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Spectral (transform) methods for solution of Vlasov-Maxwell system have shown

significant promise as numerical methods capable of efficiently treating fluid-kinetic

coupling in magnetized plasmas. We discuss SpectralPlasmaSolver (SPS), an

implementation of three-dimensional, fully electromagnetic algorithm based on a

decomposition of the plasma distribution function in Hermite modes in velocity space

and Fourier modes in physical space. A fully-implicit time discretization is adopted for

numerical stability and to ensure exact conservation laws for total mass, momentum and

energy. The SPS code is parallelized using Message Passing Interface for distributed

memory architectures. Application of the method to analysis of kinetic range of scales

in plasma turbulence under conditions typical of the solar wind is demonstrated. With

only 4 Hermite modes per velocity dimension, the algorithm yields damping rates of

kinetic Alfvén waves with accuracy of 50% or better, which is sufficient to obtain a model

of kinetic scales capable of reproducing many of the expected statistical properties of

turbulent fluctuations. With increasing number of Hermite modes, progressively more

accurate values for collisionless damping rates are obtained. Fully nonlinear simulations

of decaying turbulence are presented and successfully compared with similar simulations

performed using Particle-In-Cell method.

Keywords: plasma, kinetic, spectral, Hermite, turbulence

1. INTRODUCTION

Kinetic effects play a critical role in many problems in plasma physics. Correct description of
kinetic processes typically requires solution of the Vlasov-Maxwell equations. Unfortunately,
kinetic physics brings into the picture very small spatial (Debye length, electron gyroradius) and
temporal (plasma frequency, electron gyrofrequency) scales, which could be several orders of
magnitude smaller than system scales for most problems of interest. For example, in the Earth’s
magnetosphere the microscopic physics is key to magnetospheric dynamics during geomagnetic
storms and substorms (Reeves et al., 2013; Jordanova et al., 2017). In the magnetosphere, the Debye
length is of the order of ∼ 1 − 100m, while the system scales are ∼ 109m. Similar or even more
extreme separation of scales is typical of the solar wind and the solar corona, where kinetic physics
is tied for example to mechanisms of energy release by magnetic reconnection and turbulence,
impacting such fundamental problems as as the origin of coronal heating or solar wind heating
and acceleration (e.g., Aschwanden, 2005; Bruno and Carbone, 2005). Despite remarkable recent
progress in the development of efficient numerical methods for the solution of the Vlasov-Maxwell
equations (for instance Chen et al., 2011; Markidis and Lapenta, 2011; Juno et al., 2018 and
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references therein), no existing fully-kinetic method appears
capable of bridging the gap between microscopic and system
scales given computational resources available now or in the
foreseeable future.

Recognizing the inability of fully-kinetic methods to simulate
large-scale systems, alternative approaches are being sought
that focus on the so-called fluid-kinetic coupling. One line
of research, appropriate in situation where kinetic effects are
expected to be localized in space, seeks to embed a kinetic
method in selected regions of a large-scale domain described
by a fluid model (Sugiyama and Kusano, 2007; Kolobov and
Arslanbekov, 2012; Daldorff et al., 2014; Tóth et al., 2016).
For example, Particle-In-Cell (PIC) kinetic solvers have been
successfully coupled to magnetohydrodynamics (MHD) large-
scale solvers (Sugiyama and Kusano, 2007; Daldorff et al., 2014;
Tóth et al., 2016). Another approach seeks extended fluid models
by including high-order moments in the fluid hierarchy and
seeking approximate closures capturing the physics of interest.
Examples include the 5- and 10-moments methods discussed in
Wang et al. (2015, 2018). Many other ideas on addressing fluid-
kinetic coupling have been proposed in the literature (Markidis
et al., 2014; Ho et al., unpublished1). Furthermore, many well-
established methods for solving Vlasov-Maxwell system, such
as gyrokinetics (Brizard and Hahm, 2007), analytically remove
certain spatial and temporal scales while retaining kinetic effects
associated with larger/slower scales and thus may be suitable
for certain class of problems involving fluid-kinetic coupling.
However, despite the progress made, all of the existing methods
have significant shortcomings and a comprehensive approach
capable of obtaining accurate solutions in all parameters regimes
remains elusive.

A new method for the solution of the Vlasov-Maxwell
equations that could resolve the issues outlined above was
recently proposed by Delzanno (2015). The method is based
on a spectral discretization in velocity space and leads to a
hierarchy of partial differential equations for the coefficients
of the spectral expansion, akin to the moments of the fluid
hierarchy. By a suitable choice of the spectral basis (in this
case the asymmetrically-weighted Hermite functions), the low
order moments of the expansion give a fluid description of
the system. The kinetic physics is retained by adding more
moments to the expansion. Thus, the fluid-kinetic coupling
is an intrinsic feature of the method. One can immediately
recognize that the method unifies and encompasses the fluid-
kinetic approaches that have been described above. On the
one hand, it can be seen as a reduced method that is not
limited to any specific number of moments, but rather can be
applied with as many moments as necessary for convergence,
limited only by available computational resources. Furthermore,
the number of moments could vary in the computational
domain (even adaptively), in some analogy with kinetic-MHD-
coupling approaches mentioned above. Significant advantage of
the expansion method is that the transition between the “fluid”
and “kinetic” regions can be as smooth as necessary. In all,

1Ho, A., Datta, I., and Shumlak, U. Physics-Based-Adaptive Plasma Model for

High-Fidelity Numerical Simulations.

spectral methods might offer on optimal way to perform large-
scale simulations that include kinetic physics accurately.

In this paper, we describe a 3D parallel simulation code
SpectralPlasmaSolver (SPS), which implements the method
proposed in Delzanno (2015). The first application of the
method to the problem of the three-dimensional turbulent
cascade in the solar wind is demonstrated and the results are
in good overall agreement with corresponding particle-in-cell
simulations. The paper is organized as follows. In section 2
we briefly summarize the Hermite spectral method and its
numerical formulation. In section 3, we discuss some aspects
of the implementation, focusing on the parallelization for
distributed-memory architectures. In section 4, linear properties
of the methods and the simulations of decaying turbulence are
discussed. Finally, a brief summary is presented in section 5.

2. METHOD

We consider Vlasov-Maxwell equations for the evolution of
the distribution function fs(x, v, t) of a collisionless, magnetized
plasma consisting of electrons (labeled by subscript s = e) and
singly-charged ions (s = i) in a three-dimensional Cartesian
domain in physical space x. The three-dimensional velocity space
is represented by v. The Vlasov equation reads:

∂fs

∂t
+ v · ∇xfs +

qs

e

�cs

ωpe
(E+ v× B) · ∇vfs = 0, (1)

where t is time, ∇x, (v) represents the gradient operator in
physical (velocity) space and E (B) is the electric (magnetic) field.
Equation (1) is written according to the following normalization:
time is normalized to inverse of the electron plasma frequency

ωpe computed with a reference plasma density n0, ωpe =
√

e2n0
ε0me

,

where e is the positive elementary charge,ms is themass of species
s, ε0 is the permittivity of vacuum, t −→ ωpet; velocities are
normalized to the speed of light c, v −→ v

c ; spatial coordinates
are normalized to the electron inertial length de = c/ωpe, x −→
x
de
; the magnetic field is normalized to a reference magnetic field

B0, B −→ B
B0
; the electric field is normalized to cB0, E −→ E

cB0
;

and the distribution function is normalized to n0
c3
, fs −→ fsc

3

n0
.

Furthermore, in Equation (1) qs is the charge of each plasma
species (

qs
e = ±1) and �cs = eB0

ms
is the corresponding cyclotron

frequency defined to be always positive.
Equation (1) is coupled to Maxwell’s equations by the
electromagnetic field:

∂B

∂t
= −∇ × E,

∂E

∂t
= ∇ × B−

ωpe

�ce

∑

s

qs

e

∫

vfsdv, (2)

∇ · E =
ωpe

�ce

∑

s

qs

e

∫

fsdv, ∇ · B = 0. (3)

We assume periodic boundary conditions in physical space and
consider domain [0, Lx] × [0, Ly] × [0, Lz]. The distribution
function in velocity space is assumed to go to zero at infinity.

The Vlasov-Maxwell Equations (1)–(3) are solved with a
spectral discretization in both physical and velocity space. In
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particular, we expand the distribution function as

fs(x, v, t) =

Nx
2
∑

kx=−Nx
2

Ny
2
∑

ky=−Ny
2

Nz
2
∑

kz=−Nz
2

Nn−1
∑

n=0

Nm−1
∑

m=0

Np−1
∑

p=0

Ck,s
n,m,p(t)

×ηkx (x)ηky (y)ηkz (z)9n(ξ
s
x)9m(ξ

s
y)9p(ξ

s
z), (4)

with Nx, y, z (Nn,m,p) the number of modes in physical (velocity)
space along each spatial direction. Here index k refers to a set of
three indices k = {kx, ky, kz}.

The electric field is expanded as

E =

Nx
2
∑

kx=−Nx
2

Ny
2
∑

ky=−Ny
2

Nz
2
∑

kz=−Nz
2

E
k(t)ηkx (x)ηky (y)ηkz (z) (5)

and similarly for the magnetic field B. We adopt a Fourier
decomposition in physical space

ηkδ (δ) = exp

(

2π ikδδ

Lδ

)

, (6)

where δ = x, y, z. The decomposition in velocity space
is obtained by asymmetrically-weighted (AW) Hermite basis

functions, 9n(x) = (π2nn!)−1/2Hn(x)e
−x2 , where Hn is the

Hermite polynomial of the n-th order (Holloway, 1996). The
argument of the basis functions is defined as ξ sδ =

(

vδ − usδ
)

/αsδ ,
where usδ and α

s
δ are constant shift and scaling parameters. The

method could also be formulated to allow spatial and/or temporal
variations in usδ and α

s
δ .

By substituting expansion (4) into Equations (1)–(3) and
using the orthogonality relations for both Fourier and Hermite
functions, we can rewrite the Vlasov-Maxwell equations as a
system of non-linearly coupled ordinary differential equations
(ODE) for the coefficients of the expansion. These are (Delzanno,
2015):

dCk,s
n,m,p

dt
= −

2π ikx

Lx
αsx

(

√

n+ 1

2
Ck,s
n+1,m,p +

√

n

2
Ck,s
n−1,m,p +

usx
αsx

Ck,s
n,m,p

)

−
2π iky

Ly
αsy

(

√

m+ 1

2
Ck,s
n,m+1,p +

√

m

2
Ck,s
n,m−1,p +

usy

αsy
Ck,s
n,m,p

)

−
2π ikz

Lz
αsz

(

√

p+ 1

2
Ck,s
n,m,p+1 +

√

p

2
Ck,s
n,m,p−1 +

usz
αsz

Ck,s
n,m,p

)

+
qs

e

�cs

ωpe

{√
2n

αsx

[

Ex ∗ Cn−1,m,p

]

k
+

√
2m

αsy
[Ey ∗ Cn,m−1,p]k

+
√
2p

αsz
[Ez ∗ Cn,m,p−1]k

}

+
qs

e

�cs

ωpe

[

Bx ∗

{

√
mp

(

αsz

αsy
−
αsy

αsz

)

×Cs
n,m−1,p−1 +

√

m(p+ 1)
αsz

αsy
Cs
n,m−1,p+1−

√

(m+ 1)p
αsy

αsz
Cs
n,m+1,p−1 +

√
2m

usz
αsy

Cs
n,m−1,p

−
√

2p
usy

αsz
Cs
n,m,p−1

}]

k

+
qs

e

�cs

ωpe

[

By ∗
{

√
np

(

αsx

αsz
−
αsz

αsx

)

Cs
n−1,m,p−1

+
√

(n+ 1)p
αsx

αsz
Cs
n+1,m,p−1 −

√

n(p+ 1)
αsz

αsx
Cs
n−1,m,p+1

+
√

2p
usx
αsz

Cs
n,m,p−1 −

√
2n

usz
αsx

Cs
n−1,m,p

}]

k

+
qs

e

�cs

ωpe

[

Bz ∗

{

√
nm

(

αsy

αsx
−
αsx

αsy

)

Cs
n−1,m−1,p

+
√

n(m+ 1)
αsy

αsx
Cs
n−1,m+1,p −

√

(n+ 1)m
αsx

αsy
Cs
n+1,m−1,p

+
√
2n

usy

αsx
Cs
n−1,m,p −

√
2m

usx
αsy

Cs
n,m−1,p

}]

k

, (7)

for the Vlasov equation, and

dBkδ
dt

= −2π iεβγ δ
kβ

Lβ
Ekγ ,

dEkδ
dt

= 2π iεβγ δ
kβ

Lβ
Bkγ −

ωpe

�ce

∑

s=e, i

qs

e
αsxα

s
yα

s
z

(

αsδ√
2
Ck,s
a,b,c

+ usδC
k,s
0,0,0

)

(8)

for Maxwell’s equations (written in index notation with
summation over repeated indices implied). Here εβγ δ is the Levi-
Civita tensor and (a, b, c) = (1, 0, 0), (0, 1, 0), (0, 0, 1) for δ =
x, y, z, respectively. Equations (7) are defined for n ∈ [0,Nn−1],
m ∈ [0,Nm−1] and p ∈ [0,Np−1] and the convolution operator
is defined as

[

H ∗ Cn,m,p

]

k
=

Nx/2
∑

k′x=−Nx/2

Ny/2
∑

k′y=−Ny/2

Nz/2
∑

k′z=−Nz/2

Hk−k
′
Ck

′ ,s
n,m,p, (9)

where H is an arbitrary function. Note that Equation (7) couples
a basis function (mode) indexed by n,m, p with successive modes
of the hierarchy and it is necessary to specify how the system

of equations is closed: We use Ck,s
n,m,p = 0 for n ≥ Nn,m ≥

Nm, p ≥ Np. In order to address potential problems arising
from the filamentation typical of collisionless plasmas, we add a
collisional term on the right hand side of Eq. (7)

C[Ck,s
n,m,p] = −ν

[

n(n− 1)(n− 2)

(Nn − 1)(Nn − 2)(Nn − 3)

+
m(m− 1)(m− 2)

(Nm − 1)(Nm − 2)(Nm − 3)

+
p(p− 1)(p− 2)

(Np − 1)(Np − 2)(Np − 3)

]

Ck,s
n,m,p. (10)

The collisional operator given by Equation (10) is not meant
to model any specific physical dissipation mechanism, such as
Coulomb collisions. Rather, it is added to damp higher-order
Hermite modes. This motivates the specific functional form of
the operator, together with the requirement that it does not
act on the first three modes of the Hermite expansion, which
have connections to density, momentum and energy of the
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system (Delzanno, 2015; Camporeale et al., 2016). Other forms
of the operator could be used to model Coulomb collisions or to
provide a physically-inspired closure (Loureiro et al., 2016).

Equations (7) and (8) can be cast in matrix form as

dC

dt
= L1C+N (C, F) ,

dF

dt
= L2C+ L3F, (11)

where C represents the vector of C
kx ,ky ,kz ,s
n,m,p coefficients and F

contains the electric and magnetic field. Furthermore, L1,2,3

represent the linear part of Equations (7) and (8) (advection
in the case of Vlasov equations) while N (C, F) represents the
nonlinear part with the convolutions.

System (11) is discretized in time with a
fully-implicit Crank-Nicolson scheme (Crank
and Nicolson, 1947). In residual form, we have

{

R1

(

Cθ+1, Fθ+1
)

= Cθ+1 − Cθ −1t
[

L1C
θ+1/2 +N

(

Cθ+1/2, Fθ+1/2
)]

= 0

R2

(

Cθ+1, Fθ+1
)

= Fθ+1 − Fθ −1tL2C
θ+1/2 −1tL3F

θ+1/2 = 0
⇐⇒ R(X) = 0, (12)

where 1t is the time step, and superscript θ labels time
C(tθ ) = C(θ1t) = Cθ , and Cθ+1/2 =

(

Cθ+1 + Cθ
)

/2 (and

similarly for F), X =
[

C

F

]

and R =
[

R1

R2

]

.

The resulting numerical method formulated above and
implemented in the SpectralPlasmaSolver (SPS) has several
important properties. The main motivation for the choice of
AW-Hermite spectral discretization of velocity space is the fact
that the low order modes of the expansion correspond to the
classic fluid description of the plasma (with a particular closure),
while the kinetic physics is retained by adding more modes to
the expansion. In other words, the fluid-kinetic coupling is an
intrinsic feature of SPS. The Fourier discretization ensures that
the constraints of Maxwell’s equation (i.e., ∇ · B = 0 and
Poisson’s equation) are automatically satisfied at all times if they
are at t = 0. The fully-implicit Crank-Nicolson discretization
improves the numerical stability of the method and ensures the
exact conservation of total mass, momentum and energy in a
finite time step. More details can be found in Delzanno (2015).

3. IMPLEMENTATION

The implementation of SPS described here extends 2D Fortran
90 code for shared-memory architectures that was described
in Vencels et al. (2016). The new code implements full 3D
algorithm described in section 2 and is parallelized for distributed
memory architectures using Message Passing Interface (MPI)
calls. Similarly to the previous implementation, the new code
utilizes Jacobian-free Newton-Krylov solver provided by PETSc
library (Balay et al., 1997, 2017). Since PETSc supports parallel
computations with MPI, minimal modifications were required to
parallelize the solver.

Computation of convolutions is based on a parallel Fast
Fourier Transforms (FFTs). The code utilizes 1D and 2D domain
decomposition of the solution space, such that each domain

owns a portion of k-space for all fields and for all coefficients C.
The parallel FFTs are implemented using a modified version of
2DECOMP&FFT library (Li and Laizet, 2010). Ourmodifications
to 2DECOMP&FFT ensure that padding with zeros, necessary
for performing convolutions, is performed in an efficient manner
and zeros are never communicated between processors. In
three dimensions, this results in significant reduction in overall
computational cost of the 3D transform relative to directly
padding the 3D array. FFTW library (Frigo and Johnson, 2005) or
Intel MKL2 (via its FFTW interface) can be used as the backend
to compute FFTs.

Figure 1 shows examples of strong (top panel) and weak
(bottom panel) scalings obtained on BlueWaters supercomputer.
The strong scaling was obtained for a system with 2553 Fourier
modes and Nh = 4 Hermite modes in each direction. The weak
scaling study was performed by proportionally scaling up the
system size and theMPI rank count for a system with 633 Fourier
modes and Nh = 4 Hermite modes per direction. These tests

were performed on XE nodes of Blue Waters supercomputer and
used 8 MPI ranks per node. GCC compilers version 4.9.3 and
FFTW library version 3.3.4 were used to compile the code. Each
Blue Waters XE node is equipped with 2 AMD Interlagos model
6276 CPU processors. Significant variability in timings for a given
simulation size was observed in some tests, presumably due to
how a particular job was placed with respect to the topology of the
communication links. The results shown in Figure 1 represent
the lowest value. The break point observed in both strong and
weak scalings is most likely related to the fact that simulation
time is limited by communication time at high rank count.
This is further confirmed by results shown in Figure 2, which
demonstrates strong scaling of SPS on Skylake nodes of Electra
supercomputer at NASA Ames research center. Each Skylake
node is equipped with two Xeon Gold 6148 processors. Intel
compilers and MKL library version 110302 were utilized in these
tests. Furthermore, mpiprof tool3 was used to collect separate
timings for computation and MPI communication. The scaling
shown here was obtained for a system with 2553 spatial modes,
43 Hermite functions, and initial conditions corresponding to
Maxwellian plasma. It is apparent that saturation of the overall
scaling is related to increasing relative cost of the communication
with increasing number of processes.

These results point to a number of further enhancements
in the code that would significantly increase parallelism and
performance: (i) implementing decomposition in the Hermite
coefficient space in addition to the k-space; (ii) overlapping
communication and computation by using non-blocking

2Intel R© Math Kernel Library. Available online at: https://software.intel.com/en-

us/mkl
3Jin, H. Using Mpiprof for Performance Analysis. Available online at: https://www.

nas.nasa.gov/hecc/support/kb/using-mpiprof-for-performance-analysis_525.

html
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FIGURE 1 | Examples of strong (Top) and weak (Bottom) scaling of SPS

obtained on Blue Waters supercomputer. Dashed black lines denote ideal

scalings. The efficiency of the weak scaling is defined as the ratio between the

number of MPI ranks and simulation time normalized to that value for the

reference case with 4 MPI ranks.

collective MPI operations; (iii) performing transforms for several
variables at a time.

4. SIMULATION OF KINETIC SCALES IN
SOLAR WIND TURBULENCE

Solar wind is believed to represent one of the best accessible
examples of astrophysical large-scale plasma turbulence (Bruno
and Carbone, 2005). The spectrum of magnetic fluctuations
in the solar wind, as measured in-situ by spacecraft, exhibits
power law behavior over many orders of magnitude in scales.
A large range of scales, where fluctuations have predominantly
Alfvenic character, exhibits many features expected of the inertial
range of turbulence. This is followed by steepening to another
power law range at proton kinetic scales kdp ∼ 1 (where dp
is the proton inertial length). The behavior at electron scales
is less well characterized, but generally power law spectra are

FIGURE 2 | Example of strong scalings of SPS obtained on Electra

supercomputer. Red circles represent computation time, blue squares mark

the ratio of communication to computation time, and dashed lines denote

ideal scalings.

observed to extend to scales of the order of electron gyroradius,
with subsequent steepening to either another power law or an
exponential range reported in the literature (Sahraoui et al., 2010;
Alexandrova et al., 2012).

In a classical paradigm of turbulence, the energy is transported
by nonlinear interactions with no loss through the inertial range
and is dissipated at small scales. In a weakly collisional plasma,
such as solar wind, dissipation of the turbulent fluctuations is
due to collective wave-particle interactions. These interactions
can deposit the energy into various plasma components, such
as thermal or suprathermal electrons, protons, and heavy ion
species. Since turbulence has been proposed to play a significant
role in the energy balance of solar wind, solar corona, and other
space and astrophysical systems, understanding of the details of
energy dissipation is a question of both significant theoretical
interest and of great practical importance.

The problem of correctly describing energy dissipation in
weakly collisional turbulence can be viewed as a problem of
understanding fluid-kinetic coupling. Indeed, the fluctuations in
the inertial range are widely thought to be well-described by
MHD approximation. At the same time, adequate description
of the dynamics at sub-proton scales and especially of the
energy dissipation mechanisms requires electron and ion kinetic
effects. The large-scale fluctuations drive dynamics at sub-
proton scales, while the small-scale fluctuations may influence
the large scales e.g., by supplying dissipation of energy and
momentum, breaking topological constraints through magnetic
reconnection, or placing constraints on values of temperature
anisotropy enforced by instabilities. Significant progress has
been achieved in numerical modeling of turbulence in weakly
collisional plasmas (e.g., Howes, 2017), but the complexity of
the problem drives interest in the methods capable of simulating
sufficiently large range of scales, while describing kinetic effects
with sufficient fidelity. In this section we describe an example of
applying SPS to this problem. As the first step, we focus on the
ability of the method to adequately describe kinetic dissipation
and the small-scale dynamics.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 5 August 2018 | Volume 5 | Article 27

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Roytershteyn and Delzanno Spectral Approach to Kinetic Simulations

4.1. Linear Dispersion Relation
Since the linear dispersion and damping of plasma modes are
thought to be an important factor in determining the turbulence
dynamics at sub-proton scales, we begin by discussing the ability
of the Fourier-Hermite (FH) expansion approach to capture
these properties for kinetic Alfvén wave (KAW). Observations
in the solar wind and existing theoretical results suggest that
KAWs play a significant, if not dominant role in the dynamics
at sub-proton scales (e.g., Howes et al., 2008; Schekochihin
et al., 2009; Salem et al., 2012; Chen et al., 2013). We note that
linear properties of the Fourier-Hermite method, especially in the
electrostatic limit, as well as its application to several other wave
modes and instabilities are well described in the literature (e.g.,
Delzanno, 2015; Vencels et al., 2016 and references therein). The
time-stepping formulation of the method is generally capable
of following expected linear phase for a certain time, limited
by recurrence. The accuracy of linear damping or growth
rates increases with the number of Hermite basis functions.
Furthermore, recurrence can be suppressed by including physical
or artificial collision operator in the method formulation.

It is important to note that even when the number of
Hermite basis functions is low (4–6 in each direction), the
FH method can reproduce the linear properties of the waves
with sufficient accuracy to yield an approximate model for sub-
proton scale dynamics that compares well with fully kinetic PIC
simulations (see section 4.2). Development of advanced fluid
models targeting the sub-proton range of scales and capable of
reproducing the damping rates of kinetic Alfvén and whistler
modes has been the subject of intense research (e.g., Passot
et al., 2017 and references therein). Such models typically rely on
advanced closures, often incorporating expressions for the heat
flux consistent with the linear theory (Hammett and Perkins,
1990). To make contact with the traditional fluid hierarchy, we
first note that in asymmetrically-weighted formulation of the
FH method an exact correspondence exists between the fluid
moment equations and the evolution equations for coefficients
of the expansion. Indeed, for any power r, vr can be expressed

vr =
∑

n≤r

Bn9
n(ξ ), (13)

were Bn are constant coefficients, 9n is the dual Hermite basis
function such that 〈9m9n〉 = δm,n, and 〈. . .〉 =

∫

d3v(. . .). Then
velocity moments of the kinetic equation can be related to the
Hermite moments as

〈

v
p
xv

r
yv

l
z

∣

∣∂tfs + v · ∇fs + (dv/dt) · ∇vfs

〉

=
∑

m≤p

∑

n≤r

∑

p≤l

BmBnBp
〈

9m(ξx)9
n(ξy)9

p(ξz)
∣

∣∂tfs + v · ∇fs

+ (dv/dt) · ∇vfs
〉

. (14)

For example, for Nm = Nn = Np = 4, the system of evolution
equations for coefficients Cm,n,p is equivalent to a fluid system
that retains evolution equations for density, mean velocity,
pressure, and heat flux tensors. The closure approximation relates

FIGURE 3 | (Top) Frequency ω, corresponding to the real part of eigenvalues

of linearized FH method or measured in time-stepping SPS simulations

initialized with a small amplitude perturbation corresponding to KAW.

(Bottom) The ratio of γ to ω, where γ is the imaginary part of the eigenvalue

or the damping rate from the time-stepping solution. In all panels, blue and red

symbols correspond to time-stepping simulations with Nh = 4 and Nh = 6

respectively, while green square correspond to eigenvalues computed for

Nh = 6. The black curve shows numerical solution from a linear Vlasov solver.

The angle of propagation is θ = 89◦.

the 4-th order moment to the lower ones using Equation (13).
Remarkably, such a purely numerical closure can yield similar or
better results than purposefully constructed models.

Here we focus on the (weakly damped)modes that are thought
to be relevant to astrophysical turbulence. The ability of the
method to describe some other modes and instabilities has
been demonstrated in prior publications (e.g., Delzanno, 2015;
Camporeale et al., 2016; Vencels et al., 2016). We present results
from two complementary methods of analyzing linear properties
of the method: decay of the initial perturbation in time-stepping
context and the eigenvalues of the linearized equations. We
consider uniform maxwellian plasma in a background magnetic
field of strength B0. Themass ratio ismi/me = 100,ωpe/�ce = 2,
and βe = βi = 0.5. Here βs = 2µ0n0Ts/B

2
0 is the ratio

between thermal pressure of species s and the magnetic pressure.
The value of collisionality parameter in Equation 10 is ν =
0.01. The chosen ratio of ωpe/�ce is significantly lower than
the one in many systems of interest, such as the solar wind,
but is chosen to enable direct comparison with explicit PIC
simulations (see section 4.2). The latter could not be conducted
at realistic value of ωpe/�ce due to the requirement to resolve

spatial scales of the order of Debye length λe = (1/
√
2)vth,e/ωpe

and temporal scales of the order of inverse plasma frequency.
Here vth,e = (2Te/me)

1/2 is the electron thermal speed. For
example, the ratio of the ion inertial length to Debye length is
di/λe = (2βemi/me)

1/2 ωpe/�ce.
We consider angle of propagation θ = 88◦ with respect to

the background magnetic field, as is characteristic of the kinetic
Alfvén waves (KAW). For each value of k, Figure 3 shows the
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A B

C D

FIGURE 4 | Eigenvalues of the linearized algorithm for the angle of propagation θ = 80.5◦ (A), θ = 85◦ (B), and θ = 88◦ (C). In (A) through (C), blue rhomb, red

square, and green pentagon symbols refers to Nh = 4, 6, 8 respectively. (D) Shows the spectrum of eigenvalues for the case kde = 0.5, Nh = 6, θ = 88◦ and several

values of the collisionality parameter ν.

eigenvalue that is the closest to the KAW solution, as given
by a linear Vlasov solver that implements equations of Stix
(1992). As ν → 0, the imaginary part of eigenvalues tends
to zero. However, for a range of values of ν, the imaginary
part is weakly dependent on the collisionality and yields an
approximation to collisionless damping rate obtained from the
Vlasov solver accurate to 50% or better. It is important to
emphasize that damping of a generic perturbation is the result
of phase mixing between different eigenmodes and is thus better
described in time-stepping formulation of the FH method (e.g.,
Grant and Feix, 1967). Figure 3 also includes real frequency and
the damping rate obtained by initializing (fully nonlinear) SPS
simulations with small-amplitude perturbation corresponding
to eigenvector from the linear Vlasov solution. Overall, it is
apparent that even when small number of Hermite modes is
used, the method yields a good approximation to the collisionless
damping rates and frequency for these nearly perpendicularly
propagatingmodes. Suchmodes are themost relevant in the solar
wind, since the turbulent cascade at both large and at the kinetic
scales is highly anisotropic and supplies energy predominantly
in the perpendicular direction (e.g., Goldreich and Sridhar, 1995;
Schekochihin et al., 2009; Horbury et al., 2012).

To provide more information on the linear properties of
the method, Figures 4A–C show eigenvalues of the linearized

algorithm for three different angles of propagation and several
values of parameter Nh, the number of Hermite modes per
direction. For each case, we show eigenvalues that are the
closest to the Vlasov solution. Figure 4D shows the full spectrum
of eigenvalues for the case Nh = 6, angle of propagation
θ = 88◦, kde = 0.5, and several values of the collisionality
parameter ν. The latter plot illustrates the role played by finite
collisionality: when ν is zero, all the eigenvalues are on the
real axis and the solution corresponding to a damping mode
in the linearized Vlasov equation is obtained as the result of
phase-mixing between eigenmodes. With finite collisionality,
the spectrum of eigenvalues becomes progressively sparser, but
certain eigenvalues appear in the vicinity of the solution of the
linearized Vlasov equation. It is those eigenvalues that give the
solutions plotted in Figure 3. As the number of Hermite modes
is increased for finite collisionality, the number of eigenvalues in
the vicinity of the Vlasov solution increases (not shown).

4.2. Simulations of Decaying Turbulence
Having established that the FH method presented here is capable
of adequately describing linear properties of the wave modes of
interest, we present an example of a fully nonlinear simulation of
turbulence targeting the physics at electron scales. We consider
decaying turbulence, where no external forcing is applied and

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 7 August 2018 | Volume 5 | Article 27

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Roytershteyn and Delzanno Spectral Approach to Kinetic Simulations

FIGURE 5 | Spectrum of magnetic fluctuations (A), parallel compressibility (B), and electron compressibility (C) at t�ci = 10. The vertical lines mark scales

corresponding to kρe = 1 and kλe = 1. The horizontal lines in (B,C) mark values representative of KAWs. In all panels, the blue and red curves correspond to SPS

simulations with Nh = 6 and Nh = 5 respectively. The black curves represent PIC simulation. The top panel also shows a characteristic local slope of the magnetic

spectrum in the vicinity of kde ∼ 1.

the turbulence develops as a result of the decay of an initial
perturbation. The simulations are performed in an anisotropic
rectangular simulation domain of size L‖ = 400 de and L⊥ =
50 de, where parallel and perpendicular refer to the orientation
with respect to the background magnetic field. The simulation is
initialized with Maxwellian uniform plasma and a perturbation
of the magnetic field of the form δB =

∑

k δBk cos(k · x + ψk)
and of ion flow δV i =

∑

k δVk cos(k · x + ψk), where k =
{p(2π/Lx), r(2π/Ly), l(2π/Lz)}, with p, r = −2 . . . 2 and l =
0 . . . 2. The amplitudes of the individual modes satisfy conditions
k·δBk = 0,B0·δBk = 0, k·δVk = 0, and |δBk| = |δVk|. Themean
energy E0 of the initial perturbation is E0 = Ē0LxLyLzB

2
0/(8π),

where Ē0 = 0.04. The background plasma is characterized by
βe = 0.5 and βi = 0.5 − Ē0/3 ≈ 0.49. The resolution in the
Fourier space is 127 modes in each perpendicular direction and
31 modes in the parallel direction. We discuss two simulations
with different numbers of Hermite basis modes in each direction
for both electrons and ions, Nh = 6 and Nh = 5. The time
step is 1t = 2ω−1

pe for the case with 5 Hermite modes and

1t = ω−1
pe for the case with 6modes. The collisionality parameter

in Equation (10) is ν = 0.01. In order to compare the SPS results
with another well established technique for solving Vlasov-
Maxwell system, we have conducted a Particle-In-Cell simulation
of the same problem. The simulations utilized general-purpose
code VPIC (Bowers et al., 2008) and used the same plasma

parameters and similar, but not identical, initialization. The grid
resolution in PIC simulation was 192 × 192 × 1600 cells, with
time step 1t ≈ 0.15ω−1

pe and 104 particles per cell per species at
t = 0. The energy of the initial perturbation is lower than in SPS
simulations Ē0 = 0.02.

Figure 5 summarizes some of the important statistical
properties of fluctuations at the time t�ci = 10 (when these
properties become quasi-stationary) for the two SPS simulations
and the PIC case. The top panel shows the spectrum of magnetic
fluctuations SB(k) =

∑

k‖

∑

k<|k⊥|<k+δk |B(k)|
2. The spectrum

appears to approach a power law at values kde ∼ 1, where SB ∼
k−3.8. However, due to very short range of scales considered,
the power law behavior cannot be established reliably. In SPS
simulations, a steepening is observed at scales between electron
gyroradius ρe = vth,e/�ce and the Debye length λe, which are
not well separated for the considered parameters since ρ2e /λ

2
e =

2ω2
pe/�

2
ce. This transition is followed by yet steeper spectrum

at scales below Debye length, where fluctuations are essentially
electrostatic. Overall, the spectra of magnetic fluctuations in SPS
and PIC simulations are in good agreement, taking into account
the lower energy of the initial perturbation in PIC. The only
significant differences are observed at sub-Debye scales, similar to
the results reported in Vencels et al. (2016).We note that PIC and
SPS treat those scale differently. For example, grid effects strongly
affect PIC results, while the presence of an explicit collisional
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FIGURE 6 | Spectra of electron (Top) and ion (Bottom) velocity fluctuations t�ci = 10. The vertical lines mark scales corresponding to kρe = 1 and kλe = 1. In all

panels, the blue and red curves correspond to SPS simulations with Nh = 6 and Nh = 5 respectively. The black curves represent PIC simulation. PIC spectra flatten

out due to effects of numerical noise.

operator may have a strong influence on the SPS results. We note
however that in solar wind turbulence, majority of the cascading
energy might be expected to be damped at scales kλe < 1.
The saturation of the spectra in PIC simulations at high values
of k is due to the numerical noise. Various techniques exist for
mitigating effects of the noise in PIC simulations, such as spatial
filtering or temporal averages (e.g.,Wan et al., 2012; Roytershteyn
et al., 2015). The PIC spectra shown here were averaged over 50
time steps, corresponding to time interval Tav�ce ≈ 3.6.

The middle panel of Figure 5 shows magnetic compressibility
C‖ = |δB‖|2/|δB|2, which has distinct values for different
wave modes and is useful for identifying the origin of
the observed fluctuations (Gary, 1993; Hollweg, 1999; Salem
et al., 2012). In all of the simulations, the compressibility
reaches values representative of kinetic Alfvén waves C‖ =
(1/2)βi(1 + τ )/[1 + βi(1 + τ )] in the range 0.4/de .

k . ρ−1
e , where τ = Te/Ti (Boldyrev et al., 2013).

However, C‖ is about 15% higher in PIC simulations relative
to both SPS cases in the range kρe . 1. In all of the
simulations, the compressibility increases after kρe ∼ 1. The
increase is somewhat sharper in PIC simulations and this
behavior is better tracked by the Nh = 6 case. Finally, the
bottom panel in Figure 5 shows another identifying signature
of fluctuations, electron compressibility Ce = (1/2)βi(1 +
τ )
[

1+ βi(1+ τ )
]

|δn/n0|2/|δB/B0|2. Again, in a significant
range of scales kde . 1 the properties of the fluctuations are

consistent with KAWs. The values of electron compressibility in
this range are very close between PIC and SPS simulations, but
deviate at scales kρe & 1, with a sharper increase in the PIC
case.

The properties of electron Ue and ion U i velocity fluctuations
are summarized in the top and bottom panels of Figure 6,
respectively. At the sub-proton scales, the magnitude of electron
velocity fluctuations significantly exceeds that of ions since ions
are demagnetized. Overall, the behavior of |Ue| spectra is very
similar to those of the magnetic field, with Ue spectra shallower
by approximately k2. A good agreement between PIC and SPS
Ue spectra is seen at scales kλe . 1. In contrast, the (weak)
fluctuations of ion velocity exhibit more substantial differences
between PIC and SPS cases. In particular, the PIC spectrum of
U i is shallower at small scales, leading to about a factor of 3
difference kde ∼ 1, even though the overall energy of ion velocity
fluctuations is lower in PIC.

Finally, Figure 7 shows the evolution of the total energy in
the simulations E(t), normalized to the energy of the initial
perturbation E0. The SPS simulations, as expected, demonstrate
excellent conservation properties (Delzanno, 2015). In fact, no
change in the total energy is present within the accuracy of the
diagnostic output. In contrast, PIC simulations exhibit noticeable
numerical heating, which reaches the level of approximately 5%
of the applied perturbation over the duration of the simulation.
While this is likely acceptable for the present case, we had to use
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FIGURE 7 | Energy conservation in the simulation of decaying turbulence. The

curves show evolution of total energy E in the simulation, which is the kinetic

energy of plasma species plus the energy of the electromagnetic field,

normalized to the energy of the initial perturbation δE (t) = (E (t)− E (0))/E0.

an unconventionally large number of particles to achieve such
level of energy conservation.

5. SUMMARY

In this paper we summarized recent development of a highly
parallelized version of the code SPS. SPS is a spectral code
that implements dual Fourier-Hermite transform to obtain
numerical solution of the Vlasov-Maxwell system. The method
is particularly suitable for describing fluid-kinetic coupling since
a direct analogy could be drawn between traditional fluid
hierarchy and the equations for the evolution of the coefficients of
expansion in the case of asymmetrically-weighted Hermite basis.
In contrast to the traditional multi-moment models, the number
of coefficients in the expansion is limited only by available
computational resources, which opens up intriguing possibilities
for building models capable of adaptively increasing the number
of coefficients in selected regions of physical or wavenumber
space.

As an example, we have discussed application of SPS to the
problem of turbulence in weakly collisional plasmas. A model
of plasma dynamics capable of capturing essential features of
turbulence at electron scales could be obtained with only a
few Hermite modes, as was demonstrated by considering linear
properties of Kinetic Alfvén waves. Fully nonlinear simulations
of decaying plasma turbulence were performed and successfully

compared against corresponding PIC simulations. While some
differences in the decay of the imposed perturbation of ion
flow were observed between PIC and SPS, SPS simulations
successfully reproduce most of the statistical properties of
magnetic and electron fluctuations observed in PIC simulations
at kρe . 1. Significant differences in the spectra are observed at
scales approaching Debye scale and below. In practice, this range
of scales might not be significant for turbulence investigations,
since most of cascading energy is expected to dissipate before it
reaches Debye scales.
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