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Asymptotic safety generalizes asymptotic freedom and could contribute to

understanding physics beyond the Standard Model. It is a candidate scenario to

provide an ultraviolet extension for the effective quantum field theory of gravity through

an interacting fixed point of the Renormalization Group. Recently, asymptotic safety has

been established in specific gauge-Yukawa models in four dimensions in perturbation

theory, providing a starting point for asymptotically safe model building. Moreover, an

asymptotically safe fixed point might even be induced in the Standard Model under the

impact of quantum fluctuations of gravity in the vicinity of the Planck scale. This review

contains an overview of the key concepts of asymptotic safety, its application to matter

and gravity models, exploring potential phenomenological implications and highlighting

open questions.
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1. INVITATION TO ASYMPTOTIC SAFETY

Asymptotic safety (Weinberg, 1980) is a quantum-field theoretic paradigm providing an ultraviolet
(UV) extension or completion for effective field theories. The high-momentum regime of an
asymptotically safe theory is scale invariant, cf. Figure 1. It is governed by a fixed point of
the Renormalization Group (RG) flow of couplings. As such, asymptotic safety is an example
of a fruitful transfer of ideas from statistical physics to high-energy physics: In the former,
interacting RG fixed points provide universality classes for continuous phase transitions (Wilson
and Fisher, 1972; Zinn-Justin, 2002), in the latter these generalize asymptotic freedom to a scale-
invariant UV completion with residual interactions. This paradigm is being explored for physics
beyond the Standard Model in several promising ways. Following the discovery of perturbative
asymptotic safety in weakly-coupled gauge-Yukawamodels in four dimensions (Litim and Sannino,
2014), the search for asymptotically safe extensions of the Standard Model with new degrees of
freedom close to the electroweak scale is ongoing. Mechanisms for asymptotic safety also exist
in nonrenormalizable settings, making it a candidate paradigm for quantum gravity (Weinberg,
1980; Reuter, 1998). After the discovery of the Higgs boson (Aad, 2012; Chatrchyan, 2012), we
know that the Standard Model can consistently be extended up to the Planck scale (Bezrukov et al.,
2012; Buttazzo et al., 2013; Bezrukov and Shaposhnikov, 2015). Hence, the interplay of the Standard
Model with quantum fluctuations of gravity within a quantum field theoretic setting is under active
exploration.

This review aims at providing an introduction to asymptotic safety for non-experts, highlighting
mechanisms that generate asymptotically safe physics, explaining how these could play a role
in settings relevant for high-energy physics and discussing open questions of (potentially)
asymptotically safe models. An extensive bibliography is intended to serve as a guide to further
reading, providing more comprehensive and in-depth answers to many points only touched upon
briefly here.
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FIGURE 1 | Schematic RG flow for an asymptotically safe coupling. Beyond

the transition scale at k/k0 ≈ 109, (approximate) scale-invariance is realized;

full scale-invariance is realized asymptotically at k/k0 → ∞.

2. ASYMPTOTIC SAFETY - THE KEY IDEA

Quantum fluctuations induce a momentum-scale dependence
in the couplings of a model, breaking scale invariance even in
classically scale-invariant models. Scale invariance is restored at
RG fixed points. These can be non-interacting, in which case
the theory is asymptotically free, or interacting in at least one
of the couplings, in which case the theory is asymptotically safe.
Both fixed points underlie theories that are fundamental in a
Wilsonian sense: For a theory that is discretized, e.g., on a lattice,
an RG fixed point guarantees that a continuum limit exists.
Scale-invariance protects the running couplings in a model from
Landau poles which can signal a breakdown of a description of
an interacting system by this model because of triviality1. Hence,
the introduction of new physics is one viable theoretical option
instead of a necessity.

Scale-invariance requires a fixed point in the dimensionless
couplings gi, obtained from their dimensionful counterparts
ḡi with canonical dimension dḡi by multiplication with an
appropriate power of the RG scale k

gi(k) = ḡi(k) k
−dḡi . (1)

A scale-invariant point is a zero of all beta functions,

βgi = k ∂k gi(k) = 0 at gi = gi ∗. (2)

1Models affected by the triviality problem can only hold up to arbitrarily

high momentum scales if the coupling vanishes at all scales, rendering the

models noninteracting, or trivial. Establishing triviality requires going beyond

perturbation theory. Nonetheless, an intuitive understanding of the problem can

be gained from perturbation theory, e.g., in scalar λφ4 theory in four dimensions.

The one-loop beta function for the quartic self-interaction λ is βλ = #λ2, where

# > 0 holds. Integrating the beta function leads to a logarithmic divergence.

Pushing the scale 3 of the divergence (the Landau pole) to infinity requires

λ0 = λ(k0) = 0, since 3/k0 = e
1

#λ0 .

Then, dimensionful couplings2 scale with their canonical

dimensionality, i.e., ḡi(k) ∼ kdḡi , since gi(k) = gi ∗ =
const in a scale-invariant regime. This must hold for all
couplings in the infinite-dimensional theory space, spanned by
all interactions allowed by symmetries, including higher-order,
i.e., canonically irrelevant interactions. Quantum fluctuations
generically generate all interactions, as familiar from effective
field theories. Moreover, there is no a priori physical argument to
exclude higher-order terms from the dynamics. The restriction to
perturbatively renormalizable terms that is commonly assumed is
actually an automatic consequence of the universality class of the
Gaussian, i.e., free fixed point which renders higher-order terms
irrelevant for perturbative low-energy physics.

2.1. Predictivity in the Infinite-Dimensional
Space of Couplings
The main consequence of an RG fixed point is not that it
provides a fundamental theory—after all, experiments are limited
to finite scales—but that it generates universal predictions for
low-energy physics. It imposes relations between the couplings
encoding the location of the UV-critical surface of the fixed
point. This hypersurface is spanned by all couplings along which
RG trajectories emanate from the fixed point as one lowers k
toward the infrared (IR). The corresponding relevant directions
parameterize the deviation from scale invariance, i.e., the flow
toward the IR can only deviate from the fixed point along the
relevant directions. They constitute free parameters, as a range
of values of relevant couplings can be reached along different
trajectories emanating from the fixed point, cf. Figure 2. It can be
more intuitive to understand that a free parameter is associated
to such a direction, as IR-repulsiveness equals UV-attractivity.
Irrespective of its IR value, a UV-attractive coupling reaches the
fixed point at high scales as one reverses the flow toward the
UV. (Nevertheless, recall that although wemeasure physics at low
energies and try to extrapolate toward viable UV physics, nature
works the other way: IR physics emerges as a consequence of UV
physics).

Toward the IR, the irrelevant, i.e., IR-attractive directions
are automatically pulled toward the fixed point, cf. Figure 2.
Accordingly, no free parameter is associated to them – this is the
universality-generating property of an RG fixed point: Initializing
the RG flow at some scale k0, the flow maps a UV interval of
values for an irrelevant coupling at k0 to a much smaller IR
interval. The latter shrinks to zero as one takes k0 → ∞. As a
one-coupling example with an IR attractive fixed point, consider

βg = g(g − g∗), (3)

2Weinberg (1980) motivates the focus on dimensionless couplings gi instead

of their dimensionful counterparts ḡi by requiring finiteness of observables.

Measurable quantities at some energy scale E, e.g., a scattering cross-section σ ,

can be written as σ = E#f (gi), where # is the canonical dimension of σ , multiplied

by a function of the dimensionless couplings gi that enter. Herein the RG scale is

equated to a physical energy scale. If the dimensionless couplings diverge at a finite

energy scale, this typically entails divergences in physical quantities.
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FIGURE 2 | Left panel: Illustration of a fixed point (light purple dot) with its UV critical hypersurface (purple). RG trajectories starting off the critical hypersurface (teal)

are pulled toward the fixed point along the irrelevant direction (roughly aligned with g3), before the IR repulsive directions g1 and g2 kick in and drive the flow away

from the fixed point. The linearized flow is indicated by the black (relevant directions) and green (irrelevant direction) arrows. Right panel: A fixed point with two

relevant directions in the space of three couplings g1,2,3, where g3 corresponds to the IR attractive direction. The purple trajectories emanate from the fixed point, and

g2,3 fully determine the deviation from scale invariance. The arrows indicate the RG flow toward the IR. The corresponding beta functions of one canonically marginal,

relevant and irrelevant interaction are given by βg1 = 2g1 − 3g21 − 3g21 g2, βg2 = −2g2 + 2g1 − 3g1 g2 and βg3 = −g1 g3 + g33.

with the solution

g(k) = g∗

1+
(

k
k0

)g∗ ( g∗
g0

− 1
) , (4)

where g(k0) = g0. As the initial scale k0 → ∞, g(k) → g∗. For
a finite k0, the difference g(k) − g∗ goes to zero as k/k0 → 0.
For a trajectory that emanates from the fixed point, there is
no freedom of choice for the value for an irrelevant direction:
the fixed-point requirement restricts the flow to lie within the
critical hypersurface, resulting in completely determined values
for the irrelevant directions. For instance, at the free fixed point,
higher-order couplings do not play a role in the IR: the RG flow
drives them toward zero for all perturbative initial conditions in
the UV. This generates universality and independence of the IR
physics from the UV physics in all but the (marginally) relevant
couplings.

To determine the set of IR-repulsive (= UV attractive)
directions, it suffices to examine the linearized flow about the
fixed point3 at Eg = Eg∗,

βgi =
∑

j

∂βgi

∂gj

∣

∣

∣

Eg=Eg∗

(

gj − gj ∗
)

+O
(

gj − gj ∗
)2
. (5)

In terms of the critical exponents4

θI = −eigMij = −eig
∂βgi

∂gj

∣

∣

∣

Eg=Eg∗
, (6)

3To determine the basin of attraction of the fixed point, one numerically integrates

the RG flow to generate full trajectories.
4The opposite sign convention is sometimes used in the literature.

and corresponding (right) eigenvectors VI , the solution to
Equation (5) is

gi(k) = gi ∗ +
∑

I

cI V
I
i

(

k

k0

)−θI

. (7)

k0 is an arbitrary reference scale and cI are constants of
integration. Typically, the set of couplings Eg does not diagonalize
the stability matrix Mij at Eg = Eg∗ and the eigenvectors VI are
superpositions. As the stability matrix need not be symmetric,
the eigenvalues need not be real. Their imaginary part results in
a spiraling behavior of the flow in the vicinity of the fixed point,
where the real part determines whether the spiraling is inwards
or outwards. To determine the set of free parameters, it therefore
suffices to consider the real parts. For the following discussion
we will thus assume that the eigenvalues are real. For θI > 0,
the corresponding eigenvector VI constitutes an IR repulsive
direction: Toward the IR, the distance to the fixed-point regime
grows, and the IR values of couplings appearing in VI depend
on cI . Fixing this free parameter requires experimental input.
Accordingly, predictivity requires a finite number of directions
with θI > 0.

In contrast, for θI < 0, the IR values of couplings are
independent of the corresponding cI , cf. Equation (7): For θI < 0,
any deviation from the fixed-point value in VI is washed out
by the RG flow to the IR. Once a choice of coordinates in
theory space is made, the critical hypersurface typically exhibits
curvature. If the critical hypersurface had no curvature, the
values of irrelevant couplings would be constant. Curvature of
the critical hypersurface generates a scale dependence which is
completely fixed once the values of all relevant couplings are
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specified, cf. Figure 2. The values of the corresponding irrelevant
couplings depend on the scale, but not independently of the
relevant couplings, cf. green trajectory in Figure 3.

For asymptotic safety, the finite contribution to the θI due to
residual interactions at Eg∗ shifts the critical exponents away from
the canonical dimensions of couplings, e.g.,

θi = −∂βi

∂gi

∣

∣

∣

gi=gi ∗
= − ∂

∂gi
(∂t ḡi k

−dḡi )
∣

∣

∣

gi=gi ∗
= dḡi gi ∗ + η(g2i ∗),

(8)
for a coupling gi that is an eigendirection of Mij. This can
enhance the predictive power of interacting over free fixed points.

The interpretation of asymptotic safety as a way of imposing
predictivity on a model specified by its field content and
symmetries is crucial in the context of quantum gravity. The
simplest interpretation of the Planck scale suggests that it acts
as a minimal length, inducing discreteness for quantum-gravity
models at the kinematical level. This might suggest that one
need not search for a continuum limit in quantum gravity.
Yet, by requiring a continuum limit one restricts the dynamics
to a trajectory within the critical surface, leaving just a finite
number of free parameters to determine the dynamics at all
scales. In the presence of an explicit cutoff scale, the microscopic
dynamics might be defined anywhere in the theory space,
requiring specification of an infinite number of couplings for the
UV dynamics (see also Eichhorn, 2018b). Similarly, predictivity
at high scales breaks down in effective field theories. Moreover,
physical discreteness can arise in quantum gravity even in a
continuum theory, through the dynamical emergence of a scale
(see e.g., Reuter and Schwindt, 2006; Percacci and Vacca, 2010),
or through discreteness in the spectra of operators (Rovelli and
Smolin, 1995; Ashtekar and Lewandowski, 1997).

2.2. Asymptotic Safety in a Nutshell
The development of the Standard Model was based on the
principle of renormalizability. This is one way of implementing
predictivity, i.e., constructing a low-energy theory with a
finite number of free parameters.Yet, as, e.g., φ4 theory in 4
dimensions highlights, a perturbatively renormalizable theory
is not guaranteed to exist as a fundamental theory in the
Wilsonian sense, due to the triviality problem. Analogously, the
Standard Model is actually expected to be an effective low-
energy theory. Asymptotic safety is a paradigm that combines
the requirement of predictivity with the possibility of obtaining
a fundamental theory through an RG fixed point at high
momenta with a finite number of relevant directions. The
fixed point ensures nonperturbative renormalizability, while
the finite dimensionality of the critical hypersurface guarantees
predictivity of the model.

2.3. Non-fundamental Asymptotic Safety
Instead of providing a “fundamental” UV completion,
asymptotic safety might serve as one step forward in our
understanding of microscopic physics, with more fundamental
physics to be discovered beyond. While providing a UV
completion for some RG trajectories, a fixed point can
simultaneously act as an IR attractor for a more fundamental

description. This follows, as a fixed point’s UV repulsive
directions correspond to its IR attractive directions. Hence, it is
a misconception that a fixed point is either UV or IR - whether
trajectories emanate from it in the UV, or approach it in the IR
depends on the initial conditions for the RG flow. Given two
fixed points connected by an RG trajectory, the distinction into
a UV and an IR fixed point (which is also expected to satisfy the
a-theorem Cardy, 1988) follows from the trajectory.

For specificity, assume that a cutoff scale kUV exists, such
that for k > kUV a (quasilocal) quantum field theoretic
description is impossible or requires additional fields and/or
symmetries. At k ≤ kUV, the dynamics can be described in
the asymptotically safe theory space. Initial conditions for the
RG flow are determined by the underlying fundamental model
at k = kUV. It they lie close to or on the IR-critical surface
of a fixed point, the flow is attracted toward the fixed point
along its IR-attractive directions. The flow is actually driven
toward the UV-critical surface, cf. purple trajectories in Figure 3.
Trajectories can even spend a large amount of RG “time” close
to the fixed point. At ktrans < kUV the effect of the IR-repulsive
directions kicks in and the flow is driven away from the fixed
point along its IR-repulsive directions. This trajectory will result
in IR-values of couplings close to those of a “true” fixed-point
trajectory (cf. Figure 3 see Percacci and Vacca, 2010). The above
is nothing but a detailed account of how a fixed point generates IR
universality. Thus, asymptotically safe fixed points could generate
universal IR predictions, even in the presence of kUV.

2.4. Mechanisms for and Selected
Examples of Asymptotic Safety
A special case of an RG fixed point is that of an asymptotically
free one. To generate it, antiscreening contributions have to
dominate in the beta function of the respective coupling. In
contrast, asymptotic safety is generated by several different
mechanisms and can be realized both in the perturbative and
the nonperturbative regime, i.e., with near-Gaussian or far-
from-Gaussian critical exponents. As a second key difference,
an interacting fixed point allows to combine finite, predictable
IR values of couplings with UV completeness. For the free
fixed point, finite IR values typically require the corresponding
coupling to be an IR repulsive direction, i.e., relevant. This
negates the possibility to predict the value of the coupling which
remains a free parameter based on the free fixed point alone. (Of
course, an interacting fixed point can dominate the flow in the IR,
at which the coupling in question could be IR attractive. In this
case it is again the universality class of the interacting fixed point
which provides a prediction for a finite value of a coupling).

2.4.1. Canonical Scaling vs. Quantum Effects
This mechanism is available for couplings which are
asymptotically free in their critical dimension dcrit, where
they are dimensionless, i.e., their one-loop beta function is given
by

βgi

∣

∣

∣

d=dcrit
= β1 g

#
i , (9)
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FIGURE 3 | Left panel: The beta functions βg = 2g− 2g2 and βy = −g y + 2y3 feature a fixed point at g = 1, y = 1/
√
2 that has one UV attractive and one IR

attractive direction. The UV critical surface is indicated in green, the IR critical surface in red. The RG flow toward the IR is attracted toward the UV critical surface,

such that the relation between g and y that parameterizes the UV critical surface is approximately realized also for trajectories (in purple) that start off the UV critical

surface. Right panel: The flow described by βg = 2g− 2g2 and βg2 = −2g2 + 2g22 features a fixed point at g = g2 = 1, which is IR attractive in g2 and where the

UV critical surface has no curvature. Therefore, g2(k) = 1 for the trajectories emanating from this fixed point.

with β1 < 0 and # = 2, 3. In d = dcrit + ǫ, the coupling is
dimensionful, gi = ḡi k

cǫ , where c > 0 depends on the coupling
under consideration. For ǫ ≪ 1, the one-loop beta function reads

βgi

∣

∣

∣

d=dcrit+ǫ
= c ǫ gi + β1 g

#
i . (10)

An interacting fixed point lies at

g∗i =
(

− c ǫ

β1

)1/(#−1)

. (11)

This mechanism is realized in Yang-Mills theory in d = 4 + ǫ

(Peskin, 1980), nonlinear sigma models in d = 2 + ǫ (Polyakov,
1975; Bardeen et al., 1976; Friedan, 1980; Higashijima and Itou,
2003; Codello and Percacci, 2009; Fabbrichesi et al., 2011) and
the Gross-Neveu model in d = 2+ ǫ (Gawedzki and Kupiainen,
1985; Kikukawa and Yamawaki, 1990; de Calan et al., 1991; He
et al., 1992; Hands et al., 1993; Braun et al., 2011).

For Yang-Mills theory, the ǫ-expansion has been extended
up to fourth order, indicating a fixed point in d = 5 (Morris,
2005), cf. Figure 4, corroborating functional RG results (Gies,
2003), in contrast to lattice results (Knechtli and Rinaldi, 2016).
For instance, consider SU(3) Yang-Mills, cf. Figure 4. The ǫ

expansion in Morris (2005) yields for α̃ = 6
(4π)2

g2

βα̃ = ǫ α̃ − b1 α̃2 − b2 α̃3 − b3 α̃4 − b4 α̃5, (12)

b1 = 3.67, b2 = 5.67, b3 = 13.23, b4 = 39.43+ 51.22

9
,

(13)

resulting in

α̃∗ = 0.272ǫ − 0.115ǫ2 + 0.024ǫ3 − 0.016ǫ4. (14)

Couplings which are marginally irrelevant in their critical
dimension dc can achieve interacting fixed points for d < dc,
where they correspond to irrelevant directions. In contrast to
the case in dc, where the free fixed point results in a vanishing
coupling at all scales in order to be a UV fixed point (triviality
problem), in d = dc − ǫ, the interacting fixed point requires a
unique finite value of the coupling in the IR, corresponding to the
fixed-point value, unless the UV critical hypersurface is curved.
Thus, the interacting theory is UV complete for one unique value
of the coupling. Conversely, asymptotically free trajectories reach
the interacting fixed point in the IR.

For instance, for scalar theories, the marginally irrelevant
nature of the quartic coupling in d = 4 implies the existence
of a fixed point in d = 4 − ǫ. The well-known Wilson-Fisher
fixed point is IR attractive in the quartic coupling (Wilson and
Fisher, 1972) and serves as the IR endpoint of an asymptotically
free trajectory. It has been characterized with various methods
(Guida and Zinn-Justin, 1998; Campostrini et al., 1999; Pelissetto
and Vicari, 2002; Canet et al., 2003; Litim and Zappala, 2011; El-
Showk et al., 2012, 2014; Gliozzi and Rago, 2014) and serves as a
benchmark example for many techniques. For d > 4, a possible
fixed point (Fei et al., 2014) lies at negative quartic coupling,
appearing to be at odds with a stable microscopic potential
(Percacci and Vacca, 2014; Eichhorn et al., 2016).

Fixed points generated by such a mechanism are weakly
coupled at small ǫ, where the critical exponent is equal to minus
the canonical dimension.
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FIGURE 4 | Left upper panel: Based on results in Morris (2005), the beta function for SU(3) Yang-Mills theory in the epsilon expansion for α̃ = 6
(4π )2

g2 for ǫ = 0

(black line), ǫ = 1 at one loop (dotted), two loops (dot-dashed), three loops (dashed) and four loops (green). Right upper panel: Fixed-point value for α as a function

of ǫ up to ǫ (dotted), ǫ2 (dot-dashed), ǫ3 (dashed), and ǫ4 (continuous) emerge from the free fixed point at d → dcrit, i.e., ǫ → 0. Lower panel: Results from the FRG

calculation taken from Gies (2003) for α = g2

4π
.

A key example is gravity: Slightly above its critical dimension
d = 2, where the Einstein action is purely topological, the
beta function for the dimensionless Newton coupling G =
GN kd−2 at one loop reads (Weinberg, 1980; Gastmans et al.,
1978; Christensen and Duff, 1978),

βG = ǫG− β1 G
2, such that G∗ = ǫ

β1
, θ = −ǫ, (15)

where β1 depends on the parameterization of metric fluctuations
hµν around a background ḡµν . Note that in these calculations the
Jacobian that arises in the path-integral measure from relating the
different parameterizations is not taken into account. Specifically
the functional RG in the limit d → 2 yields (Percacci and Vacca,
2015)

β1 = −2
(

19− 38β + 13β2
)

3(1− β2)
, (16)

for the linear parameterization gµν = ḡµν + hµν ,

β1 = −2
(

25− 38β + 19β2
)

3(1− β)2
, (17)

for the exponential parameterization gµν = ḡµκexp[h..]
κ
ν ,

where β is a gauge parameter, such that for β → 0 the result β1 =
−38/3 is found (Tsao, 1977; Brown, 1977; Kawai and Ninomiya,

1990; Jack and Jones, 1991) for the linear parameterization and
β1 = −50/3 for the exponential parameterization (David, 1988;
Distler and Kawai, 1989; Kawai et al., 1993a,b, 1996; Aida et al.,
1994; Nishimura et al., 1994; Aida and Kitazawa, 1997; Codello
and D’Odorico, 2015). A continuous extension to d = 4 might be
possible (Falls, 2015, 2017).

2.4.2. One-Loop vs. Higher-Loop
In perturbation theory, the signs of the one-loop and two-loop
coefficients can differ, leading to a cancellation at a finite fixed-
point value, schematically

βgi = β1 g
#1
i + β2 g

#2
i + ... (18)

with

βgi

∣

∣

∣

gi=gi ∗
= 0, gi ∗ =

(−β1

β2

)
1

#2−#1
. (19)

The fixed point is real for sign(β2) = −sign(β1). For it to lie
at small values, where higher-loop terms are small, we require
|β1| < |β2|. Actually, the two-loop coefficient is a proxy for the
higher-loop terms: the fixed point is generated by the competing
signs of the one-loop vs. the “effective” two-loop term. As one
extends the asymptotic perturbative series to higher loops, the
fixed-point value shifts to compensate for the change, but as long
as the sign of the “effective” two-loop term is unchanged, a fixed
point exists, cf. Figure 5.
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FIGURE 5 | Beta function of the gauge coupling αg for the model in Litim and

Sannino (2014) at next-to-leading order (two loop, blue continuous line) and

next-to-next-to-leading order (three loop, green dashed line), cf. Equation (34)

for the two-loop beta function. The fixed-point value for αy at the

corresponding order has been inserted and ǫ = 0.1 has been chosen.

The interacting fixed point is IR attractive (repulsive) for
β1 < 0 (> 0). Additionally, a UV (IR) attractive fixed
point lies at gi ∗ = 0. Therefore, a complete trajectory exists
between the free (interacting) fixed point in the UV and the
interacting (free) fixed point in the IR for β1 < 0 (> 0).
The former case is known as the Banks-Zaks fixed point
in the case of non-Abelian gauge theories (Caswell, 1974;
Banks and Zaks, 1982). The latter underlies new developments
in gauge-Yukawa models (Litim and Sannino, 2014), see
section 3.

2.4.3. Competing Degrees of Freedom
In models with several degrees of freedom, a scale-invariant
fixed-point regime can be achieved if the effect of different
degrees of freedom can balance out - either within a perturbative
expansion or at the nonperturbative level and for dimensionless
as well as dimensionful couplings. Schematically,

βg = β(d.o.f.1)
g − β(d.o.f.2)

g , (20)

where, e.g., d.o.f1 might be a bosonic and d.o.f.2 a fermionic
contribution. (N = 4) super Yang Mills could be seen as a special
example (Sohnius, 1985).

A competition of fermionic and bosonic degrees of freedom
also occurs in the beta function of a quartic scalar coupling
which couples to fermions through a Yukawa coupling. This
competition actually underlies Higgs mass bounds in the SM
(Altarelli and Isidori, 1994; Hambye and Riesselmann, 1997).
Perturbatively, the Yukawa coupling in simple Yukawa models
is UV unsafe. Hints for a nonperturbative fixed point have been
found (Gies and Scherer, 2010; Gies et al., 2010), but been
called into question in Vacca and Zambelli (2015) in extended
truncations of the RG flow.

3. GAUGE-YUKAWA MODELS:
ASYMPTOTIC SAFETY AT WEAK
COUPLING

In d = 4 dimensions, gauge-Yukawa models can exhibit
perturbative asymptotic safety, discovered in Litim and Sannino
(2014), achieved through a balance of one- vs. two-loop effects.
We follow Litim and Sannino (2014) and consider a simple gauge
theory with gauge coupling g with

αg =
g2

(4π)2
, (21)

with 2-loop beta function

βαg =
(

−B+ C αg

)

α2
g . (22)

An interacting fixed point lies at

αg ∗ = B

C
. (23)

For the case B > 0, C > 0, this is the Banks-Zaks fixed
point (Banks and Zaks, 1982), which is IR attractive in
the gauge coupling. Accordingly, a complete RG trajectory
can be constructed, emanating from the free fixed point
in the UV and ending in a conformal regime in the
IR. This can be achieved within the conformal window,
e.g., 11/2Nc < Nf < 34N3

c /(13N
2
c − 3) for Nf fermions in the

fundamental representation of SU(Nc), Ryttov and Shrock
(2011); Pica and Sannino (2011), and Ryttov and Shrock (2016).

Asymptotic safety in the form of an IR-repulsive interacting
fixed point occurs where asymptotic freedom is lost, i.e.,
the antiscreening effect of non-Abelian gauge bosons is
overcompensated by the screening effect of charged matter. This
requires B < 0 (see Caswell, 1974; Tarasov and Vladimirov,
1977; Jones, 1982; Machacek and Vaughn, 1983), and accordingly
C < 0 for the coupling g to be real. As shown in Caswell (1974),
see also Bond and Litim (2017), this is not possible to achieve with
fermions only. Adding scalars to the model provides a Yukawa
coupling

αy =
y2

(4π2)
, (24)

that results in

C → C − Dαy. (25)

This facilitates asymptotic safety. The one-loop Yukawa beta
function reads

βαy = ∂t αy =
(

Eαy − F αg

)

αy, (26)

see Fischler and Oliensis (1982) and Machacek and Vaughn
(1984) for two-loop results. The above system of beta functions
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admits three solutions

αg ∗ = 0, αy ∗ = 0, (27)

αg ∗ = B

C
, αy ∗ = 0, (28)

αg ∗ = B

C − D F
E

, αy ∗ = B

C − D F
E

F

E
, (29)

where appropriate conditions on the coefficients of the beta
function ensure that fixed-point values are real. The second fixed
point is a generalization of the Banks-Zaks fixed point. The fully
interacting fixed point has one IR attractive and one IR-repulsive
direction. The corresponding critical exponents are

θ1,2 = −BE

2(C E− DF)2

(

−BC E− C E F + DF2 ± (30)

√

B2C2E2 − 2B F(C E− 2DF)(C E− DF)+ F2(C E− DF)2
)

.

Perturbative asymptotic safety in four-dimensional gauge
theories requires the presence of fermions and scalars (Litim
and Sannino, 2014), providing a possible justification for the
existence of fundamental scalars in nature. Moreover, (gravity-
free) theories in four dimensions cannot exhibit weakly-coupled
fixed points, i.e., arising from a balance of one-loop vs. two-
loop effects, unless gauge interactions are present (Bond and
Litim, 2017, 2018a). This explains why tentative proposals
for interacting fixed points in four-dimensional fermion-scalar
theories lie in a nonperturbative regime (Gies and Scherer, 2010;
Eichhorn et al., 2018a).

As couplings can be rescaled arbitrarily (without an impact
on the critical exponents), the fixed-point values of couplings do
not automatically convey information on whether the fixed point
is perturbative. To achieve strict perturbative control over the
fixed point, the critical exponents should be arbitrarily close to
the canonical ones. This can be achieved in the Veneziano limit
which allows to continuously emerge the fixed point from the free
one. Hence we now focus on an SU(Nc) gauge theory with Nf

flavors of Dirac fermions in the fundamental representation to
take the Veneziano-limit, Veneziano (1979),

Nf → ∞, Nc → ∞, with ǫ = Nf

Nc
− 11

2
finite. (31)

C = 25 (Caswell, 1974) holds in this limit without Yukawa
interactions. The simplest way to add a Nf × Nf matrix H of
complex scalars is to have them uncharged under the gauge
group,

LH−pot = −uTr
(

H†H
)2

− v
(

TrH†H
)2

. (32)

Then the two quartic couplings decouple from the beta functions
for the gauge and Yukawa coupling at the above order in
perturbation theory and in the Veneziano limit (Litim and
Sannino, 2014, see Jack and Osborn, 1984; Machacek and
Vaughn, 1985; Ford et al., 1992) for the two-loop beta functions.

In the limit (31), fixed-point values are controlled by ǫ and
remain perturbative for ǫ << 1 (Litim and Sannino, 2014). For a

study of gauge groups and representations for which such a fixed
point exists (see Bond et al., 2018). Asymptotic safety is achieved
in appropriately rescaled couplings that guarantee well-behaved
large-N-beta functions,

α̃y =
y2 Nc

16π2
, α̃g =

g2 Nc

16π2
. (33)

The beta functions read

βα̃g = α̃2
g

(

4

3
ǫ +

(

25+ 26

3
ǫ

)

α̃g − 2

(

11

2
+ ǫ

)2

α̃y

)

, (34)

βα̃y = α̃y

(

(13+ 2ǫ) α̃y − 6α̃g

)

. (35)

While the one-and two-loop contribution of the gauge coupling
to βα̃g are positive, the contribution of the Yukawa coupling is
negative. Accordingly a finite fixed-point value of the Yukawa
coupling induces a physically acceptable fixed point, i.e., α̃g ∗ > 0.
In turn, the positive contribution∼ α̃y in βα̃y can balance against
the negative one ∼ α̃g to generate a physically acceptable fixed
point at α̃y > 0. This results in an interacting fixed point
emerging from the Gaussian one, since ǫ can become arbitrarily
small for large enough numbers of fields,

α̃g ∗ = 26ǫ + 4ǫ2

57− 46ǫ − 8ǫ2
,

α̃y ∗ = 12ǫ

57− 46ǫ − 8ǫ2
. (36)

To leading order in ǫ, the critical exponents are given by

θ1 =
104

171
ǫ2, θ2 = −52

19
ǫ, (37)

which go back to the canonical, vanishing values for ǫ → 0.
There is one IR repulsive and one IR attractive direction, fixing
the Yukawa coupling at all scales in terms of the gauge coupling
(or vice-versa). In other words, the value of one of the couplings
in terms of the other is a prediction of the setting.

In a setting with “non-fundamental” asymptotic safety (with
new physics kicking in at some kUV), it is important that the
velocity of the flow in the IR-attractive direction is of order ǫ,
whereas it is of order ǫ2 in the IR-repulsive direction. At the
transition scale to the more fundamental description, initial
conditions for the values of couplings are typically not the fixed-
point values. Toward the IR, the flow is pulled toward the fixed
point along the IR-attractive direction with a velocity O(ǫ) and
repelled from the fixed point along the IR-repulsive direction
with a velocity O(ǫ2). Accordingly, near-fixed-point scaling
could determine the behavior of a larger class of trajectories,
cf. Figure 6.

At the next order in the approximation, quartic scalar self-
interactions have to be included. For the corresponding large N
couplings

αh =
uNf

16π2
, αv =

vNf

16π2
, (38)

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 8 January 2019 | Volume 5 | Article 47

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Eichhorn Asymptotically Safe Gravity and Matter

FIGURE 6 | The flow toward the IR from the fixed point in Equation (36) for ǫ = 1/10 features one strongly IR attractive and one weakly IR repulsive direction. The

green and purple, thick, continuous lines are the two only “true” fixed-point trajectories. Initial conditions in the UV away from the fixed point (red dots) result in

trajectories that are indistinguishably close to the fixed-point trajectories in the IR. The right panel shows a zoom into the vicinity of the fixed point, where the

“non-fundamental” trajectory narrowly misses the fixed point, but approaches the critical hypersurface arbitrarily closely, resulting in universal predictions in the IR.

the one-loop beta functions are given by Jack and Osborn (1984);
Machacek and Vaughn (1985), and Ford et al. (1992)

βαh = −(11+ 2ǫ)α̃2
y + 4αh

(

α̃y + 2αh

)

, (39)

βαv = 12α2
h + 4αv

(

αv + 4αh + α̃y

)

. (40)

Due to the Yukawa coupling, fermionic fluctuations generate a
scalar potential (cf. first term in Equation 39) and cannot be
set to zero consistently if α̃y ∗ 6= 0; therefore a nontrivial fixed
point of the system α̃y, α̃g ,αv,αh has to be found. To satisfy Weyl
consistency conditions (see below), the beta function of the gauge
coupling is extended to three-loop order and that of the Yukawa
coupling to two-loop order, where there is also a contribution ∼
αh. The double-trace coupling αv decouples from the remainder
of the system. The system admits a joint, asymptotically safe fixed
point at αh ∗ > 0, and αv ∗ < 0 with αh ∗ + αv ∗ > 0, indicating
a fixed-point potential that is bounded from below Litim and
Sannino (2014). A study of the effective potential that includes
quantum fluctuations at all scales on a trajectory emanating from
the fixed point also indicates its stability (Litim et al., 2016). At
the fixed point, the scalar couplings are irrelevant, therefore the
full model only features one free parameter.

The inclusion of two-loop effects in the gauge coupling and
one-loop effects in the Yukawa coupling (or three-loop in the
gauge, two-loop in the Yukawa, and one loop in the scalar
couplings) is suggested byWeyl consistency conditions (Jack and
Osborn, 1990, 2014), which relate derivatives of beta functions.
They arise by considering the model on a curved (but fixed)
background and performing Weyl rescalings of the metric. As

two subsequent Weyl rescalings commute, it follows that ∂β i

∂gj
=

∂β j

∂gi
. Herein β i = χ ijβj, where χ ij is a metric in the space of

couplings which depends on the couplings. An expression for
χ ij for gauge-Yukawa models has been derived in Antipin et al.
(2013).

These conditions should hold for the full RG flow and can
be imposed on the perturbative expansion. For a discussion of
the corresponding ordering scheme for beta functions as well as
other systematic choices of perturbative orders in the context of
gauge-Yukawa theories (see also Bond et al., 2018).

Residual interactions in canonically marginal couplings at
an interacting fixed point provide finite contributions to beta
functions of higher-order, canonically irrelevant couplings.
Higher-order couplings in the scalar potential develop near-
Gaussian fixed-point values of their own (Buyukbese and
Litim, 2017). Accordingly, their scaling exponents follow the
expectation that these couplings should remain irrelevant at a
perturbative asymptotically safe fixed point.

The interacting fixed point in gauge-Yukawa systems
constitutes a four-dimensional example of asymptotic safety,
established within perturbation theory. It provides a new
universality class which calls for an in-depth study of its possible
extensions and generalizations.

The extension to a supersymmetric setting has been discussed
in Intriligator and Sannino (2015); Bajc and Sannino (2016);
Bond and Litim (2017); and Bajc and Dondi (2018). While
perturbative asymptotic safety cannot be realized in the
supersymmetric setting with a simple gauge-group (Intriligator
and Sannino, 2015), it can exist in settings with semi-simple
gauge groups (Bond and Litim, 2017; Bajc and Dondi, 2018). This
highlights how an added symmetry can allow to derive strong
no-go-theorems for asymptotic safety.
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The fixed-point structure in gauge-Yukawa models is more
intricate in a setting away from four dimensions (Codello et al.,
2016) (or under the inclusion of potential quantum-gravity
effects Christiansen et al., 2017), where the degeneracy of the free
fixed point is lifted, and fixed-point collisions can occur.

Given that asymptotic safety appears in a range of gauge
theories where asymptotic freedom is lost, the phase diagram
of gauge theories could be richer than previously thought. In
fact, indications for an interacting fixed point at leading order
in 1/Nf go back to Palanques-Mestre and Pascual (1984) and
Gracey (1996), see Holdom (2011) for a recap and a discussion
of higher orders in 1/Nf . With a view toward the potential
phenomenological importance of such fixed points (Antipin and
Sannino, 2017; Antipin et al., 2018a), employ a resummation of
the fermionic bubble diagrams that contribute at leading order in
1/Nf to all orders in perturbation theory to the beta function for
the non-Abelian gauge coupling. This provides indications for an
interacting fixed point: In a 1/Nf expansion, the first nontrivial
order vanishes in the large Nf limit, unless there is a value of
the coupling where it features a pole. In that case, depending on
the sign of that contribution, a zero of the beta function can be
generated. Indeed a corresponding pole can be found, providing
an indication for a fixed point at a non-perturbatively large value
of the gauge coupling. A similar resummation for the gauge
contribution to the leading nontrivial order of the beta function
of the Yukawa coupling has been performed in Kowalska and
Sessolo (2018), see also Alanne and Blasi (2018) and Alanne and
Blasi (2018).

The a-theorem (Cardy, 1988) has been explored in this setting
(Antipin et al., 2018b; Dondi et al., 2018), showing that, as
expected, the Jack and Osborn a function (Jack and Osborn,
2014) takes a larger value at the UV fixed point than at the IR
fixed point.

These developments pave the way for asymptotically safe
model building beyond the Standard Model (e.g., Abel and
Sannino, 2017a,b; Bond et al., 2017; Mann et al., 2017; Molinaro
et al., 2018).

3.1. Asymptotically Safe Phenomenology
The idea that scale-invariance is realized in physics beyond
the Standard Model has received a lot of attention (see e.g.,
Meissner and Nicolai, 2007; Shaposhnikov and Zenhausern,
2009a,b; Holthausen et al., 2013; Khoze, 2013; Lindner et al.,
2014; Gies and Zambelli, 2017; Lewandowski et al., 2018),
mostly focusing on settings with classical scale invariance. It
is therefore highly intriguing to explore whether extensions of
the Standard Model are asymptotically safe along the lines in
Litim and Sannino (2014), realizing quantum scale invariance.
Measurements showing a decreasing SU(3) coupling as a
function of energy only cover a finite energy range and hence do
not exclude asymptotic safety.

Steps toward an asymptotically safe Standard Model include
the observation that asymptotic safety can be achieved in
semi-simple gauge groups (Esbensen et al., 2016; Bond and
Litim, 2018b) and with chiral fermions (Mølgaard and Sannino,
2017). To render the non-Abelian Standard Model gauge
couplings asymptotically safe, new fermionic states transforming
in nontrivial representation of SU(2) and/or SU(3), have to

be added. Asymptotic safety might be achieved for one of
the non-Abelian gauge couplings, with the others becoming
asymptotically free, depending on the representation the new
(vectorlike) fermions transform in Kowalska et al. (2017). The
matching scale, essentially corresponding to the mass scale of the
new fermions, which separates the regime of power-law running
below the fixed point from the regime of logarithmic running in
the Standard Model, adds new free parameters to these models.

Yet, the non-Abelian gauge groups of the Standard Model are
SU(2) and SU(3), not SU(Nc) with Nc → ∞, as required for
the Veneziano limit. Accordingly, the addition of fermions to
the Standard Model such that the non-Abelian gauge couplings,
together with the BSM Yukawa coupling become asymptotically
safe (Bond et al., 2017; Mann et al., 2017), is difficult to reconcile
with a perturbative nature of the extension (Barducci et al., 2018),
at least if one also insists on solving the U(1) triviality problem.
This is evident, e.g., in the large values of the critical exponents
that lead to a fast flow away from the fixed point toward the
IR (see e.g., Bond et al., 2017; Mann et al., 2017). Hence, large
Nf fixed points (Palanques-Mestre and Pascual, 1984; Gracey,
1996; Holdom, 2011; Antipin and Sannino, 2017; Antipin et al.,
2018a; Kowalska and Sessolo, 2018) play a key role in these
developments. Accommodating the Higgs at the correct mass is
a challenge (Pelaggi et al., 2018). This could change in a grand
unified setting (Molinaro et al., 2018), which could also become
asymptotically safe (Abel and Sannino, 2017b).

Asymptotic safety beyond the Standard Model could have
intriguing phenomenological consequences in astrophysics and
cosmology (Nielsen et al., 2015). For instance, asymptotically
safe dark matter could accommodate a significant running
of the portal coupling to visible matter between the dark-
matter-mass scale—relevant for thermal production of dark
matter in the early universe—and the scale of direct detection
experiments (Sannino and Shoemaker, 2015). In the WIMP-
paradigm, the darkmatter relic density is linked to the probability
of direct detection, since the cross-section for dark-matter-
annihilation into Standard Model particles is related to the
cross-section for dark matter scattering off Standard Model
particles. Hence, the lack of direct detection has put severe
constraints on the paradigm (Tan et al., 2016; Akerib et al.,
2017; Aprile et al., 2018). These might be circumvented by
introducing additional fields, providing a new parameter that
decreases the tension between direct experimental bounds on
the cross-section and the relic-density constraints. Asymptotic
safety could provide an alternative explanation (Sannino and
Shoemaker, 2015): the value of the coupling at the higher
scale is larger as it approaches an interacting fixed point. This
might accommodate thermal production of the full dark matter
relic density while being consistent with bounds from direct
searches.

4. ASYMPTOTICALLY SAFE QUANTUM
GRAVITY

4.1. Status of Asymptotic Safety in Gravity
Einstein gravity, quantized perturbatively, loses predictivity
at (trans)planckian scales due to its perturbative
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nonrenormalizability. Infinitely many free parameters are
associated with counterterms required to absorb new divergences
appearing at every loop order5 (Deser and Nieuwenhuizen,
1974a,b; ’t Hooft and Veltman, 1974; Goroff and Sagnotti, 1986;
van de Ven, 1992). At momenta p below the Planck scale, only
a finite number of the counterterms contribute (Donoghue,
1994a,b) if one assumes that the corresponding dimensionless
couplings are all of order one. Then, higher-order terms are
suppressed by (p/MPlanck)

#, # > 2. Thus, gravity and quantum
physics are actually compatible, but a perturbative quantization
only holds up to the Planck scale (Donoghue, 2012). The key
challenge is to find an ultraviolet completion. The minimalistic
and conservative nature of asymptotic safety as compared to
many other approaches to quantum gravity make it a useful
starting point for this endeavor: If this ansatz for quantum
gravity fails, more radical notions on the quantum nature of
spacetime are required.

As the free fixed point is IR attractive in the Newton coupling,6

the first mechanism for asymptotic safety cf. Sec. 2.4.1, which is
realized in d = 2 + ǫ dimensions (Brown, 1977; Tsao, 1977;
Christensen and Duff, 1978; Gastmans et al., 1978; Weinberg,
1980; David, 1988; Distler and Kawai, 1989; Kawai andNinomiya,
1990; Jack and Jones, 1991; Kawai et al., 1993a,b, 1996; Aida et al.,
1994; Nishimura et al., 1994; Aida and Kitazawa, 1997; Codello
and D’Odorico, 2015), might also determine the fate of gravity in
d = 4 dimensions. The physical mechanism behind asymptotic
safety in gravity (Nink and Reuter, 2013) is the antiscreening
nature of metric fluctuations that shield the Newton coupling,
similar to the effect of self-interacting gluons in the Yang-Mills
vacuum.

An extension of the ǫ expansion to higher order, combined
with an appropriate resummation, could provide indications
for or against a fixed point in four dimensions. This is also
a goal of discrete approaches to the gravitational path-integral
where spacetime configurations are constructed from scratch
from microscopic building blocks: Causal (Ambjorn et al., 2000,
2001) (and possibly also Euclidean Laiho and Coumbe, 2011;
Laiho et al., 2017) Dynamical Triangulations) (CDT) feature a
higher-order phase transition (Ambjorn et al., 2011, 2012, 2017)
facilitating a continuum limit. This could provide a universality
class for quantum gravity. Complementary to Monte Carlo
simulations of dynamical triangulations, an analytical approach

5The enhanced symmetry in supergravity rules out many of these counterterms,

shifting the expected order of divergence in the maximally supersymmetric theory

to higher orders (Bern et al., 2017, 2018).
6In the higher-derivative theory with the additional invariants R2 and RµνR

µν

the marginal couplings are asymptotically free (Stelle, 1977; Fradkin and Tseytlin,

1982; Avramidi and Barvinsky, 1985). Around flat space, this theory features a

kinetic instability (see Salvio, 2018) for a review. Breaking Lorentz symmetry

allows to use higher-order spatial derivatives while keeping the action at

second order in time derivatives (Horava, 2009), resulting in perturbatively

renormalizability. Yet, the projectable version propagates an additional scalar that

becomes nonperturbative in the IR. As the non-projectable version features a larger

number of couplings, asymptotic freedom has only been established in 2 + 1

(Barvinsky et al., 2017) dimensions and not 3 + 1, as well as in the large N limit

for N scalars coupled to Horava gravity (D’Odorico et al., 2014). Constraints from

pulsars (Yagi et al., 2014) and gravitational waves from a neutron-starmerger (Emir

Gümrükçüoğlu et al., 2018) constrain these models.

FIGURE 7 | The regulator Rk (p
2) (continuous red line) acts as a suppression

term for IR modes. In the flow equation Equation (43) its derivative with respect

to k (dotted purple line) acts as a suppression for UV modes, as well, such that

the main contribution to the scale dependence of the dynamics at k comes

from modes at that momentum scale.

to search for a suitable continuum limit is based on tensor
models (Ambjorn et al., 1991; Godfrey and Gross, 1991; Gross,
1992; Benedetti and Gurau, 2012; Gurau, 2016), see Sec. 4.2.4.
Lattice studies based on Euclidean Regge calculus have also been
put forward as indications for asymptotic safety (Hamber, 2009,
2015).
Intriguingly, perturbative techniques in d = 4 yield indications
for an asymptotically safe fixed point (Codello and Percacci, 2006;
Niedermaier, 2009, 2010), providing a hint at a near-perturbative
nature of asymptotically safe gravity.

Most of the compelling evidence for asymptotic safety in
gravity comes from Euclidean functional RG (FRG) studies
based on the Wetterich equation7. This framework provides beta
functions for the dependence of couplings on the momentum
scale k. The scale is introduced into the generating functional
through an infrared cutoff function Rk(p

2), called the regulator,

Zk[J] =
∫

Dϕ e−S[ϕ]− 1
2TrϕRk(p

2)ϕ+TrJ ϕ , (41)

Ŵk[φ] = sup
J

(

TrJ φ − lnZk[J]
)

− 1

2
TrφRk(p

2)φ, 〈ϕ〉k = φ,

(42)

reducing to the standard definitions at k = 0. Rk(p
2) and

its derivative k∂k Rk(p
2) are sketched in Figure 7. This setup

provides a flow equation, the Wetterich equation (Wetterich,
1993), also Ellwanger (1994) and Morris (1994), pioneered for
gauge theories in Reuter and Wetterich (1994) and gravity in
Reuter (1998). The regulator acts as a simultaneous IR- and UV

7A variant of the Polchinski equation also provides support for the asymptotic-

safety conjecture (de Alwis, 2018).
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cutoff, such that the change of a coupling at scale k is mainly
driven by quantum fluctuations at that scale:

∂tŴk = k ∂kŴk =
1

2
Tr

[

(

δ2Ŵk[φ]

δφ2
+ Rk

)−1

∂tRk

]

. (43)

For gravity, the covariant Laplacian 1̄with respect to an auxiliary
background metric ḡµν takes the role of the momentum p2,
Reuter (1998); Dou and Percacci (1998); Souma (1999), and
Lauscher and Reuter (2002). For general introductions and
reviews (see Berges et al., 2002; Polonyi, 2003; Pawlowski, 2007;
Rosten, 2010; Braun, 2012; Delamotte, 2012; Gies, 2012, for
gravity, see Reuter and Saueressig, 2012; Nink et al., 2013;
Ashtekar et al., 2014; Percacci, 2017; Eichhorn, 2018a). The
method is well-suited to models with dimensionful couplings,
and therefore widely-used in condensed-matter physics and
statistical physics (Kopietz et al., 2010; Metzner et al., 2012;
Platt et al., 2013). Its relation to perturbation theory, which is
straightforward at one loop, has been explored at higher loops
in Papenbrock and Wetterich (1995) and Codello et al. (2014).

The FRG tracks the scale dependence of all couplings that
are compatible with the symmetries, not just the perturbatively
renormalizable interactions. For practical calculations, theory
space is truncated to a (typically finite-dimensional) subspace,
introducing a systematic error. To highlight that quantitative
results can already be achieved in relatively small truncations,
we provide the leading scaling exponents for the Ising model in
Table 1.

For fixed points that arise via the mechanism in section 2.4.1,
the scaling is near-canonical near the critical dimension,
providing a systematic way to devise truncations that
include all relevant couplings. There are indications that
in quantum gravity four dimensions is close to two in the
sense that the canonical dimension is a good predictor
of relevance at the fixed point (Falls et al., 2013, 2016),
enabling the setup of robust truncations by canonical power-
counting. These indications require further confirmation,
e.g., by including operators of the form R2nR (De Alwis,
2018).

Considerable evidence for the existence of the
interacting Reuter fixed point has accumulated, starting
from the seminal work (Dou and Percacci, 1998; Reuter,
1998; Souma, 1999; Lauscher and Reuter, 2002; Reuter
and Saueressig, 2002), employing truncations of the
form

Ŵk = − 1

16πGN

∫

d4x
√
g (R− 23) + Ŵk higher−order +

1

32πGN α
∫

d4x
√

ḡḡµν

(

D̄κhµκ − 1+ β

4
D̄µh

)(

D̄λhνλ − 1+ β

4
D̄νh

)

−
√
2

∫

d4x
√

ḡc̄µ

(

(

ḡµρ D̄κgρνDκ + D̄κgκνDρ

)

− 1+ β

2
D̄µDν

)

cν .

(44)

The third term is a gauge fixing term with two parameters α,β
(see, e.g., Falkenberg and Odintsov, 1998; Gies et al., 2015; de
Brito et al., 2018 for studies of the off-shell gauge dependence and
Benedetti, 2012 for gauge-independent on-shell results) and the

TABLE 1 | Relevant and leading irrelevant critical exponent as well as the

anomalous dimension for the Ising model obtained with the FRG in a derivative

expansion to leading order (local potential approximation, LPA, to order 2n in the

field) and next-to-order (LPA’) with field-independent anomalous dimension.

Truncation ν = 1/θ1 ω = −θ2 η

LPA 2 1/2 1/3 0

LPA 3 0.729 1.07 0

LPA 4 0.651 0.599 0

LPA 5 0.645 0.644 0

LPA 6 0.65 0.661 0

LPA 7 0.65 0.656 0

LPA 8 0.65 0.654 0

LPA’ 2 0.526 0.505 0.0546

LPA ’ 3 0.684 1.33 0.0387

LPA’ 4 0.64 0.703 0.0433

LPA ’5 0.634 0.719 0.0445

LPA’ 6 0.637 0.728 0.0443

LPA ’ 7 0.637 0.727 0.0443

LPA ’8 0.637 0.726 0.0443.

For the dimensionless potential u[ρ] = ∑

i=2
λi
i! (ρ − λ1 )

i with ρ = ϕ2/2, the flow

equation from which the beta functions for the couplings λi are derived, reads ∂tu[ρ] =
−4u + (d − 2 + η)ρ u′ [ρ] + 1

2·(4π )2

(

1− η
6

)

1
1+u′ [ρ]+2ρu′′ [ρ] . The underlying derivation of

the flow equation can be found (e.g., Berges et al., 2002; Delamotte, 2012) and the

numerical evaluation of fixed-point values and critical exponents requires a basic numerical

solver, such as Mathematica’s FindRoot routine. At fourth order in the derivative expansion

(Canet et al., 2003), one obtains ν = 0.632 and η = 0.033 (see also Litim and Zappala,

2011) (compared to, e.g., ν = 0.6304 and η = 0.0335 from 7-loop studies Guida and

Zinn-Justin, 1998).

third line is the corresponding Faddeev-Popov operator8. Barred
quantities refer to a background metric ḡµν with respect to which
the metric gµν can be gauge fixed, and a local coarse-graining
scheme is set up. The fluctuation field is

hµν = gµν − ḡµν . (45)

A discussion of background-independence is given in
section 4.2.3. All results below are in the background-
approximation, where gµν = ḡµν is used in the RG flow.
Results from selected key truncations are summarized in Table 2.

For purposes of illustration, we also quote beta functions in
the Einstein-Hilbert truncation with G = GNk

2 and λ = 3/k2

from Codello et al. (2009), with anomalous dimensions ηh(c)
for the metric (ghost) (e.g., in Donà et al., 2014), and for the
functional f (R̃), from Benedetti and Caravelli (2012) as found in
Dietz and Morris (2013a).

8A nontrivial wave-function renormalization (Eichhorn and Gies, 2010; Groh and

Saueressig, 2010) and ghost terms beyond the Faddeev-Popov are generated by the

flow and have nonvanishing fixed-point values (Eichhorn, 2013).
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TABLE 2 | The operators beyond Einstein-Hilbert, the number of relevant/irrelevant directions, and the values of the positive critical exponents are indicated.

References Gauge Cutoff Operators included # rel. # irrel. Reθ1 Reθ2 Reθ3

beyond dir. dir.

Einstein-Hilbert

Reuter and Saueressig, 2002 α = 1,β = 0 exp. - 2 - 1.94 1.94 -

Litim, 2004 α = 0 Litim (Litim, 2000, 2001) - 2 - 1.67 1.67 -

Lauscher and Reuter, 2002 α = 0,β = 0 exp.
√
gR2 3 0 28.8 2.15 2.15

Machado and Saueressig, 2008 β = 1,α = 0 Litim
√
gR2,

√
gR3 3 1 2.67 2.67 2.07

Codello et al., 2009 α = 1,β = 1 Litim
√
gR2,

√
gR3 3 1 2.71 2.71 2.07

Machado and Saueressig, 2008 β = 1,α = 0 Litim
√
gR2,

√
gR6 3 1 2.39 2.39 1.51

Codello et al., 2009 α = 1,β = 1 Litim
√
gR2, ...,

√
gR8 3 6 2.41 2.41 1.40

Falls et al., 2013, 2016 α = 0,β = 0 Litim
√
gR2, ...,

√
gR34 3 32 2.50 2.50 1.59

Benedetti et al., 2009 α = 0, h/o Litim
√
gR2,

√
gRµνR

µν 3 1 8.40 2.51 1.69

Gies et al., 2016 β = α = 1 Litim
√
gCµνκλCκλρσC

ρσ
µν 2 1 1.48 1.48 -

All truncations listed above, employing the linear parameterization and single-metric approximation (cf. section 4.2.3) feature an asymptotically safe fixed point with no more than three

relevant directions. (All results in the literature for finite-dimensional truncations feature an asymptotically safe form in qualitative agreement with these results.)

βG = 2G− G2

12 · 4π

(

52(4− ηh)

1− 2λ
+ 40(4− ηc)

)

,

βλ = −2λ + G

12 · 4π

(

20(6− ηh)

1− 2λ
− 16(6− ηc)

)

− G λ

12 · 4π

(

52(4− ηh)

1− 2λ
+ 40(4− ηc)

)

, (46)

∂tf = 4f − 2R̃ f ′ + 1

384π2

[

−20
∂tf

′ − 2R̃ f ′′ + 8f ′

(R̃− 2)f ′ − 2f
− 36− 12− 5R̃2 (47)

+ (R̃4 − 54R̃2 − 54)(∂tf
′′ − 2R̃ f ′′′)− (R̃3 + 18R̃2 + 12)(∂tf

′ − 2R̃ f ′′ + 2f ′)− 36(R̃2 + 2)(f ′ + 6f ′′)

2
(

−9f ′′ + (R̃− 3)f ′ − 2f
)

]

.

Here, R̃ = R/k2 is the dimensionless curvature
and primes denote derivatives with respect to
R̃. Equation (47) provides the beta functions for
couplings of Rn upon a Taylor expansion in the
curvature.

The Newton coupling and cosmological constant are
relevant, cf. Figure 8. Accordingly, the IR value of the
cosmological constant is unrestricted. The choice of different
fixed-point trajectories in Figure 8 results in different values
of the dimensionful cosmological constant in the IR 3IR.
To realize 3IR/M2

Pl
<< 1, a specific trajectory has to

be chosen. The question, why this particular trajectory
is realized, is the finetuning “problem.” Yet, any relevant
coupling is actually linked to a similar question. For
instance, the value of the QCD coupling at the electroweak
scale would be different on other, also asymptotically
free trajectories. The question how a more fundamental
principle selects one out of many viable trajectories for
the relevant couplings exists irrespective of whether the
coupling is logarithmically or power-law sensitive to
the momentum scale. (The need for successive tuning
at each order in perturbation theory for the power-law
case is a consequence of that particular approximation
scheme, not a signature of a consistency problem of the
theory).

At the interacting Reuter fixed point, canonical ordering
appears to hold9, cf. Table 2. This provides a scheme to set up
consistent truncations: Assume for simplicity that the operators
in Table 2 diagonalize the stability matrix, resulting in critical
exponents

θi = dḡi + ηi. (48)

Unless the anomalous scaling contribution ηi would grow with
the canonical dimension, the canonical dimension dominates
for canonically highly irrelevant couplings, rendering them
irrelevant at an interacting fixed point. In fact, already at the
level of canonically marginal couplings of R2 and RµνR

µν , there
appears to be only one relevant direction10. All canonically
irrelevant operators that have been examined are irrelevant at
the fixed point. In Falls et al. (2013) and Falls et al. (2016),
the normalized difference of canonical and quantum scaling
dimension decreases with decreasing canonical dimension for
Rn, cf. Figure 9. The near-Gaussian scaling spectrum (at
higher orders in the curvature expansion) is also in line with
the possibility to find indications of asymptotic safety from

9A combined truncation of Gies et al. (2016) with the operators in Benedetti et al.

(2009) remains to be explored.
10Results in the exponential parameterization even yield one relevant direction less

(Ohta et al., 2016; de Brito et al., 2018).
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FIGURE 8 | The RG flow to the IR in the Einstein-Hilbert truncation in the setup discussed in Donà et al. (2014) for a type Ia cutoff features a trajectory—passing very

close to the free fixed point—on which the dimensionful Newton coupling and cosmological constant reach constant values in the IR in agreement with

measurements. Left panel: pure gravity case; right panel: including minimally coupled matter as in the Standard Model (4 scalars, 12 vectors, 45 Weyl fermions). The

two eigendirections of the fixed point are superposition of G and λ.

perturbation theory (Codello and Percacci, 2006; Niedermaier,
2009, 2010).

Systematic truncation errors can be estimated given that in
approximations schemes for QFTS, dependencies on unphysical
parameters arise even at the level of observables. The better the
approximation, the weaker such a dependence. Tests include
gauge-parameter dependence (Gies et al., 2015), regulator
dependence (Reuter and Saueressig, 2002) and dependence on
the parameterization for metric fluctuations (Gies et al., 2015;
Ohta et al., 2016; de Brito et al., 2018).

Going beyond finite-dimensional truncations, the closed
fixed-point equation for f (R̃), e.g., Equation (47) has been
investigated. Depending on the choice of regulator, it contains a
varying number of fixed singularities, as the regulator introduces
additional field-dependence in the background approximation.
Thus, specific choices of the regulator allow for global solutions
(Benedetti and Caravelli, 2012; Demmel et al., 2012; Dietz and
Morris, 2013a,b; Demmel et al., 2015; Ohta et al., 2015) while
others do not (Codello et al., 2009). One might conclude that
extensions of the truncation are required, going beyond the
background- approximation for f (R̃) (see Christiansen et al.,
2018, see section 4.2).

Many gravitational theories are classically dynamically
equivalent to GR. Thus different theory spaces could allow for
asymptotic safety (Krasnov and Percacci, 2018). For instance,
the vielbein and the connection can be treated as independent
variables (Daum and Reuter, 2012, 2013; Harst and Reuter, 2015,
2016), or torsion can be included (Pagani and Percacci, 2015;
Reuter and Schollmeyer, 2016). The dimension of theory space
and the number of relevant couplings decrease by one (Eichhorn,
2015) in unimodular gravity (Unruh, 1989; Finkelstein et al.,

2001; Ellis et al., 2011), where the determinant of the metric
is a fixed density, removing the cosmological constant from
the action. Further, fluctuations in topology, dimensionality,
signature etc. might be included in the gravitational path integral.
The corresponding additional configurations either prevent the
existence of a continuum limit/ RG fixed point, lead to an
asymptotically safe fixed point in the same universality class as
Table 2, or provide another gravitational universality class which
differs in its physical implications and can therefore (in principle)
be probed experimentally.

In two dimensions, the conformal field theory underlying
asymptotic safety has been studied (Nink and Reuter, 2016). In
d = 4, scale-invariance need not imply conformal invariance
(in fact, sufficient conditions for this are not known). If it
were possible to extend the conformal bootstrap program
(Simmons-Duffin, 2016) to a gravitational setting, a search for
the corresponding universality class with relevant directions
according to Table 2 might answer whether there is a conformal
theory behind asymptotically safe gravity.

4.2. Open Questions & Future Perspectives
4.2.1. Lorentzian Signature
There is no simple Wick-rotation in quantum gravity, thus the
above results do not directly imply Lorentzian asymptotic safety.
In an ADM decomposition of the metric, the change of signature
can be implemented by changing one parameter. This has been
used in Manrique et al. (2011a) to find hints for asymptotic
safety in a Lorentzian setting for the Einstein-Hilbert truncation.
Further, RG flows in the ADMdecomposition have been explored
in Rechenberger and Saueressig (2013), Biemans et al. (2017), and
Biemans et al. (2017). The FRG can be formulated in a Lorentzian
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FIGURE 9 | Data from Falls et al. (2016) on the critical exponents in a truncation
∑

n
√
gRn, compared to the canonical dimension.

setting (Floerchinger, 2012), underlying the study of real-time
correlators, e.g., in QCD (Pawlowski and Strodthoff, 2015).

Alternatively, a proposal (Eichhorn, 2018b) to search for
Lorentzian asymptotic safety employs causal set quantum gravity.
This is an intrinsically Lorentzian, discrete approach to quantum
gravity, based on the path integral over all causal sets (Bombelli
et al., 1987). Under the restriction to manifoldlike causal sets
(implemented as a path integral over sprinklings Henson, 2006;
Dowker, 2013) the space of couplings might feature a second-
order phase transition (Surya, 2012; Glaser, 2018).

4.2.2. Propagating Degrees of Freedom
Higher-order derivatives in QFTs on a flat background
generically imply an instability in the kinetic term (Ostrogradsky,
1985; Woodard, 2015), translating into a violation of reflection
positivity for the Euclidean propagator (Arici et al., 2017). In a
quantum setting, the unboundedness of the Hamiltonian can be
traded for unitarity violation through negative-norm states in the
Hilbert space (Woodard, 2015).

In quantum gravity, an analysis of unitarity is presumably
rather more subtle for several reasons.

Firstly, positivity violation in gauge-variant propagators
occurs in unitary theories such as QCD (Cucchieri et al., 2005;
Bowman et al., 2007). [A direct analogy with QCD has been
proposed for (asymptotically free higher-derivative) gravity in
Holdom and Ren, 2016a,b.] The physical “graviton” as the
transverse traceless part of the metric propagator is defined
perturbatively; but non-perturbatively no local separation of
gauge and physical degrees of freedom is possible.

Secondly, an instability in the flat-space propagator is not
in conflict with observations, given that the cosmological
background appears to be FRW-like.

Thirdly, Ostrogradski instabilities occur under a crucial
assumption, namely that of finitely many higher-order terms.
Yet the case with infinitely higher order terms can feature
a well-defined propagator, translating into a well-posed initial
value problem at the level of the equations of motion (Barnaby
and Kamran, 2008). Examples include string-field theory, see
Barnaby and Kamran (2008) and references therein. Accordingly,
truncated dynamics in asymptotically safe gravity might contain

spurious instabilities (just as an analysis of a truncated effective
action for string theory would).

Fourth, even at the level of curvature-squared actions, the
mass of the “ghost” (analyzed around flat space) runs as a
function of momentum. Hence, such ghosts might not appear as
physical states (see Floreanini and Percacci, 1995; Benedetti et al.,
2009; Becker et al., 2017).

Finally, if asymptotic safety is “non-fundamental”
(cf. section 2.3), the mass-scale of the ghosts (if these exist
on physically relevant backgrounds) sets an upper bound on
kUV.

CDT satisfies reflection positivity (Ambjorn et al., 2000,
2001). Thus, its continuum limit, which might correspond to
asymptotically safe gravity, inherits this property. As many other
examples, this reinforces that the quest to understand quantum
spacetime can be accelerated by searching for links between
quantum-gravity approaches.

In addition to ghost-like states, higher-order gravity can
(but again, need not) contain additional propagating degrees
of freedom. These might be of phenomenological interest, e.g.,
driving inflation or leading to modifications of GR detectable in
black holes and/or gravitational waves.

Determining the spectrum of propagating gravitational
degrees of freedom in asymptotically safe gravity is an important
outstanding question. A comprehensive answer in the FRG
approach requires studying the full propagator (at k = 0, where
all quantum fluctuations contribute) around a solution to the
quantum equations of motion.

4.2.3. Background Independence
Background independence is a key property of quantum gravity,
meaning that all configurations in the path integral should be
treated on an equal footing. This appears to be at odds with the
introduction of a local coarse graining scheme, as this relies on a
metric. Specifically, the regulator in the flow equation depends
on a background metric ḡµν . Additionally, a local formulation
of gauge theories requires gauge fixing to derive the propagator.
The flow equation is based on a background gauge-fixing.
Nevertheless, background independence can be achieved, if all
backgrounds are treated on the same footing (Becker and Reuter,
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TABLE 3 | Fixed-point results from Becker and Reuter (2014) for the “dynamical”

couplings in the Einstein-Hilbert truncation and their background counterparts.

G* λ* GB * λB * θ1 θ2 θB 1 θB 2

0.70 0.21 8.2 -0.01 3.6+4.3i 3.6 -4.3i 4 2

Critical exponents can be split into the two sectors, as the background couplings do not

couple into the flow of the dynamical couplings and accordingly the stability matrix is

upper/lower triangular in the background sector yielding canonical exponents.

2014), i.e., if gµν and ḡµν are both kept as distinct arguments
of the flowing action. In the limit k → 0, where the regulator
vanishes, setting gµν = ḡµν yields an effective action that
inherits diffeomorphism invariance and therefore background
independence from the auxiliary background-diffeomorphism
invariance that is kept intact for an appropriate choice of
gauge fixing and regulator function. Therefore, ultimately we are
interested in Ŵk→0[ḡµν , gµν = ḡµν], or Ŵk→0[ḡµν , hµν = 0],
respectively. Crucially, the flow is driven by the fluctuation

propagator,
(

Ŵ
(0,2)
k

[ḡµν , gµν]
)−1

=
(

δ2

δgκλδgρσ
Ŵk[ḡµν , gµν]

)−1
, or,

equivalently,
(

Ŵ
(0,2)
k

[ḡµν , hµν]
)−1

. As the regulator and gauge

fixing break the symmetry between gµν and ḡµν , this is not the

same as
(

Ŵ
(2,0)
k

[ḡµν , gµν]
)−1

. Schematically,

∂tŴk[8bck,8phys] = 1

2
Tr





(

δ2Ŵk[8bck,8phys]

δ82
phys

+ Rk[8bck]

)−1

∂tRk[8bck]] . (49)

In the background approximation, one equates 8phys = 8bck

after the derivation of
δ2Ŵk[8bck,8phys,]

δ82
phys

. Accordingly, projections

on field monomials pick up the auxiliary background-field
dependence of the regulator in this approximation.

As an intermediate step to obtaining an effective action that
respects background independence, one has to derive the flow
of the fluctuation field propagator (Christiansen et al., 2017,
2016, 2015; Denz et al., 2018) in a setting that makes explicit
use of a background. Alternatively, one can map this to a
“bimetric” truncation, in which the propagator of the full metric
is distinguished from the background metric, and drives the
RG flow (Manrique and Reuter, 2010; Manrique et al., 2011b,c;
Becker and Reuter, 2014), see Table 3.

The fluctuation-field dynamics are not protected by an
auxiliary diffeomorphism invariance (as the background
dynamics is). Accordingly, the theory space is that of a spin-2-
field, with (modified) Slavnov-Taylor identities relating different
couplings as a consequence of the symmetry. In a vertex
expansion, this results in distinct “avatars” of couplings. For
instance, expanding the Einstein-Hilbert action to nth order
in the fluctuation field results in n “avatars” of the Newton
coupling and cosmological constant, λn and Gn. Table 4 lists
fixed-point results for these “avatars”. We use the notation
µ = −2λ2 and also provide the fluctuation field anomalous

dimension ηh and ghost anomalous dimension ηc. Where
their full momentum dependence has been evaluated, as in
Christiansen et al. (2017); Christiansen et al. (2015); and
Denz et al. (2018), the numbers provided refer to anomalous
dimensions at vanishing momentum. “Hybrid” calculations,
which evaluate the anomalous dimensions of the fluctuation
fields, but equate the background and fluctuation Newton
couplings, GB and cosmological constants, 3B are included.

The example of a background-deformed regularization for
scalar field theory shows how the background dependence
of the regulator can spoil the study of fixed-point results
for the Wilson-Fisher fixed point (Bridle et al., 2014). A
symmetry identity, namely the shift Ward-identity, follows from
background independence. It is structurally similar to the flow
equation and relates the background-field-dependence on φ̄ and
the fluctuation-field-dependence on ϕ of the flowing action
(Reuter and Wetterich, 1997; Litim and Pawlowski, 2002; Bridle
et al., 2014; Safari, 2016),

δŴk

δφ̄
− δŴk

δϕ
= 1

2
Tr

[

(

δ2Ŵk

δϕ2
+ Rk[φ̄]

)−1
δRk[φ̄]

δφ̄

]

. (50)

Imposing the shift Ward-identity allows to recover background-
independent results (Bridle et al., 2014). In a similar spirit, studies
imposing the shiftWard identity in background- approximations
for gravity (where the analog of Equation (50) is supplemented by
contributions from the gauge fixing sector) have been performed
in Morris (2016); Percacci and Vacca (2017); Labus et al. (2016);
Ohta (2017); and Nieto et al. (2017).

Dynamical triangulations are background-independent as
there is no preferred configuration and even the foliation
structure in CDTs appears to be dispensable (Jordan and Loll,
2013). Therefore, establishing whether a universal continuum
limit exists in the same universality class (i.e., with matching
physical critical exponents) as FRG studies indicate, tests
background independence of asymptotically safe gravity. One
can either approach this by the well-tested method of computer
simulations, based on aMonte-Carlo approach, or explore tensor
models (see Sec. 4.2.4).

4.2.4. The RG Perspective on (Discrete) Quantum

Gravity
The use of RG ideas in quantum gravity has been gaining
traction in various forms over the last few years. Interacting
fixed points play a role in several different approaches (see,
e.g., Eichhorn and Koslowski, 2013, 2018; Ambjorn et al.,
2014; Benedetti et al., 2015; Bahr and Steinhaus, 2016, 2017;
Dittrich et al., 2016a,b; Dittrich, 2017; Ben Geloun et al.,
2018) and references therein. In particular, in models that
introduce a discretization, RG tools enable searches for a
universal continuum limit encoded in RG fixed points. As
one example, consider tensor models. These are spacetime-
free models which encode the gluing of fundamental building
blocks of a triangulation in their combinatorics. They generate
the sum over all simplicial pseudomanifolds (triangulations)
through their Feynman-diagram expansion, thereby generalizing
the success-story of matrix models (Di Francesco et al., 1995)
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TABLE 4 | Fixed-point results for fluctuation couplings.

References Gauge Regulator Bckr. µ* λ3 G3* G4* ηh ηc Re θ1 Re θ2 Re θ3

Groh and Saueressig, 2010 β = α = 1 Litim sphere 3B = 0.14 - GB = 0.86 – – −1.77 1.94 1.94 –

Eichhorn and Gies, 2010 β = α = 0 exp. flat/sphere 3B = 0.32 – GB = 0.29 – – −0.78 2.03 2.03 –

Eichhorn and Gies, 2010 β = α = 1 exp. flat/sphere 3B = 0.48 – GB = 0.18 – – −1.31 1.39 1.39 –

Christiansen et al., 2017 β = 1,α = 0 Litim flat −0.49 – 0.83 – 0.5 −1.37 1.87 1.87 1.37

Codello et al., 2014 α = β = 1 Litim flat 3B = −0.06 – GB = 1.62 – 0.69 −1.36 4.12 4.12 -

Christiansen et al., 2015 β = 1,α = 0 Litim flat -0.59 0.11 0.66 – ηh(p
2) ηc(p

2) 1.4 1.4 −14

Denz et al., 2018 β = 1,α = 0 Litim flat -0.45 0.12 0.83 0.57 ηh(p
2) ηc(p

2) 4.7 2.0 2.0

Knorr and Lippoldt, 2017 β = 1,α = 0 Litim curved 0.20 -0.008 0.20 – - – 1.65 1.65 −5.43

Christiansen et al., 2018 β = 1,α = 0 Litim curved -0.38 −0.12 0.60 – – – 2.1 2.1 −3.5

We caution that where several “avatars” of a coupling are present these are related by STIs. Accordingly not all critical exponents are physical.

to higher dimensions (Ambjorn et al., 1991; Godfrey and Gross,
1991; Gross, 1992). A universal continuum limit might exist if
the couplings are tuned to critical values while the tensor size
N is taken to infinity (Gurau, 2011). This limit corresponds to
a fixed point of an abstract, non-local RG flow set up in the
tensor size N, Brezin and Zinn-Justin (1992) and Eichhorn and
Koslowski (2013). This coarse-graining flow goes from many
degrees of freedom (large N), to fewer degrees of freedom (small
N). It is background independent by making no reference to
locality or spacetime. Therefore, if a viable fixed point, leading to
a physically acceptable phase of spacetime (where the “emergent”
spacetime is four dimensional at large scales) can be identified,
this provides an indication for a universal continuum limit -
i.e., asymptotic safety - in a background independent setting. In
Eichhorn and Koslowski (2013) an FRG approach was proposed
for matrix models and generalized for tensor models in Eichhorn
and Koslowski (2018), also triggering activity in related group
field theories (e.g., Benedetti et al., 2015; Ben Geloun et al., 2018).

4.2.5. Toward Asymptotically Safe Phenomenology in

Astrophysics and Cosmology
As a candidate for a model of quantum spacetime, asymptotic
safety should explain the structure of spacetime in the very
early universe (see Bonanno and Saueressig, 2017) for a review
and in those regions of black-hole spacetimes that contain
classical curvature singularities. Within the FRG language, the
UV physics is encoded in the limit of the full effective action
Ŵk→0 in which physical scales, e.g., curvature scales, are taken
to (trans)planckian values. External physical scales can act
as an IR cutoff for quantum fluctuations, as is most easily
seen for the external momenta in scattering processes. This
motivates the use of “RG improvement” techniques that provide
quantum-gravity “inspired” models. The RG-improvement is
performed by upgrading all couplings to running couplings and
subsequently identifying k with a physical scale of the system
in question, either at the level of the action, the equations of
motion or the classical solutions. In settings with a high degree
of symmetry and correspondingly a single physical scale, the
identification is unique and dictated by dimensional arguments
(e.g., k2 ∼ R is the unique choice for a deSitter-type setting).“RG
improved” results indicate dimensional reduction of the spectral

dimension (Lauscher and Reuter, 2005; Reuter and Saueressig,
2011; Calcagni et al., 2013), singularity resolution in black holes
(Bonanno and Reuter, 1999, 2000, 2006; Falls et al., 2012; Becker
and Reuter, 2012; Falls and Litim, 2014; Koch and Saueressig,
2014a,b; Kofinas and Zarikas, 2015; Pawlowski and Stock, 2018;
Adeifeoba et al., 2018), finite entanglement entropy (Pagani and
Reuter, 2018) as well as an inflationary regime generated through
quantum gravity effects (Bonanno and Reuter, 2008; Bonanno
et al., 2011a,b; Reuter and Saueressig, 2013; Kofinas and Zarikas,
2016).

5. ASYMPTOTICALLY SAFE QUANTUM
GRAVITY AND MATTER

Our universe contains gravitational and matter degrees of
freedom which are coupled to each other. Thus, to understand
the quantum structure of spacetime in our universe it is neither
necessary nor sufficient to show consistency of quantum- gravity
models disregarding matter. This does not imply that quantum
gravity must be a unified theory of all interactions, or that it needs
to contain matter as fundamental degrees of freedom. It simply
means that at observationally accessible scales accessible, all
degrees of freedom, gravitational and matter, must be accounted
for and their predicted dynamics compatible with observations.
As the Standard Model contains NS = 4 scalars, NV = 12 and
ND = 24 fermions (including right-handed neutrinos) but there
is only one metric, the microscopic gravitational dynamics might
even be well-approximated by the dynamics obtained from an
appropriate large Ni approximation.

The measured Higgs mass of Mh ≈ 125GeV (Aad, 2012;
Chatrchyan, 2012) lies within a narrow band where no new
physics is required for the consistency of the Standard Model
below the Planck scale. A Higgs mass higher than about 180
GeV (Hambye and Riesselmann, 1997) leads to Landau-pole
type behavior in the quartic coupling below the Planck scale. In
the absence of higher-order terms in the Higgs potential (see
e.g.,Branchina and Messina, 2013; Gies et al., 2014; Eichhorn
et al., 2015) the lower bound on the Higgs mass from absolute
vacuum stability lies at Mh = 129GeV in a three-loop study for
3NP = MPl, (Bezrukov et al., 2012), rendering the electroweak
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vacuummetastable. As its lifetime exceeds the age of the universe
(Elias-Miro et al., 2012), see Markkanen et al. (2018) for a review,
the next scale of new physics for the Standard Model could be
the Planck scale. Such a “desert” provides an exciting opportunity
for quantum gravity: The initial conditions for the RG flow of
matter interactions are set by quantum gravity at the Planck scale.
In the absence of the “desert,” new physics at intermediate scales
could shield the quantum gravity scale from view. Conversely, in
a “desert”-like setting, there is a direct link between Planck-scale
physics and electroweak-scale physics.

5.1. Impact of Quantum Gravity on Matter
There are two effects of asymptotically safe gravity on matter
in truncated FRG studies. Firstly, it generates nonzero fixed-
point values for particular higher-order matter couplings,
see section 5.1.1. Secondly, it impacts the scale dependence
of the canonically marginal Standard Model couplings, see
section 5.1.2. Both effects result in observational consistency
constraints on the microscopic gravitational parameter space.

5.1.1. Matter Interacts in the Presence of

Asymptotically Safe Quantum Gravity
The interacting nature of the asymptotically safe gravitational
dynamics percolates into the matter sector. There cannot be UV
fixed point with all matter interactions set to zero, Eichhorn and
Gies (2011)11 12. Interactions respecting the global symmetries
of the kinetic terms for matter fields cannot be set to zero
consistently (Eichhorn and Held, 2017). Finite contributions to
their beta functions are generated by gravitational fluctuations.
These prevent a free fixed point, as they are independent of the
matter coupling and instead scale with the Newton coupling
G (Eichhorn and Gies, 2011; Eichhorn, 2012; Eichhorn et al.,
2016; Christiansen and Eichhorn, 2017; Eichhorn andHeld, 2017;
Eichhorn et al., 2018e). Thus, the free fixed point that exists in the
limit of vanishing Newton coupling, G → 0, is shifted to a finite
value, the shifted Gaussian fixed point (sGFP). Matter couplings
χ̄ invariant under the global symmetries of the kinetic terms13

feature canonical dimensions dχ̄ < 0 in d = 4. Schematically,
the FRG beta function reads

βχ = −dχ̄χ + #1Geffχ + #2 G
2
eff + #3 χ#. (51)

We focus on # = 2 (see Eichhorn and Gies, 2011; Eichhorn, 2012;
Eichhorn et al., 2016; Christiansen and Eichhorn, 2017; Eichhorn

11That four-fermion interactions are generated by quantum gravity fluctuations

but remain finite implies that chiral symmetry, protecting the light fermions of the

StandardModel, remains intact (see alsoMeibohm and Pawlowski, 2016; Eichhorn

and Held, 2017). The effective background curvature in the UV can nevertheless

break chiral symmetry (Gies and Martini, 2018).
12In d 6= 4, where specific matter models feature interacting fixed points, it is

an intriguing question whether a new, combined universality class for matter and

asymptotically safe gravity exists (see e.g., Elizalde et al., 1996; Percacci and Vacca,

2015; Labus et al., 2016).
13 Notwithstanding arguments that suggest that quantum gravity should break

global symmetries (Kallosh et al., 1995), studies of the FRG flow in truncations

indicate the opposite result. This might be tied to the potential existence of black-

hole remnants in asymptotic safety (Bonanno and Reuter, 2000; Falls et al., 2012).

This implies that, e.g., Standard-Model couplings do not feature a contribution

∼ #2, only a term∼ #1.

FIGURE 10 | The weak gravity bound in the (G,µ = −23) plane for the

Yang-Mills system (from Christiansen and Eichhorn, 2017) in orange, bounded

by the dark dashed line, and the weak gravity bound in scalar-fermion systems

(from Eichhorn et al., 2016; Eichhorn and Held, 2017) in dark red, bounded by

the red continuous line, lie close to each other.

and Held, 2017). Geff = G
1+µ

− G
(1+µ2)

parameterizes the effective

strength of gravity fluctuations in the Einstein-Hilbert truncation
(see Eichhorn and Held, 2017) for higher-order terms. The fixed
points are

χ1/2 ∗ =
d − #1 Geff ±

√

−4#2 #3 G
2
eff

+ (#1Geff − dχ̄ )2

2 #3
, (52)

such that χ1 ∗ is the sGFP. For sign#3 = sign#2, these two fixed
points collide at

G eff, crit =
dχ̄

#1 − 2
√
#2 #3

. (53)

Beyond, the sGFP is complex, thus G > Geff, crit is inconsistent.
As Geff measures the effective strength of gravity fluctuations,
Geff, crit marks the (truncation dependent) weak-gravity bound.
Once gravitational fluctuations exceed this bound, cf. Figure 10,
they trigger novel divergences in matter couplings, restricting the
viable microscopic parameter space to the remaining region. As
the induced matter couplings are canonically irrelevant, they are
power-law suppressed below the Planck scale and presumably
irrelevant for particle physics at lower scales.

5.1.2. A Link That Could Matter: From the Planck

Scale to the Electroweak Scale
Asymptotically safe gravity could uniquely fix the values of
marginally irrelevant Standard Model (SM)-couplings (Abelian
gauge couplings, Yukawas, Higgs quartic) at the Planck scale.
Thismight allow to confront asymptotic safety with observations,
since those couplings run logarithmically below the Planck scale,
retaining a “memory” of their Planck-scale values.

For the marginal SM couplings gSM, the quantum-gravity
contribution to βgSM is linear in gSM, as the gravitational RG flow
cannot generate the SM interactions once they are set to zero due
to their distinct symmetry structure (Eichhorn and Held, 2017).
Technically, this is encoded in the diagrams underlying the FRG
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flow (see, e.g., Eichhorn et al., 2016; Christiansen and Eichhorn,
2017; Eichhorn and Held, 2017; Eichhorn, 2018; Eichhorn and
Versteegen, 2018). Hence, the quantum-gravity contribution is

βgSM

∣

∣

∣

grav
= −fgSM gSM, (54)

where fgSM ∼ G is the contribution of metric fluctuations to the
corresponding interaction vertex and additionally contains the
gravity contribution to the anomalous dimensions of the matter
fields. This contribution acts like a scaling dimension, i.e., like
an effective change in spacetime dimensionality. For canonically
irrelevant couplings, a UV completion requires fgSM > 0,
resembling an effective dimensional reduction. It is unclear
whether and how this fits with other indications for dimensional
reduction in quantum gravity (Carlip, 2017).

Asymptotic freedom in non-Abelian gauge theories is a key
cornerstone in the construction of the SM. This property could
persist, as

βg = −fg g − #g g
3, ... (55)

for gauge couplings g, where fg ≥ 0 holds in all FRG studies
to date (Daum et al., 2010; Folkerts et al., 2012; Harst and
Reuter, 2011; Christiansen and Eichhorn, 2017; Eichhorn and
Versteegen, 2018; Christiansen et al., 2017). #g depends on the
gauge group and matter content while the gravity contribution
is blind to the internal index structure and accordingly gauge-
group independent. Additional gravity contributions are indirect
ones, arising through quantum-gravity-induced higher-order
interactions which couple into the flow of the gauge coupling
(Christiansen and Eichhorn, 2017) (note that the sign of the
w-term in η is incorrect; accordingly this indirect contribution
strengthens asymptotic freedom.)

The non-universality of beta functions, setting in at three
loops for dimensionless couplings, starts at leading order for
dimensionful couplings. Hence, the gravity contributions to beta
functions in approximations differ in different schemes (see
Robinson and Wilczek, 2006; Pietrykowski, 2007, 2013; Toms,
2007, 2008, 2009, 2010, 2011; Ebert et al., 2008, 2009; Mackay
and Toms, 2010; Rodigast and Schuster, 2010; Anber et al.,
2011; Felipe et al., 2011; Anber and Donoghue, 2012; Ellis
et al., 2012; Narain and anishetty, 2013; Gonzalez-Martin and
Martin, 2017) for perturbative studies. At the level of observables,
such dependences must cancel. The same physics is encoded
in different ways in distinct schemes. As the FRG is applicable
to settings with dimensionful couplings (including a multitude
of extensively probed universality classes in statistical physics),
one could argue that it is well-suited to explore quantum gravity
in simpler approximations. The non-universality of the gravity-
contribution is reflected in the regulator-dependence of fg in

truncations: Within a background-field study, fg = 6
π
G81

1(0)

(Daum et al., 2010), where 81
1(0) > 0 always holds, but the

value depends on the choice of regulator, e.g., 81
1(0) = 1 for the

Litim-cutoff and 81
1(0) = π2/6 for the exponential cutoff. This

dependence is expected to cancel against regulator-dependence
of gravitational fixed-point values (at least at the level of physical
observables).

FIGURE 11 | The transplanckian RG flow for α = g2
Y
/(4π ) described by

Equation (56) features trajectories emanating from the free fixed point (black,

continuous line), which approach the interacting fixed point at α*. One unique

trajectories (blue, thin line) is the fixed-point trajectory for the interacting fixed

point. UV unsafe trajectories are pulled toward the IR fixed point as well (red,

dashed lines). Adapted from Eichhorn et al. (2018d).

For the Abelian gauge coupling the free fixed point is IR
attractive in the absence of gravity, such that the observation
of a nonvanishing Abelian gauge coupling in the IR presumably
prevents an asymptotically free UV completion of the SM (Gell-
Mann and Low, 1954). The quantum gravity contribution is the
same as in the non-Abelian case (cf. Equation 55), thus

βgY = −fg gY + 41

6

g3Y
16π2

+ ... (56)

Fixed points of Equation (56) lie at

gY ,∗ 1 = 0, gY ,∗ 2 =
√

fg 6 · 16π2

41
. (57)

The first is IR repulsive, the second IR attractive. If it lies at small
enough values, then higher-order terms remain negligible and
Equation (56) suffices to analyze the consequences. According
to Equation (56), the IR repulsive fixed point at gY ∗ 1 = 0 can
be connected to a range of values for gY at the Planck scale14.
However, no values above an upper bound, gY = gY ∗ 2, can be
reached, as gY ∗ 2 is IR attractive, cf. Figure 11. Only one unique
trajectory emanates from gY ∗ 2. Along this trajectory, gY (k) =
const until quantum-gravity contributions switch off below the
Planck scale, where fg quickly drops to tiny values and SM fields
drive the flow. Unlike in the SM without the gravity-extension,
the initial condition for the RG flow of gY is fixed at the Planck
scale. Testing whether this results in an observationally viable
value at the electroweak scale constitutes a strong observational
test of the model. It also highlights that confronting quantum
gravity with observations might be possible without reaching
Planckian energies.

14Couplings that are asymptotically free, not asymptotically safe, already run at

transplanckian scales.
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The fixed-point structure underlying such “retrodictions” was
found for the Abelian gauge coupling in Harst and Reuter (2011),
further explored in Eichhorn and Versteegen (2018), cf. right
panel in Figure 12 and extended to a GUT setting in Eichhorn
et al. (2018d).

In Zanusso et al. (2010); Vacca and Zanusso (2010); Oda and
Yamada (2016); Eichhorn et al. (2016); Eichhorn andHeld (2017);
and Hamada and Yamada (2017), the gravity-contribution fy to
the Yukawa sector was calculated. Using beta functions of the
form

βyt (b) = yt (b)

16π2

(

3y2
b (t)

2
+

9y2
t (b)

2
− 9

4
g22 − 8g23

)

− fy yt (b)

−3yt (b)

16π2

(

1

36
+ Y2

t (b)

)

g2Y , (58)

for the quarks of the third generation, withYt = 2/3,Yb = −1/3,
supplemented by the assumption that the gauge sector of the SM
is asymptotically free, and gravitational fixed-point values from a
background-approximation results in a uniquely fixed top mass
of about 170 GeV (Eichhorn and Held, 2018), cf. left panel of
Figure 12.

Intriguingly, the SM beta functions with gravity in the
approximation defined by Equations (57, 58) also admit an
interacting fixed point such that the top Yukawa, bottom Yukawa
and Abelian gauge coupling are fixed uniquely. They reach IR
values in the vicinity of the observed ones, if the two gravity
contributions fg and fy take appropriate values (Eichhorn and
Held, 2018). In this scenario, the difference between top mass
and bottom mass is generated through an interacting fixed point
induced by gravity due to their different charges.

The fixed-point structure could be simpler in the scalar sector.
Asymptotically safe quantum gravity flattens the Higgs potential:
If all other SM couplings are asymptotically free, a fixed point
at vanishing Higgs potential exists in line with intact shift-
symmetry (Eichhorn and Held, 2017). It is IR attractive (Narain
and Percacci, 2010; Percacci and Vacca, 2015; Labus et al., 2016;
Oda and Yamada, 2016; Hamada and Yamada, 2017; Eichhorn,
2018). This extends to the Higgs portal coupling to scalar dark
matter (Eichhorn, 2018). Taking the corresponding fixed-point
values λh∗ = 0 (for the Higgs quartic) and λhχ ∗ = 0 (for the
Higgs portal coupling) as initial conditions for the RG flow at the
Planck scale, and setting all SM couplings to their observationally
preferred Planck-scale values, one reaches a Higgs mass in the
vicinity of the observed value, while the Higgs portal coupling
remains zero at all scales. The first is a prediction (Shaposhnikov
and Wetterich, 2010) put forward before the discovery of the
Higgs at the LHC (Aad, 2012; Chatrchyan, 2012), see also
Bezrukov et al. (2012). The second appears to be consistent with
the non-detection of a scalar Higgs portal through direct searches
(Athron et al., 2017; Aprile et al., 2018).

“Retrodictions” of SM couplings could be a much more
generic consequence of quantum gravity than just of asymptotic
safety as discussed in section 2.3.

5.2. Impact of Matter on Quantum Gravity –
Backreaction Matters?
The impact of quantum fluctuations of matter on the
gravitational fixed point has been studied in simple truncations.
The corresponding theory space also contains non-minimal
matter-curvature couplings (Narain and Percacci, 2010; Percacci
and Vacca, 2015; Eichhorn and Lippoldt, 2017; Eichhorn et al.,
2018e).

Matter fields deform the gravitational fixed point in
truncations. Adding a small number of matter fields leads to
the continued existence of a viable interacting fixed point. At
larger number of matter fields, there are indications that further
extensions of the truncation could be required (Meibohm et al.,
2016; Eichhorn et al., 2018b).

Assuming that asymptotic safety in gravity is driven by
antiscreening metric fluctuations inducing a fixed point in the
Newton coupling, the matter contribution to βG is critical.
Specifically,

βG

∣

∣

∣

matter
= NS G

2 aS + ND G2 aD + NV G2 aV , (59)

where aS > 0 (Donà et al., 2014; Percacci and Vacca, 2015;
Meibohm et al., 2016; Labus et al., 2016; Don‘a et al., 2016;
Biemans et al., 2017; Alkofer and Saueressig, 2018; Eichhorn
et al., 2018b), agreeing with perturbative studies for d = 2 + ǫ

dimensions (Christensen and Duff, 1978) and studies of the
one-loop effective action using heat-kernel techniques (Kabat,
1995; Larsen and Wilczek, 1996). Similarly, fermions screen the
Newton coupling15 aD > 0 (Donà et al., 2014; Meibohm et al.,
2016; Eichhorn et al., 2018c), in agreement with perturbative
studies (Kabat, 1995; Larsen and Wilczek, 1996). For vectors,
aV < 0 (Donà et al., 2014; Christiansen et al., 2017; Biemans
et al., 2017; Alkofer and Saueressig, 2018; Eichhorn et al., 2018c),
also found with perturbative techniques (Kabat, 1995; Larsen
and Wilczek, 1996). Background and fluctuation results are in
agreement on this result (for fluctuation results, it is crucial to
include the anomalous dimensions Don‘a et al., 2016; Eichhorn
et al., 2018b).

A strong indication for (near-perturbative) asymptotic safety
in matter-gravity systems comes from a comparison (Eichhorn
et al., 2018b,c) of distinct “avatars” of the Newton coupling
(Don‘a et al., 2016). It can be read off from the three-graviton
vertex as well as gravity-matter vertices, just like the gauge
coupling in gauge theories. For a dimensionless gauge coupling
in the perturbative regime, two-loop universality equates the
different avatars. Beyond perturbation theory, the Slavnov-
Taylor-identities relating the avatars become nontrivial. Simply
put, the stronger quantum effects are, the less trivial are the
relation of classically equal couplings. Eichhorn et al. (2018b,c)

15For the background Newton coupling, this is more subtle: Choosing to impose

the regulator on the spectrum of ∇2, or on /∇2 = ∇2 − R/4 results in a different

sign of the fermionic contribution to the running of G (Dona and Percacci, 2013

see also Alkofer, 2018; Alkofer and Saueressig, 2018). This highlights that the

(unphysical) background-field dependence of the regulator can alter results in

the background approximation in simple truncations, suggesting the need for a

fluctuation calculation. The first choice agrees with the result from fluctuations

calculations.
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FIGURE 12 | From Eichhorn and Held (2018) and Eichhorn and Versteegen (2018). Based on the beta functions (Equations 56, 58) with fg > 0 and fy > 0,

respectively, an IR attractive fixed point results in a unique trajectory and serves as an upper bound.

FIGURE 13 | Both panels: RG flows in an approximation as in Equation (56), see Eichhorn and Held (2018) and Eichhorn and Held (2018) for details. Left panel: Flow

of gauge couplings and top and bottom Yukawa with quantum-gravity parameterized by fg = 9.8 · 10−3 and fy = 1.13 · 10−4 above the Planck scale and fg = 0 = fy

below the Planck scale as in Eichhorn and Held (2018). Right panel: Standard-Model RG flow including running gravitational couplings as in Donà et al. (2014) and is

taken from Eichhorn and Held (2018).

observe an effective universality of distinct avatars of the Newton
coupling, which agree within an estimate of the systematic
truncation error. This signals a near-perturbative nature of
asymptotically safe gravity. Further, the delicate cancellations
required between different contributions to the beta functions
in order to achieve effective universality strongly point toward
a physical fixed point instead of a truncation artifact.

6. OUTLOOK

Asymptotically safe models are of inherent theoretical interest
when it comes to a comprehensive understanding of fundamental
quantum field theories. Exciting progress in the last few years
even hints at a possibility of asymptotically safe extensions of
the Standard Model – with or without gravity. In quantum
gravity, the idea of asymptotic safety resonates with a wider effort
to analyze quantum spacetime from a Renormalization Group
point of view. Hence, the many intriguing open questions that

remain to be answered in this area appear worth tackling, and
the new (asymptotically safe) perspective on high-energy physics
is exciting and potentially useful to explore.
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