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Propagating kink waves have been observed in many magnetic waveguides in the solar

atmosphere, like coronal magnetic loops, spicules, and fine structures of prominences.

There are also observational evidences that these waves are damped. At present

resonant absorption is considered as the most likely candidate for explaining this

damping. First the attenuation of propagating kink waves due to resonant absorption

was studied using the simplest model with a straight magnetic tube and the density

only varying in the radial direction. Later a more advanced model with the density also

varying along the tube was used. It was shown that the variation of the wave amplitude

along the tube is determined by the combined effect of resonant damping and the

longitudinal density variation. In our article we extend the analysis of resonant damping

of propagating kink waves to take into account the magnetic loop expansion. We also

consider non-stationary magnetic tubes to model, for example, cooling coronal loops. In

particular, we found that cooling enhances the wave amplitude and the loop expansion

makes this effect more pronounced.

Keywords: solar atmosphere, plasma, waves, magnetic field, resonant absorption

1. INTRODUCTION

Propagating kink waves have been observed in many magnetic waveguides in the solar atmosphere,
like coronal magnetic loops (Tomczyk et al., 2007; Tomczyk and McIntosh, 2009), spicules (De
Pontieu et al., 2007; He J. et al., 2009; He J.-S. et al., 2009), fine structures of prominences (Okamoto
et al., 2007), and in filament threads (Lin et al., 2007, 2009). It was also observed that these waves
damp. At present resonant absorption is considered as the most likely candidate for explaining this
damping. The theoretical modeling of the spatial damping of traveling kink waves due to resonant
absorption has been carried out by Terradas et al. (2010) and Verth et al. (2010) analytically, and by
Pascoe et al. (2010, 2011) numerically. In all these article the simplest model of a straight magnetic
tube with the density only varying in the radial direction was used.

Later mode sophisticate models were used. Soler et al. (2011a) took into account the effect of
partial ionization in the single-fluid approximation. As a result, kink waves were damped by both
resonant absorption and ion-neutral collisions. Soler et al. (2011b) studied the resonant absorption
of propagating kink waves in the presence of flow. Soler et al. (2011c) investigated the propagation
and resonant absorption of kink waves in a magnetic tube with the density varying both
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along and across the tube. They showed that the variation of the
wave amplitude along the tube is determined by the combined
effect of resonant damping and the longitudinal density variation.
Ruderman et al. (2010) studied the effect of non-linearity on the
resonant damping of propagating kink waves and showed that
non-linearity can strongly enhance the damping efficiency.

All papers cited above used the theory of resonant damping
that can be called classical. In this theory the wave amplitude
decays exponentially with the distance from the place where
it is driven. This result is based on the assumption that
a propagating kink wave is an eigenmode of the linearized
dissipative magnetohydrodynamics (MHD). In the case of
standing kink oscillations (Ruderman and Roberts, 2002) showed
that after the initial perturbation the kink oscillation of a
perturbed magnetic tube is very well-described by an eigenmode
of the linear dissipative MHD after a transitional time of order
of the oscillation period everywhere but in a vicinity of the
resonant surface. However, in the vicinity of the resonant surface
phase mixing continues until it creates perturbations with so
small spatial scale that viscosity and/or resistivity stops it. Only
after that the perturbation is described by an eigenmode of the
linear dissipative MHD everywhere. It was shown numerically
that, for typical parameters of coronal magnetic loops, the
time when the phase mixing stops is at least by an order
of magnitude larger than the typical damping time of kink
oscillations (Arregui, 2015).

Hence, we conclude that the main assumption of the classical
theory of resonant damping is not satisfied. This problem
was addressed numerically by Pascoe et al. (2012, 2013), and
analytically by Hood et al. (2013). It was shown that at the
initial stage the amplitude variation with the distance from
the driver is described by the Gaussian profile. And only later
the amplitude decays exponentially. As a result, the damping
length of a kink wave is somewhat longer than that predicted
by the classical theory of resonant damping. Hence, to correctly
describe the spatial damping of propagating kink waves we need
to use the advanced theory developed by Hood et al. (2013).
The importance of Gaussian damping strongly depends on the
thickness of the transitional layer where the density drops from
large value inside the tube to low value in the surrounding
plasma. It also depends on the ratio of densities inside and outside
the tube. The distance where the transition from the Gaussian to
exponential damping occurs reduces fast when the thickness of
the layer decreases, and also when the ratio of densities increases.

Ruderman and Terradas (2013) carried out an analytical
analysis of resonant damping of standing kink waves similar to
that made by Hood et al. (2013) for propagating kink waves.
They, in particular, concluded that the classical theory of resonant
damping underestimates the damping time. But, for typical
values of coronal magnetic loop parameters, the error never
exceeds 20%. Although a similar estimate was not obtained for
propagating kink waves, on the basis of the analogy between the
spatial damping of propagating waves and temporal damping
of standing waves, we believe that, although the classical theory
of resonant damping underestimates the damping length, the
error is quite moderate. On the other hand, the advanced theory
of resonant damping is much more complex than the classical

theory. Hence, in this article we will use the classical theory of
resonant damping.

Sometime it is observed that waveguides in the solar
atmosphere are non-stationary. For example, Aschwanden
and Terradas (2008) and Aschwanden and Schrijver (2011)
reported observations of kink oscillations of cooling coronal
loops. Inspired by these observations Ruderman (2011b) and
Shukhobodskiy et al. (2018) studied the resonant damping of
kink oscillations of cooling coronal magnetic loops. Morton et al.
(2010) and Ballester et al. (2018) investigated the propagation
of magnetosonic waves in a cooling plasma. In our paper we
extend their analysis to propagating kink waves in non-stationary
magnetic flux tubes. In particular, we study the kink wave
propagation in cooling coronal loops.

Our article is organized as follows. In the next section we
formulate the problem and present the governing equations. In
section 3 we derive the equation governing the evolution of
kink waves propagating along non-stationary magnetic tubes. In
section 4we derive the expression determining resonant damping
of kink waves. In section 5 we derive the equation for the
wave amplitude. In section 6 we consider kink wave propagation
in static and non-expanding magnetic tubes. In section 7 we
study kink wave propagation in non-stationary and expanding
magnetic tubes. Finally, in section 8 we summarize the results
obtained in the paper.

2. PROBLEM FORMULATION AND
GOVERNING EQUATIONS

We study propagating kink waves along a straight magnetic tube
with the circular cross-section of variable radius (see Figure 1).
The characteristic radius of the tube cross-section is R∗. Since the
tube expands the magnetic field is spatially dependent, but the
scale of its spatial variation is L∗ ≫ R∗. This assumption implies
that we consider a thin magnetic tube. Below we use cylindrical
coordinates r, ϕ, z with the z-axis coinciding with the tube
axis. We consider an axisymmetric equilibrium meaning that all
equilibrium quantities are independent of ϕ. The magnetic field
is not twisted meaning that its azimuthal component is zero.
Its radial and axial components are expressed in terms of the
magnetic flux function ψ as

Br = −1

r

∂ψ

∂z
, Bz =

1

r

∂ψ

∂r
. (2.1)

Ruderman et al. (2017) (Paper I in what follows) showed that in
the thin tube approximation

ψ = 1

2
r2h(z). (2.2)

This expression is valid both in the tube and in its immediate
surrounding.

It follows from Equations (2.1) to (2.2) that

Br = −1

2
rh′(z), Bz = h(z). (2.3)
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FIGURE 1 | Sketch of the equilibrium.

Since h′(z) ∼ h(z)/L∗, it follows that

Br

Bz
= O(ε), B = h(z)

[
1+O

(
ε2

)]
, (2.4)

where ε = R∗/L∗ and B = (B2r + B2z)
1/2 is the magnetic

field magnitude.
The plasma density varies both along and across the tube.

The tube consists of a core region and a boundary layer where
the density monotonically decreases from its value ρi inside the
tube to its value ρe in the surrounding plasma. Here and below
the indices “i” and “e” indicate that a quantity is calculated in
the core region and in the surrounding plasma, respectively. The
characteristic thickness of the boundary layer is lR∗, where l≪ 1.
This implies that we use the thin boundary approximation. The
transitional layer boundaries are defined by equations

r = R(z)(1− l/2), r = R(z)(1+ l/2). (2.5)

Now it follows from the magnetic flux conservation that the
magnetic field tube magnitude and the tube radius are related by
the approximate equation

BR2 = const. (2.6)

It follows from Equations (2.2) to (2.6) that the transitional layer
boundaries are magnetic field lines and their equations can be

written in an alternative form as

ψ = ψi ≡
1

2
BR2

(
1− l

2

)2

, ψ = ψe ≡
1

2
BR2

(
1+ l

2

)2

.

(2.7)
In the core region and in the surrounding plasma the
characteristic scale of density variation is L∗ both in the
longitudinal and radial direction. In the transitional layer the
characteristic scale of density variation in the longitudinal
direction is also L∗, but it is lR∗ in the radial direction. The density
also can depend on time. The temporal variation of density can
cause the plasma flow along the magnetic field lines. Again, the
velocity only weakly varies in the radial direction in the core
region and outside of the tube, but it varies on the scale lR∗ in
the transitional layer. The density ρ and velocity U = (Ur , 0,Uz)
are related by the mass conservation equation

∂ρ

∂t
+ 1

r

∂(ρrUr)

∂r
+ ∂(ρUz)

∂z
= 0. (2.8)

Since the velocity is parallel to the magnetic field it follows from
Equation (2.4) that

Ur

Uz
= O(ε), U = Uz

[
1+O

(
ε2

)]
, (2.9)

where U = (U2
r +U2

z )
1/2 is the velocity magnitude. We integrate

Equation (2.8) over the area of the tube core cross-section, that is
over a circle of radius R(z)(1− l/2). As a result we obtain

R2(1− l/2)2
(
∂ρ

∂t
+ ∂(ρUz)

∂z

)
+ 2(ρrUr)

∣∣
r=R(1−l/2)

= 0. (2.10)

It follows from Equations (2.3), (2.4), to (2.6) that hR2 = const.
Using this equation and Equations (2.3), (2.4), and (2.9) yields

Ur

U

∣∣∣∣
r=R(1−l/2)

= Br

B

∣∣∣∣
r=R(1−l/2)

= −h′R(1− l/2)

2h
= R′(1− l/2).

(2.11)
Substituting this result in Equation (2.10) we obtain in the leading
order approximation with respect to ε and l

∂ρi

∂t
+ 1

R2
∂(ρiR

2Ui)

∂z
= 0. (2.12)

Next we integrate (Equation 2.8) over the ring region R(1+l/2) ≤
r ≤ ςR, where ς−1≫ l and ς is of the order of unity. This yields

R2
(
ς2−1− l− l2/4

) (
∂ρ

∂t
+ ∂(ρUz)

∂z

)
+2(ρrUr)

∣∣∣
ςR

r=R(1+l/2)
= 0.

(2.13)
Similar to Equation (2.9) we obtain

Ur

U

∣∣∣∣
r=ςR

= ςR′. (2.14)
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Using Equation (2.11) with −l substituted for l and (2.14) we
obtain from Equation (2.13)

R2
(
ς2 − 1− l− l2/4

) (
∂ρ

∂t
+ ∂(ρUz)

∂z

)

+2RR′
(
(ρU)

∣∣∣
ςR

− (ρU)
∣∣∣
r=R(1+l/2)

)
= 0.

In the leading order approximation with respect to ε and l we
neglect l in comparison with unity, and take Uz ≈ U and

(ρU)
∣∣∣
ςR

≈ (ρU)
∣∣∣
r=R(1+l/2)

in Equation (2.13). Then, dividing the obtained equation by
R2(ς2 − 1) yields

∂ρe

∂t
+ 1

R2
∂(ρeR

2Ue)

∂z
= 0. (2.15)

It was shown in Paper I that long linear kink waves, which are
waves with the wavelength much larger than R∗, in an expanding
and non-stationary magnetic tube is described by the equation

ρi

(
∂

∂t
+ Ui

R2
∂

∂z
R2

)(
∂η

∂t
+ Ui

∂η

∂z

)

+ ρe

(
∂

∂t
+ Ue

R2
∂

∂z
R2

)(
∂η

∂t
+ Ue

∂η

∂z

)
− 2B2

µ0

∂2η

∂z2
= L,

(2.16)

where

L = δP

R2
+ B2

µ0

∂2(lη + δη)
∂z2

− ρe

(
∂

∂t
+ Ue

R2
∂

∂z
R2

)(
∂

∂t
+ Ue

∂

∂z

)
(lη + δη). (2.17)

In this equations µ0 is the magnetic permeability of free space,
P is the perturbation of magnetic pressure,

η = ξ⊥i

R
, (2.18)

and ξ⊥ is the plasma displacement in the ϕ = const plane and
perpendicular to the magnetic field lines. In the case of non-
expanding tube ξ⊥ = ξr , where ξr is the radial component
of the plasma displacement. In a slowly expanding tube ξ⊥ =
ξr[1 + O(ε)]. In the thin tube approximation ξ⊥i is independent
of r. This property is same as that first obtained in the case of non-
expanding magnetic tubes (e.g., Ruderman and Erdélyi, 2009).
The quantities δη and δP are the jumps across the transitional
layer defined by

δη = 1

R

(
ξ⊥

∣∣
ψ=ψe

− ξ⊥
∣∣
ψ=ψi

)
, δP = P

∣∣
ψ=ψe

− P
∣∣
ψ=ψi

.

(2.19)
Equation (2.17) with the right-hand side defined by Equation
(2.19) is used below to study the propagation of kink waves.

In the thin tube approximation the radial and azimuthal
components of both the plasma displacement and magnetic
field perturbation are independent of r inside the tube and
proportional to r−2 outside the tube. The wave energy density is
equal to the sum of the kinetic and magnetic energy density. The
kinetic energy density is proportional to the sum of the squares of
the radial and azimuthal components of the plasma displacement,
and the magnetic energy density is proportional to the sum of the
squares of the radial and azimuthal components of the magnetic
field perturbation. Hence, the wave energy density is independent
of r inside the tube and proportional to r−4 outside the tube.
The energy behavior in the boundary layer strongly depends
on the dissipative coefficients and can be either monotonic or
oscillatory. At distances from the place where the wave is driven
that are much smaller than the damping distance the wave energy
density in the transitional layer is quite small, of the order of
l/R∗ ≪ 1. However, at distances comparable with the damping
distance almost all energy is concentrated in the transition layer
due to resonant absorption.

3. DERIVATION OF THE EVOLUTIONARY
EQUATION

In this section we consider propagation of kink waves along an
expanding and non-stationary magnetic tube. Using Equations
(2.12) and (2.15) we transform Equation (2.11) to

(ρi + ρe)
∂2η

∂t2
+ 2(ρiUi + ρeUe)

∂2η

∂t∂z

+
(
ρiU

2
i + ρeU2

e −
2B20
µ0

)
∂2η

∂z2

+
{
∂

∂t
(ρiUi + ρeUe)+

1

R4
∂

∂z

[
R4(ρiU

2
i + ρeU2

e )
]} ∂η
∂z

−
[
∂

∂t
(ρi + ρe)+

∂

∂z
(ρiUi + ρeUe)

]
∂η

∂t
= 0. (3.1)

Now we consider waves with the length much longer than R∗, but
much shorter than L∗. We denote the ratio of the characteristic
wavelength to L∗ as ǫ≪ 1. The condition the wavelength is much
larger than R∗ implies that ǫ≫ ε = R∗/L∗. We also assume that
the wave period is much shorter than the characteristic scale of
the temporal density variation. To study the wave propagation
we look for the solution to Equation (3.1) in the form

η = S exp(iǫ−1θ), (3.2)

where θ is real and S is complex (Bender and Orszag, 1978). The
presence of transitional layer results in the resonant damping
of waves. We will see below that the damping length is of the
order l−1 times the wavelength. On the other hand, the effect
of inhomogeneity manifests itself on a distance from the place
where the wave is driven that is of the order of ǫ−1 times the
wavelength. We would like to derive the equation for the wave
amplitude that takes both effects into account in the same order
approximation. In accordance with this we put l = ǫ. When l≫ǫ

the effect of resonant absorption strongly dominates the effect of
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the axial density variation that can be neglected. In the opposite
case where l≪ ǫ the effect of the axial density variation strongly
dominates the effect of resonant absorption. We will see below
that L is of the order of ǫ−1 when l = ǫ. This estimate inspires us
to introduce L̃ = ǫL. The characteristic time of wave damping
due to resonant absorption is ǫ−1 times the wave period. If the
characteristic time of density variation is much larger than that
time then its effect can be neglected. On the other hand, if the
characteristic time of density variation is much smaller then the
damping time then the effect of density variation will strongly
dominate the wave damping. We aim to study the competition of
the two effects. In accordance with this we assume that the ratio
of the wave period to the characteristic time of density variation
is of the order of ǫ. Substituting η = S exp(iǫ−1θ) in Equation
(3.1) and collecting terms proportional to ǫ−2 in the obtained
equation yields

(ρi+ρe)ω2−2(ρiUi+ρeUe)kω+
(
ρiU

2
i + ρeU2

e −
2B20
µ0

)
k2 = 0,

(3.3)
where

ω = −∂θ
∂t

, k = ∂θ

∂z
. (3.4)

This approximation is usually called the approximation of
geometrical optics.

Next, we collect terms proportional to ǫ−1. This results in

(ρi + ρe)
(
S
∂ω

∂t
+ 2ω

∂S

∂t

)
+ 2(ρiUi + ρeUe)

(
S
∂ω

∂z
+ ω∂S

∂z
− k

∂S

∂t

)

−
(
ρiU

2
i + ρeU2

e −
2B20
µ0

) (
S
∂k

∂z
+ 2k

∂S

∂z

)

−
{
∂

∂t
(ρiUi + ρeUe)+

1

R4
∂

∂z

[
R4(ρiU

2
i + ρeU2

e )
]}

kS

−
[
∂

∂t
(ρi + ρe)+

∂

∂z
(ρiUi + ρeUe)

]
ωS = ie−il−1θ L̃. (3.5)

Multiplying this equation by SR4 and using Equation (2.6)
we obtain

R4(ρi + ρe)
∂(ωS2)

∂t
− R4(ρiUi + ρeUe)

[
∂(kS2)

∂t
− ∂(ωS2)

∂z

]

− ∂

∂z

[(
ρiU

2
i + ρeU2

e −
2B20
µ0

)
kR4S2

]

−kR4S2
∂

∂t
(ρiUi + ρeUe)

−
[
∂

∂t
(ρi + ρe)+

∂

∂z
(ρiUi + ρeUe)

]
ωR4S2 = ie−il−1θSR4L̃.

(3.6)

We further transform this equation to

∂

∂t

{
R4S2

[
(ρi + ρe)ω − (ρiUi + ρeUe)k

]}

+ R4(ρiUi + ρeUe)
∂(ωS2)

∂z
− ∂

∂z

[(
ρiU

2
i + ρeU2

e −
2B20
µ0

)
kR4S2

]

−
[
2
∂

∂t
(ρi + ρe)+

∂

∂z
(ρiUi + ρeUe)

]
ωR4S2

= ie−il−1θSR4L̃. (3.7)

We now transform the terms on the left-hand side of this
equation that are not full derivatives. Using Equations (2.12) and
(2.15) we obtain

R4(ρiUi + ρeUe)
∂(ωS2)

∂z

−
[
2
∂

∂t
(ρi + ρe)+

∂

∂z
(ρiUi + ρeUe)

]
ωR4S2

= R4(ρiUi + ρeUe)
∂(ωS2)

∂z

+
[
2 (ρiUi + ρeUe)

∂R2

∂z
+ R2

∂

∂z
(ρiUi + ρeUe)

]
ωR2S2

= R4(ρiUi + ρeUe)
∂(ωS2)

∂z
+ ωS2 ∂

∂z

[
R4(ρiUi + ρeUe)

]

= ∂

∂z

[
(ρiUi + ρeUe)ωR

4S2
]
. (3.8)

Using this result we reduce Equation (3.7) to

∂

∂t

{
R4S2

[
(ρi + ρe)ω − (ρiUi + ρeUe)k

]}

+ ∂

∂z

{
R4S2

[
(ρiUi + ρeUe)ω −

(
ρiU

2
i + ρeU2

e −
2B20
µ0

)
k

]}

= ie−il−1θSR4L̃. (3.9)

Finally, introducing

V = ω

k
, E = R4S2

[
(ρi + ρe)ω − (ρiUi + ρeUe)k

]
, (3.10)

and using Equation (3.3) we rewrite Equation (3.9) as

∂E

∂t
+ ∂(VE)

∂z
= ie−il−1θSR4L̃. (3.11)

Here E is proportional to the wave energy density per unit length
along the magnetic tube.

Below we assume that the temporal variation of the density is
very slow. To be specific, we consider as an example kink waves
in cooling coronal loops. One observation of kink oscillation of a
cooling coronal loop was reported by Aschwanden and Schrijver
(2011). In this event the period of fundamental mode was 395 s,
and the loop length was 163 Mm. Hence, the phase speed of
the kink wave was 893 km/s. The cooling time was 2050 s.
Taking this time as the characteristic time in Equation (2.12),
and the loop length as the characteristic length, we obtain the
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estimate Ui ∼ 80 km/s. Aschwanden and Schrijver (2011) did
not give any information about the temperature of the plasma
surrounding the loop. Cooling mainly occurs due to radiation
with the intensity proportional to the plasma density squared.
The plasma in the loop is much denser than that surrounding the
loop. Hence, even if the external plasma cools, its cooling time
is much larger than that of the plasma in the loop, and we can
expect thatUe≪Ui. Consequently, we conclude that in the event
reported by Aschwanden and Schrijver (2011) the speed of the
flow induced by cooling is much smaller than the phase speed.

On the basis of this example we introduce the definition that
the temporal density variation is very slow if the flow speed
induced by this variation is much smaller than the phase speed.
The assumption that the temporal density variation is very slow
enables us to neglect the terms containing Ui and Ue in Equation
(3.3). In addition, we only consider waves propagating in the
positive z-direction. Then Equation (3.3) reduces to

ω = Ckk, C2
k =

2B2

µ0(ρi + ρe)
. (3.12)

We also can neglect the terms proportional to Ui and Ue in the
expression for E and write it in the approximate form as

E = (ρi + ρe)ωR4S2. (3.13)

4. DERIVATION OF EXPRESSION FOR L̃

The assumption that the temporal variation of density is very
slow enables us to use the linear equations of static MHD to
describe the plasma motion in the transitional layer. However,
we take the dependence of the density on time. To remove
the singularity at the resonant surface we take the viscosity
into account. Below we use the system of equations derived by
Shukhobodskiy and Ruderman (2018). In this system ψ is used
as an independent variable instead of r. Since Shukhobodskiy and
Ruderman (2018) considered a static problem with the density
independent on time they took the perturbation of all variables
proportional to e−iωt . However, it is easy to restore the time
dependence. It suffices to substitute ∂/∂t for −iω. As a result,
we obtain

P = − 1

µ0

(
rB2

∂w

∂ψ
+ iB2

ξϕ

r
− Br

∂w

∂z
+ Bz

w

r

)
, (4.1)

∂2w

∂t2
= rB2Bz

µ0ρ

∂

∂z

(
Bz

r2B2
∂(rw)

∂z

)
+ B2

ρ

[
Br
∂

∂z

(
P

B2

)

− rB2
∂

∂ψ

(
P

B2

) ]
+ ν ∂

∂t

(
r2B2z

∂2w

∂ψ2
− w

r2

)
, (4.2)

∂2ξϕ

∂t2
= − iP

ρr
+ Bz

µ0ρr

∂

∂z

[
r2Bz

∂

∂z

(
ξϕ

r

)]

+ν ∂
∂t

(
r2B2z

∂2ξϕ

∂ψ2
− ξϕ

r2

)
. (4.3)

In these equations ξϕ is the ϕ-component of the plasma
displacement, w = Bξ⊥, and ν is the kinematic viscosity. We
note that r is the function of ψ and z. These equations are valid
both in the transitional layer as well as in the core region and
external plasma where we can neglect the terms proportional
to ν. The characteristic scale of variation of perturbations with
respect to z is lε−1R∗≫R∗. The characteristic time of variation of
perturbations is lε−1R∗/V∗, where V∗ is the characteristic value
of the phase speed. We can take V2

∗ = B2∗/(µ0ρ∗), where B∗
and ρ∗ are the characteristic values of the magnetic field and
density, respectively. Using these estimates we obtain that P ∼
l−2ε2V2

∗R
−1
∗ ξϕ . Then the ratio of the left-hand side of Equation

(4.1) to the second term in the brackets in this equation is of
the order of l−2ε2 ≪ 1, which implies that the left-hand side of
Equation (4.1) can be neglected. The ratio of the third term in the
brackets on the right-hand side of Equation (4.1) to the fourth
term is l−1ε2 ≪ 1, so the third term also can be neglected. As a
result, Equation (4.1) reduces to

r2B
∂w

∂ψ
+ iBξϕ + w = 0. (4.4)

Finally, since in the core region the dependence of both B and ξ⊥
on ψ can be neglected, in this region we also can drop the first
term in Equation (4.4).

In the WKB method all dependent variables must have the
same functional form. In accordance with this, recalling that
η = S exp(iǫ−1θ) and l = ǫ, we put

w = ŵeil
−1θ , ξϕ = ξ̂ϕe

il−1θ , P = P̂eil
−1θ . (4.5)

Using the relations w = Bξ⊥, η = ξ⊥i/R and η = S exp(iǫ−1θ),
and taking into account that the dependence of ξ⊥ on ψ in the
core region can be neglected we obtain the expression valid in
the core region,

ŵi = BRS. (4.6)

Substituting Equations (4.5) and (4.6) in Equation (4.1) with
the small terms neglected, and in Equation (4.3) with ν = 0,
and collecting the leading terms with respect to l we obtain the
following equations valid in the core region,

iξ̂ϕ + RS = 0, (4.7)

P̂ = −il−2rρ

(
ω2 − B2k2

µ0ρ

)
ξ̂ϕ . (4.8)

Eliminating ξ̂ϕ from these equations yields

P̂ = l−2rρRS

(
ω2 − B2k2

µ0ρ

)
. (4.9)

Now we proceed to calculating L̃. First we further simplify
Equations (4.2)–(4.4). We note that we can take r(ψ , z) ≈ R(z)
in the transitional layer. Using Equations (2.3) and (2.4) we also
take Bz ≈ B. We can disregard the dependence of B onψ . Finally,
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the characteristic scale of both the density and perturbations of all
quantities in the transitional layer is ψe −ψi = lBR2. Using these
estimates we can easily show that the second term in the square
brackets in Equation (4.2) strongly dominates the first term, and
the second terms in brackets in terms proportional to ν are much
smaller than the first terms. Finally, the ratio of the third and first
terms in Equation (4.4) is of the order of l. Hence, the third term
can be dropped. Then, using Equation (2.6) we reduce the system
of Equations (4.2)–(4.4) to

r2
∂w

∂ψ
+ iξϕ = 0, (4.10)

∂2w

∂t2
= B2

µ0ρR

∂2(wR)

∂z2
− RB2

ρ

∂P

∂ψ
+ νR2B2 ∂3w

∂t∂ψ2
, (4.11)

∂2ξϕ

∂t2
= − iP

ρR
+ RB2

µ0ρ

∂2

∂z2

(
ξϕ

R

)
+ νR2B2 ∂

3ξϕ

∂t∂ψ2
. (4.12)

4.1. Solution Outside of the Dissipative
Layer
To obtain the solution in the transitional layer we use the method
of matched asymptotic expansions (e.g., Bender and Orszag,
1978). In accordance with this method we split the transitional
layer in the dissipative layer and two layers sandwiching this layer
where we can neglect viscosity. We look for the solution to the
linear dissipative MHD in the dissipative layer and to the linear
ideal MHD outside of this layer. Then wematch the two solutions
in the two overlap layer where the both solutions are valid. The
solution in the dissipative layer is called internal, and the solution
outside of the dissipative layer external.

We start from looking for the solution to the linear ideal MHD
outside of the dissipative layer embracing the resonance surface
defined by the equation ψ = ψA, where ψA is determined by
the condition VA(ψA) = Ck. Since the variation of P in the
transitional layer is of the order of lPi, we can substitute Pi(ψ =
ψi) for P in Equation (4.12). Now, we substitute Equations (4.5)
and (4.6) in Equations (4.10)–(4.12). Since we need to calculate
L̃ in the leading order approximation with respect to l, we only
keep leading terms. As a result, we obtain

R2
∂ŵ

∂ψ
+ iξ̂ϕ = 0, (4.13)

k2
(
C2
k − V2

A

)
ŵ = l2RB2

ρ

∂P̂

∂ψ
, (4.14)

(
C2
k − V2

A

)
ξ̂ϕ = iρi

ρA
RS

(
C2
k − V2

Ai

)
, (4.15)

where VA = B(µ0ρ)
−1/2 is the Alfvén speed and ρA = ρ(ψ =

ψA). When deriving Equations (4.14) and (4.15) we used the
relation ω = Ckk. It follows from Equation (4.15) that

ξ̂ϕ =
iρiRS(C

2
k
− V2

Ai)

ρA(C
2
k
− V2

A)
. (4.16)

We see that there is a singularity of ξ̂ϕ at ψ = ψA(t, z).
Substituting Equation (4.16) in Equation (4.13) and integrating
the obtained equation yields

ŵ =





ŵ(ψ = ψi)+
∫ ψ

ψi

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ1, ψ < ψA,

ŵ(ψ = ψe)−
∫ ψe

ψ

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ1, ψ > ψA.

(4.17)

While ξ̂ϕ has a singularity of the form (ψ − ψA)
−1, ŵ only

has a logarithmic singularity. Finally, substituting this result in
Equation (4.14) and integrating the obtained equation results in

8̂ =





8̂(ψ = ψi)+
k2(C2

k
− V2

Ai)

l2RB2∫ ψ
ψi

(
ŵ(ψ = ψi)+

∫ ψ1

ψi

S(C2
k
−V2

Ai)

R(C2
k
−V2

A)
dψ2

)
dψ1, ψ < ψA,

8̂(ψ = ψe)−
k2(C2

k
− V2

Ai)

l2RB2∫ ψe

ψ

(
ŵ(ψ = ψe)−

∫ ψe

ψ1

S(C2
k
−V2

Ai)

R(C2
k
−V2

A)
dψ2

)
dψ1, ψ > ψA,

(4.18)
where 8̂ is defined by the equation

∂8̂

∂ψ
= 1

ρ

∂P̂

∂ψ
. (4.19)

It is easy to see that P̂ is continuous at ψ = ψA.

4.2. Solution Inside the Dissipative Layer
We now look for the solution in the dissipative layer embracing
the resonant surface. Ruderman et al. (1995) was the first to
show that solution character in the dissipative layer depends
on the value of viscosity (see also Ruderman and Roberts,
2002; Goossens et al., 2011). The spatial dependence of variable
perturbations in the dissipative layer is monotonic when the
viscosity is not very small, while it is oscillatory for very small
values of viscosity. Ruderman et al. (1995) studied a planar
problem where the transition from monotonic to oscillatory
behavior is determined by the relative values of two small
parameters, the ratio of the thickness of transitional layer to the
wavelength, and the inverse Reynolds number. He also studied
the temporal damping of kink waves. However, the results that
he obtained is easily translated to the spatial damping and
cylindrical geometry. In this case, the variable spatial dependence
is determined by the relative values of three small parameters,
l, ε = R∗/L∗, and the inverse Reynolds number Re−1, where
Re = R∗V∗/ν. The parameter determining the character of
the spatial variation of variable perturbations in the dissipative
layer is l(εRe)1/3. When l(εRe)1/3 ≪ 1 the spatial dependence
of variable perturbations in the dissipative layer is monotonic,
while it is oscillatory when l(εRe)1/3 & 1. We mainly aim to
apply the results of this study to the solar atmosphere, where
the typical value is l & 0.1, ε & 0.01, while Re ≫ 106, so that
l(εRe)1/3 > 1, which implies that the behavior of perturbations
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in the dissipative layer is oscillatory. However, in this case the
equations describing the motion in the dissipative layer are very
complex and, at present, it is not clear how to solve them. On
the other hand, we only need to calculate the jumps of w and P
across the dissipative layer. Ruderman et al. (1995) found that
these jumps are independent of the value of viscosity. The only
condition that must be satisfied is that Re is sufficiently large,
so that the thickness of the dissipative layer is much smaller
than the thickness of the transitional layer. This result was later
confirmed in subsequent studies (see, e.g., the review byGoossens
et al., 2011). The solution of equations describing the plasma
motion in the dissipative layer in the case when l(εRe)1/3 ≪ 1
is relatively simple. The result that the jumps of w and P across
the dissipative layer are independent of l(εRe)1/3 was obtained
for a static magnetic tube with a constant cross-section radius.
However, it looks like a viable conjecture to assume that this
result remains correct even for a non-stationary and expanding
tube. We note that the following derivation is similar to that in
the case of a non-expanding tube. The only difference that in the
case of a non-expanding tube we use the variable r, while in our
derivation we use the variable ψ instead.

Hence, we assume that l(εRe)1/3 ≪ 1. Since the thickness of
the dissipative layer is much smaller than the thickness of the
transitional layer we can approximate any equilibrium quantity
in the dissipative layer by its first non-zero term of Taylor
expansion with respect toψ−ψA. In particular, we can substitute
ρA = ρ(ψ = ψA) for ρ and take

C2
k − V2

A = −1(ψ − ψA), 1 = ∂V2
A

∂ψ

∣∣∣∣
ψ=ψA

. (4.20)

Since we assume that the density monotonically decreases in the
radial direction in the transitional layer, it follows that 1 > 0.
Now, substituting Equation (4.5) in Equation (4.12), collecting
terms of the order of l−2, using Equations (4.9) and (4.20), and
substituting P(ψ = ψi) for P we obtain

1(ψ − ψA)ξ̂ϕ + ilνk−1CkR
2B2

∂2ξ̂ϕ

∂ψ2
= − iρi

ρA
RS

(
C2
k − V2

Ai

)
.

(4.21)
When deriving this equation we took into account that ω = Ckk.

The thickness of the dissipative layer is defined by the
condition that the two terms on the left-hand side of Equation
(4.21) are of the same order. Using Equations (2.2) and (2.4) we
easily obtain that this thickness is

δA =
(

lνCk

kRB1

)1/3

∼ lR∗(εRe)
−1/3. (4.22)

Then the condition that the thickness of the dissipative layer is
much smaller than the thickness of the transitional layer reduces
to εRe ≫ 1. For typical conditions in the solar atmosphere this
inequality is definitely satisfied. Together with the condition that
the spatial behavior of variable perturbations in the dissipative
layer is non-oscillatory this gives

1≪ εRe≪ l−3. (4.23)

The solution in the dissipative layer has to match the solution
outside of this layer in the overlap layer defined by δA ≪ |r −
rA| ≪ lR∗. Using Equation (4.16) we obtain that the solution in
the overlap layer has the form

ξ̂ϕ = −
iρiRS(C

2
k
− V2

Ai)

ρA1(ψ − ψA)
+O

(
(ψ − ψA)

−2
)
. (4.24)

Hence, the solution to Equation (4.21) must have this form for
|ψ − ψA| ≫ R∗B∗δA. The solution to Equation (4.21) satisfying
this condition is obtained in Appendix A. It is given by Equation
(A6). Using Equation (A1) we rewrite it as

ξ̂ϕ = −
ρiS(C

2
k
− V2

Ai)

ρAB1δA
F(9), (4.25)

where

9 = ψ − ψA

RBδA
, F(9) =

∫ ∞

0
exp

(
iσ9 − 1

3σ
3
)
dσ . (4.26)

Using Equations (4.25) and (4.26) we obtain fromEquation (4.13)

ŵ =
ρiS(C

2
k
− V2

Ai)

ρAR1
G(9), (4.27)

where

G(9) =
∫ ∞

0

eiσ9 − 1

σ
e−σ

3/3dσ . (4.28)

The functions F(9) andG(9) were introduced by Goossens et al.
(1995).

Finally, substituting Equation (4.5) in Equation (4.11),
collecting terms of the order of l−2, and using the relation ω =
Ckk, and Equations (4.20) and (4.22), and (4.26)–(4.28) we obtain

∂8̂

∂9
=
ρik

2Sδ2A(C
2
k
− V2

Ai)

l2ρA

(
dF

d9
−9G(9)

)
. (4.29)

4.3. Matching Solutions
The matching procedure is the following. First we find the
asymptotic expansion of the internal solution valid for 9 ≫ 1.
Next we find the expansion of the external solution valid for
|ψ − ψA| ≪ BR2. Then we substitute ψ − ψA = RBδA9 in this
expansion. The matching condition is that the leading terms of
the two expansions must coincide.

We found that it is more convenient to compare not the
expansions but the jumps across the dissipative layer. The jump
of w across the dissipative layer is given by w(9) − w(−9) with
9≫ 1. We obtain

G(9)− G(−9) = 2i

∫ ∞

0

sin(σ9)

σ
e−σ

3/3dσ

= 2i

∫ ∞

0

sin σ

σ

[
1+

(
e−σ

3/393 − 1
)]

dσ

= π i+ 2i

∫ ∞

0

sin σ

σ

(
e−σ

3/393 − 1
)
dσ . (4.30)
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It is obvious that the second term in this expression tends to zero
as9 → ∞. Using this result we obtain from Equation (4.27) that
the jump of ŵ across the dissipative layer is

ŵ(9)− ŵ(−9) =
π iρiS(C

2
k
− V2

Ai)

ρAR1
[1+ o(1)]. (4.31)

Using Equation (4.17) we obtain another asymptotic expression
for the jump of ŵ across the dissipative layer,

ŵ(ψ−ψA)− ŵ(ψA−ψ) = δŵ−P

∫ ψe

ψi

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ+ o(1),

(4.32)
where δŵ = ŵ(ψ = ψe) − ŵ(ψ = ψi) and P indicates the
principal Cauchy part of an integral. This asymptotic expression
is valid for |ψ − ψA| ≪ 1. The leading terms of the two
asymptotic expressions, one given by Equation (4.31) and the
other by Equation (4.32), must coincide. It follows from this
condition that

δŵ =
π iρiS(C

2
k
− V2

Ai)

ρAR1
+ P

∫ ψe

ψi

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ . (4.33)

Now we calculate δ8̂ = 8̂(ψ = ψe) − 8̂(ψ = ψi).
Using Equation (4.29) we obtain that the jump of P across the
dissipative layer is given by

8̂(9) − 8̂(−9)

=
ρik

2Sδ2A(C
2
k
− V2

Ai)

l2ρA

∫ 9

−9

(
dF

d91
−91G(91)

)
d91. (4.34)

The integral on the right-hand side of this equation is evaluated
in Appendix B. Using Equation (B8) we obtain

8̂(9)−8̂(−9) = −
π iρik

2SδA(C
2
k
− V2

Ai)9
2

2l2ρA
[1+o(1)]. (4.35)

This result and the matching condition imply that the expansion
with respect to ψ − ψA of the jump of P across the dissipative
layer calculated using the external solution must start from the
term proportional to (ψ−ψA)

2. In particular, it follows from this
condition that the term in this expansion proportional to unity
must be zero. Using Equation (4.18) we write this condition as

δ8̂ =
k2(C2

k
− V2

Ai)

l2RB2

[ ∫ ψe

ψA

(
ŵ(ψ = ψe)−

∫ ψe

ψ

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ1

)
dψ

+
∫ ψA

ψi

(
ŵ(ψ = ψi)+

∫ ψ

ψi

S(C2
k
− V2

Ai)

R(C2
k
− V2

A)
dψ1

)
dψ

]
. (4.36)

where δ8̂ = 8̂(ψ = ψe)− 8̂(ψ = ψi). Since δŵ/ŵ = O(l) and
we only need to calculate δ8̂ in the leading order approximation
with respect to l, we can substitute ŵ(ψ = ψe) ≈ ŵ(ψ = ψi) =
RBS. Then, noticing that the only quantity that depends on ψ in
Equation (4.36) is VA, each single integral is of the order of l, and
each double integral is of the order of l2, we reduce this equation
in the leading order approximation with respect to l to

δ8̂ =
k2S(C2

k
− V2

Ai)(ψe − ψi)

l2B
. (4.37)

We note that we would obtain exactly the same expression for
δ8̂ if we assume from the very beginning that we can neglect
the jump of the pressure perturbation across the dissipative layer.
This assumption was first made ad hog by Hollweg and Yang
(1988). Later it was rigorously proved in 1D plasma equilibrium
by Goossens et al. (1995).

Since the jump of 8 across the dissipative layer is zero, it
follows that the expression for 8 obtained using the ideal MHD
equations is a continuous function in the whole transitional layer.
Then, using Equation (4.37) we obtain from Equation (4.18) the
expression valid in the whole transitional layer in the leading
order approximation with respect to l,

8̂ = 8̂(ψ = ψi)+
k2S(C2

k
− V2

Ai)(ψ − ψi)

l2B
. (4.38)

When deriving this expression we neglected the second terms in
the brackets in Equation (4.18) because their ratios to the first
terms are of the order of l. Using Equation (4.19) we obtain

δP̂ ≡ P̂(ψ = ψe)− P̂(ψ = ψi) =
k2S(C2

k
− V2

Ai)

l2B

∫ ψe

ψi

ρ(ψ) dψ .

(4.39)
Now we proceed to calculating L̃. We substitute η = Seiǫ

−1θ ,

δη = (δŵ/RB)eiǫ
−1θ , and δP = δP̂ eiǫ

−1θ in Equation (2.17).
Then, using Equation (3.12) and the condition of very slow
temporal density variation implying that Ue ≪ Ck we obtain

L̃ = eiǫ
−1θ

[
l
δP̂

R2
− 1

2
(ρi − ρe)ω2

(
S+ l−1 δŵ

RB

) ]
. (4.40)

Finally, using Equations (4.33) and (4.37) we arrive at

L̃ = 2eiǫ
−1θωCkS(ρi + ρe)(ϒ − iγ), (4.41)

where

γ =
πkC2

k
(ρi − ρe)2

8lρABR21(ρi + ρe)
, (4.42)

ϒ = k(ρi − ρe)
4(ρi + ρe)

(
− 1+

C2
k

lρiBR2
P

∫ ψe

ψi

ρ − ρi
C2
k
− V2

A

dψ

)
. (4.43)

5. DERIVATION OF GOVERNING
EQUATION FOR THE WAVE AMPLITUDE

The wave evolution is described by Equation (3.11) with E and
L̃ given by Equations (3.13) and (4.41), respectively. We write
S = Aeiχ . Then, substituting Equations (3.13) and (4.41) in
Equation (3.11), multiplying the obtained equation by e−2iχ , and
separating the real and imaginary parts yields

∂Q

∂t
+ ∂(CkQ)

∂z
= −2γCkQ, (5.1)

∂χ

∂t
+ Ck

∂χ

∂z
= Ckϒ , (5.2)
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where Q = (ρi + ρe)ωR
4A2. Equation (5.1) determines the

temporal and spatial dependence of the wave amplitude, while
Equation (5.2) describes a small phase shift. We are mainly
interested in the variation of the wave amplitude in space and
time, so we do not use Equation (5.2) below.

6. WAVE PROPAGATION ALONG A STATIC
AND NON-EXPANDING WAVEGUIDE

In this section we reproduce the results previously obtained for
static and non-expanding waveguides. Hence, we assume that the
tube radius is constant and equal to R.

6.1. Waveguide Homogeneous in the Axial
Direction
Here we consider the same problem as that studied by Terradas
et al. (2010), which is the resonant damping of kink waves
propagating along a magnetic tube homogeneous in the axial
direction. We now assume that the density only varies in the
radial direction. We assume that a harmonic wave is driven at
z = 0 and propagates in the region z > 0. In that case A
is independent of time and it follows from Equation (5.1) that
A = A0e

−γz , where A0 is the amplitude at z = 0. Using the
relation ψ = 1

2Br
2 we obtain from Equation (4.20)

1 = − B

µ0ρ
2
AR

dρ

dr

∣∣∣∣
A

. (6.1)

In this case both k and ω are constant. Hence, θ = kz−ωt, which
implies that the wavenumber is k∗ = l−1k. Now, using Equation
(6.1) and the relation Ck = VA(rA) yields

γ

k∗
= π(ρi − ρe)2

8R(ρi + ρe)|dρ/dr|A
. (6.2)

This expression coincides with that obtained by Terradas et al.
(2010) (see their Equation (10) withm = 1).

6.2. Waveguide With the Density Varying in
the Axial Direction
Now we study the resonant damping of kink waves propagating
along a magnetic tube with the density varying along the tube.
This problem was first addressed by Soler et al. (2011c). We aim
to reproduce their results. We assume that ρi(z)/ρe(z) = ζ =
const and ρ(r, z)/ρe(z) = f (r). Previously these assumptions
were made by Dymova and Ruderman (2006) when studying
resonant damping of standing kink waves, and by Soler et al.
(2011c) when studying resonant damping of propagating kink
waves. We again assume that the kink wave with the amplitude
A0 and the constant frequency ω is driven at z = 0. Since now Ck

is a function of z, the same is true for the wavenumber: k(z) =
ω/Ck(z). Note that in non-scaled variables the wavenumber is
k∗(z) = l−1k(z).

Since Q is again independent of t it immediately follows from
Equation (5.1) that

A = A0

√
Ck

Cf
exp

(
−

∫ z

0
γ(z1) dz1

)
. (6.3)

When deriving this equation we used the relation ρiC
2
k
= ρfC

2
f
.

Equation (6.1) remains valid. Then, using the relation ρ(r, z) =
f (r)ρe(z) we obtain from Equation (4.42)

γ = ω(ζ − 1)

2πG(ζ + 1)Ck(z)
, (6.4)

where

G = 4lR|f ′(rA)|
π2(ζ − 1)

. (6.5)

G = 4/π2 for the linear density profile, and 2/π for the
sinusoidal density profile. After substituting Equation (6.4) in
Equation (6.3) we obtain the equation coinciding with Equation
(38) in Soler et al. (2011c).

7. WAVE PROPAGATION ALONG AN
EXPANDING AND NON-STATIONARY
WAVEGUIDE

As an example of application of the general theory we consider
a generalization of the same problem that was studied by Soler
et al. (2011c), and take the loop expansion and cooling into
account. We first describe the general method for studying the
wave propagation, and then apply it to a particular loop with
given cross-section radius and density variation along the tube,
and the temporal density variation.

7.1. General Theory
We assume that a kink wave is driven at one of the loop footpoints
and impose the boundary condition

ω = ω0, A = A0 at z = 0. (7.1)

Driving starts at t = 0. Before that the loop is at rest, so we also
have the initial condition

A = 0 at t = 0. (7.2)

The equations describing the wave propagation are solved for
t > 0 and z > 0.

We start from calculating θ(t, z). It follows from dispersion
Equation (3.12), ω = Ckk, and Equation (3.4) that θ(t, z) satisfies
the equation

∂θ

∂t
+ Ck(t, z)

∂θ

∂z
= 0. (7.3)

Since θ(t, z) is defined with the accuracy up to an additive
constant we can take θ(0, 0) = 0. Then it follows from Equation
(7.1) that

θ = −ω0t at z = 0. (7.4)

Since the loop is at rest at t = 0 we can take

θ = 0 at t = 0. (7.5)
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The equation of characteristics of Equation (7.3) is

dz

dt
= Ck(t, z). (7.6)

It follows from Equation (7.3) that θ = const along a
characteristic. We consider the characteristic that starts at the
coordinate origin. Let its equation be z = zb(t), where zb(0) =
0. This characteristic separates the perturbed and unperturbed
regions in the (t, z)-plane, so we will call it the boundary
characteristic. Let us consider a point with coordinates (t1, z1)
satisfying the condition z1 > zb(t1). This implies that this point
is above the boundary characteristic. Since the characteristic
containing the point (t1, z1) cannot intersect the boundary
characteristic, it follows that it starts at the z-axis. Then, using
Equation (7.5) we obtain θ(t1, z1) = 0.

Now we consider a point (t1, z1) that is below the boundary
characteristic meaning that z1 < zb(t1). Let the characteristic
containing this point starts at t = τ (t1, z1) on the t-axis. Then
θ(t1, z1) = −ω0τ (t1, z1). As a result, we determine θ(t, z) in the
whole region t > 0, z > 0. Differentiating θ(t, z) with respect to t
we calculate ω. Then k = ω/Ck.

Next we proceed to solving Equation (5.1). The equation
of characteristics of this equation is also Equation (7.6). The
variation of Q along the characteristic is defined by

dQ

dt
= −

(
2γCk +

∂Ck

∂z

)
Q. (7.7)

After substituting in this equation a solution to Equation (7.6)
found when calculating θ(t, z) , Equation (7.7) becomes the
equation determining the variation of Q along a characteristic.
The solution to this equation must satisfy the initial condition

Q = (ρi + ρe)ω0R
4A2

0 at t = τ (t1, z1). (7.8)

In this equation the equilibrium quantities are calculated at t = τ

and z = 0.
We now consider a point (t1, z1) with z1 > zb(t1), which

implies that it is above the boundary characteristic. In that case
the characteristic that contains this point starts at the z-axis
where A = 0. Then it follows that A(t1, z1) = 0, that is the tube is
at rest for z > zb(t). Hence, the equation z = zb(t) describes the
propagation of the wave front along the magnetic tube. Below we
apply the general theory to particular cases.

7.2. Wave Propagation in Cooling and
Expanding Coronal Loop
We now consider the kink wave propagation in a coronal loop
of half-circle shape immersed in an isothermal atmosphere. We
assume that the loop is in a vertical plane. Cooling of coronal
plasma mainly occurs due to radiation. The radiation intensity
is proportional to the plasma density squared. Since the plasma
density inside the loop is substantially higher than that of the
surrounding plasma, the plasma inside the loop cools much faster
than that outside the loop. This observation inspires us to make
a viable assumption that cooling only occurs inside the loop,

while its temperature outside the loop does not change. Then the
density inside and outside the loop is given by

ρi = ρf exp

(
− L

πH(t)
sin

πz

L

)
, ρe =

ρf

ζ
exp

(
− L

πH0
sin

πz

L

)
,

(7.9)
where L is the length of the loop. Following to Aschwanden and
Terradas (2008) and Ruderman (2011a,b) we assume that the
plasma density inside the loop decreases exponentially, so that

H(t) = H0e
−t/tc . (7.10)

Here we do not discuss the mechanisms of coronal loop
cooling, although the main cause of cooling of moderately hot
coronal loops with the temperature of the order of or less
than 1.5 MK is the radiative cooling. Magyar et al. (2015)
studied transverse oscillations of radiatively cooling coronal
loops numerically. They did not present the dependence of
temperature on time. However, in general their results related
to the time dependence of the oscillation amplitude are in
good agreement with that obtained by Ruderman (2011a,b) who
assumed the exponential temperature decay. Hence, it seems
that the exponential dependence of temperature on time is
a reasonable approximation. The pressure inside the loop is
assumed to be in equilibrium with the outside medium during
the cooling. Since the plasma beta in the corona is very low
this condition does not impose any serious restriction on the
plasma parameters.

We adopt a model of expanding coronal loop first introduced
by Ruderman et al. (2008), and later also used by Shukhobodskiy
and Ruderman (2018) and Shukhobodskiy et al. (2018). In this
model the cross-section radius of the magnetic tube is given by

R(z) = Rf λ

√
cosh(L/2lc)− 1

cosh(L/2lc)− λ2 + (λ2 − 1) cosh(z/lc − L/2lc)
.

(7.11)
Here lc is a free parameter with the dimension of length, and λ is
the expansion factor equal to the ratio of the cross-section radius
at the loop apex and footpoints, that is λ = R(L/2)/Rf . In our
numerical study we took L/lc = 6 and l = 0.2. Here it is worth
making a comment. In section 2 we imposed the condition that
L∗ ≫ R∗, where L∗ is the characteristic scale of the tube radius
variation along the tube, and R∗ is the characteristic tube radius.
In the model that we adopted here L∗ = lc = L/6. Since typically
L ∼ 50R∗, it follows that L∗/R∗ ∼ 8. Hence, the condition
L∗ ≫ R∗ is satisfied. The condition that the speed of the flow
caused by cooling is much smaller than the phase speed is

N = L(tcCf )
−1 ≪ 1. (7.12)

In our analysis we neglect the effect of the tube curvature and
consider it as straight. To our knowledge the effect of tube
curvature on the propagation and damping of kink waves has
not been studied. However, it was studied in the case of standing
waves. Van Doorsselaere et al. (2004) analytically and Terradas
et al. (2006) numerically showed that the coronal loop curvature
has very minor effect on the frequency and damping of kink

Frontiers in Astronomy and Space Sciences | www.frontiersin.org 11 March 2019 | Volume 6 | Article 10

https://www.frontiersin.org/journals/astronomy-and-space-sciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/astronomy-and-space-sciences#articles


Ruderman et al. Resonant Damping of Kink Waves

FIGURE 2 | Dependence of the wave front position on time. The calculations continued until the wave front reaches the other end of the magnetic tube. The left

panels correspond to λ = 1 and the right to λ = 1.5. The upper, middle, and lower panels correspond to κ = 0.5, κ = 1, and κ = 2, respectively. The solid, dashed,

dotted, and dash-dotted curves correspond to N = 1/3, N = 0.2, N = 0.1, and N = 0, respectively.

oscillations. It looks like a viable assumption that the same is true
for propagating waves when the curvature radius is much larger
than the tube radius.

The main aim of our study is to investigate the effect of
cooling on the kink wave propagation. Since cooling decreases
ρi it increases Ck. Hence, the stronger the cooling is the faster
the wave perturbation launched at one footpoint at t = 0
reaches the other footpoint. We studied the wave propagation
for N = 0 (no cooling), N = 0.1 (slow cooling), N =

0.2 (moderate cooling), and N = 1/3 (strong cooling). In
the case of strong cooling the wave front arrives at the second
footpoint at t = tend. In all other cases the wave front
arrives at the second footpoint at t > tend. We calculated the
spatial dependence of the wave frequency, wavenumber, and
the amplitude at t = tend. At z = 0 the wave frequency is
l−1ω0 and the wavenumber is l−1ω0/Cf . In our calculation we
took the wavelength at z = 0 equation to one fifth of L, that
is L = 10π lCf /ω0 = 2πCf /ω0.
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FIGURE 3 | Dependence of the frequency on the distance along the loop for T = Tend. The left panels correspond to λ = 1 and the right to λ = 1.5. The upper,

middle, and lower panels correspond to κ = 0.5, κ = 1, and κ = 2, respectively. The solid, dashed, dotted, and dash-dotted curves correspond to N = 1/3,

N = 0.2, N = 0.1, and N = 0, respectively.

We introduce the dimensionless variables and parameters,

T = tω0

l
, Z = zω0

lCf
, � = lω

ω0
, K =

lkCf

ω0
, Tend = tendω0

l
,

κ = L

πH0
, α = N

10π
= L

10π tcCf
. (7.13)

Using the relation BR2 = const we obtain

C2
k =

C2
f
R4
f
(ζ + 1)

R4[ζ exp(−κeαT sin(0.1Z))+ exp(−κ sin(0.1Z))] .
(7.14)

Then the characteristic Equation (7.6) reduces to

dZ

dT
=

R2
f

√
ζ + 1

R2
√
ζ exp(−κeαT sin(0.1Z))+ exp(−κ sin(0.1Z))

.

(7.15)
The quantity Tend is defined by the equation Zb(Tend) =
ω0L(lCf )

−1, where Zb(T) is the solution to Equation (7.15) with
α = 1/30π satisfying the initial condition Zb(0) = 0. Using
Equation (7.15) we calculated the dependence of the wave front
position on time for various values of κ and λ. This dependence
is shown in Figure 2. We see that the stronger the cooling is the
faster the wave front moves. This results is not surprising because
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FIGURE 4 | Dependence of the wave number on the distance along the loop for t = tend. The left panels correspond to λ = 1 and the right to λ = 1.5. The upper,

middle, and lower panels correspond to κ = 0.5, κ = 1, and κ = 2, respectively. The solid, dashed, dotted, and dash-dotted curves correspond to N = 1/3,

N = 0.2, N = 0.1, and N = 0, respectively.

the cooling causes the enhancement of the phase speed Ck. We
can also see that the effect of cooling is rather weak, although the
tube expansion makes it more pronounced.

We also calculated the dimensionless frequency � and
wavenumber K for various values of λ, �, and κ . The results
are presented in Figures 3, 4. First of all, we note the frequency
is constant when there is no cooling as it must be. When there
is cooling, in a non-expanding loop the frequency increases
with the distance from the footpoint where the wave is driven.
The stronger the cooling is the more pronounced this effect is.
However, this effect is quite weak. The dependence of frequency

on the cooling rate is much stronger in an expanding loop. We
see that it is especially strong when the tube expands and the loop
height substantially exceeds the atmospheric scale height. The
situation with the wavenumber is quite similar. Again cooling
almost does affect it in non-expanding loops, while in expanding
loops the effect of cooling is quite noticeable.

Finally, Figure 5 displays the variation of the amplitude along
the loop. It is worth noticing that, in most cases, the amplitude
first increases and then starts to decay. The amplitude increase
is related with the stratification, while the decay is cased by
the resonant damping. We can see that cooling always results
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FIGURE 5 | Dependence of the amplitude on the distance along the loop for t = tend. The left panels correspond to λ = 1 and the right to λ = 1.5. The upper, middle,

and lower panels correspond to κ = 0.5, κ = 1, and κ = 2, respectively. The solid, dashed, dotted, and dash-dotted curves correspond to N = 1/3, N = 0.2,

N = 0.1, and N = 0, respectively.

in the amplification of waves. This result is similar to that
found by Ruderman (2011a,b); Ruderman et al. (2017), and
Shukhobodskiy et al. (2018) in the case of standing kink waves.

8. SUMMARY AND CONCLUSIONS

In this article we studied the kink wave propagation along an
expanding magnetic tube with the density varying along the
tube and in time. The tube consists of the core region where
the density is almost independent of the radial coordinate, and
the boundary layer where the density decreasing fast from its

value inside the core region to its value in the surrounding
plasma. This value is assumed to be thin meaning that its
thickness is much smaller than the tube radius. We used
the cold plasma approximation. We also used the thin tube
approximation meaning that the wave length is much larger
than the tube radius, and the short wave approximation meaning
that the wavelength is much smaller than the characteristic
scale of the density and tube radius variation along the tube.
Using the WKB method we derived the equation describing the
dependence of the wave amplitude on time and on the distance
along the tube.
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First we studied the kink wave propagation in a magnetic
tube homogeneous in the axial direction. In this case the only
effect affecting the wave propagation is the wave damping due
to resonant absorption. We reproduced the results previously
obtained by Terradas et al. (2010).

We then proceeded to studying the kink wave propagation in
a magnetic tube with the density varying in the axial direction.
In this case the wave propagation are affected both by resonance
absorption and the axial inhomogeneity. We reproduced the
analysis by Soler et al. (2011c).

Finally, we studied the kink wave propagation in an expanding
and non-stationary magnetic tube. We obtained the general
expressions determining the spatial and temporal dependence of
wave frequency, wavenumber, and amplitude. We then applied
the general theory to a particular case of kink wave propagating
along a cooling coronal loop. We assumed that the loop has a
half-circle shape and immersed in an isothermal atmosphere, the
temperature of plasma inside the loop decays exponentially, while
the temperature of the surrounding plasma does not change.
We adopted the dependence of the loop cross-section on the
distance along the loop previously used by Ruderman et al.
(2008, 2017) and Shukhobodskiy et al. (2018). The equations
governing the wave propagation were solved numerically. We
assumed that the wave was started to be driven at one of the
footpoints at the same time when the plasma inside the loop
started to cool. Our main aim was to study the dependence
of the wave properties on the intensity of cooling. First we
studied the dependence of the distance that the wavefront

travels on time. We found that the stronger the cooling is the

larger the distance that the wave front travel at a given time.
This is an expected result because cooling enhances the phase
speed thus accelerating the wavefront. We also calculated the
dependence of the wave frequency and wave number on the
distance along the tube. When doing so we chose the moment
of time when the wavefront arrives at the second footpoint
in the case of strongest cooling. The general conclusion is
that cooling results in the increase of the wave frequency.
In contrast, it is difficult to make any definite conclusion
about the effect of cooling on the wavenumber. Finally, we
investigated the dependence of the wave amplitude on the
distance along the tube. In most cases the amplitude first
growths due to the equilibrium quantity variation along the
tube, and then its starts to decay due to resonant damping. We
found that cooling enhances the wave amplitude. This result
is similar to one previously obtained for standing kink waves
(Ruderman, 2011a,b; Shukhobodskiy et al., 2018).
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APPENDIX

A. Solution to Equation (4.21)
In this section we obtain the solution to Equation (4.21)
satisfying the asymptotic condition Equation (4.24). To simplify
calculations we introduce the notation

9 = ψ − ψA

RBδA
, h =

ρiS(C
2
k
− V2

Ai)

ρAB1δA
. (A1)

Using this notation we rewrite Equation (4.21) as

9ξ̂ϕ + i
∂2ξ̂ϕ

∂92
= −ih. (A2)

To solve this equation we use the Fourier transform with respect
to9 defined by

F[ξ̂ϕ] =
∫ ∞

−∞
ξ̂ϕe

−iσ9d9 , ξ̂ϕ = 1

2π

∫ ∞

−∞
F[ξ̂ϕ]e

iσ9dσ .

(A3)
Applying this transform to Equation (A2) we obtain

∂

∂σ
F[ξ̂ϕ]+ σ 2F[ξ̂ϕ] = −2πhδ(σ ), (A4)

where δ(σ ) is the delta-function. The solution to this equation
decaying as |σ | → ∞ is given by

F[ξ̂ϕ] = −2πhH(σ )e−σ
3/3, (A5)

where H(σ ) is the Heaviside step function. Calculating the
inverse Fourier transform we obtain

ξ̂ϕ = −h

∫ ∞

0
exp

(
iσ9 − 1

3σ
3
)
dσ . (A6)

Using the integration by parts we obtain the asymptotic
expression valid for |9| ≫ 1,

ξ̂ϕ = − ih

9
+O

(
9−2

)
. (A7)

Using Equation (A1) it is straightforward to verify that Equation
(A7) coincides with Equation (4.24).

B. Evaluation of Integral in Equation (4.34)
In this section we evaluate the integral on the right-hand side of
Equation (4.34) for |9≫ 1. We immediately obtain

∫ 9

−9

(
91G(91)−

dF

d91

)
d91 = −F(9)+ F(−9)

+
∫ 9

−9
91G(91) d91. (B1)

It is obvious that

F(9)− F(−9) = 2i

∫ ∞

0
sin(σ9) e−σ

3/3dσ = O(1). (B2)

Changing the order of integration we obtain

∫ 9

−9
91G(91) d91 = 2i

∫ ∞

0
[sin(σ9)−(σ9) cos(σ9)]

e−σ
3/3

σ 3
dσ .

(B3)
Then, using the integration by parts yields

∫ 9

−9
91G(91) d91 = i92

∫ ∞

0

sin(σ9)

σ
e−σ

3/3dσ+I(9), (B4)

where

I(9) = i

∫ ∞

0

[
(σ9) cos(σ9)− sin(σ9)

]
e−σ

3/3dσ . (B5)

Again using the integration by parts we obtain

I(9) = i

∫ ∞

0

(
σ 3 − 2

)
sin(σ9)e−σ

3/3dσ = O(1). (B6)

With the aid of the variable substitution we obtain

∫ ∞

0

sin(σ9)

σ
e−σ

3/3dσ =
∫ ∞

0

sin σ

σ
e−σ

3/392
dσ = π

2
[1+o(1)].

(B7)
Using Equations (B1), (B2), (B4), (B6), and (B7) we finally
arrive at

∫ 9

−9

(
91G(91)−

dF

d91

)
d91 =

π i

2
92[1+ o(1)]. (B8)
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