the U-Bessel
and B-Johnson filters, respectively. Additionally, the Boötes field
has multi-wavelength coverage spanning from X-rays to radio
wavelengths. In the X-rays and UV regimes, it has been observed
with the Chandra (Kenter et al., 2005) and GALEX (Martin
et al., 2003) satellites. At infrared wavelengths, it was part of the
NEWFIRM survey (J,H,K bands; Autry et al., 2003) and Spitzer
Deep, Wide-Field Survey (SDWFS) with IRAC (Ashby et al.,
2009). Finally, in the radio regime, the Boötes region has been
observed at 1.4 GHzwith the VLA (Becker et al., 1995) andWSRT

(de Vries et al., 2002), and at 150MHz with GMRT (Williams
et al., 2013) and LOFAR (Williams et al., 2016). In this work,
we use the deep 150 MHz LOFAR imaging presented by Retana-
Montenegro and Röttgering (in preparation), with a noise level of
1σ∼50µJy with a spatial resolution of 5′′. We use ABmagnitudes
for all bands in our analysis. We assume the convention Sν ∝

ν−α , where ν is the frequency, α is the spectral index, and Sν is
the flux density as function of frequency.

3.1.2. Candidate Quasars Selection
To test our quasar selection method, we utilize spectroscopy
data from the AGES survey (Kochanek et al., 2012). While the
spectroscopic sample spans the range 0 < z < 5.8, we limit our
selection to the intervals 1.0 ≤ z ≤ 2.0 and 2.0 ≤ z ≤ 3.0.
The reason for using these two redshift intervals is twofold. First,
quasars in these intervals provide a good test for our selection
method. Secondly, there are more spectroscopically confirmed
quasars for the redshift intervals considered as compared to those
available at z > 3.0.

Quasars at 1.0 ≤ z ≤ 2.0 are frequently selected using the
excess of ultra-violet flux in the u-band, which results in a bluer
u-g color as compared to that of stars with the same visual color
(e.g., the g-r color) (Richards et al., 2002). However, the NDWFS-
Boötes bandpass system (Uspec,Bw,R,I,Z) does not include a g
filter found in other photometric systems such as the SDSS filter
set (u,g,r,i,z) (Fukugita et al., 1996). But instead the non-standard
Uspec (λc = 3590Å, FWHM=540Å) and Bw (λc = 4111Å,
FWHM=1275Å) filters had been used. The main disadvantage of
the Uspec and Bw filter combination is the significant wavelength
overlap between the two filters. This implies that quasars at 1.0 ≤

z ≤ 2.0 can not be efficiently selected using theirUspec−Bw colors.
To optimally define the color cuts for candidate quasars

at 1.0 < z < 2.0, we generate a library of synthetic
quasar spectra following the procedure described in detail by
Retana-Montenegro et al. (in preparation). These spectra are
convolved with the NDWFS-Boötes filter curves to calculate the
colors for the selection of 1.0 < z < 2.0 quasars. Based on the
colors derived, we adopt the color cuts shown by magenta lines
in the first panel of Figure 1. These color cuts are:

y ≥ 1.89× x− 1.0 ∧ y ≤ 1.89× x+ 1.20

∧ y ≥ −1.37× x− 1.20 ∧ y ≤ −1.37× x+ 3.38,

where y = Bw − R and x = Uspec − Z.
Based on the colors obtained from simulated quasar spectra,

we derive the color cuts to select 2.0 ≤ z ≤ 3.0 quasars. The color
cuts adopted for the selection are the following:

−0.35 ≤ R− I ≤ 0.75 and − 0.35 ≤ Bw − R ≤ 1.2.

To reduce contamination from low-z star-forming galaxies in
our quasar samples we adopt in both redshift bins the color cuts
proposed by Donley et al. (2012):

w ≥ 0.08 ∧ z ≥ 0.15,

z ≥ 1.21× w− 0.27 ∧ z ≤ 1.21× w+ 0.27
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FIGURE 1 | Optical and mid-infrared colors for spectroscopic quasars in the Boötes field. The LOFAR detected quasars are plotted as redshift color-coded points

according to the color bar at the lower right. The corresponding redshift bin is indicated by the colorbar legend. The dark green points represent spectroscopic

quasars in the corresponding redshift that are undetected in our LOFAR observations, while the blue circles mark the location of stars. The solid magenta lines delimit

the regions used to select the quasars in each color space. The gray contours denotes the density for 18,000 simulated quasars in the respective redshift bins.

and Lacy et al. (2007):

w > −0.1, z > −0.2,

z ≤ 0.80× w+ 0.5,

where w = log10

(

S5.8µm

S3.6µm

)

and z = log10

(

S8.0µm

S4.5µm

)

.

Having defined the color cuts, the next task is to crossmatch
the catalogs to find radio counterparts of the optical sources.
We initially search for radio sources that lie within a radius of
2′′ from the optical source that fulfill our color cuts with a 5σ
detection in our LOFAR catalog. For each one of these objects, we
inspect its images in at least 4 bands. During this examination,
we require that our candidate quasars are unresolved, not close
to a bright neighbor and not blended. Additionally, we examine
the morphology of the radio counterparts to prevent imaging
artifacts or radio-lobes being incorrectly matched to optical
sources. This examination of the radio maps ensures that only
robust radio counterparts are matched to optical sources. Finally,
we performed SED fitting to these sources with the photometric
redshift code EAZY (Brammer et al., 2008). This allow us to assess
the overall quality of the quasars photometry and to filter out
contaminants from our sample. Figure 2 shows two candidate
quasars SEDs from our sample.

An important aspect to consider is the accuracy of the
photometric redshifts. An inaccurate photometric redshift
may cause the rejection of a quasar candidate. In Figure 3, we
compare the EAZY zphoto and zspec in the range 1.0 < z < 3.0
for Boötes spectroscopic quasars with a signal-to-noise greater
than 5σ . The objects that are catastrophic outliers (i.e., objects
with a difference between the photometric and spectroscopic
redshift larger than the 3σ uncertainty for the photometric
redshift) based on the one-to-one relation are found using
an iterative 3σ -clipped standard deviation. The fraction
of catastrophic outliers is around 3.1%. After catastrophic
outliers are eliminated, we compute the standard dispersion
δz = (zphoto − zspec)/(1+ zspec) (Ilbert et al., 2006), and the
normalized median absolute deviation (NMAD), defined as
NMAD(δz) = 1.48×Median(δz) (Hoaglin et al., 1983). We
find δz = 0.15 and NMAD = 0.12. For comparison, Salvato
et al. (2011) obtained more accurate photometric redshifts for
COSMOS quasars with NMAD = 0.015 using 30 bands, while
Assef et al. (2010) found δz = 0.18 for point-source AGNs
in Boötes. Therefore, we conclude that fraction of candidates
quasars rejected with inaccurate zphoto is small in comparison
with the total number of candidates in the final sample.

The optical and MIR colors of the spectroscopic quasars
detected by LOFAR in the Boötes field are shown in
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Figure 1. The colors of the spectroscopic quasars are generally
consistent with the proposed color cuts. Figure 4 shows the
colors for the 154 candidate quasars selected using our
method.

3.1.3. Performance of the Selection Method
In order to assess the performance of our selection method,
we calculate the completeness and efficiency for our
samples.

We define the completeness C as the number of spectroscopic
quasars selected as candidates compared to the total number
of spectroscopic quasars (Hatziminaoglou et al., 2000; MacLeod
et al., 2010a):

C =
no. of selected spectroscopic quasars

total no. of spectroscopic quasars
× 100.

Similarly, the efficiency E, i.e., the number of spectroscopic
quasars selected as candidates compared to the number of objects
selected as candidate quasars, is defined as:

E =
no. of selected spectroscopic quasars

total no. of candidate quasars
× 100.

At 1.0 < z < 2.0, our selection method identifies 59 of the
116 radio quasars with spectroscopic confirmation, resulting in a
completeness of 51%. In the range 2.0 < z < 3.0, 25 of 40 quasars
pass our selection, which results in a completeness of 62%. For
the entire redshift interval considered, we obtain a completeness
of 54%.

With our method, we find 74 quasars candidates at
1.0 < z < 2.0 , which corresponds to an efficiency of 80%. In the
range 2.0 < z < 3.0, 84 candidate quasars are identified, which
gives E = 30%. For the full range, we find an efficiency equal to
E = 53%.

3.1.4. Effect of the Radio Spectral Index Distribution

on the Candidate Quasar Selection
In this section, we investigate the effect of the radio spectral index
distribution on our selection of candidate quasars. We therefore
combine our LOFAR data with the deep 1.4 GHz radio survey of
the Boötes field obtained using the Westerbork Synthesis Radio

FIGURE 3 | (Top panel) Comparison between photometric and

spectroscopic redshifts for 929 quasars in the Boötes field at 1.0 < z < 3.0.

The solid line represents the one-to-one zphot = zspec relation, and the dotted

lines correspond to zphot = zspec ± σ × (1+ zspec). (Bottom panel) Standard

dispersion between photometric and spectroscopic redshifts as function of the

spectroscopic redshift. The solid and dotted lines are the same as in the top

panel.

FIGURE 2 | Typical examples of the spectral energy distribution for two candidate quasars identified using our selection method. In each case the best-fit quasar

template (as derived from the EAZY calculation) is also plotted. Red circles are the photometric points and the blue circles indicate the predicted photometry by the

best-fit template. The phometric redhifts for objects are 1.87 and 2.57, respectively. The probability density distributions (PDFs) for each object are shown in the small

inset. These PDFs strongly suggest that these objects are located at high-z. The Lyα line in the two candidate quasars is clearly identified as an abrupt break in the

quasar SED between the NUV-GALEX band and Uspec and Bw filters, respectively.
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Telescope (WSRT) telescope (de Vries et al., 2002). The WSRT-
Boötes observations reach a rms noise of 1σ ∼ 28µJy, with
an angular resolution of 13′′ × 27′′. To compare the LOFAR
and WSRT maps, we must take into account that there are
incompleteness effects due to the different noise levels between
the two observations. Therefore, we compare the LOFAR and
WSRT observations using a flux density threshold of S150MHz =

1.5mJy. For a spectral index of −0.7 (Smolčić et al., 2017), this
threshold is approximately equivalent to a noise level of 11σ in
the WSRT-Boötes map, and ensures all the α > −1.0 sources
with a signal-to-noise > 5σ will be detected in the WSRT-Boötes
map. The spectral index distribution for the 1998 sources in the
LOFAR-WSRT sample has a median of α = −0.65± 0.016.

Using these cuts, in the overlapping area between the LOFAR
and WSRT maps, we find that 42 of 154 candidate quasars are
detected at 1,400MHz. The detected objects have a spectral index
distribution with a median value of α = −0.73 ± 0.07 (see
Figure 5). Using the flux density threshold of S150MHz ≥ 1.50mJy,
we find that the spectral index distribution of the 21 candidate
quasars in this sample is steeper than the general LOFAR-WSRT
spectral index distribution with a median of α = −0.80± 0.06.
The 21 candidate quasars detected at 1, 400MHz with S150MHz <

1.5 mJy are characterized by a steeper spectral index distribution
compared to the LOFAR full sample with a median value of
α = −0.71± 0.05. For the remaining 112 candidates undetected

by WSRT, we derive an upper limit for their spectral indices
assuming a 5σ WSRT detection (S1.4GHz = 0.140mJy). The
median upper limit of the distribution of spectral indexes for
these objects is αupp < −0.75. In the WSRT footprint, there
are 70 of 139 spectroscopic quasars detected by WSRT. These
detected quasars have a steeper distribution of spectral indices
compared to the LOFAR-WSRT full sample with a median of
α = −0.70± 0.06.

4. LIMITATIONS

The application of the selection method described in this work
is dependent on the availability of LOFAR imaging and ancillary
data. Fortunately, the dedicated LOFAR Tier-2 program selects
extra-galactic fields with extensive multi-wavelength data to
maximize the scientific exploitation of the LOFAR imaging. The
ongoing LoTSS survey aims to map the observable northern sky,
which has been observed previously in the optical (SDSS, York
et al., 2000 and Pan-STARRS, Kaiser et al., 2002, 2010) and MIR
(WISE, Wright et al., 2010) wavelengths. These LOFAR datasets
will allow us to extend the identification of candidate quasars
to a larger survey volume and to smaller regions with extensive
multi-wavelength data.

FIGURE 4 | Optical and mid-infrared colors for the candidate quasars identified within our selection regions (solid magenta lines). The color-scale indicates the

photometric redshift for the candidate quasars. The dark green points represent all the spectroscopic quasars (both undetected and detected by LOFAR) in the

Boötes region, while the blue circles mark the location of stars. The corresponding redshift bin is indicated by the colorbar legend.
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FIGURE 5 | The spectral index between 1,400 and 150 MHz for sources in

the Boötes field as a function of the 150MHz flux density. The candidate

quasars, spectroscopic quasars, and all the sources in LOFAR catalog are

shown by blue, orange and black markers, respectively. The circles denote 5σ

detections in the LOFAR and WSRT catalogs, while the triangles indicate

upper limits on the spectral indexes assuming a 5σ WSRT detection

(S1.4GHz = 0.140 mJy) for these objects. The red dashed lines indicate the

region with S150MHz > 1.5 mJy and α > −1.0.

5. SUMMARY

We have examined the identification of high-z candidate quasars
with LOFAR observations as an additional tool. The motivation
for our method was to compile large samples of candidate
quasars and to improve the efficiency of spectroscopic programs
targeting these objects. Our selection method adopts color cuts
between near-infrared and optical wavelengths to obtain a list of

candidate quasars, while minimizing the contamination by stars
and star-forming galaxies. Second, a LOFAR detection is required
to further reduce the stellar contamination in our sample. We
also carried out a visual inspection of candidate quasar SEDs
to discard nonquasar contaminants. We used the LOFAR Tier-
2 Boötes observations as an example of the application of our
method and examined its completeness and efficiency in various
redshift intervals. We also investigated the effect of the radio
spectral index distribution on our selection of candidate quasars.
For this purpose, we calculated the spectral index between 1,400
and 150 MHz, by combining our LOFAR data with WSRT-
Boötes imaging. We found that the candidate quasars have a
steep distribution of spectral indexes with a median value of
α = −0.73± 0.07.

In conclusion, this work demonstrates that our selection
method combining radio detections from LOFAR with
optical/infrared color cuts will provide an excellent approach for
obtaining large samples of quasars.
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