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Periodic Orbits Close to That of the
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In the framework of the restricted, circular, 3-dimensional 3-body problem

Sun-Earth-Moon, Valsecchi et al. (1993) found a set of 8 periodic orbits, with duration

equal to that of the Saros cycle, and differing only for the initial phases, in which the

motion of the massless Moon follows closely that of the real Moon. Of these, only 4 are

actually independent, the other 4 being obtainable by symmetry about the plane of the

ecliptic. In this paper the problem is treated in the framework of the 3-dimensional Hill’s

problem. It is shown that also in this problem there are 8 periodic orbits of duration equal

to that of the Saros cycle, and that in these periodic orbits the motion of the Moon is very

close to that of the real Moon. Moreover, as a consequence of the additional symmetry

of Hill’s problem about the y-axis, only 2 of the 8 periodic orbits are independent, the

other ones being obtainable by exploiting the symmetries of the problem.

Keywords: moon, lunar orbit, periodic orbits, Hill’s problem, restricted 3-body problem

1. INTRODUCTION

Roy (1973) was apparently the first to notice and discuss the occurrence of near Mirror
Configurations in the main lunar prolem. In a system of n gravitating point-masses, a Mirror
Configuration (MC; Roy and Ovenden, 1955) occurs when each radius vector from the centre of
mass of the system happens to be perpendicular to every velocity vector. The importance of MCs
for such systems is due to the following property: if, during its evolution, a system of n gravitating
point-masses passes through an MC, then the Mirror Theorem (Roy and Ovenden, 1955) states
that the time evolution of the system afterwards is the mirror image of the evolution before the
occurrence of the MC; moreover, a corollary of the Mirror Theorem states that, if a system passes
through two MCs, then each of its point-masses is on a periodic orbit.

The latter property was exploited, in the framework of the circular, restricted, 3-dimensional
3-body problem (CR3D3BP) Sun-Earth-Moon, to show the existence of periodic orbits with
duration equal to that of the Saros (Valsecchi et al., 1993), an eclipse cycle known since more
than two millennia, in which the mutual configurations of Sun, Earth and Moon nearly repeat,
to considerable accuracy, after 223 synodic months (Roy, 1973; Perozzi et al., 1991).

In this paper, the issue is revisited in the framework of the 3-dimensional Hill’s problem (3DHP),
proceeding as in Valsecchi et al. (1993), and it is shown that 8 periodic orbits with duration equal to
that of the Saros exist also in this case, but only 2 of them are actually independent, while the other
ones can be obtained considering the symmetries of the problem.
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2. MIRROR CONFIGURATIONS

According to Roy and Ovenden (1955), there are two types of
MCs: colinear MCs, in which all the bodies are located along a
straight line, with their velocity vectors orthogonal to the straight
line, and coplanar MCs, in which all the bodies are located on a
plane, with the velocity vectors orthogonal to that plane.

2.1. MCs in the CR3D3BP
In Valsecchi et al. (1993) the two types of MCs are discussed in
the framework of the CR3D3BP Sun-Earth-Moon. Given that in
this problem the Earth moves on a circular orbit about the Sun,
a colinear MC is achieved if the massless Moon is at perigee
or apogee, at the ascending or at the descending node of its
geocentric orbit, and perfectly aligned with the Sun and the Earth
(i.e., in solar or lunar eclipse configuration).

In terms of the geocentric orbital elements of the Moon, these
conditions imply that the Moon must be at mean anomaly M
equal to either 0◦ or 180◦, argument of mean latitude θ = ω+M
equal to either 0◦ or 180◦, and difference of mean longitude
1λ = λ − λ′ between the mean longitude of the Moon λ and
that of the Sun λ′ again equal to either 0◦ or 180◦.

For a coplanar MC to occur, the constraints onM and 1λ are
the same, while that on the argument of mean latitude becomes θ

equal to either 90◦ or 270◦. Given that anyway M must be either
0◦ or 180◦, the constraint on the argument of latitude implies
ω = 0◦ orω = 180◦ for a colinearMC, andω = 90◦ orω = 270◦

for a coplanar MC.
Table 1 summarizes the situation; in it the MCs are coded as

in Valsecchi et al. (1993), with a three-digit code representing ω,
M and 1λ as multiples of 90◦. Note that MCs differing by 180◦

in ω are grouped together in the same row, due to the symmetry
of the problem about the plane in which the Sun and the Earth
move.

2.2. MCs in the 3DHP
In the 3DHP the possible MCs are again 16, and their coding
is exactly the same as in the CR3D3BP. In this case, however,
there is an important difference, due to the additional symmetry
present in this problem, namely, the one about the y-axis; as a
consequence, two MCs differing only because in one of them
1λ = 0◦ and in the other 1λ = 180◦ are equivalent. Taking

TABLE 1 | The 16 possible MC’s of the CR3D3BP.

MC ω M 1λ

000:200 0◦:180◦ 0◦ 0◦

002:202 0◦:180◦ 0◦ 180◦

020:220 0◦:180◦ 180◦ 0◦

022:222 0◦:180◦ 180◦ 180◦

100:300 90◦:270◦ 0◦ 0◦

102:302 90◦:270◦ 0◦ 180◦

120:320 90◦:270◦ 180◦ 0◦

122:322 90◦:270◦ 180◦ 180◦

this into account, in the case of the 3DHP we rearrange the MCs
of Table 1 as shown in Table 2.

3. THE SAROS CYCLE AND THE
ASSOCIATED PERIODIC ORBITS

There is a vast literature concerning lunar cycles (see, e.g., Steves,
1997) and the Saros is perhaps the most interesting one among
them. In fact, at variance from most of the other lunar eclipse-
predicting cycles, it involves not only the synodic and the nodical
months, but also the anomalistic one. Let us consider the mean
durations of the synodic (T1λ), anomalistic (TM) and nodical
month (Tθ ), given by:

T1λ = 29.530 589 d

TM = 27.554 551 d

Tθ = 27.212 220 d;

then, one easily sees that:

223T1λ = 6 585.32 ≃ 239TM = 6 585.54 ≃ 242Tθ = 6 585.36.

In the rest of this paper, the duration of the Saros will be taken to
be that of 223 synodic months, i.e., 6 585.321 347 d.

During a Saros, the argument of perigee ω of the lunar orbit
makes 3 full revolutions; this happens because the argument of
latitude makes 242 revolutions (the 242 nodical months), and the
mean anomaly M makes 239 revolutions (the 239 anomalistic
months): the difference is due to the 3 revolutions of ω. If the
Moon is started from, say, the MC coded 000, in which ω = 0◦,
M = 0◦, 1λ = 0◦, after a half Saros each of these angles will
have made a half-integer number of revolutions; thus, the MC
occurring at that time will be 222, in which ω = 180◦,M = 180◦,
1λ = 180◦. In this way it is possible to establish the pairs of MCs
that occur during the periodic orbits of duration equal to that of
the Saros (Valsecchi et al., 1993).

3.1. Periodic Orbits in the CR3D3BP
As shown in Valsecchi et al. (1993), there exist 8 such periodic
orbits in the CR3D3BP, in which the 16 MCs are combined in
pairs as discussed above. To find these orbits, Valsecchi et al.
(1993) used a 3-dimensional Newton-Raphson root finder and
Everhart’s integrator RADAU (Everhart, 1985) at 15th order. In
these computations, the ratio of the mass of the Earth to that of
the Sun was set to

m⊕ =
1

328 900.53
,

TABLE 2 | The 16 possible MC’s of the 3DHP.

MC ω M 1λ

000 : 002 : 200 : 202 0◦ : 0◦ : 180◦ : 180◦ 0◦ 0◦ : 180◦ : 0◦ : 180◦

020 : 022 : 220 : 222 0◦ : 0◦ : 180◦ : 180◦ 180◦ 0◦ : 180◦ : 0◦ : 180◦

100 : 102 : 300 : 302 90◦ : 90◦ : 270◦ : 270◦ 0◦ 0◦ : 180◦ : 0◦ : 180◦

120 : 122 : 320 : 322 90◦ : 90◦ : 270◦ : 270◦ 180◦ 0◦ : 180◦ : 0◦ : 180◦

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 2 June 2018 | Volume 5 | Article 20

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Valsecchi Periodic Lunar Orbits

corresponding to that of the real Earth-Moon system.
The Moon was placed in one of the 8 colinear MCs, say 000,

by specifying the appropriate values for ω, M and 1λ from
Table 1, assigning tentative values for the starting geocentric
orbital elements a, e and i, and then looking for the occurrence
of the paired MC (in this case 222) at the end of a numerical
integration for half of a Saros. The Newton-Raphson root finder
was used to converge to the values of a, e and i that led to the
occurrence of the paired MC. In this way, all the 8 periodic orbits
were found; they are summarized in Table 3.

3.2. Periodic Orbits in the 3DHP
The procedure followed to find the periodic orbits associated to
the Saros in Hill’s problem has been the same as in Valsecchi et al.
(1993), the only difference being in the equations ofmotion; those
used in the present work are the ones of Hill’s problem, in the
form given in Schmidt (1979):

ẍ = −
µ

r3
x+ 2n′ẏ+ 3n′2x

ÿ = −
µ

r3
y− 2n′ẋ

z̈ = −
µ

r3
z − n′2z,

where:

k = 0.017 202 098 95

µ = k2m⊕

n′ =
k

√
1+m⊕

r =
√

x2 + y2 + z2.

In this way, distances are in astronomical units, and time is in
days.

The resulting periodic orbits are given in Table 4; comparing
the values of a, e, i with those of the corresponding MCs in
Table 3, one sees that the differences are rather small.

The time behaviour of the geocentric orbital elements of
the Moon in these periodic orbits is quite close to that of the

TABLE 3 | The osculating elements a, e and i of the massless Moon, in the

periodic orbits associated to the Saros, when at the 16 possible MCs of the

CR3D3BP (from Valsecchi et al., 1993).

MC a (au) e i (◦)

000 : 200 0.002 580 99716 0.083 356 670 5.690 814 6

222 : 022 0.002 590 63207 0.056 488 496 5.688 171 3

002 : 202 0.002 580 82066 0.083 864 066 5.691 513 5

220 : 020 0.002 590 85405 0.056 953 569 5.688 726 1

100 : 300 0.002 580 81914 0.083 936 251 5.365 847 6

322 : 122 0.002 590 43342 0.057 165 911 5.348 172 9

102 : 302 0.002 580 64647 0.084 452 672 5.365 595 9

320 : 120 0.002 590 65120 0.057 640 009 5.347 565 5

real Moon, just as found by Valsecchi et al. (1993); a similar
comparison is repeated here.

A good approximation to a MC 200 was realized by the real
Moon on JD 2 371 846.872 (17.372 October 1781, Valsecchi et al.,
1993); according to the JPL ephemeris DE406, the orbit of the
Moon had, at that time, ω = 179◦.0,M = 0◦.0 and 1λ = 0◦.0.

The four panels of Figure 1 show the time evolution of, from
top to bottom, a, e, i, ω of the real Moon, taken from JPL DE406,
in red, and the corresponding quantities for the periodic orbit
passing through MCs 200 and 022, in green. The behaviour of
a and ω of the periodic orbit match very closely that of the real
Moon. For e and i there is a systematic difference, but the short-
period terms affecting these two elements appear to be the same
as those of the real orbit.

Figure 2 contains the last year of the Saros, and shows that the
close matching is preserved for the entire cycle.

4. DISCUSSION

The periodic orbits found in the 3DHP, besidesmimicking closely
the real lunar orbit, are also very similar to those found in
Valsecchi et al. (1993) in the CR3D3BP, as also shown by the
closeness of the values of the geocentric orbital elements reported
by Tables 3, 4. In fact, the principal lunar short-period terms
(Brouwer and Clemence, 1961) are contained in the periodic
orbits in both problems:

• the variation, a term depending on 21λ, an angle that makes
446 revolutions in the periodic orbits associated to the Saros;

• the parallactic inequality, depending on 1λ, that makes 223
revolutions;

• the evection, to which are due a perturbation in e and ω,
depending on 2λ′−2ω̃, that makes 32 revolutions, and another
perturbation in λ, depending on λ − 2λ′ + ω̃, that makes 207
revolutions;

• the principal perturbation in latitude, depending on λ− 2λ′ +
�, that makes 204 revolutions.

On the other hand, these orbits differ substantially from Hill’s
periodic orbit (Hill, 1878). Hill’s periodic orbit lasts for exactly
one synodic month, is planar, and in it all the crossings of the x
and y-axes take place at right angles.

Actually, using the same periodic-orbit-finder software used
to find the orbits of Table 4, we can compute Hill’s orbit. The
MCs in this orbit are of the colinear type (coplanar MCs, in spite
of their name, cannot take place if the motion is planar), and

TABLE 4 | The osculating elements a, e and i of the Moon, in the periodic orbits

associated to the Saros, when at the 16 possible MCs of the 3DHP.

MC a (au) e i (◦)

000 : 002 : 200 : 202 0.002 580 90641 0.083 640 384 5.688 1493

222 : 220 : 022 : 020 0.002 590 74466 0.056 751 303 5.685 4333

100 : 102 : 300 : 302 0.002 580 73050 0.084 224 104 5.362 8667

322 : 320 : 122 : 120 0.002 590 54413 0.057 432 758 5.345 0163

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 3 June 2018 | Volume 5 | Article 20

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Valsecchi Periodic Lunar Orbits

FIGURE 1 | Time evolution of the elements of the Moon taken from JPL DE406 (in red) and for the periodic orbit passing through MCs 200 and 022 (in green); top to

bottom: semimajor axis a, eccentricity e, inclination i, argument of perigee ω; the time span covered is one year, starting from 17.372 October 1781.
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FIGURE 2 | Same as Figure 1, but for the time span of one year, ending one Saros later, on 28.693 October 1799.
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correspond to the two crossings of the x-axis. At these crossings,
the geocentric distance of the Moon has two identical minima,
and the orbital elements are:

a = 0.002 586 071 80 au

e = 0.013 517 273,

while at the two crossings of the y-axis, where the geocentric
distance has two identical maxima, the orbital elements are:

a = 0.002 540 020 84 au

e = 0.018 894 762.

It is notheworthy that inHill’s orbit there are two perigee passages
of the Moon, at the crossings of the x-axis, and two apogee
passages, at the crossings of the y-axis; this means that during
the single synodic month corresponding to its duration, there are
two full anomalistic months. Moreover, the osculating geocentric
eccentricity never exceeds 0.02, a value much lower than the
mean eccentricity of the real lunar orbit.

Therefore, the time evolution of the elements of the periodic
orbits described in this paper follows the behaviour of the
osculating geocentric elements of the real Moon much more
closely than in the case of Hill’s orbit; on the other hand, the
latter is succesfully used as intermediate orbit in the Hill-Brown
lunar theory (Brown, 1896). Whether these new, longer periodic
orbits are suitable for such a task will be the subject of future
research.

A natural question to ask is whether periodic orbits similar
to those described here do exist, in Hill’s problem, for different
values of the geocentric distance of the Moon, i.e., for different

values of the ratio of the mean motion of Sun and Moon;
in Valsecchi et al. (1993) an example of such an orbit of the
CR3D3BP was given, corresponding to the probable lunar orbit
of the late Precambrian. On the other hand, the Saros-associated
periodic orbits in the two problems are so close to each other, as
can be seen comparing the numbers inTables 3, 4, that very likely
the same orbits should exist in Hill’s problem; also this issue will
be the subject of future research.

5. CONCLUSIONS

Building on the results of Valsecchi et al. (1993) for the CR3D3BP,
it has been shown that also in Hill’s problem it is possible
to find 8 periodic orbits of duration one Saros, in which the
orbital evolution of the Moon closely resembles that of the
real Moon. An important difference from the previous case
is that, at variance from the periodic orbits found in the
CR3D3BP, in Hill’s case only 2 orbits are independent, the
others being obtainable by considering the symmetries of the
problem.
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