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Gravitational waves (GWs) provide a new tool to probe the nature of dark energy

(DE) and the fundamental properties of gravity. We review the different ways in

which GWs can be used to test gravity and models for late-time cosmic acceleration.

Lagrangian-based gravitational theories beyond general relativity (GR) are classified

into those breaking fundamental assumptions, containing additional fields and massive

graviton(s). In addition to Lagrangian based theories we present the effective theory

of DE and the µ-6 parametrization as general descriptions of cosmological gravity.

Multi-messenger GW detections can be used to measure the cosmological expansion

(standard sirens), providing an independent test of the DE equation of state and

measuring the Hubble parameter. Several key tests of gravity involve the cosmological

propagation of GWs, including anomalous GW speed, massive graviton excitations,

Lorentz violating dispersion relation, modified GW luminosity distance and additional

polarizations, which may also induce GW oscillations. We summarize present constraints

and their impact on DE models, including those arising from the binary neutron star

merger GW170817. Upgrades of LIGO-Virgo detectors to design sensitivity and the next

generation facilities such as LISA or Einstein Telescope will significantly improve these

constraints in the next two decades.

Keywords: gravitational wave propagation, modified gravity, dark energy, multi-messenger astronomy, testing

general relativity

1. INTRODUCTION

The Standard Model of Cosmology (or 3CDM) stands as a robust description of our
universe. It is based on the theory of General Relativity (GR), which dictates the long-range
gravitational interactions, together with the Cosmological Principle, which describes the geometry
as homogeneous and isotropic on large scales. Standard matter (baryons, photons, neutrinos...)
represents only a small fraction of the energy budget of the universe. The main ingredient is dark
energy (DE), an unknown substance causing the late time acceleration. The othermajor component
is dark matter (DM), an undetected constituent that seeds cosmic structures. The last piece of the
Standard Model (SM) of Cosmology are the initial conditions, which are thought to be set by an
early period of quasi-exponential expansion known as inflation. Despite the observational success
of this model (Aghanim et al., 2018), it remains as a puzzle the fundamental origin of each piece,
which could be associated to new physics (see Figure 1 for a summary of the different ingredients).
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FIGURE 1 | Ingredients of the Standard Model of Cosmology and their possible connection with new physics.

In the SM of Cosmology, the current accelerated expansion is
explained by a constant energy density acting as a perfect fluid
with negative pressure. Such a cosmological constant (CC) term
is perfectly consistent with present observations but notoriously
disagrees with theoretical expectations for the vacuum energy
(Weinberg, 1989; Martin, 2012). If this energy density is let to
evolve in time, one naturally arrives to a dynamical description of
DE sourced by a cosmological scalar field (Copeland et al., 2006).
If this field is now allowed to interact (non-minimally) with
gravity, the possibilities to describe the cosmic expansion escalate
(Clifton et al., 2012). Alternatives to 3CDM offer the possibility
to alleviate some of its tensions. For instance, DE models with an
effective equation of state more negative than the cosmological
constant could ease the tension between the local measurement
of the Hubble constant and the inferred value from the cosmic
microwave background (CMB). Exploring the largest scales with
galaxy surveys like Euclid or LSST will help us understanding the
expansion history of the universe and will provide new insights
about gravity.

Gravity can be tested at different scales and regimes. Classical
tests of gravity range from laboratory experiments to Solar
System distances, and cover gravity in its weak field regime
(Will, 2014). Astrophysical observations provide new avenues to
improve these tests (Berti et al., 2015). Pulsars in particular can be
especially constraining, for instance with the recent observations
of a triple stellar system (Archibald et al., 2018). Tests in a
much stronger regime have been performed tracking stellar orbits
around the galactic center (Hees et al., 2017). Altogether, these
observations severely constrain modifications of GR. Theories
beyond Einstein’s theory should thus resemble GR at small scales,
e.g., hiding fifth forces with screening mechanisms (Brax, 2013;
Joyce et al., 2015). At large scales, however, present constraints
are considerably weaker. Combining different probes could be
crucial to set an observational program to test gravity from
cosmology (Weinberg et al., 2013).

Gravitational wave (GW) astronomy offers the possibility to
test gravity both in the strong regime and at large scales. So
far there have been six individual detections, five binary black-
holes (BBH) (Abbott et al., 2016a,b, 2017f,g,h) and one binary

neutron star (BNS) (Abbott et al., 2017a). No GW background
(Abbott et al., 2018d), periodic source (Abbott et al., 2018c) or
long-duration transient (Abbott et al., 2018b) have been detected.

GWs could be critical in resolving the open problems of
the SM of Cosmology. For instance, (non) observations of
cosmological backgrounds of primordial GWs test inflation.
BBHs events teach us about the population of BHs, which
constrains their possible contribution to DM and their possible
primordial origin (Sasaki et al., 2018). Moreover, if DM is
described by ultra-light bosons or axions, it could resonate with
pulsars (Blas et al., 2017) or form clouds around BHs observable
with GWs (Arvanitaki et al., 2017). Finally, BNS with an
associated counterpart such as GW170817 (Abbott et al., 2017e,i)
become standard sirens (Abbott et al., 2017b) and allow to probe
DE. In this review we will focus on this last case, exploring
the possibilities of multi-messenger GW astronomy to probe the
nature of DE and the fundamental properties of gravity (see a
schematic timeline of present and future facilities in figure 2).

1.1. Summary for the Busy Reader
Dark energy is the major component of the universe and
yet its nature escapes our present understanding. Beyond
the cosmological constant paradigm, a plethora of alternative
theories of gravity has been proposed to explain the current
cosmic acceleration (see Figure 3 for a roadmap of possible
modifications of gravity). We present an overview of the
landscape of theories in section 2, as well as a summary of the
different approaches to cosmological gravity (see Figure 4 for a
schematic diagram).

Gravitational wave astronomy opens new possibilities to
probe gravity and DE. For readers unfamiliar with the basics
of GWs, we provide a short introduction in section 3. For the
purpose of cosmology, the most promising GW events are those
that can be observed by other messengers (either EM waves or
neutrinos). There are four main tests one can do with multi-
messenger GW events:

• Standard sirens (section 4): the amplitude of GWs is inversely
proportional to its luminosity distance. If a counterpart of
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FIGURE 2 | Schematic multi-messenger GW astronomy timeline. The binary neutron star (BNS) rate, the localization area in the sky, and the number of BNS

detections are given for past and future observation runs. Second generation (2G) ground-based detectors organize in five runs (O1-O5) with different number of

detectors online (from 2 to 5) (Abbott et al., 2018e). The nomenclature used is H, Hanford; L, Livingston; V, Virgo; K, KAGRA; I, IndIGO. Third generation (3G)

detectors projected are Einstein Telescope (ET) (Sathyaprakash et al., 2012) or Cosmic Explorer (CE) (Abbott et al., 2017c). The localization in 3G depends on the

network of detectors which is still uncertain (Mills et al., 2018). For reference, we include the timeline space-based detector LISA (Amaro-Seoane et al., 2013). The

reader should note that this numbers correspond to present expectations. For more details we refer to section 3.4.

the GW is observed, a redshift measurement of the source is
possible and the cosmic expansion history can be constrained.
For close by sources, only the Hubble constant is measured.
Future standard sirens measurements could help resolving the
present tension in H0 (see Figure 8).

• GW speed (section 5): the propagation speed of GWs follows
from the dispersion relation. Once the location of a GW event
is known, it is possible to compare the speed of GWs with
respect to the speed of light. Many alternative gravity theories
predict that GWs propagate at a different speed either by
modifying the effective metric in which GWs propagate, by
inducing a mass for the graviton or by introducing higher
order terms in the dispersion relation.

• GW damping (section 6): modified gravity interactions can
also alter the amplitude of GWs. In addition to the cosmic
expansion, effective friction terms can damp GWs. This
introduces an inequality between the GW and the EM
luminosity distance that can be tested.

• Additional polarizations (section 7): in alternative theories of
gravity, there could be additional modes propagating. These
extra polarizations could be directly tested if the source is
localized and there is a network of detectors online. Moreover,
these modes could mix with the tensor perturbations leading,
for instance, to GW oscillations.

In this review we aim at summarizing current bounds on gravity
theories and dark energy models from the first multi-messenger
GW detection, GW170817. Up to date, the most constraining
test is the GW speed. We also survey the prospects of
different multi-messenger tests with future detectors. Significant
improvements can be achieved in probing the GW Hubble

diagram with an increasing number of events. A schematic
timeline of multi-messenger GW astronomy is presented in
Figure 2 (the reader should be aware that expectations far in
the future are very preliminary). The theoretical implications
of present and future observations are discussed in section
8. We close the work in section 9 with an outlook of
prospects and challenges of multi-messenger GW tests of gravity
and DE.

2. THEORIES OF GRAVITY AND DARK
ENERGY

The quest to test gravity and find alternatives to the cosmological
constant has produced many theories beyond Einstein’s General
Relativity (GR) and other descriptions of gravity on cosmological
scales. We will classify the different means to modify Einstein’s
theory and review their status as descriptions of cosmic
acceleration. Then we will review other general approaches
to describe gravity on cosmological scales, namely through
the effective theory of dark energy and phenomenological
parameterizations of the gravitational potentials. The landscape
of alternative theories is summarized in Figure 3 and the
approaches to cosmological gravity are schematically described
in Figure 4.

2.1. Theories of Gravity
The action-based approach to modify gravity is based on
generalizing the Einstein-Hilbert action

SGR =
∫

d4x
√

−g
R[gµν]

16πG
+ Sm[gµν , · · · ] , (1)
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FIGURE 3 | Modified gravity roadmap summarizing the possible extensions of GR described in section 2. The main gravitational wave (GW) test of each theory is

highlighted. For details in the different tests see the discussion in section 5 (GW speed and dispersion), section 6 (GW damping), and section 7 (GW oscillations).

Theories constrained by the GW speed and GW oscillations can also be tested with GW damping and GW dispersion, respectively. Note in addition that many

theories fall under different categories of this classification (see text in section 2.1).

where G is Newton’s constant and Sm denotes the action of
matter, universally and minimally coupled to the metric gµν .
Variation of the action (1) with respect to the metric leads to
Einstein’s field equations

Gµν ≡ Rµν −
1

2
Rgµν = 8πGTµν , (2)

where Rµν is the Ricci tensor, R ≡ gµνRµν the Ricci scalar

and Tµν = −2√−g
δSm
δgµν is the matter energy-momentum tensor.

Einstein’s equations can be used to obtain solutions for the
space-time (gµν) given the matter content (Tµν) in any physical
situation, including cosmological solutions relevant to study dark
energy.

The structure of gravitational theories is severely restricted
and several results can be used to prove the uniqueness of General
Relativity under quite broad assumptions. Weinberg’s theorems
restrict possible infrared (low energy) interactions of massless,
Lorentz invariant particles, which for spin-2 lead unavoidably to
the equivalence principle (Weinberg, 1964) and the derivation

of Einstein’s equations (Weinberg, 1965)1. At the classical level,
the results of Lovelock imply that the Einstein-Hilbert action is
unique in 4D (Lovelock, 1971, 1972).

According to the above results, alternative theories of gravity
can be classified into those that

• Break the fundamental assumptions.
• Include additional fields.
• Make the graviton massive.

Note that those descriptions are not exclusive, and many theories
fall within several categories. For instance: bimetric gravity has
an additional field (tensor) and contains a massive graviton,
Einstein-Aether is both Lorentz-violating and includes a vector
field, TeVeS has a scalar in addition to a vector, and many extra-
dimensional models can be described in terms of additional fields
in certain limits. Also, when referring to massive gravitons, we
will be considering only classical spin-2 fields.

1In addition to GR, there is another theory for massless, spin-2 fields in 4D,
Unimodular Gravity, which is invariant under diffeomorphisms preserving the 4D
volume element (van der Bij et al., 1982).
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2.1.1. Breaking Fundamental Assumptions
The theorems that fix the structure of General Relativity assume
a four dimensional pseudo-Riemannian manifold and local
interactions satisfying Lorentz invariance. Any departure from
these principles offers a way to construct modified theories of
gravity2.

2.1.1.1. Extra dimensions
Additional spatial dimensions allow the inclusion of new
operators constructed only from themetric tensor. The canonical
example are Lovelock invariants (Lovelock, 1971), such as the
Gauss-Bonnet term (a topological term in 4 dimensions which
does not contribute to the equations of motion). The lack
of observation of extra dimensions requires some mechanism
to hide them. One example is compactification, when extra
dimensions are sufficiently small that they are not accessible
to experimental tests (Bailin and Love, 1987; Overduin and
Wesson, 1997). A radically opposite view consist on Braneworld
constructions, in which the standard model fields live in a
3+1 dimensional brane, embedded in the higher dimensional
space (Antoniadis et al., 1998; Arkani-Hamed et al., 1998;
Randall and Sundrum, 1999). The Dvali-Gabadadze-Porrati
(DGP) model (Dvali et al., 2000; Nicolis and Rattazzi, 2004) is
one such construction in which self-accelerating solutions3 can
be obtained. However, this branch of solutions is plagued by a
ghost instability. The 4D effective theory can avoid this problem
and was the origin of Galileon gravity (Nicolis et al., 2009).

2.1.1.2. Lorentz invariance violation
Gravity can be extended by breaking Lorentz invariance. In
many of these alternatives a preferred time direction emerges
spontaneously breaking Lorentz symmetry (see Blas and Lim,
2015 for a review). Hořava gravity (Horava, 2009) implements
Lorentz violation through a preferred foliation of space-time,
with the attractive property that Lorentz symmetry can be
recovered at low energies (see Blas et al., 2009, 2010; Sotiriou
et al., 2009a,b; Sotiriou, 2011 for extensions/variants) and leading
to a power-counting renormalizable theory of gravity. Another
class of Lorentz-violating theories is Einstein-Aether, in which a
vector field with constant norm introduces a preferred direction
(Jacobson, 2007). The special case of Einstein-Aether theories
in which the vector field is the gradient of a scalar is known
as Khronometric (Blas et al., 2011b). Khronometric theories
describe the low-energy limit of some extension of Hořava-
gravity, linking the two frameworks (Jacobson, 2010). These ideas
have been studied as cosmological scenarios (Audren et al., 2013,
2015).

2.1.1.3. Non-local theories
Non-local theories include inverse powers of the Laplacian
operator. These models can involve general functions (e.g., R ·
f (2−1R)) (Deser and Woodard, 2007; Koivisto, 2008) or be

2A class of GR extensions include additional geometric elements like torsion or
non-metricity. These elements can be viewed as either breaking the fundamental
assumptions or including additional fields.
3Self-accelerating solutions are those in which there is a late time acceleration
without a cosmological constant (3 = 0).

linear (e.g., Rm2

22 R) (Jaccard et al., 2013). The latter class of
models lead to phantom dark energy (Maggiore, 2014; Maggiore
and Mancarella, 2014) and are compatible with cosmological
observations (Dirian et al., 2015) (see Maggiore and Mancarella,
2014 for a review). However, their viability on the solar system
is disputed due to the time evolution of the effective degrees
of freedom and the lack of a screening mechanism (Barreira
et al., 2014b). Non-local interactions have been also proposed as
a means to improve the ultra-violet behavior of gravity (Biswas
et al., 2012; Modesto, 2012; Calcagni and Modesto, 2015). Non-
local models are constructed using the Ricci scalar, since non-
local terms involving contractions of the Ricci tensor give rise to
cosmological instabilities (Ferreira and Maroto, 2013; Nersisyan
et al., 2017).

2.1.2. Additional Fields
Gravity can be extended by the inclusion of additional fields
that interact directly with the metric. These theories will vary
by the type of field (scalar, vector, tensor) and the interaction
with gravity it has. Theories with additional tensors (bigravity
and multigravity) are extensions of massive gravity and will be
described in section 2.1.3. We will assume a minimal universal
coupling of matter to the metric. For a very complete review
of gravity theories containing additional fields, see Heisenberg
(2018a).

2.1.2.1. Scalar field
A scalar is the simplest field by which gravity can be extended.
Scalars do not have a preferred orientation and thus a
macroscopic, classical state can exist in the universe without
affecting the isotropy of the space-time if it depends only on
time. Moreover, a potential term can mimic a cosmological
constant very closely in the limit in which the field is varying
very slowly (e.g., if the potential is very flat), which is the
foundation of the simplest single-field inflation and dark
energy models (quintessence). Scalar fields may also arise in
effective descriptions of fundamental theories belonging to other
categories, such as braneworld constructions (de Rham and
Tolley, 2010; Goon et al., 2011; Koivisto et al., 2014). These
properties had led to a proliferation of scalar-based models to
describe accelerating cosmologies, both in the context of inflation
and dark energy.

Recent efforts to study scalar-tensor theories have led to
a classification based on the highest-order derivatives of the
additional field present in the action and the equations of motion,
with three generations of theories

1. Old-school scalar tensor theories: 1st order derivatives in the
action, 2nd order in equations.

2. Horndeski theories (Horndeski, 1974): 2nd order derivatives
in the action and 2nd order in equations.

3. Beyond Horndeski: 2nd order derivatives in the action and
higher order in equations.

The classification is motivated by Ostrogradski’s theorem,
which states that theories with second and higher (time)
derivatives in the action generically introduce unstable degrees
of freedom (Ostrogradski, 1850; Woodard, 2015). While most
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physical theories belong to the first class, known loopholes
to Ostrogradski’s theorem exits, for instance in effective or
non-local theories (in which the ghost degrees of freedom are
removed) (Simon, 1990) or when the theory is degenerate (that
is, the inversion to canonical variables is not possible). The
degeneracy condition is automatically satisfied if the equations
of motion are second order, but that is not strictly necessary
(different conditions appear when there are additional degrees
of freedom Motohashi et al., 2016)4. Known viable beyond
Horndeski theories are known as Degenerate Higher Order
Scalar Tensor (DHOST) (Langlois and Noui, 2016), which
have second derivatives in the action (higher derivatives in the
equations), but recently toy models with higher derivatives in the
action have been proposed (Motohashi et al., 2018).

Old-school scalar-tensor theories contain at most first
derivatives of the scalar in the action. They can be seen as a
generalization of the Jordan-Brans-Dicke theory of gravity (Brans
and Dicke, 1961)

S =
∫

d4x
√

−g
M2

Pl

2

[

ω(φ)R− K(X,φ)
]

+ Sm , (3)

where X ≡ −∇νφ∇νφ/2 is the canonical kinetic term of
the scalar field. This theory includes GR (ω = 1,K = 3),
quintessence (ω = 1,K = X − V) (Ratra and Peebles, 1988;
Wetterich, 1988), Brans-Dicke models (Brans and Dicke, 1961)
(ω = φ, K = ωBD

φ
X − V(φ)), k-essence (Armendariz-Picon

et al., 1999, 2001) (ω = 1, K = K(φ,X)). Archetypal modified-
gravity models such as f (R) (Carroll et al., 2004; Hu and Sawicki,
2007; Sotiriou and Faraoni, 2010) are equivalent to instances of
these theories (De Felice and Tsujikawa, 2010b). Chameleons
(Khoury and Weltman, 2004) and symmetrons (Hinterbichler
and Khoury, 2010) also belong to this class of theories (see
Burrage and Sakstein, 2016 for a review). Certain freedom exists
in writing the theory due to the possibility of rescaling the metric
gµν → ḡµν = C(φ)gµν and redefining the scalar field, i.e., the
Jordan frame in which the metric is minimally coupled (3) and
the Einstein frame in which ω is constant but matter is explicitly
coupled to the scalar (Flanagan, 2004). Current cosmological
observations constrain the Brans-Dicke parameter ωBD > 692
(99%) (Avilez and Skordis, 2014).

Horndeski’s theory contains the best understood examples
of scalar-tensor theories. The Horndeski action encompasses
all local, 4D Lorentz invariant actions whose metric and field
variation leads to second order equations of motion (Horndeski,
1974) (Horndeski’s theory is also known in the literature as
Generalized Galileons Deffayet et al., 2011; Kobayashi et al.,
2011). Horndeski’s action reads

S =
∫

d4x
√

−g

5
∑

i=2

Li[φ, gµν]+ Sm[χi, gµν], (4)

4Scalar-tensor theories can be reformulated in terms of differential forms in
which the second order equations follow naturally from the antisymmetry of
this language (Ezquiaga et al., 2016). This approach can be generalized to gravity
theories with additional vector and tensor fields as well (Ezquiaga et al., 2017).

where we have assumed minimal and universal coupling to
matter in Sm. The sum is over the four Lagrangians

L2 = K(X,φ), (5)

L3 = −G3(X,φ)2φ, (6)

L4 = G4(X,φ)R+ G4X
{

(2φ)2 − φµνφ
µν
}

, (7)

L5 = G5(X,φ)Gµνφ
µν − 1

6
G5X

{

(2φ)3 − 3φµνφµν2φ

+ 2φ µ
ν φ ν

α φ α
µ

}

, (8)

where K and GA are functions of φ and X ≡ −∇νφ∇νφ/2,
and the subscripts X and φ denote partial derivatives. Horndeski
theories include all the generalized Jordan-Brans-Dicke type, plus
new additions that involve second derivatives of the scalar at
the level of the action. These include kinetic gravity braiding
(KGB) (K(X),G3(X)) (Deffayet et al., 2010; Kobayashi et al.,
2010; Pujolas et al., 2011), covariant galileons (K,G3 ∝ X,
G4,G5 ∝ X2) (Deffayet et al., 2009; Nicolis et al., 2009),
disformal (Koivisto et al., 2012) and Dirac-Born-Infeld gravity

(Gi ∝
√

1+ X/34
i ) (de Rham and Tolley, 2010; Zumalacarregui

et al., 2013), Gauss-Bonnet couplings (Ezquiaga et al., 2016)
and models self-tuning the cosmological constant (Charmousis
et al., 2012a; Martin-Moruno et al., 2015). Just as Brans-Dicke
is invariant under rescalings of the metric, Horndeski theories
are invariant under field-dependent disformal transformations
gµν → ḡµν = C(φ)gµν + D(φ)φ,µφ,ν , which amount to a
redefinition of the Horndeski functions Gi (and the introduction
of an explicit coupling to matter) (Bettoni and Liberati, 2013).

Theories beyond Horndeski have higher order equations of
motion without including additional degrees of freedom. The
first examples of these theories (Zumalacárregui and García-
Bellido, 2014) were related to GR by a metric redefinition
involving derivatives of the scalar field (Bekenstein, 1993),

gµν → ḡµν = C(X,φ)gµν + D(X,φ)φ,µφ,ν , (9)

applied to the gravity sector. The simplest such beyond
Horndeski theory emerged from the metric rescaling with
derivative dependence C = �2(X,φ),D = 0, and was dubbed
kinetic conformal gravity (Zumalacárregui and García-Bellido,
2014)

SC =
∫

d4x

√−g

16πG

(

�2R+ 6�,α�,α)+ Sφ + SM , (10)

where Sφ is an additional scalar field Lagrangian. One of the
premises in constructing this type of theory was the existence
of an inverse for the relation (9), which can be studied through
the Jacobian of themapping (Zumalacárregui andGarcía-Bellido,
2014). If this assumption is broken the resulting theory ismimetic
gravity (Chamseddine and Mukhanov, 2013), a gravitational
alternative to dark matter. Interestingly, the conformal relation
between kinetic conformal gravity (10) and GR ensures that this
is one of the theories in which the speed of GWs is nontrivially
equivalent to the speed of light (Creminelli and Vernizzi, 2017;
Ezquiaga and Zumalacárregui, 2017).
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The best known beyond Horndeski theory is given by
the Gleyzes-Langlois-Piazza-Vernizzi (GLPV) action (Gleyzes
et al., 2015b), which consists of Horndeski plus the additional
Lagrangian terms:

L4b = B4(φ,X)ǫ
µνρ

σ ǫµ′ν′ρ′σ φµφµ′φνν′φρρ′ , (11)

L5b = B5(φ,X)ǫ
µνρσ ǫµ′ν′ρ′σ φµφµ′φνν′φρρ′φσσ ′ . (12)

Horndeski and GLPV Lagrangians of the same order, i.e., L4 +
L4b (7+11) or L5 + L5b (8+12), can be mapped to Horndeski via
gµν → ĝµν = C(φ)gµν + D(X,φ)φµφν showing the viability
of these combinations (Gleyzes et al., 2015a,b). For generic
combinations of Horndeski and GLPV, viability arguments were
first based on a special gauge (unitary gauge) that assumed that
the scalar field derivative φµ is timelike. Subsequent analyses
eventually lead to covariant techniques to study the degeneracy
conditions (Langlois and Noui, 2016) (see Deffayet et al., 2015
for earlier criticism). These techniques later showed that not
all Horndeski and GLPV combinations met the degeneracy
condition on a covariant level (Crisostomi et al., 2016a).

The study of degeneracy conditions for scalar-tensor theories
ultimately led to the degenerate higher-order scalar-tensor
(DHOST) (Langlois and Noui, 2016) paradigm classification of
theories with the right number of degrees of freedom (also
known as Extended Scalar-Tensor or EST) (Crisostomi et al.,
2016b). DHOST theories include cases beyond conformal kinetic
gravity (10) and GLPV theories (11,12). DHOST theories are
invariant under general disformal transformations (9), which
can in turn be used to classify them (Ben Achour et al., 2016b)
(see also Crisostomi et al., 2017). DHOST theories have been
fully identified including terms with up to cubic second-field
derivatives in the action, e.g.,∼ (2φ)3 (Ben Achour et al., 2016a).
Demanding the existence of a Poisson-like equation for the
gravitational potential restricts the space of DHOST theories to
those that are related to Horndeski via disformal transformations
(9) (Langlois et al., 2017).

2.1.2.2. Vector field
Theories with vector fields have been proposed as modifications
to GR and in the context of dark energy. A background
vector field does not satisfy the isotropy requirements of the
cosmological background, unless it points in the time direction
and only depends on time Aµ = (A0(t), 0, 0, 0). Isotropy can
also happen on average, if a vector with a space-like projection
oscillates much faster than the Hubble time (Cembranos et al.,
2012). In that case the background is isotropic on average
but the perturbations (including gravitational waves) inherit a
residual anisotropy (Cembranos et al., 2017). Finally, theories
with multiple vectors can satisfy isotropy, for instance, if they
are in a triad configuration Aa

µ = A(t)δaµ (Armendariz-Picon,

2004)5. A large number of vectors can also lead to statistical
isotropy (e.g., if the orientations are random) (Golovnev et al.,

5Technically speaking, multiple vectors can lead to isotropic solutions if they have
an internal symmetry that together with the broken space-time symmetries leaves
a residual ISO(3) (Beltrn Jimnez and Heisenberg, 2018). For the case of the triad,
the symmetry group is SO(3).

2008). The kinetic term for a vector field, FµνF
µν , is defined by

the gauge invariant field strength Fµν = ∂µAν − ∂νAµ and the
addition of a mass term m2A2

µ is known as Proca theory (Proca,
1936).

Proca theories have been generalized to include explicit
gravitational interactions of a massive vector field (Heisenberg,
2014; Tasinato, 2014; Allys et al., 2016a; Beltran Jimenez and
Heisenberg, 2016). The vector field Lagrangian is built so that
precisely one extra (longitudinal) scalar mode propagates in
addition to the two usual Maxwell-like transverse polarizations.
Its full generalization contains terms with direct couplings
between the vector and space-time curvature, whose structure
closely resembles those of Horndeski’s theory (7,8). In analogy
to beyond Horndeski, there are also beyond generalized Proca
interactions (Heisenberg et al., 2016; Kimura et al., 2017). Further
extensions to multiple vector fields known as generalized multi-
Proca/Yang-Mills theories are able to incorporate new couplings
(Allys et al., 2016b) and configurations (Beltran Jimenez and
Heisenberg, 2017), e.g., the extended triad Aa

µ = φaδ0µ + A(t)δaµ,
as do theories with a vector and a scalar (Scalar-Vector-Tensor)
(Heisenberg, 2018b). For more details about these theories we
recommend Heisenberg (2018a).

An iconic theory containing a vector is the Tensor-Vector-
Scalar (TeVeS) theory by Bekenstein (2004). TeVeS emerged
as a relativistic theory able to describe Modified Newtonian
Dynamics (MOND), and thus as an alternative to dark matter.
For an overview of field-theoretical aspects of TeVeS and related
theories, including other relativistic MOND candidates, see
Bruneton and Esposito-Farese (2007). TeVeS theory introduces
several non-minimal ingredients. In addition to the gravitational
metric g̃µν matter is minimally coupled to an effective metric

gµν = e−2φ g̃µν − 2 sinh(2φ)AµAν , (13)

which generalizes the scalar disformal relation (9), incorporating
the vector. Here g̃µν is the gravitational metric, φ is the scalar.
The vector Aµ is enforced to be time-like and normalized with
respect to the gravitational metric g̃µνAµAν = −1. TeVeS has a
very rich phenomenology, including effects in GW propagation
(Sagi, 2010). At the level of cosmology it is partially able to mimic
DM, although the oscillations of the fields make it hard for the
theory to reproduce the peaks in the CMB (Skordis et al., 2006;
Bourliot et al., 2007; Skordis, 2009).

2.1.3. Massive Gravity and Tensor Fields
Giving a mass to the graviton is another means to extend GR,
with gravity mediated by a particle with massmg , spin s = 2 and
2s+1 = 5 polarization states (see de Rham et al., 2017 for bounds
on the graviton mass). Weinberg theorem on the structure of GR
relies on the infrared properties of the interactions: a mass term
changes this structure. Despite this clear loophole, constructing
a self-consistent theory of massive gravity, free of pathologies
and with the right number of degrees of freedom proved an
extremely hard endeavor that took nearly 70 years to complete.
The linear theory of massive gravity was formulated in 1939 by
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Fierz and Pauli (1939) as linearized GR plus a mass term

SFP =
∫

d4x m2
g

(

hµνhµν − (ηµνhµν)
2) . (14)

It was later found that Fierz-Pauli theory was discontinuous
and gave different results from GR in the limit mg → 0
(vDVZ discontinuity) (van Dam and Veltman, 1970; Zakharov,
1970). The discrepancy is due to the longitudinal polarization
of the graviton (the helicity-zero mode) not decoupling in that
limit. Considering non-linear interactions solved the apparent
discontinuity by hiding the helicity-zero mode, which is strongly
coupled in regions surrounding massive bodies and effectively
decouples, recovering the GR predictions when mg → 0
(Vainshtein, 1972). Despite this progress, massive gravity had
another important flaw: all theories seemed to have an additional
mode (known as Boulware-Deser (BD) ghost) that renders the
theory unstable (Boulware and Deser, 1972; Creminelli et al.,
2005).

2.1.3.1. Ghost free massive gravity
The apparent difficulties were overcome in de Rham-Gabadadze-
Tolley theory (dRGT) (de Rham et al., 2011), also known as
ghost-free massive gravity (for current reviews on the theory
see Hinterbichler, 2012; de Rham, 2014). dRGT is a ghost free
theory propagating the 5 polarizations corresponding to a spin-2
massive particle, universally coupled to the energy-momentum
tensor of matter (cf. Figure 6). The ghost-free property was
initially shown in the decoupling limit (in which the helicity-0
mode decouples from the other polarizations) and then in the
full theory (Hassan and Rosen, 2012b,c). The phenomenological
deviations induced by massive gravity are primarily due to
the helicity-0 mode. On small enough scales the Vainshtein
mechanism (Vainshtein, 1972) (see Babichev and Deffayet, 2013
for a review) effectively suppresses these interactions, leading to
predictions very similar to GR on Solar System scales (however,
new classes of solutions for black holes do exist, in addition to the
usual ones Babichev and Brito, 2015).

Massive gravity may offer a solution to the accelerating
universe. A heuristic argument is that the force mediated by
the massive graviton has a finite range V ∼ 1

r exp(−r/λg),
weakening over distances larger than the Compton wavelength
of the graviton r & λg = h̄/(mgc

2). Hence, if the mass of the
graviton is mg ∼ H0 then gravity weakens at late times and
on cosmological scales, causing an acceleration of the cosmic
expansion relative to the GR prediction. The program to apply
massive gravity as a dark energymodel has hit important barriers,
as flat FLRW solutions do not exist in this theory (D’Amico et al.,
2011). Accelerating solutions without a cosmological constant
(CC) do exist with open spatial hypersurfaces (Gumrukcuoglu
et al., 2011), but they are unstable (De Felice et al., 2013).
Proposed solutions include the graviton mass being generated by
the vacuum expectation value of a scalar (D’Amico et al., 2011) or
deformations of the theory in which the BD ghost is introduced,
which provides dynamical accelerating, but meta-stable solutions
(Könnig et al., 2016). Alternatively, one could promote the
coefficients of the potential to be functions of the Stueckelberg

fields (de Rham et al., 2014). Other ways to make massive gravity
dynamical include the addition of a new field, such as a scalar
field, e.g., quasi-dilaton (D’Amico et al., 2013), or one (or several)
dynamical tensors in bigravity (and multigravity).

2.1.3.2. Bigravity and multigravity
In order to write a mass term for the metric, dRGT incorporates
an additional, non-dynamical tensor, akin to the occurrence
of ηµν in Equation (14). Massive gravity can be extended by
including a kinetic term to the auxiliary metric, which becomes
fully dynamical. This leads to the theory of bigravity (or bimetric
gravity) (Hassan and Rosen, 2012a), which contains two spin-
2 particles: one massive and one massless. The same procedure
can be extended to more than two interacting metrics, leading to
multigravity theories (Hinterbichler and Rosen, 2012). In these
constructions there is always onemassless excitation of themetric
(a combination of the different tensor fields), with all other
excitations being massive.

Bigravity solves the problem of cosmological evolution, at
least at the background level. Flat FLRW solutions do exist,
and many viable expansion histories have been found to be
compatible with data (Akrami et al., 2013) and satisfying the
Higuchi stability bound (Fasiello and Tolley, 2013). However, it
was later found that these models had instabilities that affected
the growth of linear perturbations (Comelli et al., 2014), which
were found to be quite generic across different branches of
solutions (Könnig, 2015). In some cases the instabilities affect
only scales sufficiently small for non-linear effects to be important
(i.e., the Vainshtein mechanism) which might render the theory
stable (Mortsell and Enander, 2015). Another solution is to
choose the parameters of the theory so instabilities occur at
early times, when characteristic energies are high and bigravity
is not a valid effective field theory. This happens by choosing a
large hierarchy between the two Planck masses: the so-obtained
theory is practically indistinguishable fromGR plus a (technically
natural) CC (Akrami et al., 2015).

2.2. Descriptions of Cosmological Gravity
The immense variety of alternative theories has motivated
the search for effective descriptions able to capture the
phenomenology of generic dark energy models. The covariant
actions approach reviewed in section 2.1 offers several
advantages, including (1) full predictivity, as (classical) solutions
can be found from microscopic scales, to strong gravity and
all the way to cosmology, (2) self-consistency, as different
regimes can be computed for the same theory, leading to tighter
constraints when the data is combined. For instance, following
this approach, we discuss the cosmology of covariant Galileons
in section 4.1. Nonetheless, a great downside of this approach is
that the predictions for every model/theory have to be obtained
from scratch, which makes the exploration of the theory space a
daunting task.

An alternative route is to constrain deviations from GR,
without reference to any fundamental theory. The tradeoff is to
keep the theory of gravity as general as possible at the expense
of dealing with a very simple space-time. The simplest situation
is where the background space-time is flat and maximally
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FIGURE 4 | Effective descriptions of cosmological gravity, their relations and main advantages/shortcomings. Theories of gravity based on a gravitational Lagrangian

are described in section 2.1. The effective theory approach is described in section 2.2.1 and the Gravitational “constants” in section 2.2.2.

symmetric (Minkowski), a setup useful to model gravity in
the Solar System. In this simple case one can define a series
of quantities, known as Parameterized Post-Newtonian (PPN)
coefficients, that describe general modifications of gravity over
Minkowski space (seeWill, 2014 for details, including constraints
and additional assumptions). These PPN parameters that can be
constrained by experiments (such as the deflection of light by
massive bodies) and computed for any theory, and thus provide
a very efficient phenomenological dictionary.

In cosmology we are interested in describing gravity over a
slightly less symmetric background: a spatially homogeneous and
isotropic, but time evolving, Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric:

ds2 = −(1+ 29)dt2 + a2(t)
{

(1− 28)δij + hij
}

dxidxj , (15)

where metric perturbations are in Newtonian gauge with the
sign conventions of Ma and Bertschinger (1995). The tensor
perturbation is symmetric, transverse and traceless (∂ ihij, δijhij =
0) and we have ignored vector perturbations. The time-evolution
of the cosmological background makes an extension of PPN
approach to cosmology a difficult task, as instead of constant
coefficients one needs to deal with functions of time due to the
evolution of the universe.

The most important example of an effective description
in cosmology is the parameterization of the cosmological
background, often done in terms of the equation of state w ≡
p/ρ (Chevallier and Polarski, 2001; Linder, 2003). Instead of
computing themodifications to the Friedmann equations and the
pressure and energy density contributed by the additional fields,
a general approach to cosmological expansion is to specify w(z)

so that

H2 = 8πG

3
(ρM + ρDE) , (16)

ρDE = exp

(

−3

∫

d log(a)(1+ w)

)

. (17)

This is sufficient to describe any cosmological expansion history
and in any theory (as long as matter is minimally coupled) just by
using the Friedmann equation (16) as a definition for ρDE.

Describing the perturbations requires more functional
freedom. Here we will review two common procedures, namely
the effective theory of dark energy and the modified gravitational
“constants.” The different approaches (including the covariant
theory approach), their features and connections are outlined
in Figure 4. Consistency checks between the background and
perturbations can also be used to test the underlying gravity
theory (Ruiz and Huterer, 2015; Bernal et al., 2016a).

2.2.1. Effective Theory of Dark Energy
The effective (field) theory of dark energy (EFT-DE) (Bloomfield
et al., 2013; Gleyzes et al., 2013; Gubitosi et al., 2013) can be
used to systematically describe general theories of gravity over a
cosmological background (see Gleyzes et al., 2015c for a review).
The original formulation applies to theories with a scalar field φ

and uses the unitary “gauge”: a redefinition of the time coordinate
as the constant φ hypersurfaces (this is always possible if φ,µ

is time-like and non-degenerate, as in perturbed cosmological
backgrounds, but not in general). One then constructs all the
operators compatible with the symmetries of the background
(recalling that the time translation invariance is broken by the
cosmological evolution).
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A very convenient basis for the EFT functions was proposed
by Bellini and Sawicki (2014), when restricted to Horndeski’s
theory. In their approach the EFT functions are defined by
the kinetic term of the propagating degrees of freedom in
the equations of motion. The dynamical equation for tensor
perturbations

ḧij + (3+ αM)ḣij + (1+ αT)
k2

a2
hij = 0 , (18)

introduces two dimensionless functions

• tensor speed excess αT describes the modification in the GW
propagation speed c2g = (1 + αT). This modification is
frequency independent (see section 5).

• Planck-mass run rate αM enters as a friction term. It is related
to the cosmological strength of gravity M2

∗ (the kinetic term of

tensor perturbations) by αM = d log(M2
∗)

d log a (see section 6).

The equations in the scalar sector (Equations 3.20, 3.21 of Bellini
and Sawicki, 2014) can be used to define the remaining functions.
If we look only at the second time derivatives (that is, the kinetic
terms)

28̈ − αBHδφ̈/φ̇ + · · · = 0 , (ii-trace) (19)

αKδφ̈/φ̇ + 3αB8̈/H+ · · · = 0 , (φ scalar) (20)

(note the ellipsis denote terms without second time derivatives)
one can define

• braiding, or kinetic gravity brading αB quantifies mixing
between the second derivatives of the metric in the field
equation (and vice versa). This is a generic property
of modified gravity (Deffayet et al., 2010; Bettoni and
Zumalacárregui, 2015).

• kineticity αK modulates the “stiffness” of the scalar field
(how hard it is to excite perturbations in φ). The kineticity
is intimately related to the propagation speed of scalar
perturbations, which satisfies c2s ∝ α−1

K : higher kineticity
values lead to slower scalar waves and vice versa.

These functions can be computed from the Lagrangian functions
in (4), and for a given theory will depend on the value of the scalar
field and its time derivative. Constraints on the α-functions can
also be used to reconstruct the terms in a fundamental theory, as
shown in Table 1. Systematic reconstructions of the Lagrangian
from the α functions have been also explored (Kennedy et al.,
2017, 2018).

Increasingly complex theories of gravity lead to a larger
number of EFT functions. In beyond Horndeski theories of the
GLPV type, e.g., (11, 12), a new function αH is introduced
(Gleyzes et al., 2015a) which phenomenologically produces a
weakening of gravity on small but linear cosmological scales
(D’Amico et al., 2017). In DHOST theories including (10)
the situation is more involved, as the new EFT functions
(αL,β1,β2,β3) need to be related to each other and αT ,αH by the
degeneracy conditions that prevent the introduction of additional
degrees of freedom (Langlois et al., 2017). This leads to two
classes of theories with one free function, which is either αL

or one among βi. New EFT functions appear beyond scalar-
tensor theories, as has been explicitly derived for vector-tensor
(Lagos et al., 2016) and bimetric (Lagos and Ferreira, 2017)
theories (including bimetric gravity), with a unified treatment
of theories with different degrees of freedom (Lagos et al.,
2018).

Different versions of the linear EFT-DE approach has
been implemented in numerical codes able to obtain
predictions based on linear perturbation theory. Publicly
available implementations exist in EFTCAMB (Hu et al., 2014),
hi_class (Zumalacárregui et al., 2017) and COOP (Huang,
2016), with the first two based on the CAMB and CLASS
Boltzmann codes (Lewis et al., 2000; Blas et al., 2011a). In
addition, the CLASS-Gal code (integrated into CLASS) can
be used to compute relativistic corrections to cosmological
observables (Di Dio et al., 2013). These and other codes
have been tested against a large class of models at a level of
precision sufficient for current and next-generation cosmological
experiments (Bellini et al., 2018).

The EFT framework has been tested using linear observables.
Horndeski theories were tested against current experiments,
leading to O(0.1 − 1) constraints on the α-functions varying
over αB,αM ,αT (Bellini et al., 2016), with αM = −αB (Ade
et al., 2016) and setting αT = 0 to reflect the strong bounds
on the GW speed (Kreisch and Komatsu, 2017) (αK is very
weakly constrained by current data). Future experiments have
great potential to improve on these bounds, and are expected
to improve the sensitivity to O(0.01 − 0.1) (Gleyzes et al.,
2016; Alonso et al., 2017; Lorenz et al., 2018; Reischke et al.,
2018; Spurio Mancini et al., 2018). EFT-based modifications
of gravity might be observable through relativistic effects on
ultra-large scales (Renk et al., 2016; Lorenz et al., 2018) (see
also the discussion in section 2.2.2): these techniques might
improve significantly our ability to constrain αK , although it
will remain the hardest to measure (Alonso et al., 2017). Those
works used simple functional dependence of the EFT functions.
It has been nonetheless shown that simple parameterizations
are indistinguishable from more complex models in most
cases, even for next-generation cosmology experiments (Gleyzes,
2017).

The EFT approach has been generalized beyond linear
perturbations for Horndeski theories. Including non-linear
cosmological perturbations in general introduces new functions
at every order in perturbation theory (e.g., to compute the
bispectrum Bellini et al., 2015). However, a restriction to cubic
and quartic operators (in the unitary gauge) leads to only 3
new operators on quasi-static scales (Cusin et al., 2018b). Some
applications of non-linear EFT-DE include corrections to the
power spectrum (e.g., Cusin et al., 2018a), the use of higher-order
correlations as a test of gravity, such as the bispectrum of matter
(Bellini et al., 2015), galaxies (Yamauchi et al., 2017) and CMB
lensing (Namikawa et al., 2018) or the non-linear shift of the BAO
scale (Bellini and Zumalacarregui, 2015).

2.2.2. Modified Gravitational “Constants”
A very commonly used approach employs general modifications
of the equations relating the gravitational potentials to the matter
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TABLE 1 | EFT functions in scalar-tensor theories: a hierarchy exists by which more complex theories of gravity (left to right) produce a larger set of effects (more non-zero

functions).

Horndeski DHOST

G2,φ G2,X G3,X G4,φ G4,X · · · GLPV C1 C2

1+ w X X X X X X X X

αK − X X X X X X X

αB − − X X X X X X

αM − − − X X X X X

αT − − − − X X X X

αH − − − − − X X X

β1 − − − − − − X •
αL − − − − − − − X

− zero, X non-zero (arbitrary), • non-zero (constrained) For the DHOST theories there are two classes of degeneracy conditions: C1 and C2. Some non-trivial special cases are known

to exist: f (R) and f (G) theories have αK = 0, while first generation theories (3) including f (R), Brans-Dicke satisfy αB + αM = 0 (Bellini and Sawicki, 2014) and 2 beyond Horndeski

combinations produce αT = 0 (Creminelli and Vernizzi, 2017; Ezquiaga and Zumalacárregui, 2017) (see section 8.1).

density contrast

∇29 = 4πGa2µ(t, k)ρδ , (21)

∇2(8 + 9) = 8πGa26(t, k)ρδ (22)

(note that different conventions exist in the literature). Here δ

is the density contrast in the Newtonian gauge (15) and the
functions µ,6 parameterize the evolution of the gravitational
potentials as a function of time a and scale k. The functions µ,6
are often referred to as Gmatter, Glight because gradients of 9

determines the force felt by non-relativistic particles and those
of9 +8 the geodesics of massless particles (and thus the lensing
potential). The ratio of the gravitational potentials,

η ≡ 8

9
= 26

µ
− 1 , (23)

is of particular interest, since GR predicts that it is exactly one
in the absence of radiation and any sizable deviation could be an
indication of modified gravity.

This approach has numerous advantages as a test of gravity
against data. It is completely theory agnostic, not requiring any
information on the ingredients or laws of the theories being
tested. Most importantly, it is completely general for universally
coupled theories: given any solution 1,9 ,8(a, k) it is possible
to obtain µ,6 through (21, 22). In this sense, any finding of
µ,6 6= 1 might point toward deviations from GR and warrant
further investigation.

The main shortcoming of this approach is its great
generality: any practical attempt to implement (21,22) requires
a discretization of the functional space, introducing 2 · Nk · Nz

free parameters for a homogeneous binning. In contrast, the EFT
approach for Horndeski theories (18,19) requires only 4 · Nz

parameters, making it a more economic parameterization for all
but the simplest scale-dependencies (Nk = 1, 2). Capturing the
full scale dependence of µ,6 requires either a large parameter
space or assumptions about the k-dependence.

A common practice to overcome this limitation is to
choose a functional form for µ,6 as a function of scale. For

Horndeski theories the functional form is a ratio of quadratic
polynomials in k (De Felice et al., 2011; Amendola et al.,
2013)

µ = h1
1+ h5k

2

1+ h3k2
, η = h2

1+ h4k
2

1+ h5k2
, (24)

for functions hi that depend on redshift through the theory
(4) and the scalar field evolution. The mapping is exact on
small scales in which the field dynamics can be neglected,
below scalar sound horizon (Sawicki and Bellini, 2015). A k-
dependence as the ratio of polynomials is generic in local theories
at quasi-static scales (Silvestri et al., 2013), with higher order
polynomials possible in Lorentz-violating (Baker et al., 2014),
multi-field (Vardanyan and Amendola, 2015) theories. Studies
with current data have tested rather simple parameterizations
of µ,6: for instance the Planck survey tested the case of k-
independent µ, η in addition to the theory-motivated (24) (Ade
et al., 2016). Future surveys will improve the resolution on the
scale-dependence: 3 k-bins are the minimum to constraint all
the parameters in Equation (24), with 6 bins in z (Amendola
et al., 2014b; Taddei et al., 2016). A limited handle on scale-
dependence on ultra-large scales might be achievable (Baker
and Bull, 2015; Villa et al., 2018) (see also Lombriser et al.,
2013; Raccanelli et al., 2014; Bonvin and Fleury, 2018 for related
parameterizations).

Another main shortcoming of the completely general
approach is that there is no information from other regimes. The
major setback with respect to EFT is the lack of information
from gravitational wave observables, while in EFT the tensor
and scalar sectors are modified accordingly i.e., GW data restrict
the modifications available to scalar perturbations, for instance,
theories with η 6= 1 require either αM or αT to be non-zero
(Saltas et al., 2014). Attempts to explore the connections between
µ,6 and the EFT approach in Horndeski-like theories have used
very general parameterizations: connecting theoretical viability
conditions of the theory with the behavior of µ, η (Perenon et al.,
2015), including the case with αT = 0 to address the impact
of the GW speed measurement (Peirone et al., 2018b). General
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properties of Horndeski theories could be inferred from detailed
measurements of µ,6 (Pogosian and Silvestri, 2016). Similarly
to the EFT approach, the background evolution is unknown and
the equation of state (17) is in principle arbitrary. However,
theoretical priors on w(z) can be obtained for broad classes
of Lagrangians (e.g., quintessence, Marsh et al., 2014) or from
stability conditions in general realizations of the EFT functions
(Raveri et al., 2017).

3. BASICS OF GRAVITATIONAL WAVES

Gravity is a universal, long-range force. This, in field theory
language, implies that it must be described by a metric field gµν

in order to manifestly preserve locality and Lorentz invariance.
At low energies, the leading derivative interactions are second
order. Therefore, gravity theories generically predict the existence
of propagating perturbations or, in other words, the existence
of GWs. One can define a metric perturbation hµν as a small
difference between the metric field gµν and the background
metric gBµν

hµν = gµν − gBµν , (25)

where |hµν | ≪ 1. However, in curved space it is non-trivial to
distinguish the perturbation from the background unless the
latter posses some degree of symmetry, e.g., flat space or FLRW.
A way out is to define GWs via geometric optics (Misner et al.,
1973). In this context, the key element to distinguish the GW
from the background is the size of the fluctuations λgw with
respect to the typical size of the background variation LB . One
could associate the typical variation scale in the background
with the minimum value of the components of the background
Riemann tensor

LB ∼ |RB
αβγρ |−1/2 . (26)

For astrophysical sources, we will see later that the wavelength
of the GW λgw is orders of magnitude smaller than the typical
variations of LB for cosmological setups. The fact that λgw ≪ LB

implies that there is a clear hierarchy between background and
perturbations, allowing to solve the problem using an adiabatic
(or WKB) expansion.

In the following, we describe the basics of GWs. We begin by
introducing GWs in GR. Then, we explore the propagation in
cosmological backgrounds. Subsequently, we describe how this
picture is changed beyond GR. Finally, we discuss the status of
present and future GW detectors. We recommend the reader
Misner et al. (1973), Maggiore (2008), Maggiore (2018), Flanagan
and Hughes (2005), and Carroll (2004) for more details.

3.1. GWs in General Relativity
General Relativity is a universal, infinite-range force. As we have
seen in the previous section, this implies that it is described by
a massless, spin-2 field. The dynamics is described by Einstein’s
equations (2). Importantly, not all the components of the Einstein
tensor Gµν contain second order time derivatives of the metric
gµν . This implies that not all of the 10 components of gµν will
propagate. In particular, the G0µ equations act as 4 constraint

equations. This, together with the 4 unphysical modes reduced by
the gauge choice, leaves only 2 propagating degrees of freedom.
This is precisely what one would expect for a massless spin-2
particle.

In order to study GWs, the next step is to study the
linearized Einstein’s equations. To diagonalize the equations for
the tensor perturbations, one has to introduce the trace-reversed
perturbation

h̄µν = hµν −
1

2
hgBµν , (27)

whose name comes from the fact that h̄ = −h where h = gµν
B

hµν

and h̄ = gµν
B

h̄µν are the traces of hµν and h̄µν , respectively. Fixing

the Lorenz gauge for this new variable ∇µh̄µν = 0, the linearized
Einstein equations in curved space-time read

2h̄µν + 2RB
µανβ h̄

αβ =
−16πGδTµν + 2RB α

(µ h̄ν)α − RBhµν + gBµνR
αβ
B
h̄αβ ,

(28)

where covariant derivatives are built with the background metric
gBµν . Here, we have introduced the perturbed energy-momentum
tensor δTµν as the difference of the total energy momentum
tensor Tµν with respect to the background solution 8πGTB

µν =
RB

µν − 1
2 g

B
µνRB . One should note that, in vacuum, all the Ricci

tensors vanish in the second line. Moreover, for short-wave GWs
λgw ≪ LB , the Riemann tensor in the first line has a subdominant
contribution.

To deal with the two GW polarizations, it is convenient to
work in the transverse-traceless (TT) gauge, which is defined by

h0µ = 0 , ∇ jhij = hii = 0 . (29)

Note that in the TT gauge, the trace-reversed perturbation h̄µν is
equal to the original perturbation hµν . If the GW is propagating
in the z-direction, the spatial components become

hij =





h+ h× 0
h× −h+ 0
0 0 0



 , (30)

with h+ and h× being the two polarizations of GR.

3.1.1. Generation
A first question to address is how GWs are produced. Let
us consider a GW source in vacuum within the short-wave
approximation. Then, the general propagation Equation (28)
reduces to

2h̄µν = −16πG δTµν . (31)

This wave equation can be solved in analogy to electromagnetism
using a Green’s function. In terms of the retarded time tr =
t − |Ex− Ey|, the solution is

h̄µν(t, Ex) = 2G

∫

d3Ey δTµν(tr , Ey)
|Ex− Ey| . (32)
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For an isolated, far away, non-relativistic source, this solution can
be simplified. In fact, one can make a multipole expansion. The
zeroth moment corresponds to the mass-energy of the source
M =

∫

T00(t, Ey)d3Ey. However, conservation of energy for an
isolated source tells us that M cannot vary in time. Next, the
mass dipole moment Mi(t) =

∫

yi T
00(t, Ey)d3Ey is associated to

the motion of the center of mass. Nevertheless, its time derivative
is the momentum of the source that also has to be conserved6.
Consequently, the leading contribution is the mass quadrupole
moment Mij(t) =

∫

yiyj T
00(t, Ey)d3Ey, which generates GWs

through its second time derivatives

h̄ij(t, Ex) =
2G

r

d2Mij

dt2
(tr) . (33)

For a binary system of masses m1 and m2, the quadrupole
radiation is

h+,× = M
5/3
c f 2/3

r
F+,×(angles) cos8(t) , (34)

where F is a function of the orientation of the binary that depends
on the polarization+ or× [recall (30)], 8(t) is the phase and we
have introduced the chirp mass

Mc =
(m1m2)3/5

(m1 +m2)1/5
. (35)

As the masses orbit one around the other, they will lose energy
with the emission of GWs. They will begin getting closer and
orbiting faster until they eventually merge. Thus, the frequency
of GWs will increase with a characteristic chirp signal following

ḟgw = 96

5
π8/3

(
GMc

c3

)5/3

f
11/3
gw . (36)

Note that to consider the energy loss due to GWs emission one
has to go to second order in perturbation theory. An example
of the typical GW strain and frequency of a compact binary
coalescence is presented in Figure 5.

Typical binary compact objects emitting detectable GWs are
binary neutron stars (BNS) and binary black-holes (BBH). The
order of magnitude of the frequency of the GWs of these systems
is

fgw ∼ 1

4π

(
3GM

R3

)1/2

∼ 1kHz

(
10M⊙
M

)

, (37)

where M⊙ is equal to one solar mass. This implies that higher
masses lead to lower frequencies. In terms of the wavelength one
finds

λgw ∼ 200km

(
M

M⊙

)

. (38)

This allows us to compare the size of the wavelength with
the typical size of the background curvature variation LB . For

6Similar arguments apply for the spin angular momentum in case the source
exhibit some internal motion.

FIGURE 5 | Typical GW signal of a compact binary coalescence. The GW

strain (above) and the GW frequency (below) are plotted as function of the time

before merging. This waveform is a template of the first event detected

GW150914 (Vallisneri et al., 2015).

cosmology, the size of the curvature is related to the Hubble
horizon Lcosmo

B
∼ 1026m. For our galaxy one can estimate

L
gal
B ∼ 1023m and for the Solar System L

SolSys
B ∼ 1016m. As it

can be observed, the geometric optics expansion is an excellent
approximation due to the great hierarchy between λgw and LB .
Only GWs passing near a very dense object such as a BH, LBH

B
∼

(MBH/M⊙)km, would break this short-wave approximation.
The typical amplitude of a GW from a compact binary can be

estimated using (34), leading to

h ∼ 10−21
(

Mc

10M⊙

)5/3 ( f

100Hz

)2/3 (100Mpc

r

)

. (39)

Contrary to EM waves, GW detectors are directly sensitive to
the amplitude of the wave, which falls like 1/r and not as the
luminosity 1/r2. This means that even if the amplitudes are very
small, GW detectors are more sensitive to distant sources.

3.1.2. Propagation
Once the GW is generated, it will propagate in vacuum following

2h̄µν + 2RB
µανβ h̄

αβ = 0 . (40)

A general solution of this wave equation can be written as the sum
of plane waves

h̄µν(t, Ex) = Re
[

Aµν · eixαk
α
]

, (41)

where Re denotes the real part. By plugging this expression in the
wave equation and expanding in powers of k, one finds at leading
order that

kµk
µ = gµν

B
kµkν = 0 . (42)

Therefore, GWs propagate in null geodesics determined by the
background metric. This means that the GW-cone is the same
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as the light-cone and both waves propagate at the same speed.
Moreover, the wave is transverse to the propagation direction

kµAµν = 0 , (43)

similarly to electromagnetic waves. Finally, by defining the scalar

amplitudeA =
( 1
2A

∗
µνA

µν
)1/2

one realizes that

∇α

(

kα
A
)

= 0 , (44)

which can be interpreted as the conservation of gravitons. One
should note that RB

µανβ in the wave equation only modifies
the amplitude at second order. Consequently, at first order in
geometric-optics, the wave equation 2h̄µν = 0 can be rewritten
as

2R
gw
µανβ = 0 . (45)

This expression could be used as a gauge invariant, coordinate
independent definition of the propagation of GWs in vacuum.

3.1.3. Detection
To see the effect of a GW passing by, one has to study the
deviation of nearby geodesics. Given two particles with four-
velocity Uµ separated by Sµ, their separation evolves as

D2Sµ

dτ 2
≡ Uρ∇ρ

(

Uγ∇γ S
µ
)

= R
µ
αβνU

αUβSν , (46)

where τ is the proper time. At leading order, the four velocity is
just the unit vector Uµ = (1, 0, 0, 0)+O(h), and we only have to
compute the Riemann tensor in the TT gauge. The result is

∂2Sµ

∂t2
= 1

2
Sν ∂2

∂t2
hµ

ν , (47)

where we have also used that to leading order the proper
time τ and the coordinate time t coincide. Accordingly, only
the components of the separation vector Sµ transverse to the
propagation vector will feel the effect of the GW. In these
directions, the separation between the test particles will oscillate
as the GW travels perpendicular to them. In Figure 6, we plot the
effect of the different GW polarizations crossing a circle of test
masses.

GW detectors precisely rely on this principle that GWs
can alter the separation between test masses. Modern detectors
are interferometers. In brief, they are constituted by two
perpendicular arms of the same length with two mirrors in free
fall at their ends (acting as test particles). A laser beam is split
in the two arms so that the beams reflect in each mirror and
come back to the splitting point. In the absence of a GW, both
laser beams returning will interfere destructively and no signal
would arrive to the detector. However, if a GW crosses the
interferometer, it will change the length of the arms differently.
This means that the laser beams will take different times to travel
the arms, arriving at the splitting point with different phases.
Then, the destructive interference is lost and some signal gets to
the detector.

Note that the typical distance variation δL of two test masses
separated by L is approximately δL ∼ h ·L. For compact binaries,
we have seen that the strain amplitude is h ∼ 10−21. Therefore,
LIGO-type detector with arms of the order of kilometers have to
measure distance variations

δL ∼ 10−18
(

h

10−21

)(
L

km

)

m , (48)

a thousand times smaller than the nucleus of an atom. To achieve
that, each arm has a resonant cavity in which the laser beams
bounce back and forth about 300 times. This effectively makes
ground-based interferometer arms to be 1,200 km long (since
the variation time of the GW is much longer than the travel
time of the laser in the cavity). Accordingly, LIGO is sensitive
to frequencies of fLIGO ∼ 102Hz. For the future space-based
interferometer LISA, the working principle will be the same but
with longer arms L ∼ 106km, being thus sensitive to much
smaller frequencies, fLISA ∼ 10−2Hz.

3.2. GWs in Cosmology
At large scales, the universe is homogeneous and isotropic to very
high accuracy. The background geometry is then described by a
(flat) Friedmann-Lemaitre-Robertson-Walker (FLRW) metric

ds2 = gBµνdx
µdxν = a2(η)

(

−dη2 + dEx2
)

, (49)

where a(η) is the scale factor and we are timing in conformal time
dη = dt/a(t). The propagation Equation (40) becomes in Fourier
space

h′′ij + 2Hh′ij + k2hij = 0 , (50)

where H = a′/a is the Hubble parameter and primes denote
derivatives with respect to conformal time. This is nothing but a
wave equation with a friction term due to the cosmic expansion.
This Hubble friction will produce a redshift of the frequencies
f emit = (1 + z)f obs and a rescaling of the GW amplitude h ∼
1/(a · r). The previous formulae for a compact binary (34–36)
written in terms of the observed frequency f obs are thus valid if
we replace the chirp massMc by the redshifted chirp mass

Mz = (1+ z)Mc (51)

and the physical distance a · r by the GW luminosity distance

d
gw
L = (1+ z)

∫ z

0

c

H(z)
dz , (52)

where c is the speed of light and z the redshift. In this way, all the
(1 + z) terms cancel each other. Note that there is an intrinsic
degeneracy between the redshift and the Hubble parameter H(z)
in the GW luminosity distance. Therefore, the expansion history
can only be obtained from the GW amplitude if the redshift is
known. For near by sources z ≪ 1, the Hubble constant H0 can
be obtained

d
gw
L = cz

H0
+O(z2) , (53)
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FIGURE 6 | Possible gravitational wave polarizations. A circle of test masses is distorted differently for each polarization propagating on the z-direction as a function of

time (ω t = 0,π/2,π , 3π/2). General Relativity only contains the two tensor polarizations + and ×. Other gravity theories might contain also a transverse (breathing)

scalar mode (Scalar T ), a longitudinal scalar (Scalar L) and two vector modes (Vector 1 , 2).

showing the power of GW astronomy to do cosmology. We will
review this topic in more detail in section 4.

Finally, let us mention that we have only focused on GWs
from binary sources in the late universe. However, there could be
other sources of GWs in the early universe leading to stochastic,
cosmological backgrounds. For a nice review in the subject one
can follow (Caprini and Figueroa, 2018). One may wonder if
there could be an effect in the GW propagation when traveling
through the cold dark matter. This question has been addressed
recently and the answer is that the effect is too small (Baym et al.,
2017; Flauger and Weinberg, 2018).

3.3. GWs Beyond GR
As we have emphasized at the beginning of this section, the
existence of wave solutions for metric perturbations is generic
for second order gravity theories. However, the behavior of these
GWs can be very different depending on the gravity theory. The
differences can arise either at the production or the propagation.

3.3.1. Additional Polarizations
During the generation of GWs, the main differences in theories
beyond GR is that there could be other polarizations excited.

We have seen that in GR only the 2 tensor polarizations
propagate (recall 30). Nevertheless, modifications of gravity
might introduce new degrees of freedom. For instance, in scalar-
tensor theories there will be an additional scalar mode. Or in
Massive Gravity, where there will be in addition 2 vector modes
and a scalar one. For a GW propagating in the z-direction, one
could decompose the amplitude Aij in the different polarizations

Aij =





AS + A+ A× AV1

A× AS − A+ AV2

AV1 AV2 AL



 , (54)

where A+ and A× are the two tensor modes, AV1,2 the two
vector polarizations, AS the transverse (breathing) scalar and AL

the longitudinal scalar mode. One should note that these other
types of polarizations will also leave an imprint in the detectors.
Each polarization will have a different effect as we exemplify
in Figure 6. In principle, with a set of 6 detectors one could
distinguish all possible polarizations.

Before continuing, it is important to remark that if a source
is emitting additional polarizations, it will lose energy more
rapidly. For a binary pulsar, if additional modes were emitted,
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the orbit would shrink faster due to the higher energy loss. For
PSR B1913+16 (better known as Hulse-Taylor pulsar) (Hulse
and Taylor, 1975), the orbit has been tracked for more than
four decades now, showing an impressive agreement with GR
(Weisberg et al., 2010). Binary pulsars have been intensively used
to constrain alternative theories of gravity, placing severe bound
on dipolar radiation as reviewed in Stairs (2003) andWex (2014).
An example of this are Einstein-Aether propagating waves
(Jacobson and Mattingly, 2004), which have been constrained
from pulsars due to dipolar GW emission (Yagi et al., 2014a,b).
Another would be the constraints on Brans-Dicke from a pulsar-
white dwarf binary (Freire et al., 2012).

Due to these constraints on the emission of additional
polarizations, it is usually invoked a screening mechanism
around the source to evade them. If this is the case, deviations of
GR could only be measured in the propagation of GWs. We will
discuss more about the emission of extra modes and screening
mechanisms in section 8.2.

3.3.2. Modified Propagation
The propagation of GWs in gravity theories beyond GR can
be very complicated. The additional fields might modify the
background over which GWs propagate and their perturbations
could even mix with the metric ones. For simplicity, we will
restrict here to cosmological backgrounds. In that case, due to
the symmetries of FLRW, tensor perturbations can only mix
with other tensor perturbations. Possible deviations from the
cosmological wave equation in GR (50) can be parametrized by
Nishizawa (2018)

h′′ij + (2+ ν)Hh′ij + (c2gk
2 +m2a2)hij = 5ij , (55)

where ν is an additional friction term, cg accounts for an
anomalous propagation speed,m is an effective mass and 5ij is a
source term originated by the additional fields. For instance, the
scalar-tensor analog of this equation is (18). It is interesting that
the modified GW propagation can also be understood in analogy
with optics as GWs propagating in a diagravitational medium
(Cembranos et al., 2019).

Focusing on the case without sources,5ij = 0, the original GR
wave-form hGR , given by (34) for instance, will be modified by

hGW ∼ hGR e−
1
2

∫

νHdη
︸ ︷︷ ︸

Affects amplitude

eik
∫

(α
T
+a2m2/k2)1/2dη

︸ ︷︷ ︸

Affects phase

, (56)

where we have introduced αT = c2g − 1. Mainly, the additional
friction will modify the amplitude, while the anomalous speed
and the effective mass change the phase. Themodified luminosity
distance is then7

dMG
L = (1+ z)

cg(z)

cg(0)
exp

[
1

2

∫ z

0

ν

1+ z′
dz′
] ∫ z

0

cg(z′)
H(z′)

dz′ . (57)

We will discuss how to test the GW phase in section 5 and the
damping of the strain in section 6.

7See Appendix A of the first arXiv version of Ezquiaga and Zumalacárregui (2017)
for a derivation.

For GWs propagating in FLRW backgrounds, a source is
present 5ij 6= 0 when there are additional tensor modes
propagating. A paradigmatic example of this is bigravity, where
there are two dynamical metrics. In that case, we have to track
the evolution of both metric perturbations (Narikawa et al., 2015;
Max et al., 2017, 2018)

(

h′′

t′′

)

+
[

k2 +m2
g

(

sin2 θ − sin θ cos θ
− sin θ cos θ cos2 θ

)](

h
t

)

= 0 ,

(58)
where for shortness we have absorbed the Hubble friction in the
definition of the perturbation and we do not show the spatial
indices. Here mg is the effective mass (one of the tensor fields is
massive) and θ is the mixing angle. Since there are interactions
between hij and tij, this means that the mass eigenstates are
not the same as the propagation eigenstates. In analogy with
the propagation of neutrinos, there can be GW oscillations. In
section 7.1 we will see how GW oscillations can be tested. One
should note that the possibility of having GW oscillations is not
restricted to bigravity. Any gravity theory in which the additional
degrees of freedom can arrange to form a tensor perturbation
over FLRW background could display the same phenomenology.
In particular, this is what happens with gauge fields in a SU(2)
group (Caldwell et al., 2016; Beltrn Jimnez and Heisenberg,
2018).

3.4. Present and Future GW Detectors
Before presenting the different tests of gravity with multi-
messenger GW astronomy, let us outline briefly the status of
present and future GW detectors. We summarize the different
sensitivities of each detector and the typical sources in Figure 7.
The capabilities of multi-messenger GW astronomy depend
mainly on two aspects:

• Number of detections: this is most sensitive to the size of the
volume of the Universe covered by the GW detector. However,
there is a large uncertainty in the actual population of the
sources, e.g., BNS.

• Sky localization: this is most sensitive to the number of
detectors that allow for a better triangulation of the source. A
better localization of the GW events simplifies the search for a
counterpart.

We draft a summary of present expectations for the range of
detection and localization angle of different GW detectors in
Figure 2. The reader should be aware that these expectations,
specially the ones far in the future, might be subject to important
modifications.

At present, we are in the second generation (2G) of ground-
based detectors. There have been already two operation runs. In
the first one, only the two aLIGO detectors were online with a
detection range for BNS of the order of 80 Mpc. In the second
one, aVirgo joined. Although its sensitivity was still lower, aVirgo
helped to reduce the localization area an order of magnitude,
from 100−1, 000 deg2 to 10−100 deg2. For illustration, we plot in
Figure 7 the strain of the first event GW150914 (Vallisneri et al.,
2015).
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FIGURE 7 | Strain sensitivity curves for different GW detectors. Second generation (2G) ground-based detectors are advanced LIGO (aLIGO), advanced Virgo (aVirgo)

and KAGRA, with curves given at design sensitivity (Abbott et al., 2018e). Third generation (3G) detectors projected are Einstein Telescope (ET) (Sathyaprakash et al.,

2012) and Cosmic Explorer (CE) (Abbott et al., 2017c). A space-based detector planned is LISA (Amaro-Seoane et al., 2013). For illustration, we include the strain

amplitude of GW150914 (Vallisneri et al., 2015) and the expected background for massive binary black-holes (BBH) and galactic white-dwarf (WD) binaries (Moore

et al., 2015).

However, neither aLIGO nor aVirgo has reached their
designed sensitivity yet. Moreover, other two 2G detectors are on
the way. KAGRA (Somiya, 2012) in Japan is under construction
and it is expected to start operating in 2020. On the other hand
IndIGO (Adhikari and Iyer, 2011), a replica of LIGO located in
India has been approved. This means that in the coming years
two main improvements are expected: a larger event rate and
a more precise localization (Abbott et al., 2018e). The range of
detection is expected to improve by a factor of 3 implying a factor
27 in the detection rate. The localization is expected to reduce to
areas of 5−20 deg2 with KAGRA and to a few deg2 with IndIGO.
Note that this is a key point in order to associate any counterpart
with a GW event.

A third generation (3G) of ground-based detectors is being
planned. The European 3G proposal is the Einstein telescope
(ET) (Sathyaprakash et al., 2012), an underground, three 10km-
arms detector. Its current design aims at improving by a factor
of 10 present sensitivity. The US 3G proposal, Cosmic Explorer
(CE) (Abbott et al., 2017c), is more ambitious with two 40km
arms further improving the sensitivity of ET. In any case, 3G
detectors imply a substantial change in GW astronomy. While
2G detectors will only be able to reach up to z ∼ 0.05 for BNS
and z ∼ 0.5 for BBHs, 3G detectors might reach z ∼ 2 for BNS
and z ∼ 15 for BBHs. In terms of multi-messenger events, this
corresponds to thousands or tens of thousands standard sirens.

The sky localization of events in 3Gwill vary depending on the
available network of detectors (Mills et al., 2018). In this sense,
there are already plans to upgrade advanced LIGO detectors.
This envisioned upgrade is known as LIGOVoyager (McClelland
et al., 2017). Voyager could reach sensitivities between 2G and

3G. The localization will thus vary depending on the redshift
of the source since the sensitivity of the network will not be
homogeneous. A network of three Voyager detectors plus ET
would localize 20% of the events within 10 deg2, while a setup
with three ET detectors would localize 60% of the events within
10 deg2 (Mills et al., 2018).

Moreover, space-based GW detectors have been also
projected. The European space agency has approved LISA
(Audley et al., 2017). Being in space and with million
kilometer arms, the frequency band and targets of LISA are
very different from ground-based detectors (see Figure 7).
Expected sources include supermassive BHs, extreme mass
ratio inspirals (EMRI) and some already identified white
dwarf binaries (known as verification binaries). It is presumed
that these sources could be observed with counterparts,
enlarging the reach of multi-messenger GW astronomy.
For reference, we have included in Figure 7 the expected
background of massive BBH (MBH ∼ 104−7M⊙) and
unresolved galactic white-dwarf binaries (Moore et al., 2015)
(see more details about the different sources in Figure 1 of
Audley et al., 2017).

Finally, there are other proposals to detect GWs at even
lower frequencies, in the band of 1-100 nHz. Sources in this
regime could be binary SMBH in early inspiral or stochastic,
cosmological backgrounds. These GWs could be observed using
a network of millisecond pulsars, in which the pulsation is
extremely well-known, for instance with PPTA (Zhu et al., 2014).
Other proposals are to use astrometry with GAIA, which is
capable of tracking the motion of a billion stars (Moore et al.,
2017), or to use radio galaxy surveys (Raccanelli, 2017).
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FIGURE 8 | The Hubble tension (adapted from Beaton et al., 2016; Freedman,

2017, including the first standard sirens measurement following GW170817,

Abbott et al., 2017b, Planck 2018, Aghanim et al., 2018 and Hubble Space

Telescope (HST) with GAIA DR2, Riess et al., 2018). Blue stars correspond to

measurements of H0 in the local universe with calibration based on Cepheids.

Red dots refer to derived values of H0 from the CMB assuming 3CDM. Green

crosses are direct measurements of H0 with standard sirens. Forecasts are:

CMB Stage IV (Abazajian et al., 2016), standard sirens (Nissanke et al., 2013)

and distance ladder with full GAIA and HST (Casertano et al., 2016; Riess

et al., 2016).

4. STANDARD SIRENS

GWs coming from distant sources can feel the cosmic expansion
in the same way as EM radiation does. In fact, we have seen
in section 3.2 that the amplitude of the GWs is inversely
proportional to the GW luminosity distance d

gw
L . In GR the GW

luminosity distance is equal to EM luminosity distance, with the
standard formula given by (52). However, this is not a universal
relation in theories beyond GR as we will discuss in section 6. For
the moment, we will restrict to Einstein’s theory only.

In order to measure distances in cosmology one needs both
a time scale and a proper ruler. The inverse dependence of the
strain with d

gw
L makes GWs natural cosmic rulers. Introducing

the full cosmological dependence8, the GW luminosity distance
is given by

d
gw
L = (1+ z)√|�K |

sinn

[

c

∫ z

0

√|�K |
H(z′)

dz′
]

, (59)

where sinn(x) = sin(x), x , sinh(x) for a positive, zero and
negative spatial curvature, respectively. Assuming a 3CDM
cosmology, the Hubble parameter is a function of the matter
content �m, the curvature �K and the amount of DE �3

(radiation at present time is negligible)

H(z) = H0

√

�m(1+ z)3 + �K(1+ z)2 + �3 . (60)

On the contrary, GWs alone do not provide information about
the source redshift. This is because gravity cannot distinguish

8In (52) we had assumed a flat universe.

a massive source at large distances with a light source at short
distances. Nevertheless, when GWs events are complemented
with other signals that allow a redshift identification, these
events become standard sirens (Schutz, 1986). Standard sirens
are complementary to already well-established standard candles,
SN events in which the intrinsic luminosity can be calibrated
allowing for ameasurement of the EM luminosity distance. There
are also standard rulers, such as the one determined by baryon
acoustic oscillations (BAO) which provides the angular diameter
distance. For binary black-holes (BBH) it is not expected to
observe any counterpart, unless there is matter around the BHs
(Perna et al., 2016). Fortunately, binary neutron stars (BNS) and
black-hole neutron star systems (BHNS) are expected to emit
short gamma-ray bursts (sGRB) and other EM counterparts,
becoming clear standard siren targets.

The first ingredient for a standard siren is the measurement
of the GW luminosity distance. However, d

gw
L is degenerate with

the inclination of the binary. More precisely, showing the explicit
angular dependence of the waveform (34) one finds that the two
polarizations scale as

h+ ∝ (1+ cos ι)2

2d
gw
L

and h× ∝ cos ι

d
gw
L

, (61)

where ι is the inclination angle. This distance-inclination
degeneracy is the main source of uncertainty of present
measurements of d

gw
L (Abbott et al., 2016c). One possibility

to break this degeneracy is to have an identification of both
polarizations. This requires at least a three detector network
and a good sky localization. Another possibility to break this
degeneracy is when the binary has a precessing spin. Then,
there is a characteristic modulation of the amplitude that can
disentangle the inclination angle. Orbital precession is more
significant for large effective spin χeff

9 and/or small mass ratios
q = m2/m1 ≤ 1 since there is also an effective spin-mass ratio
degeneracy. Possibly good candidates for this would be BHNS
binaries since BNS typically have a mass ratio close to 1.

The other ingredient for a standard siren is the identification
of the redshift. This can be achieved by different means. The
simplest consists in finding an EM counterpart of the GWs
from the binary coalescence (Schutz, 1986). Then, the redshift
could be extracted from the EM counterpart or from the host
galaxy depending on the case. BNS will produce a sGRB after
the merger. This sGRB is characterized by a beaming angle θj,
which is typically expected to be θj ≤ 30◦. This means that
depending on the orientation of the source we will be able
to detect both signals only in a small fraction of the events.
Observing a bright afterglow or kilonovae (Metzger, 2017) might
increase the changes of detecting a counterpart. BNS will be the
primary source for LIGO (Dalal et al., 2006), although BHNS
could also play an important role (Vitale and Chen, 2018).
SMBHsmight be good standard sirens for LISA as well (Holz and
Hughes, 2005). Several multi-messenger observations will lead to
a precise measurement of the cosmic expansion either for second

9The effective spin is the mass weighted projection of the two spins of the binaries
into the orbital angular momentum.
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FIGURE 9 | Hubble parameter H and equation of state (EoS) w as a function

of redshift for the SM of Cosmology (3CDM) and for covariant Galileons with

massive neutrinos. In the bottom panel, the total EoS wtot = ptot/ρtot is

compared with the EoS of DE wDE = pDE/ρDE.

generation detectors (Nissanke et al., 2010, 2013) or for third
generation (Sathyaprakash et al., 2010).

There are alternative proposals to identify the redshift without
observing a counterpart. Based on statistical methods, one could
associate every GW event with all the galaxies within the error
in the localization and compute the cosmology (Schutz, 1986;
Del Pozzo, 2012). For a large number of events, the true
cosmology will statistically prevail. Conveniently, this method
applies to any type of source, including BBH which is the most
common observation. Moreover, for very loud (golden) events
theremight be only few galaxies in the localization box (Chen and
Holz, 2016). On the con side, this method relies on a complete
galaxy catalog.

For events involving a NS there are other possibilities. If the
EoS of the NS is known, one could compute the tidal effects
in the GW phase, which breaks the degeneracy between the
source masses and the redshift (Messenger and Read, 2012). A
good sensitivity could be achieved with the Einstein Telescope
(Del Pozzo et al., 2017). Since this method relies on the
knowledge of the EoS, which most probably will be uncovered
through GW observations also, an iterative approach could be
performed. In addition, one could benefit from the narrow mass
distribution of NS to statistically infer the redshift (Taylor et al.,
2012). Finally, numerical simulations suggests that in BNS a short
burst of GWs with a characteristic frequency will be emitted after
the merger. If this burst was observed, a redshift measurement
could be obtained (Messenger et al., 2014). The main challenge
of this method is possibly the low SNR of the GW burst.

GW170817 has become the first standard siren detected. The
redshift, z = 0.008+0.002

−0.003, was obtained identifying the host galaxy
NGC4993 through the different EM counterparts (Abbott et al.,
2017i). For such a close event, only the leading term in the cosmic
expansionH0 could be obtained following (53). The precise value
obtained was (Abbott et al., 2017b),

H0 = 70.0+12.0
−8.0 km s−1Mpc−1 . (62)

This result has the relevance of being the first independent
measurement of H0 using GWs. Still, since it is only one event,
the relative error is large, of the order of 14%. From this error
budget, 11% arises from the uncertainty in the measurement of
the distance due to present detector sensitivity and the previously
mentioned degeneracy with the inclination angle. The rest of
the error comes from the uncertainty in the estimation of the
peculiar velocity of the host galaxy. Observations of the afterglow
in different frequencies can help in reducing the inclination
uncertainty (Guidorzi et al., 2017; Hotokezaka et al., 2018).
One could also use the statistical method to obtain H0 without
information of the counterpart, although the error is significantly
larger H0 = 76+48

−23km s−1Mpc−1 (Fishbach et al., 2018). Recent
studies have shown that with order ∼ 50 BNS standard sirens
events H0 could be measured at the level of ∼ 2% (Chen et al.,
2018; Feeney et al., 2018b). Depending on the actual population
of BNS this might be achieved with second generation detectors.
LISA will detect mergers of SMBHs (with EM counterparts),
providing measurements of cosmic expansion up to z ∼ 8 and
potentially measuring H0 with 0.5% precision (Tamanini et al.,
2016).

4.1. The Hubble Rate Tension
Standard siren observations of the cosmic expansion
can also explore the tension on the Hubble parameter:
where a distance ladder measurement gives a value
H0 = (73.52 ± 1.62)km s−1Mpc−1 (Riess et al., 2018)
higher than the model-dependent inference from the CMB
H0 = (67.4 ± 0.5)km s−1Mpc−1 (Aghanim et al., 2018) (see in
Figure 8). The tension now reaches the level of 3.6σ . Reanalysis
of the local distance ladder with more sophisticated statistical
techniques tend to agree on the high value, although with
somewhat larger error bars (Cardona et al., 2017; Feeney
et al., 2018a). Other low redshift determinations confirm this
trend, for instance time delays from multiply-imaged quasar
systems (Bonvin et al., 2017) give H0 = (71.9+2.4

−3.0)km s−1Mpc−1.
Measurements of H0 can also be obtained combining BAO and
primordial deuterium abundances (Addison et al., 2018) (see
more details in the review Suyu et al., 2018 and a compilation of
the values of H0 in Bernal and Peacock, 2018).

If the tension is not due to systematic errors in either of the
surveys, it would indicate a mismatch between the low and high
redshift distance ladders (Cuesta et al., 2015), which might be
the first hint of the need to revise the standard cosmological
model. Several partial solutions to the H0 tension have been
proposed, although no satisfactory solution exists. Extensions to
3CDM have been studied, but no simple model seems to work:
for instance, increasing the effective number of relativistic species
by 1Neff ≈ 0.4 eases the tension but enters in conflict with small
scale Planck polarization (Bernal et al., 2016b), which has been
confirmed in the latest Planck results. The role of dark energy
(through w(z)) has also been investigated in connection with the
H0 tension: no equation of state evolution w(z) can reconcile
all datasets, as long as GR holds (although the tension could be
eased if BAO or SNe data are not included) (Poulin et al., 2018).
Interacting DE eases the tension, particularly for a phantom-like
equation of state with w ∼ −1.2 (Di Valentino et al., 2017).
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FIGURE 10 | Fit of modified gravity models to Planck + BAO, marginalized over the Hubble constant H0 and neutrino masses
∑

ν mν for covariant Galileons (Left)

and for the non-local, RR-model (Right). A phantom-like equation of state w < −1 helps to solve the tension between Planck and the direct measurement (the

non-zero neutrino mass partly compensates the effect of w, cf. Figure 4). Figures reproduced with permission from the authors of Renk et al. (2017) and Belgacem

et al. (2018c), respectively. © SISSA Medialab Srl.. Reproduced by permission of IOP Publishing. All rights reserved.

Some dark energy models beyond GR and with massive
neutrinos have been proposed to ease the tension. Galileon
gravity leads to a phantom-like equation of state (EoS) w < −1
(De Felice and Tsujikawa, 2010a; Barreira et al., 2013): adding
massive neutrinos with total mass

∑

mν ≈ 0.6eV yielded a
good fit to both Planck and the direct H0 measurement (Barreira
et al., 2014a). One should note that although the EoS of Galileons
wGal deviates significantly from w3 = −1, massive neutrinos
compensate part of the effect so that the total EoSwtot = ptot/ρtot
is more similar to 3CDM (see bottom panel of Figure 9). Still,
this difference is enough to shift the present value of the Hubble
parameter H0 ≡ H(z = 0) to higher values (see upper panel
of Figure 9). A latter analysis, shown in Figure 10, reproduced
the result, but found a slight tension with the most recent BAO
data (Renk et al., 2017). Most importantly, the cosmologically
viable Galileons were ruled out by GW speed (Ezquiaga and
Zumalacárregui, 2017) and weak lensing (Peirone et al., 2018a).
Note however that those data employed BAO reconstruction
and Galileons are known to affect the non-linear BAO evolution
(Bellini and Zumalacarregui, 2015), making it more conservative
to use the unreconstructed data, for which no tension exists.
Non-local gravity has similar features (cf. Figure 10) but its less
negative equation of state (compensated with

∑

mν ≈ 0.3) leads
to a reduced tension rather than close agreement (Belgacem et al.,
2018c).

5. GRAVITATIONAL WAVE SPEED

The speed of GWs is a fundamental property of any gravity
theory. GR predicts that GWs propagate at the speed of light.
However, alternative theories generically change this prediction.
In contrast to (42), GWs in modified gravity do not have to travel
on null geodesics of the background metric. One can parametrize

the generalized propagation by

G
µνkµkν +m2

g +
n
∑

i=3

Aα1···αnkα1 · · · kαn = 0 . (63)

Here, Gµν is the effectivemetric over whichGWs propagate,mg is
the effective mass of the graviton and the tensors Aα1···αn encode
higher-order, wave-vector corrections. When time and space can
be decomposed, the above expression leads to a generalized
dispersion relation

ω2 = c2gk
2 +m2

g +
∑

n=3

Ank
n , (64)

where k is the spatial modulus of the wave-vector and An are
the coefficients of the higher order corrections. Accordingly,
we can see that the effective metric determines the propagation
speed cg (Bettoni et al., 2017) while the higher order wave-
vector corrections control Lorentz-violating modifications of the
dispersion relation (Mirshekari et al., 2012). The mass term
mg also modifies the dispersion relation (Will, 1998). In the
following, we discuss the origin of and the constraints on
these three different contributions. We will focus on constraints
from late time GW sources. A modified dispersion relation for
primordial GWs could be tested with the B-mode polarization
of the CMB, as it has been studied for the case of the speed cg
(Amendola et al., 2014a; Pettorino and Amendola, 2015; Raveri
et al., 2015), and the massmg (Dubovsky et al., 2010; Fasiello and
Ribeiro, 2015; Brax et al., 2018).

5.1. Anomalous GW Speed
In order to obtain the frequency independent propagation speed
cg , one has to focus on the leading derivative terms for the second
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order action for the tensor perturbations h. At small scales and for
arbitrary backgrounds, the action is determined by the effective
metric Gµν over which GWs propagate (Bettoni et al., 2017)

L ∝ hµνG
αβ∂α∂βh

µν = hµν

(

C2+D
αβ∂α∂β

)

hµν . (65)

The effective metric can be further decomposed in a piece
proportional to the original metric C and another not
proportional D. Then, whenever the (non-conformal) second
term is present, the GW-cone will be different from the light-cone
and both signals will travel at different speeds (see Figure 11).10

In scalar-tensor gravity, two conditions have to be fulfilled
to induce an anomalous propagation speed: (i) there is a non-
trivial scalar field configuration (if we want to explain DE, we
typically demand φ̇ ∼ H0) and (ii) there is a derivative coupling
to the curvature. This highlights the presence of a modified
gravity coupling that will lead Dαβ ∼ ∂αφ ∂βφ. Whenever
these two conditions are satisfied, cg 6= c and there would be a
delay between the GW and the EM counterpart. For instance,
differences of 1%, cg/c ∼ 0.01, for sources at 100Mpc induce
delays of 1t ∼ 107years, clearly beyond human timescales.

Similar arguments can be applied to other gravity theories
with additional degrees of freedom. Massive gravity and bigravity
have a canonical kinetic term for the gravitons (due to the
Einstein-Hilbert term) and thus GWs propagate at the speed
of light. In vector-tensor theories there could be couplings to
the curvature leading to an anomalous propagation speed, for
instance Rµνv

µvν in vector DE (Beltran Jimenez and Maroto,
2008). Interestingly, in more complex vector theories, it is
possible to have derivative couplings to the curvature through the
field strength Fµν which do not induce an anomalous speed over
cosmological backgrounds (Beltrn Jimnez andHeisenberg, 2018).
This is because in these theories it is possible to have cosmic
acceleration while the background of Fµν vanishes, thus violating
condition (i) One should notice that, when violating some of the
initial assumptions, the propagation speed of GWs might not be
subject to the background value of any additional field and just
to the parameters of the theories. This is the case for instance of
Hořava gravity (Blas and Lim, 2015).

Alternatively, a much more common strategy followed in
the literature is to compute the speed of GWs directly in a
given background, usually FLRW. For Horndeski theory this
was done in Kobayashi et al. (2011) and Bellini and Sawicki
(2014). The implications of an anomalous GW speed have been
discussed for instance for purely kinetic coupled gravity (Kimura
and Yamamoto, 2012), covariant Galileons (Brax et al., 2016)
and models with self-acceleration (Lombriser and Taylor, 2016;
Lombriser and Lima, 2017). The implications for cosmology were
discussed in Saltas et al. (2014) and Sawicki et al. (2017). In
vector-tensor theories, cosmological tensor perturbations have
been computed for instance in De Felice et al. (2016a) and
De Felice et al. (2016b).

Prior to the direct detection of GWs, there were indirect
constraints on the speed of GWs. High energy cosmic rays from

10Note that similar arguments could be applied to the other gravitational modes,
for instance for a scalar field (Babichev et al., 2008).

galactic origin set a stringent lower bound−2 · 10−15 ≤ cg/c− 1
(Moore and Nelson, 2001), due to the absence of gravitational
Cherenkov radiation (Caves, 1980). The reason is that if gravitons
propagate slower than the speed of light, cosmic rays could decay
into them and their signal would be lost. This lower bound affects
Horndeski theory (Kimura and Yamamoto, 2012). However, note
that we are talking about very energetic gravitons, different from
the low energy GW emission of an astrophysical compact binary.
Moreover, the GW speed was indirectly constrained at the level
of |cg/c−1| ≤ 0.01 with the orbits of binary pulsar in the absence
of screening of the cosmological solution (Beltrán Jiménez et al.,
2016).

With the detections of GWs from BBHs, the first direct
constraints on the speed of GWs were placed (Blas et al., 2016;
Cornish et al., 2017). The constraints were still not very strong,
−0.45 ≤ cg/c − 1 ≤ 0.42, due to the uncertainties in the
localization of the source and the low number of detections
(3 at the time of the analysis). Detecting a GW with an EM
counterpart changes the situation completely, leading to very
precise measurements (Will, 1998; Nishizawa and Nakamura,
2014; Nishizawa, 2016).

Such a multi-messenger GW event was detected on August
17, 2017 with the BNS GW170817 (Abbott et al., 2017a). The
GW signal was followed by a short gamma ray burst (sGRB)
only 1t = 1.74 ± 0.05s after (Abbott et al., 2017e). The source
was localized at a distance of dL = 40+8

−14Mpc. In order to
set the constraints, the LIGO-Virgo collaboration conservatively
considered the source at the lowest distance of 26Mpc. For the
upper bound, it was assumed that both the GW and the sGRB
were emitted at the same time and that all the delay is caused
by the faster propagation of the GW. For the lower bound, they
assumed that the sGRB was generated 10s after the GW, order of
magnitude expected in standard astrophysical models, and that
the delay was reduced to 1.74s due to the slower propagation of
the GW. In total, this led to the impressive constraint

− 3 · 10−15 ≤ cg/c− 1 ≤ 7 · 10−16 . (66)

This result has profound implications for many gravity theories
and dark energy models.

In scalar-tensor gravity at least one of the conditions for an
anomalous GW speed has to be broken. If we want the scalar
field to keep playing a role in the cosmic expansion history, it
cannot have a trivial scalar field configuration. Therefore, the
only possibility to satisfy GW170817 is to break the second
condition an eliminate derivative couplings to the curvature. For
Horndeski theory (5-8) this implies (Baker et al., 2017; Creminelli
and Vernizzi, 2017; Ezquiaga and Zumalacárregui, 2017; Sakstein
and Jain, 2017)

G4,X ≈ 0 , G5 ≈ constant . (67)

Translating this result, only the simplest models such as
quintessence, Brans-Dicke or Kinetic Gravity Braiding survive.
On the contrary, models like Covariant Galileons, Fab Four,
Gauss-Bonnet or some sectors of beyond Horndeski are ruled
out. The fact that the parameter space has been drastically
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FIGURE 11 | Anomalous GW speed. Gravitational waves propagate on an

effective metric Gµν (blue) with a different causal structure than the physical

metric gµν (red) (Bettoni et al., 2017). The speed is derived as cg(Ek) = ω(Ek)/|Ek|
where kµ = (ω, Ek) is the solution to Gµνkµkν = 0. Note that the speed can

depend on the propagation direction. It may also depend on the frequency

(e.g., massive graviton or Lorentz violation), cf. (64).

reduced has implications for cosmological constraints (Kreisch
and Komatsu, 2017; Arai and Nishizawa, 2018; Peirone et al.,
2018b) and for large scale structure (Amendola et al., 2018b).

For vector-tensor theories the situation is very similar. In
order to describe DE and to pass the GW test some couplings
of the theory have to be eliminated (Baker et al., 2017; Ezquiaga
and Zumalacárregui, 2017), in particular G4,Y ≈ 0 and G5,Y ≈
0 (see full action in Equation 299 of Heisenberg, 2018a) The
same happens for Hořava gravity where one has to impose
ξ ≈ 1 or βkh ≈ 0 (Emir Gümrükçüoğlu et al., 2018),
which correspond to the conditions for the low-energy version
of the theory or its Einstein-aether analog, respectively. The
implications of GW170817 for other gravity theories have been
extensively explored, for instance for doubly-coupled bigravity
(Akrami et al., 2018), f (T) gravity (Cai et al., 2018) or Born-Infeld
models (Jana et al., 2018).

5.2. Mass Term
A graviton mass, either effective or fundamental, modifies the
propagation speed of GWs. However, contrary to the anomalous
speed term cg , it does it in a frequency dependent way. This
means that it can be constrained with GW observation alone,
analyzing how the phase of the wave changes in time. The present
bound from the LIGO-Virgo collaboration is (Abbott et al.,
2017f)

mg ≤ 7.7 · 10−23 eV/c2 . (68)

Note that this bound is still far away from the cosmologically
“motivated”mg ∼ H0 ≃ 10−33eV/c2.

Since a graviton mass would also change gravity in other
regimes, we can compare the GW bound with other tests. In
particular, a massive graviton introduce a Yukawa potential that
can be constrained with Solar System observations. This issue
has been recently revisited (Will, 2018), showing that the best

bound comes from the perihelion advance of Mars, leading to
mg < (4−8) ·10−24eV/c2, which is an order of magnitude better
than present GW constraints.

For LISA, the GW bound could improve significantly, due
to the lower frequencies and higher distances, possibly reaching
mg < 10−26eV/c2 (Berti et al., 2005). In addition, there are
proposals to bound mg measuring the phase lag of continuos
sources of GWs and EM radiation with LISA binaries (Larson
andHiscock, 2000; Cutler et al., 2003; Finn and Romano, 2013)11.
For more details in other types of constraints, we recommend the
recent review (de Rham et al., 2017).

5.3. Modified Dispersion Relation
Similarly to a graviton mass, Lorentz violating terms modify
the dispersion relation in a frequency dependent way. Different
wavelengths thus travel at different speeds, modifying the time
evolution of GW phase. The effects of the new terms Ai in the
dispersion relation (64) can be systematically parametrized in
modifications of the waveform (Mirshekari et al., 2012). A typical
example of a Lorentz-violating theory would be high-energy
Hořava gravity (Horava, 2009) in which

ω2 = c2k2 + κ4
h
µ2
h

16
k4 + · · · , (69)

where κh and µh are parameters of the theory (Vacaru, 2012).
From the first two events, GW150914 (Abbott et al., 2016b)

andGW151226 (Abbott et al., 2016a), one can already constraints
several theories as detailed in Yunes et al. (2016). For Hořava
gravity, one can constrain the combination of parameters κ4

h
µ2
h
,

which were not bounded previously. GW170104 (Abbott et al.,
2017f) and GW170817 (Abbott et al., 2017e) have also been used
by LVC to constrain the different An.

5.4. Equivalence Principle
The fact that GWs and EM radiation from GW170817 arrived
almost simultaneously at Earth after approximately 100 million
light years of travel tells us that both signals follow very similar
geodesics. This statement can be made precise in terms of the
Shapiro delay (Shapiro, 1964). The Shapiro delay measures the
difference on arrival time of a massless particle in flat and curved
space-time. This can be computed parametrizing the integral of
the gravitational potential U(r) over the line of sight (Krauss and
Tremaine, 1988)

1tS = − (1+ γ )

c2

∫ ro

re

U(r(l))dl , (70)

where re and ro are the positions at emission and observation.
The prediction of GR is that γ = 1 for any massless particle. This
has been tested to very good precision for photons, γem − 1 ≤
(2.1 ± 2.3) · 10−5, using the Cassini space-craft (Bertotti et al.,
2003). This is one of the most stringent Solar System test of
gravity and implies that in these scales the gravitational potential

11In fact, one can use the phase lag test to constraint the propagation speed of GWs
in general (Bettoni et al., 2017).
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FIGURE 12 | Ratio between the GW and the EM luminosity distances in

Brans-Dicke for different values of ωBD, cf. Equation (3).

should be very similar to GR as discussed in detail in the review
(Will, 2014).

Now, the multi-messenger observation of GW170817 allow
us to test if GWs and EM radiation feel the same gravitational
potential. In other words, this is testing the equivalence principle.
In order to get a bound on the relative difference of γgw and
γem one needs to know the gravitational potential between the
BNS and the detectors. A conservative bound can be placed
introducing only the effect of the Milky Way to arrive at (Abbott
et al., 2017e)

− 2.7 · 10−7 ≤ γgw − γem ≤ 1.2 · 10−6 . (71)

This constraint has implications for instance for theories in which
the dark matter arises from a non-minimal matter coupling to
gravity, the so-called dark matter emulators (Boran et al., 2018).
If both types of waves propagate in the same effective metric, no
relative difference is present, as it has been argued for the case in
MOG gravity (Green et al., 2018).

6. GRAVITATIONAL WAVE DAMPING

Apart from the speed of GWs, the other main observable from
the modified propagation is the luminosity distance of GWs d

gw
L .

For theories in which cg = c, the GW luminosity distance (57) is
related to the EM luminosity distance demL by

d
gw
L (z)

demL (z)
= exp

[
1

2

∫ z

0

ν

1+ z′
dz′
]

, (72)

where ν is the additional friction term from modifying
gravity, cf. (55). Therefore, one can probe the damping of
GWs using standard sirens, since for those multi-messenger
observations both d

gw
L (z) and demL (z) are measured (Deffayet and

Menou, 2007). Moreover, even without an EM counterpart, any
additional friction for the GWs could be probed using GW source
counts (Calabrese et al., 2016).

A paradigmatic example of a modification of gravity in
which the GW luminosity distance differs from the EM one

is adding extra dimensions (Deffayet and Menou, 2007). In
extra dimension theories, for instance DGP, there can be a large
distance leakage of the gravitons into the additional dimensions.
This means that, as a net effect, an observer will receive less
gravitons or, in other words, the gravitational signal will be
dimmer. By dimensional analysis, the GW luminosity distance
scales in these theories as

d
gw
L (z)

demL (z)
∝
(

demL (z)
)(D−4)/2

, (73)

where D refers to the number of space-time dimensions in which
the graviton can propagate.12 For D = 4, one recovers the GR
result d

gw
L = demL . In cases in which the graviton can only travel

in the extra dimensions above a certain screening scale Rc, the
previous relation generalizes to Abbott et al. (2018f)

d
gw
L (z)

demL (z)
=
[

1+
(
demL
Rc

)n](D−4)/(2n)

, (74)

where n measures the transition steepness and the GR limit is
recovered when D = 4.

In scalar-tensor gravity it is also known how the GW
luminosity distance will evolve. The additional friction is equal
to the effective Planck mass run rate αM

ν = αM = d lnM2
∗

d ln a
, (75)

where M∗ is the effective Planck mass, i.e., the normalization of
the kinetic term of the tensor perturbations. Then, recalling the
redshift definition 1+ z = a0/a, one arrives at

d
gw
L (z)

demL (z)
= M∗(0)

M∗(z)
, (76)

where M∗(0) and M∗(z) are the effective Planck masses at the
time of observation and emission, respectively. Assuming that
there is no screening and taking αM constant, one could rewrite
this expression as (Nishizawa, 2018)

d
gw
L (z)

demL (z)
= (1+ z)αM/2 . (77)

For this case, the implications of measuring αM for Horndeski
cosmology have been discussed in Saltas et al. (2014) and
Lombriser and Taylor (2016). The prospects of constraining the
time variation of the Planck mass has been investigated for
aLIGO in Nishizawa (2018) and for LISA in Amendola et al.
(2018c). For illustration, we plot in Figure 12 how the ratio
d
gw
L (z)/demL (z) would vary in Brans-Dicke depending on the

coupling ωBD, cf. Equation (3).

12For an analysis of the GW propagation over compact extra dimensions see
Andriot and Lucena Gmez (2017).
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Another theory in which the GW luminosity distance has been
investigated is the non-local, RR-model. For this model, one finds
(Belgacem et al., 2018a)

d
gw
L (z)

demL (z)
=
√

Geff(z)

Geff(0)
, (78)

where the effective Newton constant is related to the parameters
of the theory

Geff(z) =
G

1− 3γ V̄(z)
, (79)

with V̄(z) being the background evolution of the auxiliary field
and γ = m2/(9H2

0) linked to the mass of the conformal mode
m (see details in the review Belgacem et al., 2018c). Thus, the
growth of structure is directly related to the GW propagation.
This behavior is also reproduced in some Horndeski models
(Linder, 2018). Differently to the scalar-tensor case, there is no
screening for these non-local models. One should note also that
the strength of the modification of the GW luminosity relation is
sensitive to the initial conditions of the auxiliary field V̄(z), which
depends on the unknown early universe physics.

With the detection of the multi-messenger event GW170817
it was possible to test the gravitational Hubble diagram for the
first time. The observation was consistent with GR although
being just one event the constraining power is still moderate.
For theories with extra dimensions following (73), it was found
that the number of space-time dimensions in which the gravitons
propagate is limited to Pardo et al. (2018)

D = 4.02+0.07
−0.10 or D = 3.98+0.07

−0.09 (80)

for SN or CMB prior in H0 (see Figure 8 and section 4.1).13

Similar analysis follows for brane-world models (Visinelli et al.,
2018), constraining in that case the radius of curvature of the
extra dimensions. Moreover, the additional friction ν can only
be loosely constrained (Arai and Nishizawa, 2018)

− 75.3 ≤ ν ≤ 78.4 . (81)

In order to connect this result with the previously discussed
theories recall that for scalar-tensor gravity ν = αM and for the
non-local, RR-model ν = −2δ (Belgacem et al., 2018a).

An important remark when evaluating the GW luminosity
distance in modified gravity is that it will not only be altered with
respect to GR due to the modified propagation of GWs but also
because the cosmological expansion history is different. In other
words, in alternative theories of gravity both the EM luminosity
distance demL and its relation with the GW luminosity distance
can be modified, due to a different H(z) and to an additional
friction ν, respectively. In fact, the contribution of the modified
propagation can dominate over the modified cosmic expansion

13This model was reanalyzed in Abbott et al. (2018f) without assuming any prior
in H0 but the GW170817 measurement and including the screening (74), which
differs from the one in Pardo et al. (2018).

history. Introducing a phenomenological parametrization of the
GW luminosity distance (Belgacem et al., 2018b)

d
gw
L (z)

demL (z)
= 40 +

1− 40

(1+ z)n
(82)

together with the usual (w0,wa) parametrization of H(z), it
was shown that the largest contributions are 40 and w0. The
prospects of measuring 40 with the Einstein telescope were also
considered in Belgacem et al. (2018b).

7. ADDITIONAL POLARIZATIONS

Apart from the modified GW propagation, the other main GW
effect of theories beyond GR would be the emission of additional
polarizations. We have seen that observing the orbits of pulsars
already severely constrains the gravitational energy loss to that of
GR. Now, GW astronomy enables to directly probe these extra
modes. For this test, the basic role of multi-messenger events is
improving the localization and breaking degeneracies with the
orientation14.

With direct GW observations, the emission of additional
polarizations can be constrained from the modifications of the
waveforms. For instance, with the first two events it was possible
to limit the presence of scalar hair (Yunes et al., 2016). However,
there are still degeneracies between the modified GW phase
and the spin and mass parameters that weaken the constraints.
This is the case of Einstein-dilaton-Gauss-Bonnet (Sotiriou and
Zhou, 2014) and dynamical Chern-Simons gravity (Jackiw and
Pi, 2003), archetypical examples of theories studied in numerical
relativity (Benkel et al., 2016; Yagi and Stein, 2016).

Moreover, there are also searches for direct signals of non-
tensorial polarizations, analyzing the GW geometry through
the projection of the different polarizations Aij (54) onto
the detector’s network. Since the two LIGO interferometers
Hanford and Livingston are basically coaligned, they maximize
the SNR of the detection but are insensitive to polarizations.
This situation changes with the incorporation of Virgo. From
the observation of GW170814, a three detector BBH signal,
pure tensor polarization were favored over pure vector or pure
scalar modes (Abbott et al., 2017h; Isi and Weinstein, 2017).
However, this was just a simplified analysis and the LIGO-Virgo
collaboration is performing a more intensive study including
mixed-polarization, which would be a more realistic setup. In
the future, these constraints will improve with the switch on of
the Japanese detector KAGRA and aLIGO India (see Figure 2).
Nevertheless, one should note that quadrupolar detectors like
aLIGO and aVirgo cannot distinguish between the breathing and
longitudinal scalar modes (see Figure 6).

In addition, it will be possible to test additional polarizations
with continuous GW sources such as pulsars (Isi et al., 2017). No
signal has so far been detected (Aasi et al., 2016; Abbott et al.,
2017d), although only the first run has been analyzed because of
the costly computational analysis.

14In some sense, one could argue that a simultaneous detection of GR and non-GR
polarizations is a multi-messenger observation itself.
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FIGURE 13 | Modulation of the GW luminosity distance due to GW oscillations

in bigravity for different graviton masses mg and mixing angles θ , cf. (58). This

plot is adapted from the results of Max et al. (2017).

Finally, observing the stochastic backgrounds of GWs can
probe as well non-GR polarizations. Such background is
composed of individually unresolved sources. Since the signal
is received from different points in the sky in a continuous
manner, it allows a direct measurement of the polarization from
the spectral shape of the background (Callister et al., 2017). No
stochastic GW background has been detected yet, placing limits
on the stochastic background from tensor, vector and scalar
polarizations (Abbott et al., 2018a).

7.1. Gravitational Wave Oscillations
Interestingly, these extra modes might mix with the GR
polarizations h+,×. Over cosmological backgrounds, tensor
polarizations can only mix with other tensor modes by symmetry
arguments. The simplest example of a theory with two metric
perturbations is bigravity. In analogy with neutrino oscillations,
the difference between the mass and propagation eigenstates in
bigravity leads to GW oscillations (Narikawa et al., 2015; Max
et al., 2017, 2018). Assuming that GWs are emitted as in GR,
these oscillations during the propagation introduce a modulation
of the GW amplitude. Thus, depending on the mixing angle
and the mass of the graviton, there will be oscillations in the
GW luminosity distance as a function of redshift. We plot
different examples in Figure 13. Present ground-based detectors
are sensitive to massesmg ∼ 10−22 eV. The mixing is maximized
at an angle θ = π/4 [recall (58)]. In principle, for several
multi-messenger events at different redshifts one could trace
these oscillations (Max et al., 2017). Moreover, with space-based
detectors like LISA one could reach a thousand times smaller
masses. Interestingly, since both perturbations travel at different
speeds due to the mass term of one of them, it is possible that they
decohere ending traveling independently and arriving at different
times. GW detectors will then see an echo signal. This allows to
further constraint the parameter space of bigravity (Max et al.,
2018).

Finally, we should stress that GW oscillations are not a unique
property of bigravity. For instance, gravity theories with gauge

fields in an SU(2) group have effectively two metric perturbations
as well, leading to the same phenomena (Caldwell et al., 2016;
Caldwell and Devulder, 2018). This can happen in different
classes of vector-tensor DE models too (Beltrn Jimnez and
Heisenberg, 2018).

8. THEORETICAL IMPLICATIONS

Present GW observations place severe limits on deviations from
GR. Among the different constraints, the most stringent ones are
the propagation speed equal to the speed of light and the absence
of emission of additional polarizations. The key question is then

within the set of theories passing present tests, what interesting

phenomenology is still possible?

Of course, we do not have a complete answer to this question.
In the following, we survey different proposals of viable theories
and highlight some lessons we have learned in light of current
bounds.

8.1. cg = c
Before considering which theories are compatible with present
constraint on the speed of GWs, it is important to discuss how
far reaching this new measurement is. The first thing to note
is that due to the closeness of the BNS, the constraint only
applies basically to present time. Therefore, one could envision a
situation in which the speed of GWs was different from the speed
of light at early times but due to the cosmological evolution at
present time cg(z = 0) = c. However, one should be careful about
this argument for several reasons. First, the level of precision of
cg/c − 1 requires the cosmological evolution to be tuned at the
level of 1 part in 1015. One way around this argument is to have
cg(z = 0) = c as a late time cosmological attractor. An example
of this is Doppelgänger DE (Amendola et al., 2018a), where a
coupling between DM and DE allowed for this attractor to exist.
Still, if the derivative couplings to the curvature leading to the
anomalous speed remain present in the action, there are reasons
to worry (Ezquiaga and Zumalacárregui, 2017). This is because
although the cosmological evolution might lead to the precise
cancellation of the dangerous terms, there will be deviations from
the cosmological background along the path of the GWs toward
the detector, for instance, when they cross the Milky Way.

A second remark is that constraints in the dispersion relation
only apply to the characteristic wave numbers of the compact
binary systems detected so far. These modes are characterized by
kgw ≫ H0. As a consequence, in a phenomenological approach,
one could envision modifications of the dispersion relation only
arising at cosmological scales (Battye et al., 2018), for instance

ω2(k) = c2gk
2

(

1+
∑

n

cn

(
aH

k

)n
)

. (83)

This could, in principle, lead to modified gravity effects at large
scales not affecting present GW constraints. However, in practice,
only theories with non-local couplings or higher derivative
interactions with ghost degrees of freedom are known to have this
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dispersion relation. It would be interesting to study in depth the
theoretical framework allowing for this modified propagation.

Related to this point, one should note that the frequency of
GW170817 was close to the typical strong coupling scale of the
EFT of DE 3strong ∼ (MplH

2
0)

1/3 ∼ 260Hz. If the cutoff of
the theory is of the order of the strong coupling scale Mcutoff ∼
3strong, as it is usually assumed, higher dimensional operators
might modify the dispersion relation although one would not
expect that they conspire to completely cancel the anomalous
speed at the level of O(10−15) (Creminelli and Vernizzi, 2017).
In the case in which the cutoff scale is parametrically smaller,
Mcutoff ≪ 3strong, the situation could be different (de Rham and
Melville, 2018). Theories with a Lorentz-invariant ultra-violet
(UV) completion are presumed to have luminal GWpropagation.
Therefore, one would expect higher dimensional operators to
erase any anomalous speed beyond the cutoff scale, which in this
case might already happen in the LIGO band. However, the speed
of GWs cannot be computed beyondMcutoff if the UV completion
is unknown. In any case, the hypothesis that higher dimensional
operators render cg(kLIGO ) = c could be tested detecting GWs at
different frequencies, for example with LISA (see Figure 7). This
might give us valuable information about the cutoff scale of the
effective theory of DE.

Another lesson fromGW170817, as it was discussed in section
5.1, is that the effective metric for GWs is proportional to the
effective metric for EM radiation. In other words, the GW-cone
and the light-cone are the same. This fact suggests two ways to
construct theories with cg = c (Ezquiaga and Zumalacárregui,
2017). On the one hand, one could start with a theory in which
GWs propagate at the speed of light and apply a conformal
transformation g̃µν = �2(φ,X)gBµν to the gravity sector15. Then,
one would automatically arrive to a theory with cg = c. In the
case of scalar-tensor gravity, if one applies this recipe to GR,
one arrives at the kinetic conformal theory (10), which was the
first extension beyond Horndeski (Zumalacárregui and García-
Bellido, 2014). On the other hand, one could begin with a theory
with cg 6= c and apply a disformal transformation (Bekenstein,
1993),

g̃µν = �2(φ,X)gBµν +D(φ,X)φ,µφ,ν , (84)

engineered to compensate the anomalous speed. This is because
the term D is not proportional to the metric and can modify the
causal structure, unlike the conformal term�2. This is clear when
computing how the speed of GWs would transform (Ezquiaga
and Zumalacárregui, 2017)

c̃2g =
c2g(X̃)

1+ 2X̃D
, (85)

where cg is the speed of tensors of the original gravity theory and

−2X̃ = g̃µνφ,µφ,ν .16 In this case, starting with Horndeski theory,

15Note that if the field redefinition was applied to the whole action, the transformed
theory will not lead any new physics, being completely equivalent to the original
one.
16This result can be proven explicitly using the full disformal transformation of
Horndeski theory presented in Ezquiaga et al. (2017).

one would arrive at the subclass of GLPV theory (Gleyzes et al.,
2015b) characterized by cg = c. In terms of the free functions
in the action (11), one needs to impose B4 = G4,X/X. Satisfying
this constraint, concrete DE models have been proposed (Kase
and Tsujikawa, 2018). In the context of DHOST theories, this
constraint implies A1 = 0. Something to note is that after
GW170817, DHOST has the same number of free functions in
the action as Horndeski had before the constraint on the speed of
GWs, i.e., four free functions of φ and X that could be counted
as K(φ,X), G3(φ,X), G4(φ,X) (with B4 = G4,X/X) plus the
conformal redefinition �2(φ,X) (cf. 5-7,11,10).

One may worry whether the conditions for cg = c are stable
under quantum corrections. If they are not, one would need to
tune the GW speed order by order in perturbation theory. Using
the results of Pirtskhalava et al. (2015) and Luty et al. (2003)
linking the properties of Horndeski with those of Galileons, it
was argued in Creminelli and Vernizzi (2017) that the quantum
corrections to the EFT coefficients are negligible,O(10−40), even
compared to the 10−15 constraint in cg/c− 1. Thus, the tree-level
condition is not modified (see also Santoni et al., 2018 where the
same conclusion is derived analysing higher derivative EFTs).

Within the scalar-tensor theories compatible with the
constraint on the speed of GWs, there have been extensive
efforts to explore interesting phenomenology. One immediate
question is whether the survival theories can provide accelerated
expansions at late times without a cosmological constant
as covariant Galileons were providing. This possibility was
investigated in the context of DHOST theory (Crisostomi and
Koyama, 2018a). It was found that indeed there are scaling
solutions with a late time de Sitter behavior. Still, a full
comparison with present cosmological observations is missing
due to the lack of appropriate Boltzmann codes for these higher-
derivative theories.

Another attractive feature of Horndeski gravity was the
possibility to have self-tuning solutions (Charmousis et al.,
2012a,b). This was an attempt to solve the cosmological constant
problem by counterbalancing the large bare vacuum energy
with the energy momentum of the scalar field. However, Fab
Four models realizing this behavior predict an anomalous GW
speed. Now, beyond Horndeski models with cg = c could also
exhibit self-tuning. Indeed, an infinite set of self-tuning models
compatible with GW170817 were found in Babichev et al. (2018).
Again, a detailed cosmological analysis is left for future work.

In the realm of Horndeski gravity, one could search for other
definite predictions. In addition to the condition on the speed of
GWs (αT = 0) one could impose that the gravitational strength
coupling to matter is the same as the one to light, Gmatter =
Glight (or αB = −2αM). This model, named no slip gravity
(Linder, 2018), has the property of predicting that gravity should
be weaker than GR in the late universe. This could be tested with
growth of structure observations in the next generation galaxy
redshift surveys.

8.2. Compact Objects
Present observations severely constrain deviations from GR at
small scales. Screening mechanisms are thus needed to surpass
these bounds (Chu and Trodden, 2013; de Rham et al., 2013a,b;
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Barausse and Yagi, 2015). Modified gravity theories can display
different types of screening mechanisms (see reviews Brax, 2013;
Joyce et al., 2015). For theories with derivative interactions this is
achieved with the Vainshtein mechanism, which screens the fifth
force when the local curvature is larger than a given threshold.
Such mechanism has been extensively studied for Horndeski
theory (Kimura et al., 2012; Koyama et al., 2013; Narikawa
et al., 2013). For theories beyond Horndeski of the GLPV class
the screening works similarly outside the source, but there is a
breaking of Vainshtein screening inside matter (Kobayashi et al.,
2015). This suggests using astrophysical systems, such as neutron
stars, to test these theories (Koyama and Sakstein, 2015; Babichev
et al., 2016).

The question then is whether the viable scalar-tensor theories
(in light of GW tests) can display a successful screening and if
there are any observational signatures to test them. This was
addressed by different groups soon after the announcement
of GW170817 (Crisostomi and Koyama, 2018b; Dima and
Vernizzi, 2018; Langlois et al., 2018). One should note that
many models in which the breaking of Vainshtein screening was
studied previously are incompatible with cg = c. Still, these
recent analyses show that within DHOST theories satisfying the
constraint in the speed of GWs, screening is effective outside
non-relativistic bodies, but there could be a breaking inside
matter as well. This deviation from GR inside compact bodies
is only predicted for theories beyond Horndeski. Comparing
with the previous GLPV analysis, the weakening of Vainshtein
screening inside matter in DHOST theories has a different form
with an additional term not present before.

Moreover, the emission of additional polarizations is highly
constrained as well. Depending on the gravity theory, compact
objects might emit extra radiation (see Herdeiro and Radu, 2015
for a review on no-hair theorems). An interesting question is
if cosmologically relevant theories compatible with the bound
on the speed of GWs can exhibit scalar hair in the black-hole
solutions. In Tattersall et al. (2018) it was found under these
conditions only very little or no scalar hair is possible. Analysis
of black-hole solutions including screening effects have not been
studied so far. Strong field effects are yet possible in theories
not aimed at explaining cosmology, for instance spontaneous
scalarization in neutron stars (Damour and Esposito-Farese,
1993) or even in black-holes (Antoniou et al., 2018; Doneva
and Yazadjiev, 2018; Silva et al., 2018) [see more details in the
extensive review (Barack et al., 2018)]. However, one should
note that this kind of solutions may also induce an anomalous
propagation speed due to the spatial scalar field profile (Papallo
and Reall, 2015). Possible constraints from this effect should be
investigated further.

9. CONCLUSIONS AND OUTLOOK

Gravitational wave astronomy has opened a new window to test
gravity and dark energy. Multi-messenger probes are specially
promising for this task. The first detection of GWs from a binary
neutron star merger, GW170817, was followed up by several EM
counterparts. This has provided an independent, standard siren

measurement of the Hubble constant H0. Moreover, GW170817
already constrains large classes of DE models. In particular, the
bound on the speed of GWswas significantly strong. Othermulti-
messenger tests of DE are possible, such as probing the GW
luminosity distance or searching for additional polarizations.
These tests will become more relevant in the future when more
events will be available. Still, there remain important challenges
in this GW program to probe DE.

From the observational side, it will be crucial to achieve a
global synergy in the quest of multi-messenger GW astronomy.
On the one hand, GW detectors will have to improve their
sensitivity and enlarge the network to detect more events and
localize them better. On the other hand, observatories around
the world should be available to follow-up triggers. Moreover,
improved galaxy catalogs might be necessary to maximize the
chances of localization. Lastly, cross-correlations between GWs
and other cosmological probes might be an interesting endeavor.

From the theoretical side, themain challenge will be to analyze
the GW propagation over non-cosmological backgrounds,
understanding the possible interplay of additional polarizations.
This will be relevant for instance for GWs traveling through a
screened region. Furthermore, degeneracies between modified
gravity predictions and astrophysical properties should be
studied in more detail. For example, possible signatures of
phenomenology beyond GR in neutron stars could possibly be
the same as modifications of the equation of state.

Altogether, the future of multi-messenger GW astronomy
appears promising. In the coming years standard sirens will be
routinely detected and we will be able to apply the different GW
tests of gravity to a much higher precision. The new techniques
brought by GW astronomy will bring us closer to unveil the
nature of dark energy.
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