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Fuzzy Dark Matter (FDM), motivated by string theory, has recently become a hot

candidate for dark matter. The rest mass of FDM is believed to be ∼10−22 eV and the

corresponding de-Broglie wave length is ∼1 kpc. Therefore, the quantum effect of FDM

plays an important role in structure formation. In order to study the cosmological structure

formation in FDMmodel, several simulation techniques have been introduced. We review

the current status and challenges in the cosmological simulation for the FDM model in

this paper.
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1. INTRODUCTION

The nature of dark matter is one of the key mysteries of modern cosmology and physics. Dark
matter is widely believed to be dominated by cold dark matter (CDM), supported by different
observations such as the mass-to-light ratio of clusters of galaxies (Bahcall et al., 1995), the rotation
curves of galaxies (Einasto et al., 1974), the Bullet Cluster (Clowe et al., 2006), the cosmicmicrowave
background (CMB) (Ade et al., 2016) and the large-scale structure of the universe (Tegmark et al.,
2004). However, despite its success on large scales, the CDM paradigm faces three problems on
small scales, known as the “small-scale crisis” (Weinberg et al., 2015): (i) the missing satellite
problem, (ii) the cusp-core problem, and (iii) the too-big-to-fail problem. The key point of these
problems is that CDM model predicts too much or too compact structures on small scales. Two
approaches are under discussion to solve these problems. One is to smooth out the small-scale
structure by astrophysical processes (Pontzen and Governato, 2014), and the other is to introduce
alternative dark matter models like warm dark matter (WDM) (Colin et al., 2000), decaying dark
matter (DDM) (Cheng et al., 2015), self-interacting dark matter (SIDM) (Spergel and Steinhardt,
2000) and fuzzy dark matter (FDM) (Hu et al., 2000).

In the FDM model, the dark matter particles are made of ultra-light bosons in Bose-Einstein
condensate (BEC) state (Marsh, 2016). As an alternative to CDM, it suppresses small-scale
structures while keeps the success of CDM on large scales (Du et al., 2017; Mocz et al., 2017; Zhang
et al., 2018a). The FDM model is phenomenologically different from the CDM model due to its
effective "quantum pressure" (QP) which originates from the uncertainty principle (Hu et al., 2000).
Apart from FDM, this model has many other names, such as wave dark matter (8DM), ultra-light
axion (ULA), scalar field dark matter (SFDM), which is mainly due to historical reasons. These
models have slightly different self-interactions and theoretical considerations. There are quite a
few theoretical studies of such models (Khlopov et al., 1985; Sahni and Wang, 2000; Chavanis,
2012; Mishra et al., 2017). However, models in which dark matter has no self-interaction are
phenomenologically the same as FDM. The history of FDM and implementation is summarized
in Lee (2017).
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The predictions of FDM with mass∼ 10−22 eV are consistent
with observations of the large-scale structure (Hlozek et al.,
2015), high-z galaxies, CMB optical depth (Bozek et al., 2015),
and the density profiles of dwarf spheroidal galaxies (Schive
et al., 2014a). The tightest constraints come from the comparison
of the recent Lyman-alpha forest observations with FDM
hydrodynamic simulations (Armengaud et al., 2017; Iršič et al.,
2017; Kobayashi et al., 2017). These works claimed that FDM
model with particle mass less than 10−21 eV is ruled out at
95% confidence level. However, it has been pointed out that
the quantum pressure plays quite non-trivial role in structure
formation, which is neglected in the hydrodynamic simulations
for Lyman-alpha forest. The simulation uncertainties are also
important issues for making such tight constraints (Zhang et al.,
2018a).

In order to constrain the parameter space of the FDM model,
or to look for smoking-guns for it, simulation is extremely
important. There have been eight different codes proposed to
perform simulations for the FDM model (Schive et al., 2014a;
Mocz and Succi, 2015; Schwabe et al., 2016; Veltmaat and
Niemeyer, 2016; Mocz et al., 2017; Edwards et al., 2018; Nori
and Baldi, 2018; Zhang et al., 2018b). They can be classified
into two major approaches: solving the Schrödinger-Poission
equation or the “equivalent” Madelung equations. We reviewed
these works and summarized them into a table. The pros and
cons of these different simulation methods were clearly stated.
We gave some comments on the current status and challenges
for FDM simulation.

The paper is organized in the following sections: we review
the basic equations necessary for the FDM model in section 2,
the simulation treatments and code comparison in section 3, the
current status and challenges of FDM simulation in section 4, and
finally we discuss about possible smoking-gun signatures for the
FDMmodel.

2. BASIC EQUATIONS

To study the structures on galactic scales in the low red-shift
universe, it is safe to ignore the self-interaction of the scalar field
describing the FDM. The action has the following form

S =
∫

d4x

h̄c2

√

−g

{

1

2
gµν∂µφ∂νφ −

1

2

m2c2

h̄2
φ2

}

, (1)

where we follow the convention in Hui et al. (2017). The related
de Broglie wavelength of particles with rest massm is

λ

2π
=

h̄

mv
= 1.92 kpc

(

10−22 eV

m

)(

10 km s−1

v

)

. (2)

Using the least action principle and WKB approximation in the
non-relativistic limit, one can simplify the governing equations
of the scalar field to the Schrödinger-Poisson equations,

ih̄
d9

dt
= −

h̄2

2m
∇

29 +mV9 , (3)

where 9 is the plane wave description of the scalar field φ,

φ =

√

h̄3c

2m

(

9e−imc2t/h̄ + 9∗eimc2t/h̄
)

, (4)

and V is gravitational potential,

∇
2V = 4πGm|9|2. (5)

The wave function 9 can be written as

9 =
√

ρ

m
exp

(

iS

h̄

)

(6)

in terms of the number density of FDM particles ρ/m, while we
can define the gradient of S to be the momentum,

∇S = mv. (7)

After transforming the wave function, the Schrödinger-Poisson
equations can be written in an equivalent fluid dynamics form
with the continuity equation,

dρ

dt
+ ∇ · (ρv) = 0, (8)

and the Euler equation,

dv

dt
+ (v · ∇) v = −∇ (Q+ V) , (9)

where the quantum pressure Q is defined as

Q = −
h̄2

2m2

∇
2√ρ
√

ρ
= −

h̄2

2m2

(

∇
2ρ

2ρ
−

|∇ρ|2

4ρ2

)

. (10)

Equations (8) and (9) are known as the Madelung equations
(Spiegel, 1980; Uhlemann et al., 2014; Marsh, 2015). In
cosmological simulations, we also need to consider the expansion
of the universe. Equation (3) should be rewritten as:

ih̄

(

d9

dt
+

3

2
H9

)

= −
h̄2

2m
∇

29 +mV9 , (11)

where H = ȧ/a is the Hubble parameter and a is the scale factor
of the universe. The Madelung equations change accordingly

dρ

dt
+ 3Hρ +

1

a
∇ · (ρv) = 0, (12)

dv

dt
+Hv +

1

a
(v · ∇)v = −

1

a
∇V −

1

a3
∇Q. (13)

In short, the difference between the FDM and CDM models lies
in the existence of the quantum pressure Q. The derivation of
the quantum pressure is well described in text books about BEC.
Since Q ∝ m−2, the quantum pressure in lab BEC systems is
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negligible. However, this effect is important in the FDM model
whose particle mass is aroundm ∼ 10−22 eV.

From the linear perturbation of the Equations (12) and (13),
the density contrast evolves according to

δ̈ + 2Hδ̇ +
(

h̄2k4

4m2a4
−

4πGρ̄

a3

)

δ = 0. (14)

A solution is given by a plane wave with wave number

kJ(a) =
(

16πGρ̄a3m2

h̄2

)1/4

a1/4. (15)

If k < kJ(a), gravity dominates and the structure will collapse,
while modes with k > kJ(a) will expand due to the repulsive
quantum pressure. So this is the Jeans wavenumber of the FDM
model. The growing mode D+(k, a) and the decaying mode
D−(k, a) of Equation (14) are

D+(k, a) =
[(

3− x2
)

cos x+ 3x sin x
]

/x2

D−(k, a) =
[(

3− x2
)

cos x− 3x sin x
]

/x2
, x(k, a) =

√
6k2/k2J (a).

(16)

For k ≪ kJ(a), the two modes return to the CDM solutions
D+ ∝ a and D− ∝ a−2/3, meaning that the FDM and CDM have
the exact same behavior on the large scales. On the other hand,
for k ≫ kJ(a), the growth of the structure in FDM is suppressed
because D+ ∝ k−4. But the Jeans wave number kJ(a) ∝ a1/4

is growing over time, and so the small-scale structures will
eventually start growing: the smaller the scale (the larger the wave
number), the later this mode started growing.

3. SIMULATION REVIEW

A typical N-body cosmological simulation contains the following
steps:

1. Distribute the simulation particles in the simulation box
homogeneously and isotropically. The FDM model has the
same preparation of these pre-initial conditions as the CDM
model.

2. Calculate the matter power spectrum at a relatively high
redshift, such as z = 99, according to the prediction of the
linear perturbation theory. The modification brought by the
FDMmodel can be either calculated by AxionCAMB (Hlozek
et al., 2015), or given by the empirical transfer function (Hu
et al., 2000),

PFDM(k) = T2
F(k)PCDM(k), TF(k) ≈

cos x3

1+ x8
, (17)

where x = 1.61
( m

10−22 eV

)1/18 k

kJeq
, kJeq =

9
( m

10−22 eV

)1/2
Mpc−1. It has been shown that using

these two methods makes little difference, and the empirical
transfer function is a good approximation (Armengaud et al.,
2017).

3. Perturb the distribution of particles according to the matter
power spectrum;

4. Solve the Euler equation and Poisson equation iteratively
(continuity equation is naturally obeyed using N-body
simulation) until the desired redshift, such as z = 0. To
incorporate the quantum pressure into the Lagrangian particle
tracking simulation scenario, there are four different codes
available, summarized in Table 1.

The first three methods in Table 1 are based on the traditional
SPH method. The essence of the SPH method is to first assign
all physical quantities (like density ρ, velocity v and pressure P)
on each simulation particles, then calculate the physical fields by
a special interpolation method — kernel smoothing, which in
turn give rise to the time evolution of the simulation particles
through the Euler equation and the equation of state. The kernel
smoothing of the field is simplly:

Oi =
∑

mj
Oj

ρj
W
( rij

h

)

, (18)

where W is a spherical function with finite support, rij is the
distance between two particles, and h is the smoothing parameter,
notice that it is not the dimensionless Hubble parameter. The
quantum pressure (10), however, not only depends on the field
itself but also its derivatives up to second order. The three
different implementations of the SPH methods listed above use
three different method to calculate derivatives.

Veltmaat and Niemeyer (2016) used the particle-in-cell
method:

1. Assign the physical quantities of each simulation particle onto
an auxiliary cubic grid;

2. Calculate the derivatives of the physical fields with the finite
difference method;

3. Interpolate the derivatives of physical fields back to the
positions of the simulation particles.

The additional force coming from quantum pressure is given by

− ∇Qi =
h̄2

2m2
(1x)3

∑

j,k,l

(

∇2√ρ
)

j,k,l
√

ρj,k,l
mi∇W

(
∣

∣ri − xj,k,l

∣

∣

h

)

,

(19)
where the seven-point stencil is used to calculate the Laplacian:
(

∇2√ρ
)

j,k,l
= √

ρj+1,k,l +
√

ρj−1,k,l +
√

ρj,k+1,l +
√

ρj,k−1,l +√
ρj,k,l+1 +

√
ρj,k,l−1 − 6

√
ρj,k,l.

Mocz and Succi (2015) and Nori and Baldi (2018) used similar
formulae:

∇Oi =
∑

mj
Oj − Oi

ρj

2j

2i
∇W

( rij

h

)

,

∇2Oi =
∑

mj
Oj − Oi

ρj

2j

2i
∇2W

( rij

h

)

−
2

2i
∇Oi · ∇2i,

(20)

with different choices of the auxiliary function: 2i = 1 for Mocz
and Succi (2015) and 2i =

√
ρi for Nori and Baldi (2018). The
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TABLE 1 | Summary of the Lagriangian based simulation codes for FDM model (Madelung solvers).

Author Method (Code base) Cosmo-Sim Granular structure Solitonic core Activity Open source

Veltmaat and

Niemeyer, 2016

PIC (NyX) Yes No Yes Yes No

Mocz and Succi, 2015 SPH No No – No No

Nori and Baldi, 2018 SPH (P-Gadget3) Yes – – Yes No

Zhang et al., 2018b PP (Gadget2) Yes No Yes Yes Yes

force contributed by the quantum pressure is given by

− ∇Qi =
h̄2

2m2

∑

j

mj

fjρj

(

∇
2ρj

2ρj
−
∣

∣∇ρj
∣

∣

2

4ρ2
j

)

∇W
( rij

h

)

, (21)

where fj = 1+
hj

3ρj

∑

kmk

∂W
(

rjk/hj
)

∂hj
is a correcting factor when

variable smoothing length is used (Springel andHernquist, 2002).
All the three methods above involve the estimation of density

and its derivatives on the grids or at the positions of the particles,
and the force (19) or (21) has the form of many body interaction.
Therefore, their computational costs are relatively high. Zhang
et al. (2018b) improves the SPHmethod by reducing the quantum
pressure to a two-body particle-particle interaction; hence the
additional force can be easily added to the tree algorithm in the
TreePM method without the need to resort to the SPH method,
and the computational time are greatly reduced.

From Table 1, we conclude that all these Lagrangian based
simulations cannot produce granular structures which are
expected to appear as the result of quantum interference.
There are two possible explanations that may be viewed as the
fundamental flaws of Lagrangian based simulations of the FDM
model:

• The Schrödinger-Poisson equations and Madelung equations
are not strictly equivalent. As proved in Wallstrom (1994), a
quantization condition

∮

L v · dl = 2π j (j ∈ Z and L is any
closed loop.) is necessary to recover the Schrödinger-Poisson
equations from the Madelung equations, which is not checked
and possibly not obeyed in Lagrangian based simulations.

• The smoothing kernel method which is indispensable in
Lagrangian based simulations cannot accurately estimate
the matter density field and its second order derivative
simultaneously if merely a single smoothing length is used. As
proved in Silverman (1978), the relative error of the estimation
of the second order derivative of the density field could
be as large as 100% when the smoothing length is chosen
to minimize the error of density estimation (Merritt, 1996;
Dehnen, 2001), to solve the Poisson equation.

It is a consensus that in the center of a virialized FDM halo, there
is a solitonic core made of wave function in the ground state
with the same phase (Schive et al., 2014b). Although the core-
like structures appear in the Lagrangian based simulations, they
are not trustworthy due to the two reasons listed above.

Apart from Lagrangian based simulations, FDM model can
also be studied by Eulerian based simulations summarized in
Table 2. The physical fields on the grid also need to be suitably set

at the initial moment according to the cosmological linear theory
prediction. The time evolution of the wave function is given by

9 (x, t + 1t) = T exp

[

−
i1t

h̄

∫

dt′
(

−
h̄2

2m
∇2 +mV

(

x, t′
)

)]

9 (x, t)

(22)
where T is the time-ordering symbol. For a sufficiently small time
step, it can be approximated as

9 (x, t + 1t) = exp

(

ih̄1t

2m
∇2 −

im1t

2h̄
V (x, t + 1t)

−
im1t

2h̄
V (x, t)

)

9 (x, t) , (23)

which can be further splitted into three operations according to
the Baker–Campbell–Hausdorff formula:

9 (x, t + 1t) = exp

(

−
im1t

2h̄
V (x, t + 1t)

)

exp

(

ih̄1t

2m
∇2

)

exp

(

−
im1t

2h̄
V (x, t)

)

9 (x, t) . (24)

This formula has a close resemblance to the kick-drift-kick time
evolution in the particle method. The "kick" step is done in real
space, which effectively just changes the phase angle at each point.
The "drift" step is completed in the Fourier space:

D

(

1t

2

)

9 (x, t) = IFFT

{

−
ih̄

m

1t

2
k2FFT [9 (x, t)]

}

. (25)

The main differences between the Eulerian based and Lagrangian
based methods are that the original Schrödinger-Poisson
equations are solved in the former, not the transformed
Madelung equations as in the latter, and the Eulerian method can
be used to reliably estimate second order derivatives of the fields.
FromTable 2, we find thatmost of the Eulerian based simulations
can produce granular structures and solitonic cores. The sizes of
the simulation boxes in these simulations, however, are not large
enough to be considered as cosmological scale simulations. The
daunting computational costs make it too difficult to perform
simulations with box size larger than 10Mpc/h.

For current simulation codes, there have to be a trade-off
between the fidelity of the simulations and the scale of the
simulations. On one hand, both the granular structures and the
solitonic cores are smoking gun features of the FDM model, and
it is very important to understand their properties. On the other
hand, cosmological scale simulations are needed whenever large
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TABLE 2 | Summary of the Eulerain based simulation codes for FDM model (Schrödinger-Poisson solvers).

Author Method (Code base) Cosmo-Sim Granular structure Solitonic core Activity Open source

Schive et al., 2014b AMR (GAMER) No Yes Yes Yes No

Schwabe et al., 2016 AMR (Nyx) No Yes Yes Yes No

Mocz et al., 2017 Moving-mesh (AREPO) No Yes Yes Yes No

Edwards et al., 2018 Grid No Yes – Yes Yes

scale survey data are used to constrain the FDM model or the
properties of galaxy cluster are studied.

To simplify the generation of the granular structures, a self-
consistent method was introduced in Lin et al. (2018). In their
simplified model, the halo is composed of "smooth" density
distribution along the radial direction and "granular" interference
structure along the angular direction, the radial direction density
profile is given by a typical guess and the angular direction
density distribution is described by spherical harmonics. By
fitting to the simulations, they find that the fermionic Kingmodel
is the best fit energy distribution function and the generated
halo is quite similar to that in simulation. With this method,
they can generate a halo as massive as Milky Way (∼ 1012M⊙)
with granular structures. However, it is still very difficult to self-
consistently construct a very massive halo, such as a cluster scale
halo (∼ 1014M⊙), because of the limited computational power
and poor generating algorithm. Making use of the information
about the granular structures, a very promising smoking gun
detection method was introduced in De Martino et al. (2017),
Khmelnitsky and Rubakov (2014), and Porayko and Postnov
(2014) with Pulsar Timing Array. By studying the modulation of
the arriving time of pulses from many pulsars, the Pulsar Timing
Array can be used to directly detect the granularity of darkmatter
distribution in the Milky Way galaxy. The Parkes Pulsar Timing
Array collaboration has obtained the first constraints of FDM
as m > 10−23 eV (Porayko et al., 2018). This method can not
only set constraints on the rest mass of FDM particles, but also
confidently claim the existence of FDM. Only if we understand
the granular structures of the Milky Way halo in much detail,
we can make correct predictions for the modulation pattern
observed in Pulsar Timing Array.

The other smoking gun feature of the FDM model is the
existence of solitonic cores in the dark matter halos. Different
simulation groups reported that they have found solitonic cores
(Schive et al., 2014a,b; Schwabe et al., 2016; Mocz et al., 2017).
The solitonic core solution can also be obtained analytically
(Chavanis, 2011; Chavanis and Delfini, 2011). The numerical
simulations (Schive et al., 2014a,b) provide the empirical core-
halo mass relation,

xc ≈ 160(
Mh

1012M⊙
)
−
1

3 (
m

10−22 eV
)−1pc,

ρ(x) ≈
190(

m

10−22 eV
)−2(

xc

100pc
)−4

(1+ 0.091(
x

xc
)2)8

M⊙pc
−3, (26)

where xc is the solitonic core radius, m is the FDM particle mass
and Mh is the halo mass. The radius of the solitonic core is

defined as the radius where the mass density drops by a factor
of 2 from its value at the origin. This relation can be used to
compare with observations. It is believed that the dark matter
halos made of FDM should host a solitonic core in the center and
follow usual NFW profile in the outer region. However, how the
density profile transfers from soliton to the outer NFW profile
is not consistent among the simulations (Bar et al., 2018). It was
claimed that the central solitonic core profile with outer NFW
profile provide better fits than CDM predictions for the dwarf
galaxies (especially for Fornax) (Schive et al., 2014a). However, it
faces challenge from the analysis of rotation curves of many other
galaxies (Bar et al., 2018).

FDM simulations with the largest box size (50Mpc/h) were
performed in Zhang et al. (2018a). The limit of such simulations
is their poor resolution, and they are unable to resolve the
granular structures. The advantages of the Madelung solvers
are their efficiency and mature related data analysis tools.
Measured by the two large simulations Zhang et al. (2018a)
and Nori and Baldi (2018), whose algorithms are different,
the matter power spectrum at z = 0 is not only suppressed
at small scales by the modification of the initial conditions,
but also by the effect of quantum pressure with an additional
∼ 10% suppression at small scales. Such suppression is well
expected and confirmed by different simulations. However, none
of the Schrödinger-Poisson solvers measured the matter power
spectrum due to their small box sizes. Therefore, it is still
under investigation about the effect of quantum pressure in
the structure formation. It is still inconclusive from simulations
how much suppression of the matter power spectrum can be
introduced by the quantum pressure. In order to study large
scale structure and use observations like weak lensing and red
shift distortion to constrain FDM model, a much larger box size
(∼ 500Mpc/h) is necessary. This is still a challenge for all the
codes, among which the Madelung solvers are more hopeful to
reach such a goal.

Recently, it was claimed in De Martino et al. (2018) that the
dynamical evidence of the existence of the solitonic core in the
center of Milky Way was found. It was also claimed in Schive
et al. (2014b) that the existence of the solitonic core can solve the
cusp-core problem. Both of these two studies favor a FDM with
m ∼ 10−22 eV. However, the recent constraints from Lyman-
alpha forest implied that FDM with m < 10−21 eV was ruled
out (Armengaud et al., 2017; Iršič et al., 2017). Such a tension
is a problem for FDM models. Zhang et al. (2018a) suggested
that considering of the important role of quantum pressure and
systematic uncertainties may relieve this tension, but Nori et al.
(2018) with further analysis concluded that the quantum pressure
can not affect the lyman-alpha forest significantly. Hui et al.
(2017) suggested that other astrophysical processes like patchy
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reionization can relieve the tension. Therefore, FDM with m ∼
10−22 eV is still not conclusively ruled out by the observations
of Lyman-alpha forest, while more serious studies are clearly
needed.

Other than the constraints from Lyman-alpha forest, the
thickness of the stellar stream and the recent EDGES experiment
also set constraints on FDM with m > 5 × 10−21 eV and
m > 1.5 × 10−22 eV (Amorisco and Loeb, 2018; Lidz and
Hui, 2018), respectively. A recent study of rotation curves of
near-by galaxies also claimed that FDM with m < 10−21 eV
is not favored (Bar et al., 2018). These independent constraints
using different methods are also not supporting the value m ∼
10−22 eV needed to solve the small-scale crisis. If more arguments
and modifications to the current FDM model are made, we can
relieve the tensions but lose the beauty and simplicity of the FDM
model.

We notice that with m > 10−22 eV, FDM model may
still be able to solve the small-scale crisis due to the runaway
tidal disruption. The runaway tidal disruption was found in
simulations that the solitonic cores in the center of halos can
be easily tidal disrupted in a runaway pattern when they rotate
around the central massive halo (Du et al., 2018). This effect has
not been studied by other codes yet, whether it is a physical effect
or numerical illusion is unknown. A systematic study however,
considering such mechanism needs simulations with sufficiently
large box size (> 100Mpc/h) and high resolution (< 109M⊙/h)
at the same time. This is very difficult to reach now.

4. SUMMARY

In this paper, we have reviewed the basic idea of Fuzzy Dark
Matter (FDM) model and the current status of simulations for
this model. As a mini review, this work provides a short summary
for the readers to follow the state-of-the-art research of FDM.

The cosmological simulation is important for understanding
the structure formation and looking for smoking-gun signatures
for the FDM model. The current simulation codes are not
adequate to study the large-scale structure and halo properties
under the framework of FDM. The codes designed to solve the
SP equations are highly accurate, and many important features of
the FDM model such as solitonic cores and granular structures
are discovered. But these codes are too computationally heavy
to perform simulations with large box size. The codes designed
to solve the Madelung equations are less accurate, but the
suppression of the matter power spectrum and halo mass
function are given by simulations with these codes. These
codes are more efficient and compatible with existing data
analysis tools, but not accurate enough to resolve granular
structures. All of the current FDM cosmological simulations are
not large enough in terms of the box size to study large-scale

structures systematically. Much efforts are needed to improve
these methods.

The FDM model is an interesting alternative to the CDM
model. The "small-scale crisis" in CDM might be solved in
the FDM model, but more studies are needed to confirm
this suggestion. The tensions from different observations on
the rest mass of FDM particles may be relieved in many
ways, such as considering the systematic uncertainties in
the simulations, invoking astrophysical processes and new
mechanisms in the FDM model. In order to understand the
structure formation under the framework of FDM model, more
and better simulations are important.

With the Madelung solvers, the simulations with box size
∼ 500Mpc/h can be expected in the near future, which is
sufficient to constrain FDM models with observations such
as weak lensing and red shift distortion. We need to first
make sure that all different codes draw to the same conclusion
about these observations. We also need to make sure that
all the observable we measured both in observations and in
simulations are consistent with the FDM framework. The effect of
quantum pressure on the large scale structures can be degenerate
with other models such as Warm Dark Matter (WDM), Self-
Interacting Dark Matter (SIDM), Decaying Dark Matter (DDM)
and so on. Therefore, even if we find conclusive evidence that
the small scale structures are suppressed from observations, it is
still not conclusive to claim that the FDM model is the correct
model of the dark matter. On the other hand, the Schrödinger-
Poisson Solvers disclose the possibility of looking for smoking
gun signals of the FDM model. Both the existence of a solitonic
core in the center of a dark matter halo and the granular structure
of dark matter halos are unique features of the FDM model,
different from all the other models. It is possible to find granular
structures for the the FDM model, using Pulsar Timing Array.
It is also possible to rule out the FDM model by the next
generation observations and more careful data analysis. The
FDM model is a beautiful model with no more free parameters
than the CDM model together with the WIMP assumption.
If we can determine the mass range of FDM particles, it will
significantly improve our understanding of dark matter and the
universe.
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