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The properties of the recently discovered Higgs boson together with the absence of new

physics at collider experiments allows us to speculate about consistently extending the

Standard Model of particle physics all the way up to the Planck scale. In this context,

the Standard Model Higgs non-minimally coupled to gravity could be responsible for

the symmetry properties of the Universe at large scales and for the generation of the

primordial spectrum of curvature perturbations seeding structure formation. We overview

the minimalistic Higgs inflation scenario, its predictions, open issues and extensions and

discuss its interplay with the possible metastability of the Standard Model vacuum.
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1. INTRODUCTION AND SUMMARY

Inflation is nowadays a well-established paradigm (Starobinsky, 1980; Guth, 1981; Mukhanov and
Chibisov, 1981; Albrecht and Steinhardt, 1982; Linde, 1982, 1983) able to explain the flatness,
homogeneity and isotropy of the Universe and the generation of the primordial density fluctuations
seeding structure formation (Hawking, 1982; Starobinsky, 1982; Sasaki, 1986; Mukhanov, 1988). In
spite of the phenomenological success, the inflaton’s nature remains unknown and its role could
be played by any particle physics candidate able to imitate a slowly-moving scalar field in the very
early Universe.

In spite of dedicated searches, the only outcome of the Large Hadron Collider (LHC)
experiments till date is a scalar particle with mass (Aad et al., 2012; Chatrchyan et al., 2012;
Tanabashi et al., 2018)

mH = 125.18± 0.16 GeV (1.1)

and properties similar to those of the Standard Model (SM) Higgs. The mass value (1.1) is certainly
particular since it allows to extend the SM up to the Planck scale without leaving the perturbative
regime (Shaposhnikov and Wetterich, 2010). The main limitation to this appealing scenario is
the potential instability of the electroweak vacuum at high energies. Roughly speaking, the value
of the Higgs self-coupling following from the SM renormalization group equations decreases
with energy till a given scale and starts increasing thereafter. Whether it stays positive all the
way up to the Planck scale, or turns negative at some intermediate scale µ0 depends, mainly,
on the interplay between the Higgs mass mH and the top quark Yukawa coupling yt extracted
from the reconstructed Monte-Carlo top mass in collider experiments (Butenschoen et al., 2016),
cf. Figure 1. Neglecting the effect of gravitational corrections, the critical value ycritt separating the
region of absolute stability from the metastability/instability1 regions is given by (Bezrukov and
Shaposhnikov, 2015b)

ycritt = 0.9244± 0.0012
mH/GeV− 125.7

0.4
+ 0.0012

αs(mZ)− 0.01184

0.0007
, (1.2)

1The metastability region is defined as the parameter space leading to vacuum instability at energies below the Planck scale

but with an electroweak vacuum lifetime longer than the age of the Universe.
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Rubio Higgs Inflation

FIGURE 1 | The running of the Higgs self-coupling following from the

Standard Model renormalization group equations for several values of the top

quark Yukawa coupling at the electroweak scale and a fixed Higgs boson

mass mH = 125.5 GeV (Bezrukov et al., 2015).

with αs(mZ) the strong coupling constant at the Z bosonmass.
Within the present experimental and theoretical uncertainties
(Bezrukov and Shaposhnikov, 2015b; Butenschoen et al., 2016;
Espinosa et al., 2017), the SM is compatible with vacuum
instability, metastability and absolute stability (Bezrukov et al.,
2012; Degrassi et al., 2012; Buttazzo et al., 2013; Espinosa et al.,
2015; Espinosa, 2016), with the separation among the different
cases strongly depending on the ultraviolet completion of gravity
(Branchina and Messina, 2013; Branchina et al., 2014, 2015),
cf. Figure 2.

In the absence of physics beyond the SM, it is certainly
tempting to identify the recently discovered Higgs boson with
the inflaton condensate. Unfortunately, the Higgs self-interaction
significantly exceeds the value λ ∼ 10−13 leading to a sufficiently
long inflationary period without generating an excessively large
spectrum of primordial density perturbations (Linde, 1983). The
situation is unchanged if one considers the renormalization
group enhanced potential following from the extrapolation of
the SM renormalization group equations to the inflationary scale
(Isidori et al., 2008; Fairbairn et al., 2014; Hamada et al., 2014a).
The simplest way out is to modify the Higgs field kinetic term
in the large-field regime. In Higgs inflation2 this is done by
including a direct coupling to the Ricci scalar R (Bezrukov and
Shaposhnikov, 2008), namely3

δS =
∫

d4x
√

−g
[

ξH†HR
]

, (1.3)

2An alternative possibility involving a derivative coupling among the Einstein

tensor and the Higgs kinetic term was considered in Germani and Kehagias

(2010b), Germani and Kehagias (2010a), and Fumagalli et al. (2018).
3 Prior to Bezrukov and Shaposhnikov (2008), the effect of non-minimal couplings

had been extensively studied in the literature (see for instance Minkowski, 1977;

Smolin, 1979; Zee, 1979; Spokoiny, 1984; Futamase and Maeda, 1989; Salopek

et al., 1989; Fakir and Unruh, 1990a,b; Makino and Sasaki, 1991; Fakir et al., 1992;

Cervantes-Cota andDehnen, 1995a,b; Kaiser, 1995; Komatsu and Futamase, 1998),

but never with the SM Higgs as the inflaton.

FIGURE 2 | The SM stability and metastability regions for a renormalization

point µ = 173.2 GeV in the MS scheme (Bezrukov and Shaposhnikov,

2015b). The solid red line corresponds to the critical top quark Yukawa

coupling (1.2) leading to vacuum instability at a sub-Planckian energy scale

µ0, with the dashed lines accounting for uncertainties associated with the

strong coupling constant. To the left (right) of these diagonal lines, the SM

vacuum is unstable (metastable). The filled elliptical contours account for the

1σ and 2σ experimental errors on the Higgs mass in Olive et al. (2014) and

the CMS (Monte-Carlo) top quark mass in Collaboration (2014), namely

mH = 125.7± 0.4 GeV and mt = 172.38± 0.10 (stat)± 0.66 (syst) GeV (note

that the current value of the Higgs mass is slightly lower Tanabashi et al.,

2018). The additional empty contours illustrate the shifts associated with the

theoretically ambiguous relation between the top quark Yukawa coupling and

the (Monte-Carlo) top quark mass (cf. Bezrukov and Shaposhnikov, 2015b for

details).

with H the Higgs doublet and ξ a dimensionless constant to
be fixed by observations. The inclusion of the non-minimal
coupling (1.3) can be understood as an inevitable consequence
of the quantization of the SM in a gravitational background,
where this term is indeed required for the renormalization of the
energy-momentum tensor (Callan et al., 1970; Birrell and Davies,
1984).

When written in the Einstein frame, the Higgs inflation
scenario displays two distinct regimes. At low energies, it
approximately coincides with the SM minimally coupled to
gravity. At high energies, it becomes a chiral SM with no
radial Higgs component (Dutta et al., 2008; Bezrukov and
Shaposhnikov, 2009). In this latter regime, the effective Higgs
potential becomes exponentially flat, allowing for inflation with
the usual chaotic initial conditions. The associated predictions
depend only on the number of e-folds of inflation, which is itself
related to the duration of the heating stage. As the type and
strength of the interactions among the Higgs field and other SM
particles is experimentally known, the duration of this entropy
production era can be computed in detail (Bezrukov et al., 2009a,
2011a; Garcia-Bellido et al., 2009; Repond and Rubio, 2016; Ema
et al., 2017a), leading to precise inflationary predictions in perfect
agreement with observations (Akrami et al., 2018).

The situation becomes more complicated when quantum
corrections are included. The shape of the inflationary potential
depends then on the values of the Higgs mass and top Yukawa
coupling at the inflationary scale. In addition to the plateau
already existing at tree-level (Bezrukov and Shaposhnikov, 2014;
Enckell et al., 2016; Fumagalli and Postma, 2016; Fumagalli,
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Rubio Higgs Inflation

2017), the renormalization group enhanced potential can develop
a quasi-inflection point along the inflationary trajectory (Allison,
2014; Bezrukov and Shaposhnikov, 2014; Hamada et al., 2014b;
Bezrukov et al., 2015, 2018; Rubio, 2015; Enckell et al., 2016;
Fumagalli and Postma, 2016; Rasanen and Wahlman, 2017) or
a hilltop (Fumagalli and Postma, 2016; Rasanen and Wahlman,
2017; Enckell et al., 2018), with different cases giving rise to
different predictions.

Although a precise measurement of the inflationary
observables could be understood as an interesting consistency
check between cosmological observations and particle physics
experiments (Barvinsky et al., 2008, 2012; Espinosa et al.,
2008; Bezrukov and Shaposhnikov, 2009; Bezrukov et al.,
2009b, 2012; De Simone et al., 2009; Popa and Caramete, 2010;
Salvio, 2013), the low- to high-energy connection is subject to
unavoidable ambiguities related to the non-renormalizability
of the model (Barbon and Espinosa, 2009; Burgess et al., 2009,
2010; Bezrukov et al., 2011b, 2015, 2018; George et al., 2014,
2016; Rubio, 2015; Enckell et al., 2016; Fumagalli and Postma,
2016). In particular, the finite parts of the counterterms needed
to renormalize the tree-level action lead to localized jumps in
the SM renormalization group equations when connected to
the chiral phase of Higgs inflation. The strength of these jumps
encodes the remnants of the ultraviolet completion and cannot
be determined within effective field theory approach (Bezrukov
et al., 2011b, 2015; Burgess et al., 2014). If the finite parts are
significantly smaller than the associated coupling constants,
Higgs inflation leads to a direct connection among the SM
parameters measured at collider experiments and the large scale
properties of the Universe, provided that the former do not give
rise to vacuum instability. On the contrary, if the jumps in the
coupling constants are large, the relation between high- and
low-energy physics is lost, but Higgs inflation can surprisingly
occur even if the electroweak vacuum is not completely stable
(Bezrukov et al., 2015).

In this article we review the minimalistic Higgs inflation
scenario, its predictions, open issues and extensions, and discuss
its interplay with the potential metastability of the SM vacuum.
The paper is organized as follows:

• The general framework is introduced in section 2. To illustrate
the effect of non-minimal couplings, we consider an induced
gravity scenario in which the effective Newton constant is
completely determined by the Higgs vacuum expectation
value. Having this toy model in mind, we reformulate Higgs
inflation in the so-called Einstein frame in which the coupling
to gravity is minimal and all non-linearities appear in the scalar
sector of the theory. After emphasizing the pole structure of
the Einstein-frame kinetic term and its role in the asymptotic
flatness of the Higgs inflation potential, we compute the
tree-level inflationary observables and discuss the decoupling
properties of the SM degrees of freedom.

• The limitations of Higgs inflation as a fundamental theory
are reviewed in section 3. In particular, we present a
detailed derivation of the cutoff scales signaling the violation
of perturbative unitarity in different scattering processes
and advocate the interpretation of Higgs inflation as an
effective field theory to be supplemented by an infinite set

of higher dimensional operators. Afterwards, we adopt a
self-consistent approach to Higgs inflation and formulate
the set of assumptions leading to a controllable relation
between low- and high-energy observables. Based on the
resulting framework, we analyze the contribution of quantum
corrections to the renormalization group enhanced potential
and their impact on the inflationary observables. We finish
this section by discussing the potential issues of Higgs inflation
with the metastability of the SM vacuum.

• Some extensions and alternatives to the simplest Higgs
inflation scenario are considered in section 4. In particular,
we address the difference between the metric and Palatini
formulations of the theory and its extension to a fully scale
invariant framework (Shaposhnikov and Zenhausern, 2009;
Blas et al., 2011; Garcia-Bellido et al., 2011, 2012; Bezrukov
et al., 2013; Rubio and Shaposhnikov, 2014; Karananas and
Rubio, 2016; Trashorras et al., 2016; Casas et al., 2017, 2018).
The inflationary predictions in these models are put in one to
one correspondence with the pole structure of the Einstein-
frame kinetic term, allowing for an easy comparison with the
results of the standard Higgs inflation scenario.

Overall, we intend to complement the existing monographs
in the literature (Bezrukov, 2013; Bezrukov and Shaposhnikov,
2015a; Moss, 2015) by i) providing a further insight on the
classical formulation of Higgs inflation and by ii) focusing on
the uncertainties associated with the non-renormalizability of the
theory and their impact on model building.

2. GENERAL FRAMEWORK

The inflationary paradigm is usually formulated in terms of
conditions on the local flatness on an arbitrary potential, which
can in principle contain a large number of extrema and slopes
(Artymowski and Rubio, 2016). This flatness is usually related
to the existence of some approximate shift-symmetry, which, for
the purposes of Higgs inflation, is convenient to reformulate as a
non-linear realization of approximate scale-invariance.

2.1. Induced Gravity
Let us start by considering an induced gravity scenario

S =
∫

d4x
√

−g

[

ξh2

2
R− 1

2

(

∂h
)2 − λ

4
h4 − 1

4
FµνF

µν

− g2

4
h2BµB

µ − iψ̄ /∂ψ − y√
2
hψ̄ψ

]

, (2.1)

involving a scalar field h, a vector field Bµ and a fermion field ψ ,
with interactions similar to those appearing in the SM of particle
physics when written in the unitary gauge H = (0, h/

√
2)T .

The quantity FµνF
µν stands for the standard Bµ kinetic term,

which for simplicity we take to be Abelian. In this toy model,
the effective Newton constant is induced by the scalar field
expectation value,

GN,eff ≡ 1

8πξh2
. (2.2)
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In order for GN,eff to be well-behaved, the non-minimal coupling
ξ is restricted to take positive values. This condition is equivalent
to require the semi-positive definiteness of the scalar field kinetic
term, as can be easily seen by performing a field redefinition
h2 → h2/ξ .

An important property of the induced gravity action (2.1) is its
invariance under scale transformations

xµ → x̄µ = α xµ , ϕ(x) → ϕ̄(x̄) = α1ϕϕ(α x) . (2.3)

Here α is an arbitrary constant, ϕ(x) compactly denotes the
various fields in the model and 1ϕ ’s are their corresponding
scaling dimensions. The consequences of this dilatation
symmetry are more easily understood in a minimally-coupled
frame displaying the standard Einstein-Hilbert term. This
Einstein frame is achieved by a Weyl redefinition of the metric4

gµν → 2 gµν , 2 ≡ F2∞
h2

, F∞ ≡ MP√
ξ
, (2.4)

together with a Weyl rescaling of the vector and fermion fields,

Aµ → 2−1/2 Aµ , ψ → 2−3/4 ψ . (2.5)

After some trivial algebra we obtain an Einstein-frame action5

S =
∫

d4x
√

−g

[

M2
P

2
R− 1

2
M2

PK(2)(∂2)2 − λ

4
F4∞

−1

4
FµνF

µν − g2

4
F2∞BµB

µ − iψ̄ /∂ψ − y√
2
F∞ψ̄ψ

]

,(2.6)

containing a non-canonical term for the 2 field. The coefficient
of this kinetic term,

K(2) ≡ 1

4|a|22
, (2.7)

involves a quadratic pole at2 = 0 and a constant

a ≡ − ξ

1+ 6ξ
< 0 , (2.8)

varying between zero at ξ = 0 and −1/6 when ξ → ∞. The
2-field kinetic term can be made canonical by performing an
additional field redefinition,

2−1 = exp

(

2
√
|a|φ
MP

)

, (2.9)

4In spite of its extensive use in the literature, we avoid referring to point-wise

rescalings of the metric as “conformal transformations.” For a comprehensive

discussion on the differences between Weyl and conformal symmetries, see for

instance Karananas and Monin (2016a,b).
5In order to keep the notation as simple as possible, we will not introduce

different notations for the quantities defined in different Weyl-related frames. In

particular, the implicit Lorentz contractions in this article should be understood to

be performed with the metric of the frame under consideration.

mapping the vicinity of the pole at 2 = 0 to φ → ∞. The
resulting action

S =
∫

d4x
√

−g

[

M2
P

2
R− 1

2
(∂φ)2 − λ

4
F4∞ − 1

4
FµνF

µν

− g2

4
F2∞BµB

µ − iψ̄ /∂ψ + y√
2
F∞ψ̄ψ

]

, (2.10)

is invariant under shift transformations φ → φ + C, with
C a constant. The exponential mapping in Equation (2.9)
indicates that such translational symmetry is nothing else than
the non-linear realization of the original scale invariance we
started with in Equation (2.1) (Csaki et al., 2014). The Einstein-
frame transition in Equation (2.4) is indeed equivalent to
the spontaneous breaking of dilatations, since we implicitly
required the field h to acquire a non-zero expectation value.
The canonically normalized scalar field φ is the associated
Goldstone boson and as such it is completely decoupled
from the matter fields Bµ and ψ . The non-minimal coupling
to gravity effectively replaces h by F∞ in all dimension-4
interactions involving conformal degrees of freedom. Note,
however, that this decoupling statement does not apply to scale-
invariant extensions including additional scalar fields (Kaiser,
2010; Garcia-Bellido et al., 2011; Bezrukov et al., 2013; Kaiser
et al., 2013; Kaiser and Sfakianakis, 2014; Karananas and Rubio,
2016) or other non-conformal interactions such as R2 terms
(Starobinsky, 1980; Gorbunov and Panin, 2011, 2012; Gorbunov
and Tokareva, 2013).

2.2. Higgs Inflation From Approximate
Scale Invariance
Although the toy model presented above contains many of the
key ingredients of Higgs inflation, it is not phenomenologically
viable. In particular, the Einstein-frame potential is completely
shift-symmetric and does not allow for inflation to end. On top of
this limitation, the scalar field φ is completely decoupled from all
conformal fields, excluding the possibility of entropy production
and the eventual onset of a radiation-dominated era. All these
phenomenological limitations are intrinsically related to the
exact realization of scale invariance and as such they should be
expected to disappear once a (sizable) dimensionfull parameter
is included into the action. This is precisely what happens in
Higgs inflation. The total Higgs inflation action (Bezrukov and
Shaposhnikov, 2008)

S =
∫

d4x
√

−g

[

M2
P

2
R+ ξH†HR+ LSM

]

, (2.11)

contains two dimensionfull parameters: the reduced Planck
MP ≡ 1/

√
8πGN = 2.435 × 1018 GeV and the Higgs vacuum

expectation value vEW ≃ 250 GeV responsible for the masses
within the SM Lagrangian density LSM. Among these two scales,
the Planck mass is the most important one at the large field
values relevant for inflation. To illustrate how the inclusion of
MP modifies the results of the previous section, let us consider
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the graviscalar part of Equation (2.11) in the unitary gauge H =
(0, h/

√
2)T , namely

S =
∫

d4x
√

−g

[

M2
P + ξh2
2

R− 1

2

(

∂h
)2 − U(h)

]

, (2.12)

with

U(h) = λ

4
(h2 − v2EW)2 , (2.13)

the usual SM symmetry-breaking potential. As in the induced
gravity scenario, the inclusion of the non-minimal coupling to
gravity changes the strength of the gravitational interaction and
makes it dependent on the Higgs field,

GN,eff = GN

1+ 8πξGNh2
. (2.14)

In order for the graviton propagator to be well-defined at all h
values, the non-minimal coupling ξ must be positive6. If ξ 6=
0, this requirement translates into a weakening of the effective
Newton constant at increasing Higgs values. For non-minimal
couplings in the range 1≪ ξ ≪M2

P/v
2
EW, this effect is important

in the large-field regime h ≫ MP/
√
ξ , but completely negligible

otherwise.
As we did in section 2.1, it is convenient to reformulate

Equation (2.12) in the Einstein frame by performing a Weyl
transformation gµν → 2 gµν with

2−1 = 1+ h2

F2∞
, F∞ ≡ MP√

ξ
. (2.15)

In the new frame, all the non-linearities associated with the non-
minimal Higgs-gravity interaction are moved to the scalar sector
of the theory,

S =
∫

d4x
√

−g

[

M2
P

2
R− 1

2
M2

PK(2) (∂2)2 − V(2)

]

, (2.16)

which contains now a non-exactly flat potential

V(2) ≡ U(2)22 = λF4∞
4

[

1−
(

1+ v2EW
F2∞

)

2

]2

, (2.17)

and a non-canonical kinetic sector resulting from the rescaling
of the metric determinant and the non-homogeneous part of the
Ricci scalar transformation. The kinetic function

K(2) ≡ 1

4|a|22

(

1− 6|a|2
1−2

)

, (2.18)

shares some similarities with that in Equation (2.7). In particular,
it contains two poles located respectively at 2 = 0 and 2 = 1.

6Models with negative ξ have been considered in the literature (Herranen

et al., 2014; Kamada, 2015a; Figueroa et al., 2018). In this type of scenarios

the gravitational instability at large field values can be avoided by replacing the

quadratic coupling ξh2 by a designed function ξ f (h) remaining smaller than M2
P

during the whole field regime.

The first pole is an inflationary pole, like the one appearing in the
induced gravity scenario. This pole leads to an enhanced friction
for the 2 field around 2 = 0 and allows for inflation to happen
even if the potential V(2) is not sufficiently flat. The second pole
is aMinkowski pole aroundwhich theWeyl transformation equals
one and the usual SM action is approximately recovered. To see
this explicitly, we carry out an additional field redefinition 7,

1

M2
P

(

dφ

d2

)2

= K(2) , (2.19)

to recast Equation (2.16) in terms of a canonically normalized
scalar field φ. This differential equation admits an exact solution
(Garcia-Bellido et al., 2009)

√
|a|φ
MP

= arcsinh

√

1−2
(1− 6|a|)2 −

√

6|a| arcsinh
√

6|a|(1−2)

1− 6|a| .

(2.20)
In terms of the original field h, we can distinguish two asymptotic
regimes

φ ≃
{

h for φ < φC ,
MP

2
√
|a| log

(

1+ h2

F2∞

)

for φ > φC ,
(2.21)

separated by a critical value

φC ≡ 2MP(1− 6|a|)√
|a|

. (2.22)

The comparison between these approximate expressions and the
exact field redefinition in Equation (2.20) is shown in Figure 3.

FIGURE 3 | Comparison between the approximate expressions in

Equation (2.21) (dashed black and blue lines) and the exact solution (2.20)

(solid red). Below the critical scale φc, Higgs inflation coincides, up to highly

suppressed corrections, with the SM minimally coupled to gravity. Above that

scale, the Higgs field starts to decouple from the SM particles. The decoupling

becomes efficient at a scale F∞, beyond which the model can be well

approximated by a chiral SM with no radial Higgs component.

7Note that all equations till this point hold even if the non-minimal coupling ξ is

field-dependent (Ezquiaga et al., 2018; Masina, 2018).
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The large hierarchy between the transition scale φC and the
electroweak scale allows us to identify in practice the vacuum
expectation value vEW with φ = 0. In this limit, the Einstein-
frame potential (2.17) can be rewriten as

V(φ) ≃ λ

4
F4(φ) , (2.23)

with

F(φ) ≡











φ for φ < φC ,

F∞

(

1− e
− 2

√
|a|φ

MP

)
1
2

for φ > φC .
(2.24)

At φ < φC we recover the usual Higgs potential (up to highly
suppressed corrections, cf. section 3.1). At φ > φC the Einstein-
frame potential becomes exponentially stretched and approaches
the asymptotic value F∞ at φ > MP/(2

√
|a|). The presence ofMP

in Equation (2.11) modifies also the decoupling properties of the
Higgs field as compared to those in the induced gravity scenario.
In particular, the masses of the intermediate gauge bosons and
fermions in the Einstein-frame8,

m2
B(φ) ≡

g2

4
F2(φ) , mF(φ) ≡

y√
2
F(φ) , (2.25)

coincide with the SM masses in the small field regime (φ <

φC) and evolve toward constant values proportional to F∞ in
the large-field regime (φ > MP/(2

√
|a|)). The transition to

the Einstein-frame effectively replaces h by F(φ) in all (non-
derivative) SM interactions. This behavior allows us to describe
the Einstein-frame matter sector in terms of a chiral SM with
vacuum expectation value F(φ) (Dutta et al., 2008; Bezrukov and
Shaposhnikov, 2009).

2.3. Tree-Level Inflationary Predictions
The flattening of the Einstein-frame potential (2.23) due to
the 2 = 0 pole allows for inflation with the usual slow-roll
conditions even if the potentialV(2) is not sufficiently flat. Let us
compute the inflationary observables in the corresponding region
φ > φC, where

V(φ) ≃ λF4∞
4

(

1− e
− 2

√
|a|φ

MP

)2

. (2.26)

The statistical information of the primordial curvature
fluctuations generated by a single-field model like the one
under consideration is mainly encoded in the two-point
correlation functions of scalar and tensor perturbations, or
equivalently in their Fourier transform, the power spectra.
Following the standard approach (Mukhanov et al., 1992), we
parameterize these spectra in an almost scale-invariant form,

Ps = As

(

k

k∗

)ns−1

, Pt = At

(

k

k∗

)nt

, (2.27)

8Here we use a compact notation for the gauge boson couplings, namely g = g2
and g2 cos θw for the B = W± and Z bosons respectively, with g1 and g2 the gauge

couplings of the U(1)Y and SU(2)L SM groups and θw = tan−1(g1/g2) the weak

mixing angle. The coupling y denotes a generic Yukawa coupling.

and compute the inflationary observables

As =
1

24π2M4
P

V

ǫ
, ns = 1+ 2η− 6ǫ , r ≡ At

As
= −8nt = 16ǫ ,

(2.28)
with

ǫ ≡ M2
P

2

(

V ′

V

)2

, η ≡ M2
P

V ′′

V
, (2.29)

the first and second slow-roll parameters and the primes denoting
derivatives with respect to φ. The quantities in (2.28) should be
understood as evaluated at a field value φ∗ ≡ φ(N∗), with

N∗ = 1

MP

∫ φ∗

φE

dφ√
2ǫ

= 1

8|a|

(

e2
√
|a|φ/MP − 2

√
|a|φ
MP

)
∣

∣

∣

∣

φ∗

φE

(2.30)
the e-fold number at which the reference scale k∗ in
Equation (2.27) exits the horizon, i.e. k∗ = a∗H∗. Here,

φE = MP

2
√
|a|

ln
(

1+ 2
√

2|a|
)

, (2.31)

stands for the field value at the end of inflation, which is defined,
as usual, by the condition ǫ(φE) ≡ 1. Equation (2.30) admits an
exact inversion,

e2
√
|a|φ∗/MP = −W−1

[

−e−8|a|N̄∗
]

, (2.32)

withW−1 the lower branch of the Lambert function and

N̄∗ ≡ N∗ +
1

8|a|

(

e2
√
|a|φE/MP − 2

√
|a|φE
MP

)

, (2.33)

a rescaled number of e-folds. Inserting Equation (2.32) into (2.28)
we get the following analytical expressions for the primordial
scalar amplitude,

As =
λ(1− 6|a|)2
12π2 |a|

(1+W−1)
4

(8|a|W−1)2
, (2.34)

its spectral tilt,

ns = 1− 16|a| 1−W−1

(1+W−1)
2
, (2.35)

and the tensor-to-scalar ratio

r = 128 |a|
(1+W−1)

2
. (2.36)

At large |a|N∗, these predictions display an interesting attractor
behavior, very similar to that appearing in α-attractor scenarios
(Ferrara et al., 2013; Kallosh et al., 2013; Galante et al.,
2015) (see also Artymowski and Rubio, 2016). Indeed, by
taking into account the lower bound on the Lambert function
(Chatzigeorgiou, 2016),

W−1[−e−8|a|N̄∗ ] > −8|a|N̄∗ −
√

2(8|a|N̄∗ − 1) , (2.37)
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we can obtain the approximate expressions9

ns ≃ 1− 2

N̄∗
, r ≃ 2

|a|N̄2∗
. (2.38)

at 8|a|N̄∗ ≫ 1. The free parameter |a| (or equivalently the non-
minimal coupling ξ ) can be fixed by combining Equation (2.34)
with the normalization of the primordial spectrum at large scales
(Akrami et al., 2018),

log(1010As) ≃ 3.094± 0.034 . (2.39)

Doing this, we get a relation

ξ ≃ 800N̄∗
√
λ , (2.40)

among the non-minimal coupling ξ , the number of e-folds N̄∗
and the Higgs self-coupling λ.

The precise value of the number of e-folds in Equations (2.38),
(2.40) depends on the whole post-inflationary expansion and, in
particular, on the duration of the heating stage. As the strength
of the interactions among the Higgs field and the SM particles
is experimentally known, the entropy production following the
end of inflation can be computed in detail (Bezrukov et al.,
2009a; Garcia-Bellido et al., 2009; Repond and Rubio, 2016)10.
The depletion of the Higgs-condensate is dominated by the non-
perturbative production of massive intermediate gauge bosons,
which, contrary to the SM fermions, can experience bosonic
amplification. Once created, the W± and Z bosons can decay
into lighter SM fermions with a decay probability proportional to
the instantaneous expectation value of the Higgs field φ(t). The
onset of the radiation-domination era is determined either by i)
the time at which the Higgs amplitude approaches the critical
value φC where the effective potential becomes quartic or by ii)
the moment at which the energy density into relativistic fermions
approaches that of the Higgs condensate; whatever happens first.
The estimates in Garcia-Bellido et al. (2009), Bezrukov et al.
(2009a), and Repond and Rubio (2016) provide a range

1013 GeV . TH . 2× 1014 GeV , (2.41)

with the lower and upper bounds associated respectively with the
cases i) and ii) above. For the upper limit of this narrow window,
we have N̄∗ ≃ N∗ ≃ 59 and we can rewrite Equation (2.40) as a
relation between ξ and λ,

ξ ≃ 47200
√
λ . (2.42)

Note that a variation of the Higgs self-coupling in this equation
can be compensated by a change of the a priori unknown non-
minimal coupling to gravity. For the tree-level value λ ∼ O(1),
the non-minimal coupling must be significantly larger than one,
but still much smaller than the value ξ ∼ M2

P/v
2
EW ∼ 1032

leading to sizable modifications of the effective Newton constant

9Note that the expressions contain N̄∗ rather than N∗.
10This allows, for instance, to distinguish Higgs inflation from R2 Starobinsky

inflation (Starobinsky, 1980; Bezrukov and Gorbunov, 2012).

at low energies. In this regime, the parameter |a| is very close to its
maximum value 1/6. This effective limit simplifies considerably
the expression for the critical scale φC separating the low- and
high-energy regimes,

φC ≃
√

2

3

MP

ξ
, (2.43)

and collapses the inflationary predictions to the attractor values
(Bezrukov and Shaposhnikov, 2008)

ns ≃ 1− 2

N̄∗
≃ 0.966 , r ≃ 12

N̄2∗
≃ 0.0034 , (2.44)

in very good agreement with the latest results of the Planck
collaboration (Akrami et al., 2018). Note that, although
computed in the Einstein frame, these predictions could have
been alternatively obtained in the non-minimally coupled
frame (2.12), provided a suitable redefinition of the slow-roll
parameters in order to account for the Weyl factor relating the
two frames (Makino and Sasaki, 1991; Fakir et al., 1992; Komatsu
and Futamase, 1999; Flanagan, 2004; Tsujikawa and Gumjudpai,
2004; Koh, 2006; Chiba and Yamaguchi, 2008, 2013;Weenink and
Prokopec, 2010; Postma and Volponi, 2014; Ren et al., 2014; Jarv
et al., 2015a,b, 2017; Burns et al., 2016; Kuusk et al., 2016; Karam
et al., 2017; Karamitsos and Pilaftsis, 2018a,b).

3. EFFECTIVE FIELD THEORY
INTERPRETATION

The presence of gravity makes Higgs inflation perturbatively
non-renormalizable (Barbon and Espinosa, 2009; Burgess et al.,
2009, 2010; Bezrukov et al., 2011b) and forbids its interpretation
as an ultraviolet complete theory. The model should be therefore
understood as an effective description valid up to a given cut-
off scale 3 (Bezrukov et al., 2011b; George et al., 2016). This
cutoff could either indicate the onset of a strongly coupled
regime to be studied within the model by non-perturbative
techniques (such as resummations, lattice simulations or
functional renormalization studies) (Aydemir et al., 2012; Calmet
and Casadio, 2014; Saltas, 2016; Escrivà and Germani, 2017) or
the appearance of new degrees of freedom beyond the initially-
assumed SM content (Giudice and Lee, 2011; Barbon et al.,
2015).

3.1. The Cutoff Scale
A priori, the cutoff scale of Higgs inflation could coincide with
the Planck scale, where gravitational effects should definitely
taken into account. Although quite natural, the identification of
these two energy scales may not be theoretically consistent, since
other interactions could lead to violations of tree-level unitarity
at a lower energy scale. An estimate11 of the cutoff scale can be
obtained by expanding the fields around their background values,

11This procedure does not take into account possible cancellations among

scattering diagrams, as those taking place, for instance, in models involving a

singlet scalar field not minimally coupled to gravity (Hertzberg, 2010).
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such that all kind of higher dimensional operators appear in the
resulting action (Bezrukov et al., 2011b; Ferrara et al., 2011).
The computation is technically simpler in the original frame
(2.11). In order to illustrate the procedure let us consider the
graviscalar sector in Equation (2.12). Expanding the fields around
their background values ḡµν and h̄,

gµν = ḡµν + γµν , h = h̄+ δh , (3.1)

we obtain the following quadratic Lagrangian density for the
perturbations γµν and δh

L
(2) = M2

P + ξ h̄2
8

(

γ µν2γµν + 2∂νγ
µν∂ργµρ − 2∂νγ

µν∂µγ

− γ2γ
)

− 1

2
(∂µδh)

2 + ξ h̄
(

∂λ∂ργ
λρ − 2γ

)

δh , (3.2)

with γ = ḡµνγµν denoting the trace of the metric excitations.
For non-vanishing ξ , the last term in this equation mixes the
trace of the metric perturbation with the scalar perturbation δh
(Barvinsky et al., 2008, 2009; De Simone et al., 2009). To identify
the different cutoff scales one must first diagonalize the kinetic
terms. This can be done by performing a redefinition of the

perturbations (γµν , δh) → (γ̂µν , δĥ) with

γµν =
1

√

M2
P + ξ h̄2

γ̂µν −
2ξ h̄ḡµν

√

(M2
P + ξ h̄2)(M2

P + (1+ 6ξ )ξ h̄2)
δĥ ,

(3.3)

δh =

√

√

√

√

M2
P + ξ h̄2

M2
P + (1+ 6ξ )ξ h̄2

δĥ . (3.4)

Once Equation (3.2) has been reduced to a diagonal form, we can
proceed to read the cutoff scales. The easiest one to identify is that
associated with purely gravitational interactions,

3P(h̄) ≡
√

M2
P + ξ h̄2 , (3.5)

which coincides with the effective Planck scale in Equation (2.12).
For scalar-graviton interactions, the leading-order higher-

dimensional operator is (δĥ)22γ̂ /3S(h̄), where

3S(h̄) ≡
M2

P + (1+ 6ξ )ξ h̄2

ξ

√

M2
P + ξ h̄2

. (3.6)

Although we have focused on the graviscalar sector of the theory,
the lack of renormalizability associated with the non-minimal
coupling to gravity permeates all SM sectors involving the Higgs
field. One could study, for instance, the scattering of intermediate
W± and Z bosons. Since we are working in the unitary gauge,
it is sufficient to consider the longitudinal polarization. The
modification of the Higgs kinetic term at large field values
changes the delicate pattern of cancellations in the SM and leads
to a tree-level unitarity violation at a scale

3G(h̄) ≡

√

M2
P + ξ (1+ 6ξ )h̄2

√
6ξ

. (3.7)

Note that the above scales depend on the background field h̄. For
small field values (h̄ . MP/ξ ), the cutoffs (3.5), (3.6) and (3.7)
coincide with those obtained by naively expanding the theory
around the electroweak scale, namely3P ≃ MP,3S ≃

√
63G ≃

MP/ξ (Barbon and Espinosa, 2009; Burgess et al., 2009, 2010;
Hertzberg, 2010; Atkins and Calmet, 2011). At large field values,
(h̄ & MP/ξ ), the suppression scale depends on the particular
process under consideration. For MP/ξ ≪ h̄ ≪ MP/

√
ξ the

graviscalar cutoff3S grows quadratically till h̄ ≃ MP/
√
ξ , where

it becomes linear in h̄ and traces the dynamical Planck mass in
that regime,3P ≃

√
ξ h̄. On the other hand, the gauge cutoff3G

smoothly interpolates between 3G ∼ MP/ξ at h̄ . MP/ξ and
3G ∼ gh̄ at h̄ & MP/ξ . Note that all cutoffs scales become linear
in h̄ at h̄ & MP/ξ . This means that any operator1L constructed
out of them, the Higgs field and some Wilson coefficients cn
approaches a scale-invariant form at large field values, namely

1L ≡
∑

n

cn On[h̄]
[

3(h̄)
]n−4

≃
∑

n

cn On[h̄]

(
√
ξ h̄)n−4

∼
∑

n

cn

(
√
ξ )n−4

h4 ,

n > 4 . (3.8)

3.2. Relation Between High- and
Low-Energy Parameters
In what follows we will assume that the ultraviolet completion
of the theory respects the original symmetries of the tree-level
action, and in particular the approximate scale invariance of
Equation (2.12) in the large-field regime and the associated
shift-symmetry of its Einstein-frame formulation. This strong
assumption forbids the generation of dangerous higher-
dimensional operators that would completely spoil the
predictivity of the model. In some sense, this requirement
is not very different from the one implicitly assumed in
other inflationary models involving trans-Planckian field
displacements.

The minimal set of higher-dimensional operators to be
included on top of the tree-level action is the one generated by
the theory itself via radiative corrections (Bezrukov et al., 2011b,
2015). The cancellation of the loop divergences stemming from
the original action requires the inclusion of an infinite set of
counterterms with a very specific structure. As in any other non-
renormalizable theory, the outcome of this subtraction procedure
depends on the renormalization scheme, with different choices
corresponding to different assumptions about the ultraviolet
completion of the theory. Among the different subtractions
setups, a dimensional regularization scheme involving a field-
dependent subtraction point (Bezrukov and Shaposhnikov, 2009)

µ2 ∝ M2
P + ξh2 , (3.9)

fits pretty well with the approximate scale-symmetry of
Equation (2.11) at large-field values12. Given this frame and

12The use of other schemes such as Pauli-Villars regularization or standard

dimensional regularization with field-independent subtraction point leads to

dilatation-symmetry breaking and the consequent bending of the Higgs inflation

plateau due to radiative corrections (see for instance Barvinsky et al., 2008, 2009,

2012; De Simone et al., 2009).
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scheme, the minimal set of higher-dimensional operators
generated by the theory can be computed in any Weyl-
related frame provided that all fields and dimensionfull
parameters are appropriately rescaled. The computation becomes
particularly simple in the Einstein-frame, where the Weyl-
rescaled renormalization point µ22 coincides with the standard
field-independent prescription of renormalizable field theories,
µ22∝M2

P. A general counter-term in dimensional regularization
contains a finite part δL and a divergent part in the form of a
pole in ǫ = (4 − d)/2, with d the dimension of spacetime. The
coefficient of the pole is chosen to cancel the loop divergences
stemming from the original action. Once this divergent part is
removed, we are left with the finite contribution δL. The strength
of this term encodes the remnants of a particular ultraviolet
completion and cannot be determined within the effective field
theory approach (Bezrukov et al., 2011b, 2015; Burgess et al.,
2014). From a quantitative point of view, the most relevant δL
terms are related to the Higgs and top-quark interactions. In the
Einstein-frame at one loop, they take the form (Bezrukov et al.,
2015)

δLF
1 =

[

δλa

(

F′2 + 1

3
F′′F

)2

− δλb

]

F4 ,

δL
ψ
1 =

[

δyaF
′2F + δybF′′(F4)′′

]

ψ̄ψ , (3.10)

where the primes denote again derivatives with respect to φ. Note
that these operators differ, as expected, from those appearing
in the tree-level action. This means that, while the contribution
δλb can be removed by a self-coupling redefinition, the finite
parts δλa, δya and δyb should be promoted to new couplings
constants. Once the associated operators are added to the
tree-level action, the re-evaluation of radiative corrections will
generate additional contributions beyond the original one-loop
result. These contributions come together with new finite parts
that must be again promoted to novel couplings with their own
renormalization group equations. The iteration of this scheme
leads to a renormalized action including an infinite set of higher-
dimensional operators constructed out of the function F and
its derivatives. For small field values, the function F becomes
approximately linear (F ≈ φ, F′ = 1) and one recovers the
SM non-minimally coupled to gravity up to highly suppressed
interactions. In this limit, the coefficients of the infinite set of
counterterms can be eliminated by a redefinition of the low
energy couplings, as happens in a renormalizable theory. When
evolving toward the inflationary region, the function F becomes
approximately constant (F∞ = F∞, F′ = 0) and some of
the previously absorbed finite parts are dynamically subtracted.
The unknown finite parts modify therefore the running of the
SM couplings at the transition region φC < φ <

√
3/2MP,

such that the SM masses at the electroweak scale cannot be
unambiguously related to their inflationary counterparts without
a precise knowledge of the ultraviolet completion (Hertzberg, 2012;
Burgess et al., 2014; Bezrukov et al., 2015).

If the finite contributions are of the same order as the loops
generating them, the tower of higher dimensional operators
generated by radiative corrections can be truncated (Bezrukov

et al., 2015). In this case, the effect of the 1-loop threshold
corrections can be imitated by an effective change13 (Bezrukov
et al., 2015)

λ(µ) → λ(µ)+ δλa

[

(

F′2 + 1

3
F′′F

)2

− 1

]

,

yt(µ) → yt(µ)+ δya
[

F′2 − 1
]

, (3.11)

with λ(µ) and yt(µ) given by the SM renormalization group
equations. We emphasize, however, that the truncation of the
renormalization group equations is not essential for most of
the results presented below, since, within the self-consistent
approach to Higgs inflation, the functional form of the effective
action is almost insensitive to it (Bezrukov et al., 2011b, 2015,
2018).

3.3. Potential Scenarios and Inflationary
Predictions
To describe the impact of radiative corrections on the inflationary
predictions, we will make use of the renormalization group
enhanced potential. This is given by the one in Equation (2.26)
but with the Higgs self-coupling λ replaced by its corresponding
running value λ(φ),

V(φ) = λ(φ)

4
F4(φ) . (3.12)

Note that we are not promoting the non-minimal coupling ξ
within F(φ) to a running coupling ξ (φ)—as done, for instance,
in Ezquiaga et al. (2018)—but rather assuming it to be constant
during inflation. This is indeed a reasonable approximation since
the one-loop beta function determining the running of ξ (Yoon
and Yoon, 1997; Bezrukov and Shaposhnikov, 2009),

βξ (µ) = µ
∂

∂µ
ξ = − 1

16π2
ξ

(

3

2
g′2 + 3g2 − 6y2t

)

, (3.13)

is rather small for realistic values of the couplings constant at the
inflationary scale, βξ ∝ O(10−2) (Bezrukov et al., 2018; Masina,
2018) (see also Salvio, 2018).

Although, strictly speaking, the renormalization group
enhanced potential is not gauge invariant, the gauge dependence
is small during slow-roll inflation, especially in the presence of
extrema (Cook et al., 2014; Espinosa et al., 2015, 2017). In the
vicinity of the minimum of λ(φ), we can use the approximation
(Bezrukov and Shaposhnikov, 2014)

λ(φ) = λ0 + b log2
(

mt(φ)

q

)

, (3.14)

with the parameters λ0, q and b depending on the inflationary
values of the Einstein-frame Higgs and top quark masses,
according to the fitting formulas (Bezrukov and Shaposhnikov,
2014)

λ0 = 0.003297
[

(m∗
H − 126.13)− 2(m∗

t − 171.5)
]

,

13This replacement implicitly neglects the running of the finite parts δλa and δya
in the transition region φC < φ <

√
3/2MP .
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q = 0.3MP exp
[]

0.5(m∗
H − 126.13)− 0.03(m∗

t − 171.5)
]

,

b = 0.00002292− 1.12524× 10−6
[

(m∗
H − 126.13)

−1.75912(m∗
t − 171.5)

]

, (3.15)

with m∗
H and m∗

t in GeV. As seen in the last expression, the
parameter b, standing for the derivative of the beta function for λ
at the scale of inflation, is rather insensitive to the Higgs and top
quark mass values at that scale and can be well-approximated by
b ≃ 2.3× 10−5. The choice

mt(φ)

q
= α · yt√

2

F(φ)

q
≡

√
ξF(φ)

κMP
, (3.16)

with α = 0.6 optimizes the convergence of perturbation
theory (Bezrukov and Shaposhnikov, 2009; Bezrukov et al.,
2009b), while respecting the asymptotic symmetry of the tree-
level action (2.12) and its non-linear shift-symmetric Einstein-
frame realization. In the second equality, we have introduced an
effective parameter κ to facilitate the numerical computation of
the inflationary observables.

A simple inspection of Equations (3.12) and (3.14) allows us
to distinguish three regimes:

i) Non-critical regime/Universal: If λ0 ≫ b/(16κ), the effective
potential (3.12) is almost independent of the radiative
logarithmic correction and can be well approximated by
its tree-level form (2.26). Consequently, the inflationary
observables retain their tree-level values (Bezrukov and
Shaposhnikov, 2014; Enckell et al., 2016; Fumagalli and
Postma, 2016; Bezrukov et al., 2018), cf. Figure 4.

ii) Critical regime: If λ0 & b/(16κ), the first two derivatives of
the potential are approximately zero, V ′ ≃ V ′′ ≃ 0, leading
to the appearance of a quasi-inflection point at

φI =
√

3

2
log

( √
e√

e− 1

)

MP . (3.17)

Qualitatively, the vast majority of inflationary e-folds in this
scenario takes place in the vicinity of the inflection point φI,
while the inflationary observables depend on the form of the
potential as some value φ∗ > φI .

Given the small value of the Higgs self-coupling in this
scenario, λ0 ∼ O(10−6), the nonminimal coupling ξ can
be significantly smaller than in the universal regime, ξ ∼
O(10), while still satisfying the normalization condition
(2.39) (Allison, 2014; Bezrukov and Shaposhnikov, 2014;
Hamada et al., 2014b, 2015). This drastic decrease of the non-
minimal coupling alleviates the tree-level unitary problems
discussed in section 3.1 by raising the cutoff scale.

For small ξ values, the tensor-to-scalar ratio can be
rather large, r ∼ O(10−1) (Allison, 2014; Bezrukov and
Shaposhnikov, 2014; Hamada et al., 2014b, 2015) (see
also Masina, 2018). Note, however, that although CMB
data seems to be consistent with the primordial power
spectrum at large scales, the simple expansion in (2.27)
cannot accurately describe its global behavior since the
running of the spectral tilt αs ≡ d ln ns/d ln k and its scale
dependence βs ≡ d2 ln ns/d ln k

2 also become considerably
large, cf. Figure 5.

The non-monotonic evolution of the slow-roll parameter
ǫ in the vicinity of the inflection point leads to the
enhancement of the spectrum of primordial density
fluctuations at small and intermediate scales. It is important
to notice at this point that the standard slow-roll condition
may break down if the potential becomes extremely flat and
the inertial contribution in the equation of motion for the
inflation field is not negligible as compared with the Hubble
friction (Garcia-Bellido and Ruiz Morales, 2017; Germani
and Prokopec, 2017; Kannike et al., 2017). In this regime,
even the classical treatment is compromised since stochastic
effects can no longer be ignored (Starobinsky and Yokoyama,
1994; Vennin and Starobinsky, 2015; Pattison et al., 2017;
Ezquiaga and Garcia-Bellido, 2018).

If we restrict ourselves to situation in which the slow-
roll approximation is satisfied during the whole inflationary
trajectory (Bezrukov et al., 2018)14, the height and width of
the generated bump at fixed spectral tilt are correlated with
the tensor-to-scalar ratio r, cf. Figure 4. Contrary to some
claims in the literature (Ezquiaga et al., 2018), the maximum
amplitude of the power-spectrum compatible with the 95%
C.L Planck ns − r contours (Bezrukov et al., 2018) is well
below the critical threshold P

max
R

≃ 10−2 − 10−3 needed
for primordial black hole formation (Bird et al., 2016; Carr
et al., 2016, 2017) (see however, Ezquiaga and Garcia-
Bellido, 2018; Rasanen and Tomberg, 2018). This conclusion
is unchanged if one considers the effect of non-instantaneous
threshold corrections (Bezrukov et al., 2018), which could
potentially affect the results given the numerical proximity
of the inflection point (3.17) to the upper boundary of the
transition region, φ ≃ √

3/2MP.
iii) Hilltop regime: If λ . b/(16κ) the potential develops

a new minimum at large field values (Fumagalli, 2017;
Rasanen and Wahlman, 2017). This minimum is separated
from the electroweak minimum by a local maximum where
hilltop inflation can take place (Boubekeur and Lyth, 2005;
Barenboim et al., 2016). This scenario is highly sensitive
to the initial conditions since the inflaton field must start
on the electroweak vacuum side and close enough to the
local maximum in order to support an extended inflationary
epoch. On top of that, the fitting formulas in (3.15) may not
be accurate enough for this case, since they are based on
an optimization procedure around the λ(φ) minimum. The
tensor-to-scalar ratio in this scenario differs also from the
universal/non-critical Higgs inflation regime, but contrary to
the critical case, it is decreased to 2× 10−5 < r < 1× 10−3,
rather than increased (Fumagalli and Postma, 2016; Rasanen
and Wahlman, 2017).

3.4. Vacuum Metastability and
High-Temperature Effects
The qualitative classification of scenarios and predictions
presented in the previous section depends on the inflationary
values of the Higgs and top quark masses and holds

14The onset of the slow-roll regime prior to the arrival of the field to the inflection

point and its dependence on pre-inflationary conditions was studied in Salvio

(2018), where a robust inflationary attractor was shown to exist.

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 10 January 2019 | Volume 5 | Article 50

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Rubio Higgs Inflation

FIGURE 4 | (Left) The tensor-to-scalar ratio r and the spectral tilt ns following from the effective potential (3.12) (Bezrukov et al., 2018). The non-minimal coupling ξ

varies between 10 and 100 along the lines of constant κ, with larger values corresponding to smaller tensor-to-scalar ratios. The star in the lower part of the plot

stands for the universal values in Equation (2.44). The blue contours indicate the latest 68 and 95% C.L. Planck constraints on the r-ns plane (Akrami et al., 2018).

(Right) The power spectrum PR as a function of the number of e-folds before the end of inflation and the associated comoving scale κ in inverse megaparsecs

(Bezrukov et al., 2018). The monotonic curve at the bottom of the plot corresponds to the universal/non-critical Higgs inflation scenario. The upper non-monotonic

curves are associated with different realizations of the critical Higgs inflation scenario. The shaded regions stand for the latest 68 and 95% C.L. constraints provided

by the Planck collaboration (Akrami et al., 2018).

FIGURE 5 | (Left) Spectral tilt running αs ≡ d ln ns/d ln k in critical Higgs inflation as a function of the tensor-to-scalar ratio r and the spectral-tilt ns (Rasanen and

Wahlman, 2017). (Right) Scale dependence of the spectral-tilt βs ≡ d2 ln ns/d ln k2 in the same case (Rasanen and Wahlman, 2017). The purple dots indicate the

universal/non-critical Higgs inflation regime. The boundaries on the right-hand side of the figures correspond to the constraint on the number of e-folds following the

heating estimates in Garcia-Bellido et al. (2009), Bezrukov et al. (2009a), and Repond and Rubio (2016). For lower heating efficiencies, the boundaries move to the

left, decreasing the spectral tilt but not significantly affecting the tensor-to-scalar ratio (Rasanen and Wahlman, 2017).

independently of the value of their electroweak counterparts.
In particular, any pair of couplings following from the SM
renormalization group equations can be connected to a well-
behaved pair of couplings in the chiral phase by a proper choice
of the unknown threshold corrections. This applies also if the SM
vacuum is not completely stable. Some examples of the 1-loop
threshold correction δλa needed to restore the universal/non-
critical Higgs inflation scenario beyond µ0 ∼ 109, 1010, and 1012

GeV are shown in Figure 6. For a detailed scan of the parameter
space, see Enckell et al. (2016); Fumagalli and Postma (2016).

The non-trivial interplay between vacuum stability and
threshold corrections generates an additional minimum at large
field values. Provided the usual chaotic initial conditions, the
Higgs field will evolve in the trans-Planckian field regime,
inflating the Universe while moving toward smaller field values.
Since the new minimum is significantly wider and deeper than
the electroweak one, it seems likely that the Higgs field will
finish its post-inflationary evolution there. Note, however, that
this conclusion is strongly dependent on the ratio of the Higgs
energy density to the secondminimum depth. If this ratio is large,
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FIGURE 6 | (Left) Illustrative values of the 1-loop threshold corrections needed to restore the asymptotic behavior of the universal Higgs inflation potential at large

field values for electroweak SM pole masses leading to SM vacuum instability at µ0 ∼ 109, 1010, and 1012 GeV. (Right) Comparison between the potential following

from the set of parameters leading to the red line in the previous plot and the thermally-corrected effective potential accounting for the backreaction effects of the

decay products created during the heating stage. The normalization factor U0 = (10−3MP )
4 account for the typical energy density at the end of inflation.

the entropy production at the end of inflation may significantly
modify the shape of the potential, triggering its stabilization and
allowing the Higgs field to evolve toward the desired electroweak
vacuum (Bezrukov et al., 2009a).

The one-loop finite temperature corrections to be added
on top of the Einstein-frame renormalization group enhanced
potential take the form (Linde, 1979)

1V = T
∑

i=B,F

∫

d3k

(2π)3a3
ln

[

1± exp

(

−k2/a2 +m2
i

T

)]

,

(3.18)
with the plus and minus signs corresponding respectively to
fermions and bosons and mB,F standing for the Einstein-frame
masses in Equation (2.25). The most important contributions
in Equation (3.18) are associated with the top quark and the
electroweak bosons, with the corresponding coupling constants
yt and g evaluated at µyt = 1.8T and µg = 7T, in order to
minimize the radiative corrections (Kajantie et al., 1996).

A detailed analysis of the universal/non critical Higgs inflation
scenario reveals that the temperature of the decay products
generated during the heating stage exceeds generically the
temperature at which the unwanted secondary vacuum at large
field values disappears (Bezrukov et al., 2009a; Garcia-Bellido
et al., 2009), see Figure 615. The stabilization becomes favored
for increasing µ0 values

16. and holds even if this scale is as low
as 1010 GeV (Bezrukov et al., 2009a). The thermally-corrected
potential enables the Higgs field to relax to the SM vacuum.
After the heating stage, the temperature decreases as the Universe
expands and the secondary minimum reappears, first as a local
minimum and eventually as the global one. When that happens,
the Higgs field is already trapped in the electroweak vacuum.
Although the barrier separating the twominima prevents a direct
decay, the Higgs field could still tunnel to the global minimum.

15A detailed scan of the parameter space assuming instantaneous conversion of the

inflaton energy density into a thermal bath was performed in Enckell et al. (2016).
16The larger µ0 is, the shallower and narrower the “wrong” minimum becomes, cf.

Figure 6

The probability for this to happen is, however, very small and
the lifetime of SM vacuum significantly exceeds the life of the
Universe (Anderson, 1990; Arnold and Vokos, 1991; Espinosa
and Quiros, 1995; Espinosa et al., 2008). Universal/non-critical
Higgs inflation with a graceful exit can therefore take place for
electroweak SM pole masses leading to vacuum metastability at
energies below the inflationary scale (Bezrukov et al., 2009a).

The situation changes completely if one considers the critical
Higgs inflation scenario. In this case, the energy of the Higgs
condensate is comparable to the depth of the secondary
minimum and symmetry restoration does not take place. Unless
the initial conditions are extremely fine-tuned, theHiggs field will
relax to theminimum of the potential at Planckian values, leading
with it to the inevitably collapse of the Universe (Felder et al.,
2002). The success of critical Higgs inflation requires therefore
the absolute stability of the electroweak vacuum (Bezrukov et al.,
2009a).

4. VARIATIONS AND EXTENSIONS

Many variations and extensions of Higgs inflation have been
considered in the literature (see for instance Ben-Dayan and
Einhorn, 2010; Lerner and McDonald, 2010, 2011; Arai et al.,
2011; Giudice and Lee, 2011; Kamada et al., 2011, 2012; Einhorn
and Jones, 2012; Greenwood et al., 2013; Kanemura et al., 2013;
Steinwachs, 2013; Choudhury et al., 2014; He and Xianyu, 2014;
Oda and Tomoyose, 2014a,b; Xianyu and He, 2014; Cai et al.,
2015; Ellis et al., 2015, 2016; Kamada, 2015b; Lazarides and Pallis,
2015; Okada and Shafi, 2015; Calmet and Kuntz, 2016; Ge et al.,
2016; Takahashi and Takahashi, 2016; van de Bruck and Longden,
2016; Ema, 2017; Ema et al., 2017b; Marian et al., 2017; Okada
and Raut, 2017; Chen et al., 2018; He et al., 2018). In what
follows we will restrict ourselves to those proposals that are more
closely related to the minimalistic spirit of the original scenario.
In particular, we will address a Palatini formulation of Higgs
inflation and the embedding of themodel to a fully scale invariant
framework.
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4.1. Palatini Higgs Inflation
In the usual formulation of Higgs inflation presented in section
2.2, the action is minimized with respect to the metric. This
procedure implicitly assumes the existence of a Levi-Civita
connection depending on the metric tensor and the inclusion
of a York-Hawking-Gibbons term ensuring the cancellation
of a total derivative term with no-vanishing variation at the
boundary (York, 1972; Gibbons and Hawking, 1977). One
could alternatively consider a Palatini formulation of gravity
in which the metric tensor and the connection are treated
as independent variables and no additional boundary term is
required to obtain the equations of motion (Ferraris et al., 1982).
Roughly speaking, this formulation corresponds to assuming an
ultraviolet completion involving different gravitational degrees of
freedom.

Although the metric and Palatini formulations of General
Relativity give rise to the same equations of motion
(Ferraris et al., 1982), this is not true for scalar-tensor
theories as Higgs inflation. To see this explicitly let us
consider the Higgs inflation action in Equation (2.12) with
R = gµνRµν(Ŵ, ∂Ŵ) and Ŵ a non-Levi-Civita connection17.
Performing a Weyl rescaling of the metric gµν → 2 gµν
with 2 given by Equation (2.15) we obtain an Einstein-frame
action

S =
∫

d4x
√

−g

[

M2
P

2
gµνRµν(Ŵ)−

1

2
M2

PK(2)(∂2)2 − V(2)

]

,

(4.1)
containing a potential (2.17) and a non-canonical kinetic term
with

K(2) ≡ 1

4|a|22

(

1

1−2

)

, (4.2)

and

|a| ≡ ξ . (4.3)

Note that the kinetic function (4.2) differs from that obtained
in the metric formulation, see Equation (2.18). In particular, it
does not contain the part associated with the non-homogeneous
transformation of the Ricci scalar, since R = R(Ŵ) is
now invariant under Weyl rescalings. For the purposes of
inflation, this translates into a modification of the residue of
the inflationary pole at 2 = 0 with respect to the metric case.
While the metric value of |a| in Equation (2.18) is bounded from
above [cf. Equation (2.8)], it can take positive arbitrary values in
the Palatini formulation [cf. Equation (4.3)]. Performing a field
redefinition

1

M2
P

(

dφ

d2

)2

= K(2) −→ h(φ) = F∞ sinh

(√
aφ

MP

)

,

(4.4)

17For a recent generalization built from the Higgs, the metric and the connection

and involving only up to two derivatives (see Rasanen, 2018).

to canonically normalize the h-field kinetic term, we can rewrite
the graviscalar action (4.1) at φ≫ vEW as

S =
∫

d4x
√

−g

[

M2
P

2
R− 1

2
(∂φ)2 − V(φ)

]

, (4.5)

with

V(φ) = λ

4
F4(φ) , F(φ) ≡ F∞ tanh

(√
aφ

MP

)

. (4.6)

The comparison of the latest expression with Equation (2.24)
reveals some important differences between the metric and
Palatini formulations. In both cases, the effective Einstein-frame
potential smoothly interpolates between a low-energy quartic
potential and an asymptotically flat potential at large field values.
Note, however, that the transition in the Palatini case is rather
direct and does not involve the quadratic piece appearing in the
metric formulation. On top of that, the flatness of the asymptotic
plateau is different in the two cases, due to the effective change
in |a|. The Palatini dependence |a| = ξ has a strong impact
on the inflationary observables. In the large-field regime they
read

ns ≃ 1− 2

N̄∗
, r ≃ 2

ξ N̄2∗
, (4.7)

with

N̄∗ ≡ N∗ +
1

16|a| cosh
(

2
√
aφE

MP

)

, (4.8)

a rescaled number of e-folds and

φE = MP

2
√
a
arcsinh(

√
32a) , (4.9)

the inflaton value at the end of inflation (ǫ(φend) ≡ 1), with φE =√
3/2 arcsinh(4/

√
3)MP corresponding to the ξ → ∞ limit and

φE = 2
√
2MP to the end of inflation in a minimally coupled

λφ4 theory. A relation between the non-minimal coupling ξ , the
self-coupling λ and the number of e-folds N̄∗ can be obtained
by taking into account the amplitude of the observed power
spectrum in Equation (2.39),

ξ ≃ 3.8× 106N̄2
∗λ . (4.10)

A simple inspection of Equation (4.7) reveals that the predicted
tensor-to-scalar ratio in Palatini Higgs inflation is within the
reach of current or future experiments (Matsumura et al., 2016)
only if ξ . 10, which, assuming N̄ ≃ 59, requires a
very small coupling λ . 10−9. For a discussion of unitarity
violations in the Palatini formulation, see Bauer and Demir
(2011).

4.2. Higgs-Dilaton Model
The existence of robust predictions in (non-critical) Higgs
inflation is intimately related to the emerging dilatation
symmetry of its tree-level action at large field values. The
uplifting of Higgs inflation to a completely scale-invariant
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setting was considered in Shaposhnikov and Zenhausern
(2009), Garcia-Bellido et al. (2011), Blas et al. (2011), Bezrukov
et al. (2013), Garcia-Bellido et al. (2012), Rubio and
Shaposhnikov (2014), Trashorras et al. (2016), Karananas
and Rubio (2016), Casas et al. (2017), and Casas et al. (2018). In
the unitary gauge H = (0, h/

√
2)T , the graviscalar sector of the

Higgs-Dilaton model considered in these papers takes the form

S =
∫

d4x
√

−g

[

ξhh
2 + ξχχ2

2
R− 1

2
(∂h)2 − 1

2
(∂χ)2

−V(h,χ)
]

, (4.11)

with

U(h,χ) = λ

4

(

h2 − αχ2
)2 + βχ4 (4.12)

a scale-invariant version of the SM symmetry-breaking potential
and α,β positive dimensionless parameters. The existence of a
well-defined gravitational interactions at all field values requires
the non-minimal gravitational couplings to be positive-definite,
i.e. ξh, ξχ > 0. In the absence of gravity, the ground state of
Equation (4.11) is determined by the scale-invariant potential
(4.12). For α 6= 0 and β = 0, the vacuum manifold extends
along the flat directions h0 = ±αχ0. Any solution with χ0 6=
0 breaks scale symmetry spontaneously and induces non-zero
values for the effective Planck mass and the electroweak scale18.
The relation between these highly hierarchical scales is set by
fine-tuning α ∼ v2/M2

P ∼ 10−32. For this small value,
the flat valleys in the potential U(h,χ) are essentially aligned
and we can safely approximate α ≃ 0 for all inflationary
purposes.

To compare the inflationary predictions of this model with
those of the standard Higgs-inflation scenario, let us perform a
Weyl rescaling gµν → M2

P/(ξhh
2 + ξχχ

2)gµν followed by a field
redefinition (Casas et al., 2017)

γ−22 ≡ (1+ 6ξh)h
2 + (1+ 6ξχ )χ

2

ξhh2 + ξχχ2
,

exp

[

2γ8

MP

]

≡ a

ā

(1+ 6ξh)h
2 + (1+ 6ξχ )χ

2

M2
P

, (4.13)

with

γ ≡
√

ξχ

1+ 6ξχ
, a ≡ − ξh

1+ 6ξh
, ā ≡ a

(

1− ξχ

ξh

)

.

(4.14)
After some algebra, we obtain a rather simple Einstein-frame
action (Karananas and Rubio, 2016; Casas et al., 2017)

S =
∫

d4x
√

−g

[

M2
P

2
R− 1

2
M2

PK(2)(∂2)2 − 1

2
2(∂8)2

−U(2)
]

, (4.15)

18 Among the possible values of β in the presence of gravity, the case β = 0 seems

also preferred (Allen and Folacci, 1987; Garcia-Bellido et al., 2011; Jalmuzna et al.,

2011, see also Antoniadis et al., 1986, 2007; Tsamis and Woodard, 1993, 1995;

Polyakov, 2010; Wetterich, 2017).

containing a potential

U(2) = U0(1−2)2 , U0 ≡
λM4

P

4

(

1+ 6ā

ā

)2

, (4.16)

and a non-canonical, albeit diagonal, kinetic sector. The kinetic
function for the2 field,

K(2) = 1

4 |ā|22

(

c

|ā|2− c
+ 1− 6|ā|2

1−2

)

, (4.17)

contains two “inflationary" poles at 2 = 0 and 2 = c/|ā|
and a “Minkowski” pole at 2 = 1, where the usual SM
action is approximately recovered. As in the single field case, the
“Minkowski” pole does not play a significant role during inflation
and can be neglected for all practical purposes. Interestingly,
the field-derivative space becomes in this limit a maximally
symmetric hyperbolic manifold with Gaussian curvature a < 0
(Karananas and Rubio, 2016).

Inflation takes place in the vicinity of the inflationary poles.
During this regime, the kinetic term of the 8-field is effectively
suppressed and the dilaton rapidly approaches a constant
value 8 = 80 (Garcia-Bellido et al., 2011). This effective
freezing is an immediate consequence of scale invariance. As
in the single field case, the shift symmetry 8 → 8 + C
in Equation (4.15) allows us to interpret 8 as the dilaton or
Goldstone of dilatations. As first shown in Garcia-Bellido et al.
(2011), the equation of motion for this field coincides with
the scale-current conservation equation, effectively restricting
the evolution to constant 8 ellipsoidal trajectories in the {h,χ}
plane. Given this emergent single-field dynamics, no non-
gaussianities nor isocurvature perturbations are significantly
generated during inflation (Garcia-Bellido et al., 2011). If the
2 variable is dominated by the Higgs component (ξh ≫ ξχ ),
the spectral tilt and the tensor-to-scalar ratio take the compact
form

ns ≃ 1−8 ccoth (4cN∗) , r ≃ 32 c2

|a| csch2 (4cN∗) , (4.18)

with |a| ≃ 1/6 in order to satisfy the normalization
condition (2.39). Note that these expressions rapidly
converge to the Higgs inflation values (2.38) for 4cN∗ ≪ 1.
For increasing c and fixed N∗, the spectral tilt decreases
linearly and the tensor-to-scalar ratio approaches
zero.

5. CONCLUDING REMARKS

Before the start of the LHC, it was widely believed that we
would find a plethora of new particles and interactions that
would reduce the Standard Model to a mere description of
Nature at energies below the TeV scale. From a bottom-up
perspective, new physics was typically advocated to cure the
divergences associated with the potential growth of the Higgs
self-coupling at high energies. The finding of a relatively light
Higgs boson in the Large Hadron Collider concluded the quest
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of the Standard Model spectrum while demystifying the concept
of naturalness and the role of fundamental scalar fields in
particle physics and cosmology. The Standard Model is now
a confirmed theory that could stay valid till the Planck scale
and provide a solid theoretical basis for describing the early
Universe.

The Higgs field itself could lead to inflation if a minimalistic
coupling to the Ricci scalar is added to the Standard
Model action. The value of this coupling can be fixed by
the normalization of the spectrum of primordial density
perturbations, leaving a theory with no free parameters at tree
level. On top of that, the experimental knowledge of the Standard
Model couplings reduces the usual uncertainties associated with
the heating stage and allows us to obtain precise predictions
in excellent agreement with observations. Note, however, the
mere existence of gravity makes the theory non-renormalizable
and forces its interpretation as an effective field theory. Even
in a self-consistent approach to Higgs inflation, the finite parts
of the counterterms needed to make the theory finite obscure
the connection between low- and high-energy observables. If
these unknown coefficients are small, Higgs inflation provides an

appealing relation between the Standard Model parameters and
the properties of the Universe at large scales. If they are large,
this connection is lost but Higgs inflation can surprisingly take

place even when the Standard Model vacuum is not completely
stable.
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