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The formation of a protostellar disc is a natural outcome during the star formation

process. As gas in a molecular cloud core collapses under self-gravity, the angular

momentum of the gaswill slow its collapse on small scales and promote the formation of a

protostellar disc. Although the angular momenta of dense star-forming cores remain to be

fully characterized observationally, existing data indicates that typical cores have enough

angular momenta to form relatively large, 100 au-scale, rotationally supported discs, as

illustrated by hydrodynamic simulations. However, the molecular clouds are observed to

be permeated by magnetic fields, which can in principle strongly affect the evolution of

angular momentum during the core collapse through magnetic braking. Indeed, in the

ideal magnetohydrodynamic (MHD) limit, magnetic braking has been shown to be so

efficient as to remove essentially all of the angular momentum of the material close to

the forming star such that disc formation is suppressed. This failure to produce discs in

idealized cores is known as the magnetic braking catastrophe. The catastrophe must

be averted in order for the all-important rotationally supported discs to appear, but

when and how this happens remains debated. We review the resolutions proposed

to date, with emphasis on misalignment, turbulence and especially non-ideal effects.

Non-ideal MHD accounts for charged and neutral species, making it a natural extension

to the ideal MHD approximation, since molecular clouds are only weakly ionized. The

dissipative non-ideal effects diffuse the magnetic field to weaken it, and the dispersive

term redirects the magnetic field to promote or hinder disc formation, dependent upon

the magnetic geometry. When self-consistently applying non-ideal processes, rotationally

supported discs of at least tens of au form, thus preventing the magnetic braking

catastrophe. The non-ideal processes are sensitive to the magnetic field strength, cosmic

ray ionization rate, and gas and dust grain properties, thus a complete understanding

of the host molecular cloud is required. Therefore, the properties of the host molecular

cloud—and especially its magnetic field—cannot be ignored when numerically modeling

the formation and evolution of protostellar discs.

Keywords: magnetic fields, magnetohydrodynamics (MHD), non-ideal MHD, star formation, protostellar discs

1. INTRODUCTION

The broad outline of low-mass star formation has been known since at least
(Larson, 1969), although many specific details are still under investigation. In
Larson’s description, which is the foundation for all current low-mass star formation
models, a piece of the interstellar cloud (a molecular cloud core in modern
terminology) collapses under self-gravity. The collapse is initially isothermal,
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since radiation is efficiently radiated away. However, as the
density increases at the center of the core, it becomes optically
thick to the radiation, which leads to an increase in thermal
pressure support against self-gravity and the formation of the
first hydrostatic or first Larson core. The first hydrostatic core
continues to accrete material from the collapsing envelope, and
its mass, density and temperature increase until the temperature
rises above ∼2,000 K; this temperature triggers the dissociation
of H2, allowing the core to further collapse. This second collapse
phase is rapid, and lasts until most of the H2 has been dissociated,
at which point the second hydrostatic or stellar core has formed.
The temperature continues to rise until nuclear burning starts
and the star is formed.

The formation of star-forming molecular cloud cores is not
fully understood1. These cores are observed to be initially slowly
rotating, with ratios of rotational energy to gravitational potential
being β . 0.15 with typical values of β ∼ 0.02 (Goodman
et al., 1993). However, their angular velocities are typically one to
two orders of magnitude smaller than inferred by conservation
of angular momentum (for a review, see Goldsmith and Arquilla,
1985). Therefore, there must exist somemechanism that will shed
the angular momentum to allow these slowly rotating cloud cores
to form (e.g., Spitzer, 1968).

As the rotating cloud core collapses under self-gravity, in
the absence of magnetic fields, the rotation slows the collapse
such that the gas forms a large protostellar disc as early as
during the first core stage, and certainly by the Class 0 phase,
as indicated by observations (e.g., Tobin et al., 2012; Murillo
et al., 2013; Codella et al., 2014; Lee et al., 2017) and found in
numerical simulations (e.g., Boss, 1993; Yorke et al., 1993, 1995;
Boss and Myhill, 1995; Bate et al., 2014; Tomida, 2014; Wurster
et al., 2018c). Conservation laws and observations thus both
suggest that protostellar discs are a natural byproduct of the star
formation process.

Molecular clouds are observed to be strongly magnetized
(e.g., Crutcher, 1999; Bourke et al., 2001; Heiles and Crutcher,
2005; Troland and Crutcher, 2008), and magnetic fields are
efficient at transporting angular momentum away from a
collapsing core (known as “magnetic braking”; e.g., Mestel
and Spitzer, 1956; Mouschovias and Paleologou, 1979, 1980;
Basu and Mouschovias, 1994, 1995; Mellon and Li, 2008).
On the cloud scale, magnetic braking likely occurs early in
the cloud’s formation and is responsible (at least in part)
for reducing the angular momentum to the observed values
(e.g., Mouschovias, 1983). Near the center of the collapsing
core, magnetic braking means that discs are less necessary to
conserve angular momentum since it is transported away. This
reduced angular momentum may delay the formation of the
disc until during or after the stellar core phase, or may prevent
it altogether. In idealized numerical simulations including ideal
magnetohydrodynamics (MHD), protostellar discs either fail to
form or are much smaller than the observed sizes. This is known
as themagnetic braking catastrophe (Allen et al., 2003; Galli et al.,
2006).

1The focus of this review is on disc formation, thus for the remainder of this paper,
we will assume that a slowly rotating cloud core has successfully formed.

Magnetic fields support charged gas against gravitational
collapse, thus a common characterization of the relative
importance of the gravitational and magnetic forces is the
normalized mass-to-flux ratio,

µ ≡
M/8B

(M/8B)crit
, (1)

where

M

8B
≡

M

πR2B
, (2)

is the mass-to-flux ratio and

(

M
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)

crit
=

c1

3π

√

5

G
, (3)

is the critical value where the gravitational and magnetic forces
balance; in these equations,M is the total mass contained within
a core of radius R,8B is themagnetic flux threading the surface of
the spherical core assuming a uniform magnetic field of strength
B,G is the gravitational constant and c1 ≃ 0.53 is a dimensionless
coefficient numerically determined by Mouschovias and Spitzer
(1976). The critical value of µ = 1 suggests that the gravitational
and magnetic forces balance one another. For large super-critical
values (µ & 20), the magnetic field is inconsequential for
core collapse, and the evolution is similar to that of a purely
hydrodynamic cloud (e.g., Bate et al., 2014). For sub-critical
values (µ < 1), the magnetic field will prevent the collapse of
the cloud core altogether. Observations suggest µ ∼ 2 − 10 in
molecular cloud cores (e.g., Crutcher, 1999; Bourke et al., 2001;
Heiles and Crutcher, 2005), however, this value could be even
smaller after correcting for projection effects (Li et al., 2013a).

Although widely used, the mass-to-flux ratio should be used
with caution, since the equation and the critical value are
dependent on the geometry. While the above equations assume
spherical geometry, a mass-to-flux ratio for a thin sheet is given
in Nakano and Nakamura (1978), and the ratio for an oblate
spheroid is given in Mouschovias and Spitzer (1976).

We will begin the review by describing the observational
motivations in section 2, followed by a description of ideal MHD
in the introduction to section 3. Our focus will then shift to
numerical models, where we demonstrate the magnetic braking
catastrophe (section 3.1), followed by attempts to prevent it while
still keeping the ideal MHD approximation (sections 3.2 and 3.3).
We will then introduce non-ideal MHD (section 4), and show the
recent success of those simulations in preventing the magnetic
braking catastrophe. We will conclude in section 5.

2. OBSERVATIONAL MOTIVATIONS

The notion of a magnetized interstellar medium (ISM) dates back
more than half a century, to at least the detection of polarized
starlight (Hall, 1949; Hiltner, 1949) and its interpretation
as coming from the absorption of the unpolarized starlight
by magnetically aligned grains in the foreground medium
(Davis and Greenstein, 1951; see Andersson et al., 2015 for a
recent review). With the advent of observational capabilities,
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the magnetic fields in the ISM in general, and star-forming
molecular clouds in particular, are becoming increasingly better
characterized. For example, the PLANCK all-sky survey of
the dust polarization leaves little doubt that a rather ordered
magnetic field component exists in all nearby clouds (Planck
Collaboration et al., 2015), as reviewed by H. B. Li in this volume.
Observations have also revealed the prevalence of the magnetic
field on the smaller scales of individual cores of molecular clouds
and protostellar envelopes, as reviewed by Pattle et al., Crutcher
& Kemball, and Hull & Zhang, in this volume.

As an illustration, we show in Figure 1 the dust polarization
detected with the Atacama LargeMillimeter/submillimeter Array
(ALMA) around the Class 0 protostar B335 (Maury et al., 2018).
The polarization orientations are rotated by 90◦ to trace the
magnetic field directions in the plane of the sky. It is immediately
clear that not only a magnetic field is present on large scale, but
also it shows coherent structures. In particular, the (projected)
field appears to be significantly pinched near the equator of the
system, as defined by the bipolar molecular outflows. The pinch
is direct evidence that the magnetic field is interacting with the
envelope material, through a magnetic tension force. Whether
such a magnetic force is strong enough to affect the dynamics
of the core collapse and especially disc formation is the question
that we seek to address in this article.

There is some indirect evidence that magnetic fields may play
a role in disk (and binary) formation. For example, Maury et al.
(2010) concluded that core collapse models with a relatively
strong magnetic field are more consistent with their IRAM-
PdBI observations of Class 0 protostellar systems than their
hydrodynamic (non-magnetic) counterparts. In the particular
case of B335, the specific angular momentum is observed to
decrease rapidly toward the central protostar, with a rotationally

supported disk (if present) smaller than ∼ 10 au (Yen et al.,
2015). The decrease in specific angular momentum and small
disk could result naturally from the braking by a magnetic field,
which has now been mapped in detail with ALMA (Maury
et al., 2018). In addition, there is some tentative evidence
that protostellar sources with misaligned magnetic field and
rotation axis (inferred from outflow direction) tend to have larger
disks (e.g., Segura-Cox et al., 2016), which is consistent with
magnetized disk formation simulations (e.g., Hennebelle and
Ciardi, 2009; Joos et al., 2012; Krumholz et al., 2013; Li et al.,
2013b).

Finding evidence for the magnetic field on the disc scale is
more challenging. Spatially resolved dust polarization has been
detected in discs around a number of young stellar objects,
using the Submillimeter Array (SMA; e.g., Rao et al., 2014), the
Combined Array for Research in Millimeter-wave Astronomy
(CARMA; e.g., Stephens et al., 2014; Segura-Cox et al., 2015),
the Very Large Array (VLA; e.g., Cox et al., 2015; Liu et al.,
2016), and especially ALMA (e.g., Kataoka et al., 2017; Stephens
et al., 2017; Alves et al., 2018; Bacciotti et al., 2018; Cox et al.,
2018; Girart et al., 2018; Harris et al., 2018; Hull et al., 2018; Lee
et al., 2018; Sadavoy et al., 2018; Dent et al., 2019). However,
with the exception of BHB 07-11 (Alves et al., 2018) and possibly
a few other cases, the majority of the sources do not show
any evidence for dust grains aligned by the generally expected
toroidal magnetic fields; their polarization patterns are better
explained by dust scattering instead (Kataoka et al., 2015, 2016;
Yang et al., 2016a,b, 2017). The reader is referred to Hull &
Zhang’s article in this volume for a more detailed discussion.
In any case, whether and how the disc is connected to the
protostellar envelope through a magnetic field remain to be
determined observationally.

FIGURE 1 | An example of the magnetic field traced by dust polarization around an observation (left-hand panel) and a numerical model (right-hand panel) of the

solar-type Class 0 protostar B335. The background image in the right-hand panel is the ALMA polarized dust continuum emission, and the superimposed lines infer

the magnetic field orientations (i.e. the polarization angle rotated by 90◦). This figure is inspired by Figures 1 and 3 of Maury et al. (2018), and was created by A. J.

Maury for this publication.
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FIGURE 2 | The magnetic field lines superimposed on a density slice during the first hydrostatic core phase for ideal and non-ideal MHD simulations. The initial

mass-to-flux ratio is five times the critical value (i.e., µ0 = 5). In ideal MHD, the magnetic field lines are dragged inwards as the cloud core collapses, creating the

characteristic hour-glass shape. On the large scale, the non-ideal effects have minimal effect on the strength and structure of the magnetic field, whereas on the small

scale, the neutral particles flow through the magnetic field lines to form the first hydrostatic core, while preventing the magnetic field lines from becoming pinched and

preventing a strong magnetic field from building up in the core (bottom). These images are inspired by Figure 2 of Price and Bate (2007) and Figure 1 of Bate et al.

(2014).

3. DISC FORMATION IN THE IDEAL MHD
LIMIT

The simplest approximation when modeling magnetic fields is to
use ideal MHD, where it is assumed that the gas is sufficiently
ionized such that the magnetic field is well coupled to the bulk
neutral gas. In this approximation, the induction equation is
given by

∂B

∂t
= ∇ × (v× B) , (4)

where v is the gas velocity and B is the magnetic field. Since the
gas is tied to the magnetic field lines, the lines are dragged in as
the gas collapses (assuming µ0 > 1), causing a characteristic
hour-glass shape; see the left-hand column of Figure 2 for
numerical results, which nicely complement the observational
results in Figure 1. This pinching effect becomes less prominent
as the magnetic field becomes stronger, since the stronger field
is harder to bend (see Figure 2 of Price and Bate, 2007). If the
magnetic field were to be dragged all the way into the central
stellar object, then the stellar field strength would be millions of
gauss, which is much higher than the kilo-gauss field typically

observed in young stars. This is a manifestation of the so-
called “magnetic flux problem” in star formation (Babcock and
Cowling, 1953; Mestel and Spitzer, 1956; Shu et al., 2006)2.

In purely hydrodynamics simulations, large protostellar discs
can form due to conservation of angular momentum. In the
presence of magnetic fields, angular momentum can be efficiently
transported away from the collapsing central region (e.g., Mestel
and Spitzer, 1956; Mouschovias and Paleologou, 1979, 1980; Basu
and Mouschovias, 1994, 1995; Mellon and Li, 2008), and not
enough angular momentum remains for a rotationally supported
disc to form. This is the magnetic braking catastrophe, as first
demonstrated by Allen et al. (2003, see also the pioneering work
by Tomisaka, 2000): Rotationally supported discs do not form
in idealized numerical simulations in the presence of magnetic
fields of realistic strengths. Analytical studies by Joos et al. (2012)
estimated that µ ≤ 10 should be enough to suppress disc
formation.

There have been many numerical simulations of disc
formation under the assumption of idealMHD.Most simulations
are initialized with a rotating spherical cloud core which is
threaded with a magnetic field that is parallel to the rotation axis
(section 3.1). However, molecular clouds contain turbulent flows

2Given the focus of this review, the magnetic flux problem will not be addressed
here; see Wurster et al. (2018d) for a recent discussion.
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(e.g., Heyer and Brunt, 2004), which form large scale structures
(e.g., Padoan and Nordlund, 2002; McKee and Ostriker, 2007;
Ward-Thompson et al., 2010), and it is these chaotic structures
that can collapse to form cores that ultimately collapse to form
stars and protostellar discs. Thus, a more realistic scenario is
that the magnetic fields are initially misaligned with the rotation
axis (see section 3.2), or the velocity field initially contains a
significant turbulent component (see section 3.3).

3.1. Idealized Initial Conditions
The simplest and most common initial condition for disc
formation from a collapsing molecular cloud core is to thread
a magnetic field parallel to the rotation axis of a spherical core
that is in solid-body rotation; the initial magnetic field strength
is characterized by the initial mass-to-flux ratio, µ0, for the core
as a whole. The early ideal MHD simulations were performed
under the assumption of an isothermal or barotropic equation of
state and were performed in two-dimensional (e.g., Allen et al.,
2003; Mellon and Li, 2008) or three-dimensional (e.g., Machida
et al., 2004; Price and Bate, 2007; Hennebelle and Fromang, 2008;
Duffin and Pudritz, 2009; Machida et al., 2011; Zhao et al., 2011;
Santos-Lima et al., 2012; Seifried et al., 2012). Later studies were
radiative three-dimensional calculations that included simplified
ideal magnetic fields calculations (e.g., Boss, 1997, 1999), or
solved the complete MHD equations (e.g., Boss, 2002, 2005,
2007, 2009; Commerçon et al., 2010; Tomida et al., 2010, 2013;
Bate et al., 2014). Subsequent studies included radiation and
ideal magnetic fields as part of a parameter study (e.g., Tomida,
2014; Tomida et al., 2015; Tsukamoto et al., 2015b; Vaytet et al.,
2018; Wurster et al., 2018a,c,d). When using moderate to strong
magnetic fields, these studies all found efficient magnetic braking,
and none of them formed a protostellar disc.

For a demonstration of the magnetic braking catastrophe,
Bate et al. (2014) simulated four magnetized models and one
hydrodynamical model. Figure 3 shows the face-on and edge-on
gas densities in a slice through the first hydrostatic core, and these
figures are representative of ideal MHD models in the literature.
With weak or no magnetic fields (µ0 = 100, Hydro), the first
core is rotating quickly enough and is massive enough to become
bar unstable and forms a gravitationally unstable disc that is
dominated by spiral arms (e.g., Bate, 1998, 2010, 2011; Saigo and
Tomisaka, 2006; Saigo et al., 2008; Machida et al., 2010).

As analytically predicted by Joos et al. (2012), there are no
discs in the models with µ0 ≤ 10, however, pseudo-discs
do form; a pseudo-disc is an over-density of gas around a
protostar that is not centrifugally supported, not in equilibrium,
and is resulted from the anisotropy of the magnetic support
against gravity (Galli and Shu, 1993; Li and Shu, 1996), although,
throughout the literature, authors use this term to refer to a
variety of disc-like structures. The pseudo-discs in Bate et al.
(2014) do not increase in size, nor do they ever become Keplerian
discs. This study clearly demonstrates the magnetic braking
catastrophe, at least up to the formation of the first hydrostatic
core.

When considering the long term evolution of the system, discs
may yet form. In their ideal MHD simulations, Machida and
Hosokawa (2013) find that discs form in their models by the end
of the Class 0 phase, and increase in mass into the Class I phase.

As the envelope is depleted, the magnetic braking becomes less
efficient, which allows these discs to form as speculated earlier by
Mellon and Li (2008, see also section 4.2.1); when their strongly
magnetizedmodels end in the Class I phase, the discs havemasses
∼40 per cent of the mass of the protostar itself.

This leads to the open question of when protostellar discs
form. If they form in later stages (e.g., Class I or II), then
there may be no magnetic braking catastrophe in the numerical
simulations; if they form early in the Class 0 phase, then the
catastrophe persists, and one must go beyond the idealized initial
conditions to form a discs if the magnetic field is strong and well-
coupled to the gas. Future observations are required to determine
when in the star formation process its protostellar disc forms.

3.2. Misaligned Magnetic Fields
There have been several studies investigating the impact
of misaligned magnetic fields on the formation of discs
(eg., Matsumoto and Tomisaka, 2004; Machida et al., 2006;
Matsumoto et al., 2006; Hennebelle and Ciardi, 2009; Joos et al.,
2012; Krumholz et al., 2013; Li et al., 2013b; Lewis et al., 2015;
Lewis and Bate, 2017). Similar to the literature, we define the
angle θ such that the angular momentum J and magnetic field
B vectors are parallel and aligned when θ ≡ 0◦. The components
of the angular momentum that are parallel and perpendicular to
the magnetic field are J‖ = |J · B| / |B| and J⊥ = |J × B| / |B|,
respectively.

Two-dimensional analytical models of collapsing cylinders
by Mouschovias and Paleologou (1979) found that magnetic
braking can reduce the angular momentum of a cloud by a few
orders of magnitude if θ = 90◦. All other parameters being
the same, this indicates that systems with θ = 0◦ are more
likely to form discs than their θ = 90◦ counterparts. However,
this pioneering work did not include the gravitational collapse,
which can modify the magnetic field configuration and affect the
braking efficiency.

The results of Mouschovias and Paleologou (1979) were later
confirmed by the three-dimensional models of Matsumoto and
Tomisaka (2004). In these models, the perpendicular component
of the angular momentum, J⊥, decreased faster than the parallel
component, indicating that magnetic braking was more efficient
for the perpendicular component. This component decreased
rapidly and by a few orders of magnitude in their models with
θ = 45 and 90◦; the component J‖ decreased only by a factor of a
few in their models with θ = 0 and 45◦ (see their Figure 4). These
results broadly agree with the parameter study by Machida et al.
(2006), who also find that magnetic braking acts primarily on
the component perpendicular to the rotation axis. They conclude
that discs form more easily when θ = 0◦.

Several studies, however, reach the opposite conclusion: Discs
form more easily when θ = 90◦. Joos et al. (2012) find that
massive discs form in all of their misaligned models, requiring as
little as θ = 20◦ to allow a massive disc to form. The exceptions
are their models with the strongest magnetic field strength, µ0 =

2, in which discs never form, independent of θ . As the evolution
progresses, the pseudo-discs continue to accrete, increasing both
their mass and angular momentum; more massive discs form for
larger θ , and faster rotating discs form for weaker magnetic fields
(larger µ0).
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FIGURE 3 | The face-on (top row) and edge-on (bottom row) gas density in a slice through the centre of the first hydrostatic core for ideal MHD models of decreasing

magnetic field strength (increasing µ0; left to right) and a pure hydrodynamics model. Gravitationally unstable discs form for µ0 > 20, whereas only pseudo-discs only

form in the remaining models. This is inspired by Figure 4 of Bate et al. (2014), and was created for this publication using the data from Bate et al. (2014).

Except in the case of very strong magnetic fields, Li et al.
(2013b) find the initially misaligned magnetic field allows
rotationally supported discs to form in the dense cores, even
when no discs form in the aligned models. In their models, the
magnetic field lines are wrapped into a snail-shaped curtain when
θ = 90◦, and this configuration hinders outflows.With negligible
outflows, the angular momentum remains near the protostar,
allowing the formation of the disc.

In Lewis and Bate (2017), the pseudo-disc increases in size and
forms larger arms as the misalignment increases since the gas can
easily flow along the horizontal magnetic field component. For
θ = 20 and 45◦, the pseudo-discs are warped such that the inner
regions are perpendicular to the rotation-axis, while the outer
regions are perpendicular to the magnetic field.

In summary, misalignment between the rotation axis and
the magnetic field lines may promote or hinder the formation
of rotationally supported discs. Machida et al. (2006) found
that for slow rotators, magnetic braking aligns the rotation axis
and the magnetic field (in agreement with Lewis and Bate,
2017 if comparing the outer parts of the discs), and for fast
rotators, the magnetic field aligns through a dynamo action.
This suggests that the effect of misalignment may, at least in
part, be a result of the initial conditions. Thus, at the time
of writing, the effect of misalignment on disc formation is
inconclusive.

3.3. Turbulent Initial Conditions
There are several studies of disc formation in massive turbulent
magnetized molecular clouds (M > 100M⊙; e.g., Santos-Lima
et al., 2012, 2013; Seifried et al., 2012, 2013; Myers et al., 2013;
Li et al., 2014; Fielding et al., 2015; Gray et al., 2018), as well
a number of studies that begin from turbulent, low-mass cores
(M < 10M⊙; e.g., Matsumoto and Hanawa, 2011; Joos et al.,
2013; Li et al., 2014; Matsumoto et al., 2017; Lewis and Bate,

2018); for scales consistent with this review, we focus on the latter
studies. These low-mass simulations reach contradicting results,
with some studies suggesting increased turbulence promotes
disc formation (Joos et al., 2013; Li et al., 2014), while others
suggest it hinders discs formation (Matsumoto and Hanawa,
2011; Matsumoto et al., 2017; Lewis and Bate, 2018).

Figure 4 illustrates the effect of how increasing the Mach
number, M, of the turbulent velocity field imposed on a slowly
rotating, pre-stellar cloud core hinders disc formation. As the
Mach number is increased, the resulting pseudo-disc is smaller,
and the rotating gas becomes less Keplerian. For M = 1,
the system is disrupted and no pseudo-disc forms. In the most
turbulent model, the initial ratio of turbulent to rotational energy
is Eturb/Erot = 26, and Lewis and Bate (2018) argue that
Eturb/Erot . 1 is required for the formation of a pseudo-disc.
By increasing the initial rotation such that Eturb/Erot = 1.6,
they form a disrupted pseudo-disc, while increasing it such that
Eturb/Erot = 1.06, they form a slowly rotating pseudo-disc.

On slightly larger spatial scales before the first hydrostatic core
forms, Matsumoto and Hanawa (2011) find that models without
turbulence produce axisymmetric oblate or prolate clouds
(depending on initial mass). As the turbulence is increased, the
clouds become more chaotic and disrupted. As the gravitational
collapse continues, each model eventually forms a spherical first
core surrounded by a disc-like envelope (with the exception of
one model with weak magnetic fields and moderate turbulence).

Following the long-term evolution of their turbulent models,
Matsumoto et al. (2017) formed a disc in each model,
and the disc mass and radius increased with time. In
agreement with non-turbulent studies, they consistently found
larger discs in models with weaker magnetic fields. However,
they also consistently found larger discs in models with
weaker turbulence (all other parameters being held constant).
Thus, they concluded, turbulence hindered disc formation.
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FIGURE 4 | The face-on (Top row) and edge-on (Bottom row) gas column density projections showing disc formation in models in a relatively strong (µ0 = 5)

magnetic field with a turbulent velocity field imposed onto a solid-body rotation. The Mach number is shown in each panel. The figures are taken ∼500 yr after sink

formation (i.e., when the maximum density has reached ρmax = 10−10 g cm−3 ). Increasing turbulence in these models hinders disc formation. These are inspired by

Figure 7 of Lewis and Bate (2018), but are from lower resolution models.

In their strongest magnetic field model, the disc radii
and masses were nearly indistinguishable between their two
turbulent models (M = 0.5, 1; see their Figures 5,
6), suggesting that at these magnetic field strengths, the
strength of turbulence played a secondary role in the cloud’s
evolution.

Contrary to the above, Figure 5 illustrates the effect of how
increasing the Mach number, M promotes disc formation. In
the models of Li et al. (2014), a disc-like structure begins to
form at M = 0.5, however, it is still partially disrupted.
At larger Mach numbers, the disc becomes more prominent,
and for M = 1, has a Keplerian rotational profile. They
conclude that the promotion of disc formation is a result of
the warping of the pseudo-disc and the magnetic decoupling-
triggered reconnection of the severely pinched field lines near the
central object.

Joos et al. (2013) presented a suite of models, and found
massive discs in all their simulations with weak magnetic fields,
and very small discs in their strongly magnetized models; at both
strong and weak magnetic field strength, the disc growth rate is
approximately independent of the Mach number. For moderate
magnetic field strengths, the disc growth rates are dependent on
the Mach number such that a ∼0.6M ·© disc forms in the same
length of time it takes to form a ∼0.4M ·© disc in a laminar
model (the model has an initial mass of 5M ·©). In these models,
the turbulence diffuses the magnetic field out of the central
region, generating an effective magnetic diffusivity prompted
by magnetic reconnection, and hence weakening the magnetic
field (see also Weiss, 1966; Santos-Lima et al., 2012). Turbulence
also induces a misalignment between the rotation axis and the
magnetic field (see also Seifried et al., 2012; Gray et al., 2018) of

20− 60◦, which reduces the magnetic braking. The effect of these
two mechanisms is to allow for larger discs to form.

In summary, turbulence can hinder or promote disc
formation. Thus, as with the studies of initial magnetic field
alignment, initial conditions will likely play an important role in
determining the outcome.

4. NON-IDEAL MHD AND DISC
FORMATION

It is well known that the dense, star-forming, cores of molecular
clouds are lightly ionized (Bergin and Tafalla, 2007), with detailed
models finding ionization fractions as low as ne/nH2 = 10−14

(Nakano and Umebayashi, 1986; Umebayashi and Nakano, 1990;
Nishi et al., 1991; Nakano et al., 2002). The low ionization
level means that the magnetic field is no longer perfectly
coupled to the bulk neutral material, rendering the ideal MHD
approximation questionable. A proper treatment of the non-
ideal MHD effects is required, including a detailed calculation
of the abundances of the electrons, ions and charged dust
grains.

There are several methods of numerically modeling multiple
species. They can be modeled explicitly (e.g., Inoue et al., 2007;
Inoue and Inutsuka, 2008, 2009), where each species has its
own continuity and momentum equation. In this method, the
species interact directly with each other through terms in the
momentum and energy equations. Electrons are not explicitly
treated because their mass is much less than those of other
particles. The induction equation is as given in Equation 4, except
that it only includes the velocity of the charged species.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 7 December 2018 | Volume 5 | Article 39

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Wurster and Li Magnetic Fields in Protostellar Discs

FIGURE 5 | The gas density (color) and velocity (vectors) in the mid-plane for models with increasing Mach number (printed in the bottom left-hand corner of each

frame). Each frame is ∼1,400 au on each side. In this suite of simulations, increasing the Mach number promotes disc formation. This is Figure 2 of Li et al. (2014).
©AAS. Reproduced with permission.

Under the assumptions that mass density is dominated by the
neutral mass density, and that collisions occur predominantly
between charged species and neutrals, then the inertia and
pressure of the charged species and collisions between charged
species can be safely neglected (e.g., O’Sullivan and Downes,
2006; Rodgers-Lee et al., 2016). In this approximation, each
species has its own continuity equation, but only the neutral
species has a momentum equation; additional equations are
included to govern the interactions (e.g., energy transfer)
between the species. Other studies include dust grains, and
include continuity equations for the neutral gas and total
grain density but not the charged gas species (e.g., Ciolek and
Mouschovias, 1993, 1994; Tassis and Mouschovias, 2005a,b,
2007a,b,c; Kunz and Mouschovias, 2009, 2010).

The continuity equation can be constructed to evolve total
mass density rather than species mass density if the strong
coupling approximation is invoked; in this approximation,
the ion pressure and momentum are negligible compared
to that of the neutrals, and the magnetic field and neutral
flows evolve on a timescale that is long compared to the
timescale of the charged particles (e.g., Wardle and Koenigl,
1993; Ciolek and Mouschovias, 1994; Mac Low et al., 1995;
Wardle and Ng, 1999; Choi et al., 2009). In approximation,
there is one continuity and one momentum equation. This
method is typically used by those studying the formation
of protostellar discs (e.g., Krasnopolsky et al., 2010; Tomida
et al., 2015; Tsukamoto et al., 2015b,a; Masson et al., 2016;
Wurster et al., 2016; Vaytet et al., 2018; Wurster et al.,
2018c).

Except in the cases where the charged and neutral species
interact directly through their own momentum equations, the
induction equation is modified to account for the species of
different charges, viz.,

∂B

∂t
=

∂B

∂t

∣

∣

∣

∣

ideal
+

∂B

∂t

∣

∣

∣

∣

non-ideal

= ∇ × (v× B) − ∇×
{

ηO (∇ × B) + ηH (∇ × B) × B̂− ηA

[

(∇ × B) × B̂

]

× B̂

}

,

(5)

where all the micro-physics governing the species properties
and interactions is contained within the coefficients, η. In the
case of, e.g., O’Sullivan and Downes (2006) and Rodgers-Lee
et al. (2016), the species densities are taken directly from the
continuity equation, whereas sub-grid algorithms are required
if not explicitly evolving the density of the charged species or if
using the strong coupling approximation. The three coefficients
represent the different regimes of interactions between the
neutrals and the charged particles:

1. Ohmic resistivity, ηO: ions, electrons and charged grains are
completely decoupled from the magnetic field,

2. Hall effect (ion-electron drift), ηH: massive particles (ions,
charged grains) are decoupled from the magnetic field while
electrons remain coupled (i.e., the electrons are frozen into
the magnetic field, which drifts through the ions and charged
grains), and
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3. Ambipolar diffusion (ion-neutral drift), ηA: both massive
charged particles (ions, charged grains) and electrons are
coupled to the magnetic field (i.e., the charged particles
are frozen into the magnetic field, which drifts through the
neutrals).

Ohmic resistivity and ambipolar diffusion are both diffusive
terms, with the associated energy dissipation given by Wurster
et al. (2014)

∂u

∂t
=

∂u

∂t

∣

∣

∣

∣

ideal
+

∣

∣∇ × B2
∣

∣

ρ
ηO +

1

ρ

{

|∇ × B|2 −
[

(∇ × B) · B̂
]2

}

ηA,

(6)

where u is the internal energy. Physically, these non-ideal
processes allow the neutral and selected ionized particles to
slip through the magnetic field, which typically leads to a
redistribution of the magnetic field lines relative to the bulk
neutral matter. In particular, a concentration of matter may not
lead to as large an increase in the magnetic field strength as in the
ideal MHD limit.

Ohmic resistivity is typically important at the highest
densities, such as the inner midplane regions of the protostellar
disc, while ambipolar diffusion typically dominates at relatively
low densities, such as the molecular cloud core itself, and the
upper and outer regions of the protostellar disc (e.g., Shu et al.,
2006; Wardle, 2007; Machida et al., 2008; Wurster et al., 2018a).
Figure 2 shows the magnetic field lines on both the molecular
cloud core and protostellar disc scales for ideal and non-ideal
MHD. When using ideal MHD, the magnetic field lines are
dragged into the center, causing an enhancement in the magnetic
field strength, and creating the expected “hour-glass shaped” field
lines. Since the neutral gas can slip through the magnetic field
lines in the non-ideal MHD case, the field lines do not become as
pinched, resulting in a weaker central magnetic field strength.

The Hall effect is dispersive rather than dissipative, and
typically dominates at the intermediate densities between the
two diffusive regimes, including in parts of the dense core and
protostellar disc (e.g., Sano and Stone, 2002a,b; see Figure 3 of Li
et al., 2011 for an illustrative example). Unlike the other terms,
the Hall effect can change the magnetic geometry of the system
without any dissipation. Specifically, it will generate a toroidal
magnetic field from a poloidal magnetic field, where the resulting
magnetic torques can induce a rotation in an otherwise non-
rotating medium (for an example, see Figure 15 of Li et al., 2011;
for a sketch of the processes, see Figure 1 of Tsukamoto et al.,
2017). When the polarity of the initial poloidal magnetic field
is reversed, the resulting toroidal magnetic field and rotation
would also be in the opposite direction. This has implications
if the system is already rotating, since the Hall effect will either
transport angular momentum to or from the central region, thus
will either increase or decrease the angular velocity of the local gas
(Wardle, 2007; Braiding and Wardle, 2012a). Assuming ηH < 0
(as is reasonable in protostellar discs; Tsukamoto et al., 2015a;
Marchand et al., 2016; Wurster, 2016; Wurster et al., 2016), then
the Hall effect will increase the angular momentum in the disc
if the magnetic field vector and rotation axis are initially anti-
aligned, and will decrease the angular momentum if the two

vectors are aligned (e.g., Krasnopolsky et al., 2011; Li et al., 2011;
Braiding and Wardle, 2012a,b; Tsukamoto et al., 2015a, 2017;
Wurster et al., 2016, 2018a,c).

4.1. Calculating the Non-ideal MHD
Coefficients
When using the modified induction equation as given in
Equation 5, the dependencies of the non-ideal coefficients are η ≡

η
(

ρgas,Tgas,B, nj,mj, eZj
)

for an arbitrary number of species,
where nj, mj and eZj are the number density, mass and electric
charge of species j, and only the charged species (i.e., eZj 6= 0)
contribute to η; the equations can be found in Wardle and Ng
(1999), Wardle (2007) and other papers, and thus will not be
repeated here.

The species to be included in the calculation must be selected
in advance, with the reaction rates between them determined
experimentally or estimated theoretically (e.g., as presented in the
UMIST Database; McElroy et al., 2013). The ionization sources
must also be selected in advance, with the primary source for
disc formation in typical molecular clouds being cosmic rays. The
cosmic ray ionization rate is given by ζcr ≈ ζcr,0 exp (−6/6cr),
where6cr is the characteristic column density for the attenuation
of cosmic rays and ζcr,0 is the unattenuated cosmic ray ionization
rate. The latter has a canonical value of ζcr,0 = 10−17 s−1 for the
Milky Way ISM (Spitzer and Tomasko, 1968; Umebayashi and
Nakano, 1981). The cosmic ray ionization rate can vary from one
region to another in the Galaxy (e.g., it is expected to be higher
near a supernova remnant that can accelerate cosmic rays) and
be modified by propagation effects, such as magnetic mirroring
(e.g., Chandran, 2000; Padovani et al., 2009). As a cloud core
collapses and a protostellar disc forms, the inner regions of the
disc are shielded from cosmic rays (Padovani et al., 2014), thus
other ionization sources become important, such as ionization
by X-rays and energetic particles from young stellar objects, and
ionization by radionuclide decay. Canonical X-rays are slightly
less energetic and have a shorter attenuation depths than cosmic
rays, thus will only affect the surface of the disc (e.g., Igea and
Glassgold, 1999; Turner and Sano, 2008). The ionization from
radionuclide decay, however, has rates ranging from ζr ≈ 10−23

to 10−18 s−1 depending on the ionization source (e.g., Kunz
andMouschovias, 2009; Umebayashi and Nakano, 2009) and can
persist throughout the disc. Thus, ionization from radionuclide
decay may be the dominant ionization source near the midplane
of the disc.

Along with ions, molecular clouds include dust grains, which
are important in coupling the magnetic field to the gas (Nishi
et al., 1991). These are typically included in the numerical
calculations of η assuming a single grain population with a fixed
radius, fixed bulk density, and a fixed gas-to-dust ratio. However,
the grain size greatly affects the strength of the non-ideal effects;
for example, Wurster et al. (2018b) showed that smaller grains
tend to yield larger non-ideal MHD coefficients (see their Figure
2). However, molecular clouds do not contain a single grain size;
one commonly used size distribution is the MRN (Mathis et al.,
1977) grain distribution, dng(a)/da ∝ nHa

−3.5, where nH is the
number density of the hydrogen nucleus and ng(a) is the number
density of grains with a radius smaller than a (Draine and Lee,
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1984). The non-ideal MHD coefficients are sensitive to the upper
and lower limits of the distribution. In particular, removing the
very small grains of ∼10 to a few 100 Å from the distribution
would increase the ambipolar diffusivity by ∼1 − 2 orders of
magnitude at number densities below 1010 cm−3 (Zhao et al.,
2016).

As the non-ideal coefficients increase in value (either by
increasing local density, magnetic field strength, or decreasing
ionization rate), the numerical timestep required for numerical
stability decreases (e.g., Mac Low et al., 1995; Choi et al., 2009;
Bai, 2014; Wurster et al., 2014, 2018b). The two-dimensional
simulations of Kunz and Mouschovias (2009) and Dapp et al.
(2012) include all the above discussed ionization mechanisms to
allow for a very low ionization fraction, and end their calculations
prior to the timestep becoming prohibitively small. However,
this is not currently computationally possible for global three-
dimensional simulations of disc formation and evolution. Thus,
as a crude approximation, studies typically use ζ = ζcr,0 = 10−17

s−1.
There are several private algorithms (e.g., Nakano et al., 2002;

Kunz and Mouschovias, 2009; Okuzumi, 2009; Dapp et al.,
2012; Tsukamoto et al., 2015b; Zhao et al., 2016, 2018; Higuchi
et al., 2018) and publicly available codes (e.g Marchand et al.,
2016; Wurster, 2016) that solve chemical networks of varying
complexity to calculate the number density of each species,
which can then be used to self-consistently calculate the non-
ideal MHD coefficients. These algorithms include ionization and
reconnection amongst the included species (including dust),
and ionization from cosmic rays. The results are expectedly
dependent on the complexity of the networks and the input
parameters, however, there is broad qualitative agreement among
them. However, a direct comparison is difficult due to the
parameter dependence, and even a single algorithm can produce
widely varying results with small changes to its input parameters
(e.g., the assumed dust grain properties).

4.2. Numerical Models
Ohmic resistivity was the first non-ideal effect to be included
in analytical and numerical studies in attempts to prevent
the magnetic braking catastrophe. This was followed by
ambipolar diffusion, and finally the Hall effect. As discussed
below, various studies reached various conclusions. However,
recent three-dimensional radiation magnetohydrodynamical
simulations (Tsukamoto et al., 2015a, 2017; Wurster et al., 2016,
2018c) have suggested that the Hall effect can prevent the
magnetic braking catastrophe.

4.2.1. Ohmic Resistivity and Ambipolar Diffusion
A first attempt to solve the magnetic braking catastrophe was
by Shu et al. (2006). They derived the equations governing the
gravitational collapse of a molecular cloud core in the presence
of a magnetic field, and included the effects of Ohmic diffusion.
They noted that in order to reduce the magnetic field strength
near the central stellar object to a value consistent with meteoritic
evidence, ηO ≈ 2×1020 cm2 s−1 is required, which is a few orders
of magnitude larger than estimated from kinetic theory (Shu
et al., 2006). A similar calculation by Krasnopolsky et al. (2010)
was able to reduce the required value using different assumptions,

but ηO remained uncomfortably high. Recent calculations of ηO
using chemical networks of varying complexity have shown that
this value can be reached in the center of the first hydrostatic core
during the first core phase (e.g., Marchand et al., 2016; Wurster,
2016). However, this high value persists over a very small ρ − T
phase-space, and values much lower than this are expected in the
protostellar disc and background medium.

Contradicting the results of Shu et al. (2006) and
Krasnopolsky et al. (2010), the three-dimensional numerical
studies of Inutsuka et al. (2010) andMachida et al. (2011) formed
protostellar discs; the latter formed a disc of r& 100 au and their
simulations used sink particles and the barotropic equation of
state and were evolved until most of the envelope (i.e., the gas
that was initially in the cloud core) had been accreted. As the
envelope was accreted, the Alfvén waves became less efficient at
transporting angular momentum from the gas near the protostar
to the remaining envelope (simply because there was not much
gas remaining in the envelope, as pointed out earlier in Mellon
and Li, 2008). With less envelope and hence less magnetic
braking, a ∼40 au protostellar disc formed by ∼104 yr which
grew to ∼100 au by ∼105 yr. A similar study by Wurster et al.
(2016) found∼10 au discs formed after∼3× 104 yr; this smaller
disc was likely a result of a lower Ohmic resistivity and a larger
sink particle. Even smaller Ohmic-enabled discs were found
in the semi-analytic calculations of Dapp and Basu (2010) and
Dapp et al. (2012).

Ohmic resistivity is expected to become important at the
highest densities, especially late in the star formation process.
However, by this stage, unless ηO was much higher than expected
early on or the envelope was mostly depleted, the magnetic field
could have already extracted enough angular momentum from
the less dense regions to prevent discs from forming.

This possibility provides a strong motivation to study
ambipolar diffusion, which was expected to be important in the
early stages of star formation when the density of the molecular
cloud core was still relatively low. This had long been included
in cloud core formation models as a method to diffuse the
magnetic field to initiate the quasi-static formation in an initially
magnetically subcritical cloud and the later collapse of the cloud
core (as first demonstrated by Mouschovias, 1976, 1977, 1979).
On the smaller scales regarding protostar formation, it was hoped
that this process could diffuse out enough of the magnetic field
to permit a Keplerian disc to form. Analytical calculations by
Hennebelle et al. (2016) predicted that an ∼18 au disc should
form when accounting for ambipolar diffusion for parameters
typical of molecular cloud cores (see their Equation 13); this is
much smaller than the 100 au-scale discs that would typically
form in the absence of a magnetic field (see also Equation 14 of
Hennebelle et al., 2016).

Numerical simulations have not provided a consensus
regarding the effect of ambipolar diffusion. Mellon and Li
(2009) re-performed their ideal MHD study from Mellon and Li
(2008) but included ambipolar diffusion. Using two-dimensional
axisymmetric models, they concluded that ambipolar diffusion
alone did not weaken the magnetic braking enough to allow
the formation of a disc that is resolvable by their simulations.
Their conclusion held even when using a cosmic ray ionization
rate ten times lower than canonical (i.e., making the system
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more neutral). However, their spherical-polar numerical domain
included a 6.7 au hole at the center, thus discs below this radius
could necessarily not form, and the artificial boundaries may have
suppressed disc formation at radii even slightly larger than the
boundary (for comment on effect of sink sizes, see Machida et al.,
2014).

In the three-dimensional studies of Masson et al. (2016),
Keplerian discs formed during the first hydrostatic core phase in
their models that included ambipolar diffusion. Using a mass-to-
flux ratio of 5 times critical and an initial rotation of βrot = 0.02
(the ratio of rotational energy to gravitational potential energy), a
disc of ∼80 au formed; for similar initial conditions, small, disc-
like structures formed at late times when using ideal MHD. By
inclining the initial magnetic field (c.f. section 3.2) by θ = 40◦

in the ideal MHD models, there was negligible effect on disc
formation, leading them to conclude that ambipolar diffusion
was more important than inclination in terms of disc formation.
In their models with ambipolar diffusion, the discs formed more
easily and were more massive in the non-aligned case.

Figure 6 shows the angular momentum in the first hydrostatic
core (i.e., the gas that would collapse to form a rotationally
supported disc if enough angular momentum is present) for three
three-dimensional models by Tsukamoto et al. (2015b). After
the first core has formed, there is least angular momentum in
the ideal MHD model; there is approximately twice as much
angular momentum when Ohmic resistivity is included, and
approximately 5 times more when both Ohmic resistivity and
ambipolar diffusion are included. In their model with Ohmic
resistivity + ambipolar diffusion, a small ∼1 au disc formed. At
a similar time in the model with Ohmic resistivity + ambipolar
diffusion by Tomida et al. (2015), a centrifugally supported disc of
radius∼5 au formed, although it did not have a Keplerian profile;
in their counterpart model that only included Ohmic resistivity,
the centrifugally supported disc was∼1 au.

Although the disc in Tomida et al. (2015) is only ∼5 au
and remains approximately constant in size throughout their
simulation, they expect it to grow with time as the envelope is
depleted, as discussed above and in Tomida et al. (2013). By the
end of the simulation (approximately 1 year after the formation
of the stellar core), the disc is supported by the centrifugal
force with substantial contribution from the gas pressure. At this
time, the disc is rotating rapidly enough that it has triggered
the gravito-rotational instability (e.g., Toomre, 1964; Bate, 1998;
Saigo and Tomisaka, 2006; Saigo et al., 2008) and become non-
axisymmetric.

In a followup study, Tomida et al. (2017) modeled the
long term evolution using sink particles. In agreement with
their previous work, the disc stays small at early times due to
efficient magnetic braking. As the disc evolves, magnetic braking
becomes less efficient both due to the magnetic field dissipating
in the disc and the dissipation of the envelope. Eventually, the
disc becomes unstable, forming an m = 2 perturbation (see
also Hennebelle et al., 2016). The gravitational torques become
more efficient at transporting angular momentum than the
magnetic fields, thus control the future evolution of the disc.
By the end of the Class I phase, the disc radius is in excess of
200 au.

FIGURE 6 | The angular momentum in the first hydrostatic core for models

using ideal MHD, Ohmic diffusion, and Ohmic and ambipolar diffusions. The

Ohmic+ambipolar model has enough angular momentum to form a ∼1 au

rotationally-supported disc, whereas discs do not form in the other two

models. This figure is inspired by Figure 6 of Tsukamoto et al. (2015b), and

was created by Y. Tsukamoto for this publication using the data published in

Tsukamoto et al. (2015b).

Vaytet et al. (2018) modeled the collapse to the stellar core
including Ohmic resistivity + ambipolar diffusion. During the
first core phase, the gas is funneled into the core along two dense
filaments that arise from an initialm = 2 perturbation. The disc-
like structure in their ideal MHD model is “puffier” than their
resistive counterpart, but neither model appears to form a disc.
One month after the formation of the stellar core, they find a
“second core disc” of radius r . 0.1 au that has a Keplerian
velocity profile.

Zhao et al. (2016, 2018) stressed the importance of the grain
size on the ambipolar diffusivity (see also Dapp et al., 2012). They
explored a range of grain sizes, initial magnetic field strengths and
rotation rates, and found that rotationally supported structures
often form early around the stellar seed but disappear at later
times. Such structures can persist and grow to sizes of 20–40 au
even for a rather strong initial magnetic field corresponding
to a dimensionless mass-to-flux ratio of µ0 = 2.4 when the
very small grains are removed from an MRN size distribution.
Whether such grains are indeed removed or not, through, e.g.,
grain coagulation, remain to be determined.

4.2.2. Complete Non-ideal MHD Description
Including the Hall effect in numerical models becomes
computationally expensive due to the small timestep constraint
(e.g., Sano and Stone, 2002a; Bai, 2014; Tsukamoto et al., 2015a;
Wurster et al., 2016, 2018b), thus, at the time of writing, there
are only a few global two-dimensional (Krasnopolsky et al., 2011;
Li et al., 2011) and three-dimensional (Tsukamoto et al., 2015a,
2017; Wurster et al., 2016, 2018a,c,d) global disc-formation
studies that include this process.

The first simulation to include the Hall effect in a global
simulation was Krasnopolsky et al. (2011). This simulation
was a two-dimensional axisymmetric Eulerian simulation that
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included gravity of a pre-formed protostar but no self-gravity
amongst the gas. The Hall coefficient, ηH, was set as a constant
positive value, which is the opposite sign as found by later studies
(e.g., Tsukamoto et al., 2015a; Marchand et al., 2016; Wurster,
2016; Wurster et al., 2016). They formed rotationally supported
discs in all models that included the Hall effect, except for their
model with the weakest resistivity.

Figure 7 shows the rotational profiles for three models in
the study by Krasnopolsky et al. (2011), where they varied the
initial alignment of the rotation and magnetic field vectors. In
the outer regions of their models, the Hall effect is too weak
to have any significant effect on the evolution of the gas, thus
the gas simply follows the initial velocity profile combined with
the effect of gravity. In the inner region of all three models,
the Hall effect spins up the gas to reach a Keplerian profile. In
the aligned model (left panel), the Hall effect contributes to the
initial rotation, whereas in the anti-aligned case (right panel),
it detracts from it; in the anti-aligned case, the Hall velocity is
strong enough to cancel out the initial rotational profile and form
a counter-rotating disc with a Keplerian profile.

In their followup study, Li et al. (2011) self-consistently
calculated the value for ηH, which now necessarily varied in space
and time; ηH < 0, and the maximum of its absolute value was
lower than the value used in their previous study. Given their
parameter space, no model formed a rotationally supported disc.
The Hall effect did spin up the material of the gas near the
protostar, but it was not significant enough to reach Keplerian
velocities.

Subsequent studies led by Tsukamoto and Wurster modeled
the three-dimensional collapse of a molecular cloud core through
to at least the end of the first core phase. The models typically
included self-consistent calculations of the non-ideal MHD
coefficients, included flux limited diffusion and excluded sink
particles3. When using the canonical, unattenuated cosmic ray
ionization rate of ζcr = 10−17s−1, Tsukamoto et al. (2015a)
and Wurster et al. (2018c) find that rotationally supported discs
form if the magnetic field and rotation vectors are anti-aligned,
whereas no disc forms if they are aligned. The top row in
Figure 8 shows the gas column density for ideal MHD, non-
ideal MHD and hydrodynamic models in the midplane during
the first hydrostatic core phase. In both studies (Tsukamoto
et al., 2015a; Wurster et al., 2018c), the disc has a radius of
r ∼ 25 au, and becomes bar-unstable during the first core phase.
For comparison, a purely hydrodynamics model formed a disc
of ∼60 au, and this disc is formed even earlier during the first
core phase due to the lack of magnetic support. Expectedly, the
purely hydrodynamic disc has the largest angular momentum
in the first core and/or disc (see Figure 9). However, the Hall
effect in the anti-aligned non-ideal model decreases magnetic
braking, permitting the angular momentum to remain in the gas
near/in the first core, and hence permitting the disc to form. The
angular momentum in the disc is approximately half that of the
purely hydrodynamics model (Wurster et al., 2018c). By aligning
the magnetic field and the rotation axis, the angular momentum

3Wurster et al. (2016) used 6.7 au sink particles together with a barotropic equation
of state in their disc formation study using PHANTOM (Price et al., 2018).

again decreases by a factor of∼12, to a value too low for a disc to
form.

The models presented in Figures 6, 9 use slightly different
initial conditions, however, both ideal MHD models have
similar final angular momenta in their first cores, thus can
be reasonably compared. By including Ohmic resistivity and
ambipolar diffusion, the angular momentum in the first core
increases to Lfc ∼ 2.5 × 1051g cm2 s−1 (dotted line in Figure 6),
which is higher than when the three non-ideal terms are added in
the aligned orientation (double-dot line in Figure 9). Therefore,
some of the angular momentum gain caused by Ohmic resistivity
and ambipolar diffusion is lost by including the Hall effect in an
aligned orientation. As previously discussed, additional angular
momentum is gained by the Hall effect in the anti-aligned case.
Summarily, the order of angular momenta in the first core
is Lfc(ideal MHD) < Lfc(Ohmic+ambipolar+Hall; aligned) <

Lfc(Ohmic+ambipolar) < Lfc(Ohmic+ambipolar+Hall; anti−
aligned) < Lfc(Hydrodynamics).

Given that the anti-aligned non-ideal model formed a large
disc while the aligned model did not, Tsukamoto et al. (2015a)
proposed that there should be a bi-modality in the population
of discs around stars—that is, approximately half of the Class 0
objects should have protostellar discs. However, this assumption
was made assuming the magnetic field was either aligned or
anti-aligned with the rotation axis. Since there is observational
evidence that the magnetic field appears to be randomly
orientated with respect to the rotation axis, at least on the 1000
au scale (Hull et al., 2013), Tsukamoto et al. (2017) modeled
various angles between the rotation axis and the magnetic field.
The angular momentum in the first core is shown in Figure 10

for various initial orientations, and it differs by an order of
magnitude between the two extreme angles: θ = 0 and 180◦.
Changing the angle by 45◦ from either extreme value has a
minimal effect on the angular momentum evolution, and even
a change of 70◦ only changes the final angular momentum by
a factor of a few. Thus, the models with θ 6= 90◦ have angular
momenta evolutions that are similar to either θ = 0 or 180◦,
suggesting that, even if the initial magnetic fields are randomly
orientated with the rotation axis, the bi-modality in disc sizes
should exist, with large discs forming for θ & 100◦ and negligible
discs forming for θ . 80◦.

The magnetic field strength and plasma β for an ideal model
and two non-ideal MHD models are shown in bottom two rows
of Figure 8. As expected, the magnetic field is dragged into the
core of the ideal MHD model, thus its first hydrostatic core has
a very strong field strength. However, in the non-ideal cases, the
neutrals can slip through the magnetic field, thus a dense core
forms, but its central magnetic field strength is weaker than in
the ideal MHD model. Unlike the neutrals, the velocities of the
charged particles decrease and they approach the core due to
the non-ideal effects. This allows the charged particles, and the
magnetic flux they drag in, to pileup in a torus around the core.
This torus of charged particles expands outwards in radius as
more charged particles pile up, further enhancing the magnetic
field. This is a demonstration of a “magnetic wall,” which is
thoroughly discussed in the two-dimensional models of Tassis
and Mouschovias (2005b) and first predicted to exist analytically
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FIGURE 7 | Rotational profiles for aligned, no rotation and anti-aligned two-dimensional models. The initial rotation in the rotating models is vφ = −2× 104 cm s−1.

The gas in the outer regions is governed by the initial conditions, while Keplerian discs of r ∼ 1015 cm form in all three models. These are Figures 1b, 3b, and 2b of

Krasnopolsky et al. (2011). ©AAS. Reproduced with permission.

FIGURE 8 | The gas column density (top), magnetic field strength (middle) and plasma β (bottom) in a slice through the mid-plane of an ideal MHD model, two

non-ideal MHD models (Ohmic+ambipolar+Hall; ζcr = 10−17s−1) with different initial orientations of the magnetic field, and purely hydrodynamics model (top row

only). The snapshots are near the end of the first core phase. When the rotation and magnetic field vector are aligned, the non-ideal MHD model is similar to the ideal

MHD model with no disc, but when the vectors are anti-aligned, a gravitationally unstable disc forms, similar to the hydrodynamics model. The maximum magnetic

field strength is in the disc for the anti-aligned non-ideal model, while it is in the center of the first core for the remaining two models. The disc in the anti-aligned model

is supported by gas pressure. The figure is adapted/inspired by Figures 1 and 8 of Wurster et al. (2018c) and Figure 1 of Tsukamoto et al. (2015a) and was created for

this publication using the data from Wurster et al. (2018c).
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FIGURE 9 | The angular momentum in the first hydrostatic core which

collapses to form a disc for models with various cosmic ray ionization rates,

ζcr. Only the purely hydrodynamics and the anti-aligned (ζcr = 10−17s−1)

models form discs, both of which become bar-unstable. The angular

momentum of the ideal MHD model differs slightly from that shown in Figure 6

due to different initial conditions. This is adapted from Figure 2 of Wurster et al.

(2018c), and was created for this publication using the data from Wurster et al.

(2018c).

FIGURE 10 | The angular momentum in the first hydrostatic core which

collapses to form a disc for non-ideal MHD models at various angles θ

between the rotation axis and magnetic field vector; θ = 0◦ represents the

aligned case. Except for the θ = 90◦ case, the angular momenta are grouped

around θ = 0◦ and θ = 180◦, suggesting a bi-modality in disc sizes. This figure

is Figure 6 of Tsukamoto et al. (2017), and is reproduced with permission.

by Li and McKee (1996). In the non-ideal MHD models shown
above, the magnetic wall occurs at r ∼ 1–3 au from the center of
the core.

In the domain presented in Figure 8, plasma β > 1, indicating
that gas pressure is greater than magnetic pressure everywhere.
The disc in the anti-aligned model has plasma β > 100 due to
the rotationally supported disc; in the disc, magnetic diffusion
is efficient and the magnetic flux is removed from the region

(Tsukamoto et al., 2015a). In the center of the aligned model,
plasma β becomes high, but this region is small enough that
disc formation is not possible. Finally, the strong magnetic
field in the ideal simulations yields plasma β < 100 over the
entire computational domain, again iterating the importance of
magnetic fields in that model. Similar results with slightly lower
values of plasma β are reached in Tsukamoto et al. (2015a,
see their Figure 1), since their initial magnetic field strength is
stronger than in the figures presented here.

These two studies discussed here, Tsukamoto et al. (2015a)
and Wurster et al. (2018c), both modeled the gravitational
collapse of a 1M⊙ molecular cloud core, however many of the
remaining initial parameters were different, including the initial
rotation rate, radius, magnetic field strength, and microphysical
properties that controlled the coefficients of the non-ideal MHD
terms. Thus, gravitationally unstable discs forming around the
time of the first core in anti-aligned models that include the Hall
effect is a robust result.

Concurrent to the study of Tsukamoto et al. (2015a), Wurster
et al. (2016) studied the evolution of the disc until∼5,000 yr after
the formation of the protostar; these simulations included sink
particles and the barotropic equation of state. In their aligned
models that include, respectively, only the Hall effect and all
three non-ideal MHD terms, no discs formed. In their anti-
aligned models, ∼38 and ∼15 au discs formed, respectively.
The disc radius in the non-ideal model with the three terms
remained approximately constant until the end of the simulation,
while the model with only the Hall effect decreased slightly to
∼20 au by 5,000 yr. Neither disc formed a bar-mode instability,
since this instability would be stabilized by the sink particle.
The disc in the non-ideal model is smaller than the ∼25 au
discs from the previous studies, but both sink particles and the
barotropic equation of state have been shown to reduce the disc
sizes compared to models that exclude sink particles and include
radiation hydrodynamics (e.g., Tomida et al., 2013; Machida
et al., 2014; Lewis and Bate, 2018; Wurster et al., 2018c).

Finally, the effect of the cosmic ray ionization rate was studied
in Wurster et al. (2018a). When the ionization rate is increased
by even a factor of ten compared to the canonical value for the
interstellar medium, the angular momentum in the first core is
low enough such that no discs form, independent of magnetic
field orientation. This indicates the importance of the value of
the cosmic ray ionization rate: if it is too high, then rotationally
supported discs cannot form, despite the initial conditions. This
may have implications for, e.g., starburst galaxies (e.g., Bisbas
et al., 2015) or the Galactic Center (e.g., Oka et al., 2005) where
the cosmic ray ionization rate is 10–100 times higher than the
canonical value of ζcr,0 = 10−17 s−1.

5. CONCLUSION

Protostellar discs have been observed around young stars at all
stages of evolution, and naturally form alongside their host star.
The star forming environment has strong magnetic fields, low
ionization fractions, and non-laminar velocity flows. The focus
of this article is on how the magnetic field affects the formation
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of disc in lightly ionized molecular cloud cores where non-ideal
MHD effects are important.

Early numerical simulations of star formation that include
strong magnetic fields under the ideal MHD approximation
fail to form discs during the star forming process; this is
known as the magnetic braking catastrophe. Given that discs
are observed, this highlighted the need for including additional
physical ingredients in the simulations. Several studies continued
using the ideal MHD approximation, but made their initial
conditions less idealized. By misaligning the magnetic field and
rotation vectors, larger or smaller discs could form depending on
the study, hence likely depending on the initial conditions. The
misalignment can be naturally induced by a turbulent velocity
field, which can speed up the removal of magnetic flux near
the center and thus promote disc formation through enhanced
magnetic reconnection; however, increasing turbulence has also
been numerically observed to hinder disc formation. Given that
reconnection in ideal MHD simulations is necessarily realized
numerically, this process needs to be evaluated more carefully.

Molecular clouds are observed to be mostly neutral, and the
interaction between neutral and charged particles gives rise to
three non-ideal effects: Ohmic resistivity, ambipolar diffusion
and the Hall effect. When ambipolar diffusion is included in
numerical simulations, small discs of 1–5 au are expected to form
over an extended period of time; even larger discs can form if very
small grains are removed from the grain size distribution. When
the Hall effect is included and the magnetic field vector is anti-
aligned with the rotation axis, larger discs of 25 au or more form.
However, these resultsmay be subject to initial conditions and the
choice of parameters such as dust grain properties or ionization
rates.

In summary, considerable progress has been made in averting
the magnetic braking catastrophe, through turbulence and

related field-rotation misalignment in the ideal MHD limit,
enhanced ambipolar diffusion, and especially the Hall effect in
the case of anti-aligned magnetic field and rotation axis. Further
progress is expected when these and other effects are taken
into account together, especially in simulations that can run to
the end of the protostellar accretion phase of star formation.
These more comprehensive models will be guided by, and be
used to interpret, the increasingly more detailed multi-scale
observations of the gas kinematics and magnetic fields in the
ALMA era.
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