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Exploiting the general dispersion relation describing all waves in an ideal ion-electron

fluid, we revisit established treatments on wave families in a cold ion-electron plasma.

These contain the magnetohydrodynamic Alfvén and fast waves at low frequencies,

long wavelengths, but are enriched by short wavelength resonance behaviors,

electrostatic and electromagnetic mode types, and cut-off frequencies distinguishing

propagating from evanescent waves. Our theoretical treatment exploits purely polynomial

expressions, which for the cold ion-electron case only depend on 2 parameters: the ratio

of masses over charges µ and the ratio E of the electron gyro frequency to the combined

ion-electron plasma frequency. We provide a complete description of all waves, which

stresses the intricate variation of all five branches of eigenfrequencies ω(k,ϑ ) depending

on wavenumber k and angle ϑ between wavevector andmagnetic fieldB. Corresponding

5-mode phase and group diagrams provide insight on wave transformations and

energy transport. Special cases, like the high frequency modes in magneto-ionic theory

following from Appleton-Hartree dispersion relations, are naturally recovered and critically

discussed. Faraday rotation for electromagnetic waves is extended to all propagation

angles ϑ . The discussion covers all cold ion-electron plasma waves, up into the

relativistic regime.

Keywords: waves, cold plasmas, 2-fluid theory, magnetohydrodynamic, electromagnetic wave theory

1. INTRODUCTION

The theory of wave propagation in ion-electron plasmas is covered in many textbooks (Stix,
1992; Boyd and Sanderson, 2003; Bittencourt, 2004; Chen, 2016; Thorne and Blandford, 2017),
and can be considered established. The starting point for many treatments is based on a 2-
fluid approach, where one solves for plane wave solutions exp

[

i(k · x− ωt)
]

in an otherwise
homogeneous medium, usually magnetized with uniform magnetic field B. In the rest frame of
a homogeneous ion-electron mixture, assumed to be charge-neutral such that number densities
obey ne = Zni when ions have charge number Z, the equilibrium electric field and current vanish,
while each species has its own pressure pe, pi. The dispersion relation betweenwave frequencyω and
wavenumber k =| k | is then usually obtained from linearizing theMaxwell equations, traditionally
introducing dielectric, susceptibility and conductivity tensors, to quantify displacement vector,
polarization vector and current vector relations to the electric field, respectively. In general, this
leaves a large variety of wave modes that are particularly aware of the orientation angle ϑ between
wavevector k and the magnetic field B, while the wave properties can differ greatly according to
frequency and wavelength. Indeed, when we have electron and ion masses given by me and mi,
the plasma is characterized by its ratio of masses over charges µ = Zme/mi, and this background
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ion-electron mixture introduces its own set of typical frequencies
and wavelengths. The former include the electron and ion plasma

frequencies ωpe =
√

e2ne/ǫ0me and ωpi = √
µωpe and the

electron and ion cyclotron frequencies �e = eB/me (where
electron charge is −e) and �i = µ�e. Lenghscales relate to
typical speeds in the system, such as the light speed c = 1/

√
µ0ǫ0

and the electron and ion sound speeds. One such lengthscale
is the skin depth δ = c/ωp, where it turns out convenient to
combine the plasma frequencies into ω2

p = ω2
pe + ω2

pi. The

governing dispersion relation equally follows (e.g., Goedbloed
and Poedts, 2004) from a standard linearization of the governing
equations of motion for each species, combined with Maxwell
equations. We will in what follows rewrite and analyse this
general form of the dispersion relation, but specify deliberately
to the cold ion-electron case, where the species pressures (and
sound speeds) vanish pe = 0 = pi. We can normalize all
frequencies to the plasma frequency ω̄ = ω/ωp, and for such cold
ion-electron plasma, only two dimensionless parameters remain
in the description, namely

E = �e/ωp , I = �i/ωp . (1)

That only two parameters cover the full complexity of wave
modes in a cold ion-electron plasma is well-known, and is at the
basis of the classical Clemmow-Mullaly-Allis plots that feature
in most textbooks (Stix, 1992; Bittencourt, 2004; Thorne and
Blandford, 2017), which classify wave modes and associated
wave normal surfaces (plots of ω/k vs. ϑ , which are figures of
revolution about B). In what follows, we will discuss all wave
modes and suggest a new classification scheme based on the
polynomial form of the governing dispersion relation. That
the ideal two-fluid description leads to a 12th order polynomial
in the wave frequency ω is well-known (Denisse and Delcroix,
1961), although one frequently exploits lower order polynomials
to cover e.g., only the high frequency electromagnetic waves
(following e.g., the Appleton-Hartree description), or conversely
focuses on the three low frequency branches that relate to
the magnetohydrodynamic (MHD) slow, Alfvén and fast mode
pairs (Stringer, 1963; Ishida et al., 2005; Damiano et al.,
2009; Bellan, 2012; Zhao, 2015). An eight order polynomial
approximation, valid above the lower hybrid frequency, was
exploited in Zhao (2017) to cover whistler waves and the three
high frequency electromagnetic mode pairs. We will instead start
from the full 12th order equation, only making the cold plasma
assumption, such that the slow MHD modes become marginal
solutionsω2 = 0.Wemake contact with thementioned textbook
treatments, showing how the usual dielectric tensor treatments
are indeed mathematically fully equivalent. The advantage of the
polynomial method over the dielectric tensormethod is the direct
relationship of the solutions of the dispersion equation to the
primitive two-fluid variables, which would also be exploited in
corresponding numerical time stepping codes. This advantage
was also pointed out by Bellan (2012), who gave a similar analysis
for the low frequency domain. The present paper exploits the
polynomial method to full effect to provide the crucial phase and
groups diagrams for all values of the parameters, together with
their animations.

2. DISPERSION RELATION FOR COLD
ION-ELECTRON PLASMAS

Following Goedbloed and Poedts (2004), the general dispersion
relation for an ideal ion-electron fluid can be written as a twelfth-
order polynomial in ω̄, where one distinguishes six pairs of
forward and backward propagatingmodes, since the expression is
actually sixth order in ω̄2. This already eliminated a pair ω̄2 = 0
of marginal entropy-like modes, and the special case of a cold
ion-electron fluid can factor out another ω̄2 = 0 solution,
corresponding to the slow magnetohydrodynamic (backward
and forward) waves. It is a matter of algebra to show that the
remaining 10th order polynomial can be rewritten to

k̄4Ā(ω̄2, λ2)− k̄2ω̄2B̄(ω̄2, λ2)+ ω̄4C̄(ω̄2) = 0 , (2)

where k̄ = δk, λ2 = cos2 ϑ , containing three 3rd order
polynomials in ω̄2 given by

Ā = ω̄6 − (1+ E2 + I2)ω̄4

+
[

(1+ EI)EI + λ2(E2 + I2 − EI)
]

ω̄2 − λ2(EI)2 , (3)

B̄ = 2ω̄6 − (4+ 2E2 + 2I2)ω̄4 +
[

2(1+ EI)2

+ (1+ λ2)(E2 + I2 − EI)
]

ω̄2 − EI(1+ EI)(1+ λ2) , (4)

C̄ = (ω̄2 − 1)
[

ω̄4 − (2+ E2 + I2)ω̄2 + (1+ EI)2
]

. (5)

Unlike most textbook treatments, which take Equation (2) at
fixed frequency and solve for both roots in k̄2, we will consider a
given wavenumber k̄, and use the dispersion relation to quantify
all five roots in ω̄2. In what follows, we will also systematically
drop the overbars on k̄ and ω̄, as we will always work with
dimensionless frequencies and wavenumbers.

2.1. Cut-Off Frequencies
Cut-off frequencies relate to large wavelength (small wavenumber
k) limiting behavior, and Equation (2) reveals instantly that
special frequencies then follow from the zeros of the C̄
polynomial. These are computed simply as

ω2
c = 1 , (6)

ω2
u,l = 1+ E2 + I2

2
± | E− I |

√

(E+ I)2

4
+ 1 . (7)

Hence, the ω2
c = 1 cutoff happens exactly at the combined

plasma frequency (this reads as ω2 = ω2
p when restoring

dimensions). The latter pair ω2
u,l

distinguishes the upper
(+) from the lower (−) cut-off frequency. For E = 0,
the three cut-offs coincide at the plasma frequency
(noting that I = µE).

In general, the three cut-off frequencies are independent of the
angle ϑ , but their relative ordering is influenced by the values of
both parameters E, I or equivalently, E andµ. Sinceµ is normally
considered fixed in a specific plasma (e.g., it assumes the value
µ ≈ 1/1,836 in a fully ionized hydrogen plasma), the magnetic
field strength in essence determines the other parameter E, going
from unmagnetized E = 0 cases, to strongly magnetized regimes
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E → ∞. A special case is obtained for an electron-positron or
pair plasma where µ = 1, when ω2

u,l
coincide to ω2

l
= ω2

u =
1+ E2 (Keppens and Goedbloed, in press). For an arbitrary µ, it
is clear that ω2

u ≥ 1 (and the equality holds for the unmagnetized
case E = 0), but the lower cut-off may be below, equal to,
or above unity. The equality of ω2

c with ω2
l
corresponds to the

specific field strength where E = 1/µ − 1. A plot of the three
cut-off frequencies for a µ = 1/1,836 hydrogen plasma vs. E
is shown in Figure 1. The vertical dashed lines indicate special
values for E, e.g., where E = 1/µ − 1, where the ordering of the
three cut-offs changes. The right panel in Figure 1 shows a zoom
on the behavior near this value. The above exact expressions
for the cut-off frequencies, valid for all values of E, can also
be used to get approximate expressions in limits of small or
large E regimes. Obviously, the small E limit makes all cut-offs
approach their unmagnetized regime: all 3 become the plasma
frequency. The opposite, large E limit is easily evaluated to give
as upper and lower cut-off (both way above the third cut-off at
plasma frequency):

lim
E→∞

ω2
u = E2 , (8)

lim
E→∞

ω2
l = E2µ2 . (9)

2.2. Resonances
Resonances occur at large wavenumbers (short wavelengths), and
Equation (2) shows that then the zeros of Ā come into play. The
three resonances obtained from Ā = 0 can be computed using
standard root-finding for polynomial expressions (or, could be
explicitly obtained through Cardano’s formulae for the roots of
a third order polynomial). For a given set of parameters (E, I)
or (E,µ), the 3 resonances still depend on the orientation angle
ϑ . The exact variation of the three resonances at any (ϑ ,E,µ)
requires to compute the three roots from

ω6 −
[

1+ E2(1+ µ2)
]

ω4

+E2
[

µ + µ2E2 + λ2(1− µ + µ2)
]

ω2 − λ2E4µ2 = 0 . (10)

For each of the three resonances, we typically find monotonic
behavior ω(ϑ) between the extremal angles of parallel to
perpendicular orientation. Figure 1 also shows the range in
values obtained for the three resonances, for the same fixed value
of µ = 1/1,836, as function of the remaining E parameter.
Three different colors indicate the three resonance ranges. The
top (purple) one is seen to stay above unity, and stays between
the upper cut-off and E2 for large E. This purple resonance range
always shows increasing frequencies when going from parallel
(solid) to perpendicular (dashed) behavior. The middle (blue)
range is bounded from above by E2, and stays below unity until

we reach the E =
√

µ2 − µ + 1/µ value, which lies in between
the dotted lines shown at E = 1/µ−1 and E = 1/µ (right panel).
Ultimately, its range becomes bounded by the µ2E2 curve. This
blue resonance will relate to the fast magnetosonic wave branch.
The lowest resonance range (red) always stays below the µ2E2

line and below unity. In fact, this resonance range extends all
the way to zero at exactly perpendicular orientation, and will be
shown to relate to the Alfvén branch.

We can get approximate expressions for the three resonances
by setting µ = 0 (which is unphysical, but is at the basis of the
often used Appleton-Hartree dispersion relation, see section 5.3).
We then obtain one solution at zero frequency (which will relate
to the red or Alfvén branch), and the purple and blue resonances
become

ω2 ≈ 1
2

[

1+ E2 ±
√

(1+ E2)2 − 4E2λ2
]

. (11)

Note that settingµ = 0 eliminates the (normalized) ion cyclotron
frequency I from the description.

The plots for the general µ 6= 0 case in Figure 1 reveal
how the red resonance range actually always decreases in
frequency, with angle going from parallel to perpendicular,
while the purple one is always increasing in frequency, going
from parallel to perpendicular orientations. The blue resonance
range on the other hand first decreases in frequency, up to the

value E =
√

µ2 − µ + 1/µ. From then on, the blue range
increases in frequency from parallel to perpendicular. The dashed
(perpendicular) and solid (parallel) limits are easily obtained
analytically, since

Ā(λ = 0) = ω2
[

ω4 − (1+ E2 + I2)ω2 + (1+ EI)EI
]

, (12)

Ā(λ = 1) = (ω2 − 1)
[

ω4 − (E2 + I2)ω2 + (EI)2
]

. (13)

The solutions to the perpendicular (λ = 0) case are thus
threefold: one at zero frequency, related to non-propagation of
Alfvén waves perpendicular to the magnetic field, the other two
solutions from ω4− (1+E2+ I2)ω2+ (1+EI)EI = 0 are known
as the upper and lower hybrid resonance, given by our purple
and blue dashed lines in Figure 1, respectively. These upper and
lower hybrid resonances are thus generally given by

ω2
± = 1

2

[

1+ E2 + I2 ±
√

(1+ E2 + I2)2 − 4(1+ EI)EI
]

.

(14)
Their limits for lowmagnetization (E≪1) become 1 and 0, as the
electrostatic mode remains and the fast mode becomes marginal
(see further). In the limit of high magnetization (E≫ 1), we find
that ω2

+ ≈ E2 while ω2
− ≈ µ2E2 = I2.

It can be noted that for the pair plasma case where µ =
1, the above discussion of resonances and cut-offs simplifies
significantly: e.g., the blue resonance range collapses on the curve
E2. Also, for a pair plasma, the purple resonance range extends
(at exactly perpendicular propagation) to the upper cut-off value
ω2
u (Keppens and Goedbloed, in press).

2.3. Low and High Frequency Limits
The dispersion relation Equation (2) also shows clearly the limits
at both high and low frequencies, where the plane wave phase
speed vph = ω/k attains a finite value. At high frequencies,
we find that we obtain a double-valued solution at light speed
behavior, as we can instantly write this limit as

(1− v2ph)
2 = 0 . (15)

Hence, we expect two solutions that will behave as
electromagnetic waves at high frequencies. These high frequency
solutions, together with a finite phase speed, require large
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FIGURE 1 | Cut-off frequencies and resonance frequencies ordering for given µ, as function of E. The right panel is a zoom on the behavior near E = 1/µ. Note the

horizontal logarithmic scale for E-values in the left (weakly magnetized plasma), vs. a linear scale in the right panel (strongly magnetized). The upper and lower cut-offs

ω2
u,l are plotted as gray solid lines (the ω2

c = 1 is the middle horizontal line). The vertical dashed gray lines indicate the special values E = 1, E = 1/µ− 1 and E = 1/µ.

For each E value, the three colored (purple, blue and red) curve pairs indicate resonance ranges, where parallel propagation corresponds to the solid line, and

perpendicular to the dashed line. The red range reaches its perpendicular limit at zero frequency, hence no dashed red line appears.

wavenumbers. Hence, together with the three resonances that
occur at large wavenumbers, these two will serve to organize the
5 solution branches.

At low frequencies, we similarly retrieve the following
solutions

v2ph,F = EI

1+ EI
, (16)

v2ph,A = λ2
EI

1+ EI
. (17)

These are actually fast (F) and Alfvén (A) waves, at least at
large wavelengths (required to make the phase speed finite at
low frequencies). Hence, they will augment the 3 cut-offs to
organize the 5 solution branches. The combination EI/(1 + EI)
can be recognized as the relativistically correct expression for
the Alfvén speed vA. This speed is more commonly written in
terms of the magnetization parameter σ = B2/(µ0c

2ρh) where
ρ = neme + nimi and the specific enthalpy h = 1 for a cold
plasma, and we get (temporarily restoring dimensions):

v2A
c2

= EI

1+ EI
= σ

1+ σ
= B2

ρhµ0c2 + B2
. (18)

3. DISPERSION DIAGRAMS

We will now analyse dispersion diagrams, which are obtained as
solutions ω2(k,ϑ) to the general dispersion relation. We first fix a

parameter set (E,µ). Then, at fixed wavenumber and orientation,
Equation (2) is a polynomial of degree 5 in ω2, and due to
the symmetry of the underlying determinant (Goedbloed and
Poedts, 2004), there will always be five real solutions. We will
first address the special orientations of parallel and perpendicular
propagation. We plot in Figure 2 two dispersion diagrams, one
for parallel (left) and one for perpendicular (right) orientation,
for the choice where µ = 1/1,836 and E = 1.5.

3.1. Parallel Propagation
A first observation we can directly make from Equation (2) is that
parallel propagation (λ = 1) can always factor out the solution
ω2 = 1, since Ā(ω2 = 1, λ = 1) = 0 = B̄(ω2 = 1, λ = 1).
This solution is also retained at all angles when E = 0, where
it actually represents the electrostatic mode, which is a non-
propagating plasma oscillation. We will find that E 6= 0 cases will
turn this mode into a propagating solution, for all angles away
from parallel.

The other 4 pairs in Equation (2) for λ = 1 are intricately
mixed, but it is possible to write the remaining 8th order
expression as

[

ω4 + ω3|E− I| − ω2(1+ EI + k2)− ω|E− I|k2 + k2EI
]

×
[

ω4 − ω3|E− I| − ω2(1+ EI + k2)+ ω|E− I|k2 + k2EI
]

= 0 .

(19)

Note that |E − I| = (1 − µ)E as µ ≤ 1, and in the case
of a pair plasma (µ = 1), this leads to a full factorization
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FIGURE 2 | Dispersion diagram for a hydrogen ion-electron plasma at E = 1.5. Shown are the 5 branches at parallel (Left) and perpendicular (Right) propagation.

The dashed black line corresponds to light speed behavior.

of all solution branches (Keppens and Goedbloed, in press).
However, for µ 6= 1, Equation (19) does not seem to offer real
advantage, since the original formulation was already a 4th order
polynomial in ω2, and its four solution pairs ω2

1 , ω2
2 , ω2

3 and
ω2
4 retain their meaning as forward and backward propagating

mode pairs. Instead, both factors in Equation (19) mix forward
and backward pairs: if ωi is solution to its first factor, −ωi

will be a solution to its second factor. Still, many textbook
treatments in fact rely on the factorization in Equation (19).
This, as we will discuss further on, implies a description in
left and right circularly polarized waves, and indeed left and
right circular polarizations switch roles when going forward or
backward in time, or under mirror symmetry (see also Keppens
and Demaerel, 2016). It is important to note that the forward-
backward means of categorizing the solutions is fully consistent
with combined PT symmetry, i.e., flipping the time direction and
mirroring space.

We rather use the original Equation (2) to compute at which
k-values any of the other 4 branches intersects with the ω2 = 1
solution. This will prove useful when we vary the orientation
angle ϑ away from parallel, as we will show further on: these k-
values are special as they correspond to those locations where we
will first witness avoided crossings of branches. This turns out to
be at values

k2 = EI ± |E− I|
EI − 1± |E− I| . (20)

Of course, only positive values need to be considered for k2.
A careful analysis of Equation (20) shows that only one sign
combination is positive as long as E < 1, and hence in such cases

only one other branch will intersect the ω2 = 1 range (e.g., see
Figure 2 for E = 0.5, left panel: in this case, the cyan and purple
branch cross). However, both sign combinations are positive for
1 < E < 1/µ− 1, implying that two branches intersect the ω2 =
1 branch (e.g., see Figure 2 for E = 1.5, left panel: here we find
a crossing between the cyan and both purple and blue branches).
Further one positive value (i.e., one intersection) follows in the
narrow range 1/µ − 1 < E < 1/µ, and both sign combinations
are positive when 1/µ < E, leading again to two crossings of
the ω2 = 1 branch. When E > 1/µ, the branches crossing
ω2 = 1 are actually the fast (blue) and Alfvén (red) branch,
instead of the purple and blue branch found in Figure 2 (for
E = 1.5, left panel). In the limit E → ∞, both sign combinations
in Equation (20) lead to k2 = 1, since then the fast and Alfvén
branch essentially coincide, as seen from Equations (16–17).
Note that the pair plasma case is again naturally contained as a
special case where E = I. Knowing explicitly the special k-values
where branches cross at parallel orientation is also especially
useful when wanting to quantify the full phase and group speed
variations for all branches, as done in section 4: the phase and
group diagrams display intricate wave exchange occuring at
these wavenumbers.

3.2. Perpendicular Propagation
At perpendicular propagation (λ = 0), one marginal frequency
pair ω2 = 0 is contained in Equation (2), and this mode
relates to the long wavelength Alfvén waves, which do not
propagate perpendicular to the magnetic field. Another solution
at perpendicular propagation is found to be ω2 − 1 − k2 = 0.
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Indeed, for λ = 0, we can factor Equation (2) into

ω2(ω2 − 1− k2)
{

ω6 − ω4(2+ E2 + I2 + k2)+ ω2
[

(1+ EI)2 + k2(1+ E2 + I2)
]

−k2EI(1+ EI)
}

= 0 . (21)

In the special case of a pair plasma (E = I), a complete
factorization can be obtained, as the final term then becomes
(ω2 − 1 − E2)(ω4 − ω2(1 + E2 + k2) + k2E2). The latter term
also factorizes in the unphysical limit where µ = 0, making
I = 0 (see further on in section 5.3), which makes the 6th order
term write as ω2(ω4 − ω2(2 + E2 + k2) + 1 + k2(1 + E2)).
The branch ω2 − 1 − k2 = 0 is in plasma physics referred
to as the ‘ordinary’ or O mode. The three solutions mixed up
in the 6th order term are collectively named ‘extraordinary’ or
E (or X, depending on the textbook at hand). In line with this
terminology, and acknowledging the fact that one of these three
solutions will be a high frequency electromagnetic wave, we will
use the label ωX (and the black color) for its highest frequency
solution, and call ωO (in cyan color) the mode that relates to the
ω2 = 1+ k2 branch.

Figure 2, right panel, shows the 5 solution branches for
perpendicular propagation, for a hydrogen plasma case where
E = 1.5. The marginal (red) Alfvén-related branch is
mentioned in the figure for completeness. The ordinary mode
ω2 − 1− k2 = 0 branch (cyan) starts horizontally at unit
normalized frequency and goes up like ∝ k2. Direct comparison
with its parallel counterpart (right panel) shows how the (purple
and cyan) branches have changed connectivity between their
long wavelength vs. short wavelength behavior. This is due to
avoided crossings, that show up in oblique orientations, which
we discuss next.

3.3. Oblique Orientations
At any orientation different from parallel or perpendicular, we
must resort to numerical evaluation of the 5 roots in Equation (2),
which is rather straightforward. Figure 3 shows this for two
representative angles for the case with (E,µ) = (1.5, 1/1,836).
Its left panel took a very small angle ϑ = 0.001, while the
right panel has ϑ = π/3. Comparison with Figure 2 shows that
oblique propagation demonstrates avoided crossings of branches,
occurring near the special k values computed from Equation (20).
The inset in the left panel shows this avoided crossing quite
clearly. Note how the blue, purple and cyan branch are all
affected. Indeed, when we animate the dispersion curves for this
case E = 1.5 with angle, only the parallel case is special in its
connectivity showing true branch crossings, and all other angles
have the 5 branches neatly ordered in frequency: the red lies
below the blue, found in turn below the purple, which is below
the cyan, and the black branch always lies at the top.

This behavior is generic, and the avoided crossings occur
according to the predictions on the basis of Equation (20), as is
illustrated in Figure 4 for a case where E = 0.5 and only one
branch intersects the ω2 = 1 branch at parallel orientation. The
left panel of Figure 4 shows the avoided crossing between the
cyan and purple branch, again at ϑ = 0.001 (note the inset).

Since for E-values beyond E = 1/µ − 1, the cut-off ordering
changes as discussed before with ω2

l
> ω2

c , avoided crossings
affect the blue branch only up to E = 1/µ. Beyond E > 1/µ,
both the blue and red branch will demonstrate avoided crossings.

The color scheme of the branches in Figures 2–4 is chosen
in accord with the red, blue and purple resonance ranges we
discussed in section 2.2 and quantified in Figure 1. We introduce
a convenient labeling (A/F/M/O/X) for the 5 wave modes
through ωA (red), ωF (blue), ωM (purple), ωO (cyan) and ωX

(black). Indeed, for all but parallel orientations, the red (Alfvén
at small wavenumber), blue (Fast at small wavenumber) and
purple branch connect to the corresponding resonance value
at that angle. The parallel case is different, since then avoided
crossings become true crossings, and only then the cyan branch
becomes the non-propagating solution ω2 = 1, its purple branch
crosses it to go to electromagnetic behavior, while the blue and
red branch connect to the other two resonance frequencies.
This is of particular interest, since textbook classifications of
wave modes in a cold plasma rely on specific wave properties
at parallel or perpendicular orientations. Our analysis suggests
that it is more natural to organize the waves according to the
5 branches retained in Equation (2), and handle the special
cases when branches can cross separately. In the special case
of a pair plasma, a further avoided crossing with the then
special (non-propagating) branch ω2 = 1+ E2 at perpendicular
orientations can occur, and needs to be accounted for (Keppens
and Goedbloed, in press).

4. 5-MODE PHASE AND GROUP
DIAGRAMS

4.1. Phase Diagrams
We can show the full complexity of the 5 wave mode pairs in a
cold plasma in an alternative way. Up till now, we stressed the
i = 1, 2, . . . 5 solutions ω2

i (k,ϑ) for fixed ϑ , and plotted them
in dispersion diagram views vs. k. We can also stress the full
and intricate variation with angle ϑ , by fixing a wavenumber
k. It is then insightful to plot the dimensionless phasespeed
ωi/kc for all 5 modes, and all angles. This is best done in polar
plots where we show (ωi/kc)n̂, where n̂ = k/k. These are
surfaces of revolution about the magnetic field direction, so that
we can plot their 2D cross-section and take the magnetic field
to be horizontal (i.e., B = Bêx), making n̂ = (cosϑ , sinϑ).
These phase diagrams then vary with wavenumber k, but the
ordering of the branches discussed previously means that at all
but parallel orientations, they remain always nested surfaces. The
special k values where branches cross at parallel orientations,
represent mode transformations occuring when the surfaces
locally touch oneanother.

We plot some representative 5-mode phase diagrams in
Figure 5 for the hydrogen case at E = 1.5, shown previously
in dispersion diagrams in Figures 2, 3. At large wavelengths
(small k), we can recognize that the red and blue branch
correspond to the long wavelength, low frequency Alfvén
and fast magnetohydrodynamic (MHD) modes, respectively.
At small wavelengths (large k), the cyan and black branches
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FIGURE 3 | Dispersion diagram for a hydrogen ion-electron plasma at E = 1.5. Shown are the 5 branches at near-parallel ϑ = 0.001 (left) and oblique ϑ = π/3

propagation. The former shows avoided crossings (see inset). The dashed black line corresponds to light speed behavior.

FIGURE 4 | Dispersion diagram for a hydrogen ion-electron plasma at E = 0.5. Shown are the 5 branches at parallel (Left) and near-parallel ϑ = 0.001 (Right)

propagation. The latter shows avoided crossings (see inset). The dashed black line corresponds to light speed behavior.

correspond to phase speeds nearing the light speed, and they
are the familiar electromagnetic waves. Note that all branches
that (partly) lie above the dashed vertical line in Figures 2–4

have phase speeds above the light speed c, which does not
pose any physical problem as we are quantifying phase speeds
here. It is even possible to identify when branches go from
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superluminal to subluminal phase speeds, happening at specific
k−ϑ combinations for particularly the purple branch. Animated
views (available from the first author’s homepage1) of these 5-
mode phase diagrams reveal their variations with wavenumber
most clearly, as well as the mode transformations happening
at parallel orientation, when these nested surfaces of revolution
locally touch at specific k values (from Equation 20).

4.2. Group Diagrams
While the 5-mode phase diagrams provide insight in the wave
transformations, the way energy is transported is quantified
from the group speed. Here, the real power of the polynomial
representation comes in, since starting from the dispersion
relation (2) written as

ω10 + c4ω
8 + c3ω

6 + c2ω
4 + c1ω

2 + c0 = 0 , (22)

we can easily compute the corresponding group speed ∂ω/∂k

by implicit derivation. The dependency of the coefficients
ci(E, I; k2, λ2) implies that we only need to use ∂k2/∂k = 2k and

∂λ2/∂k = 2λ/k[b̂ − λn̂] where b̂ = B/B and n̂ = k/k. The
resulting expression can be manipulated into

∂ω

∂k
= −λk

P4

P9
b̂+

(

λ2kP4 − kP8

P9

)

n̂ . (23)

In this expression, we find the following polynomials

P4 = ω4(EI − E2 − I2)+ ω2
[

(1+ EI)EI + k2(E2 + I2 − EI)
]

− k2E2I2 , (24)

P8 = −2ω8 + ω6α6 − ω4α4 + ω2α2 − 2λ2E2I2k2 , (25)

P9 = 5ω9 + 4c4ω
7 + 3c3ω

5 + 2c2ω
3 + c1ω . (26)

In the P8 polynomial, the α6,4,2 coefficients are

α6 = 4+ 2E2 + 2I2 + 2k2 , (27)

α4 = 2(1+ EI)2 + (1+ λ2)(E2 + I2 − EI)

+ 2k2(1+ E2 + I2) , (28)

α2 = (1+ EI)(1+ λ2)EI + 2k2
[

(1+ EI)EI

+ λ2(E2 + I2 − EI)
]

. (29)

These (admittedly lengthy) expressions can, however, easily be
evaluated for each of the 5 branches, and this for all directions and
wavenumbers. Indeed, the only thing we need to do is to compute
the 5 solutions as zeros of the polynomial in Equation (22)
(which is how all previous results shown were obtained), and
then evaluate the RHS of expression (23) accordingly. Zeros of
the P9 polynomial may need special treatment, but those actually
correspond to the double roots of the original polynomial. Since
we found that the branches almost never intersect (except at
the special crossings discussed previously), this situation hardly
occurs. At perpendicular orientations, the Alfvén related branch
is marginal ωA = 0, but this case can also be handled separately
(it has zero group speed).

1http://perswww.kuleuven.be/Rony_Keppens

The resulting 5-mode group speed diagrams are intricate, and
some are shown in Figure 6 for the same hydrogen plasma with
E = 1.5. The variation with wavenumber provides fascinating
views on the anisotropy inherent in all 5 wave modes. At
the special wavenumbers where modes transform, also these
diagrams show drastic deformations, which are only appreciated
in animated views (available from the first author’s homepage1).
In Figure 6, the top left panel corresponds to long wavelength
behavior, where the typical Friedrichs diagram containing Alfvén
(red) and fast (blue) waves is recovered, while the other three
waves have all smaller groupspeeds. This is opposite to the
behavior at short wavelengths, where the two electromagnetic
modes (purple ωO or O and black ωX or X) have group
speeds that approach the light circle. As group speeds, all speeds
obtained with formula (23) lie within the light circle, but their
relative ordering and morphology is rather complicated. This is
shown at selected wavenumbers in the four panels of Figure 6.

5. RELATION TO TEXTBOOK TREATMENTS

5.1. Refractive Index Views
Textbook treatments (e.g., Stix, 1992; Bittencourt, 2004; Thorne
and Blandford, 2017) rather emphasize that the dispersion
relation Equation (2) gives direct information on the refractive
index n2 = k2/ω2. When we consider a given frequency ω, next
to the choice of (E,µ) and an orientation ϑ , the solutions to
Equation (2) follow directly from

n2 =
B̄±

(

B̄2 − 4ĀC̄
)
1
2

2Ā
. (30)

At most two real solutions can exist at given frequency, and this is
then used to classify the wave modes in various types. Frequency
ranges where only one real solution is found, or no real solution
at all, must be accounted for. Of course, two complex solutions
can always be found, but then the waveform exp

[

i(k · x− ωt)
]

adopted with real ω and complex k has an evanescent, instead
of propagating behavior. Using the solution (30) in Equation (2),
after adding a factor Ān2 on each side of the equality sign, allows
one to write the solutions also as (Bittencourt, 2004)

n2 = 1− 2(Ā− B̄+ C̄)

2Ā− B̄±
(

B̄2 − 4ĀC̄
)
1
2

. (31)

The discriminant appearing in Equations (30-31) can be
reworked to

B̄2 − 4ĀC̄ =
[

ω2(E2 + I2 − EI)− EI(1+ EI)
]2
sin4 ϑ

+ 4(ω2 − 1)2(E− I)2ω2 cos2 ϑ . (32)

This expression is general, and can be used to rewrite
Equation (31) for the special cases of parallel or perpendicular
orientations to the formulae in Equations (19–21).
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FIGURE 5 | Selected 5-mode phase diagrams at three different values of k = 0.1 (top row), 0.5 (bottom left), 2.0 (bottom right). The dashed black circle always

indicates the light circle, hence notice the varying scale. This is for a hydrogen plasma with E = 1.5, as in Figures 2, 3, and we exploit the same color scheme:

electromagnetic modes are black (ωX ) and cyan (ωO), followed by purple (ωM or Middle), blue (ωF or Fast) and red (ωA or Alfvén) wave. Note that in the k = 2 (bottom

right) plot, at parallel orientation (horizontal central line), mode exchanges occurred between the cyan, purple and blue branches. We always show all 5 branches,

such that the red Alfvén branch requires further zooming in to see its details: this is done in the top right panel for the k = 0.1 case.

For completeness, we note that textbook treatments typically
exploit the following quantities

R = ω2 − ω(E− I)− (1+ EI)

(ω − E)(ω + I)
, (33)

L = ω2 + ω(E− I)− (1+ EI)

(ω + E)(ω − I)
, (34)

P = ω2 − 1

ω2
. (35)

These appear in the combinations S = (R + L)/2 and D =
(R − L)/2, which obey the equality S2 − D2 = RL, and together
with P, they build up the cold plasma dielectric tensor, which
relates the displacement vector D (giving ∇ × B = µ0∂D/∂t,
including displacement currents) to the electric field E through
D = ǫ0ǫ · E, with

ǫ =





S −iD 0
iD S 0
0 0 P



 . (36)
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FIGURE 6 | Selected 5-mode group diagrams at four different values of k = 0.0005, 0.75, 1.5, 2.5. The dashed black circle (with unit radius) always indicates the light

circle, notice the varying scale used in the top left plot. This is for a hydrogen plasma with E = 1.5, as in Figures 2, 3, 5 phase, using the same color scheme:

electromagnetic modes are black (ωX ) and cyan (ωO), followed by purple (ωM or Middle), blue (ωF or Fast) and red (ωA or Alfvén) wave.

We wrote the tensor components here with the 3rd dimension
parallel to B, and the k-B plane as the 1-3 plane. The dispersion
relation, and all discussions of polarization in terms of the wave
electric field orientation w.r.t. B and k, then follow from

k× (k× E) + (ω2/c2)ǫ · E = 0 . (37)

The governing dispersion relation is still given by Equation (30),
where the only difference appears as follows: Ā → A, where Ā =
ω2(ω2−E2)(ω2− I2)A, and similarly for B̄ and C̄. In the A, B and
C formulations, one can write C = PRL, A = S sin2 ϑ +P cos2 ϑ ,

andB = RL sin2 ϑ+PS(1+cos2 ϑ). It is then customary to rewrite
the governing dispersion relation as

tan2 ϑ = −P(n2 − R)(n2 − L)

(Sn2 − RL)(n2 − P)
. (38)

From this latter expression, one can see that n2 → ∞ implies
tan2 ϑ = −P/S, and this latter formula gives Ā = 0, which we
used to discuss cold plasma resonances. Cut-offs on the other
hand are found from P = 0, R = 0 or L = 0, and these make
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C̄ = ω2(ω2 − E2)(ω2 − I2)PRL vanish. Since further

D = (I − E)ω

(ω2 − E2)(ω2 − I2)
, (39)

the pair plasma case leavesD = 0 (rendering the dielectric tensor
diagonal), while S = L = R.

One may recognize the dispersion relation for parallel
propagation given by Equation (19) as n2 = L and n2 = R,
with P = 0 giving the ω2 = 1 factor. The n2 = R and n2 =
L correspond to right-hand and left-hand circularly polarized
waves, respectively. We note again that this mixes forward and
backward mode pairs from the original formulation. Similarly,
the “ordinary” ω2 − 1 − k2 = 0 branch from perpendicular
propagation in Equation (21) can be written as n2 = P. The
remaining “extraordinary” term, can then be recognized from
Equation (38) as n2 = RL/S.

We can plot all dispersion diagrams in terms of the refractive
index, and this is done in Figure 7, for exactly the same
parameters as taken in Figure 3. Note again the avoided
crossings at near-parallel orientations (left panel). The horizontal
dashed lines are indicating fixed frequencies where log10 ω =
−4,−0.1, 0.1, respectively. These return in Figure 8 below.

5.2. CMA Related Wave Normal Surfaces
The standard way to discuss cold ion-electron plasma waves,
uses the refractive index viewpoint and the solutions obtained
as in Equation (30). When both solutions are real, these 2
solutions at fixed frequency lead to a first classification as being
“fast” or “slow,” depending on their corresponding phase speed.
Two more labels relate to the limiting behaviors at parallel and
perpendicular orientations. At parallel orientations, we obtained
Equation (19) which (artificially) separates 4 of the 5 mode pairs
into n2 = R or right-hand circularly polarized waves, vs. n2 = L
for left-hand polarized waves. A corresponding R or L label is
then used to classify the mode. At perpendicular orientation,
we noted that Equation (21) contains the “ordinary” (O) mode
ω2 − 1 − k2 = 0, next to the 3 “extraordinary” (E) ones mixed
up in n2 = RL/S. Collectively, the labels fast/slow, L/R, and
O/E then serve to identify specific wave mode behavior. We note
however that both classifications miss out one of the 5 branches,
since the ω2 = 1 solution is left out from the L/R scheme, and
the marginal ω2

A = 0 pair is left out from the O/E scheme. To
make matters worse, the 5 branches show avoided crossings as
soon as one deviates from exactly parallel orientations (and in
the case of a pair plasma, this is also true at exactly perpendicular
orientations, see Keppens and Goedbloed, in press), and this
seems unaccounted for in textbook treatments. That the branches
that are left out from the L/R vs. O/E labeling do not correspond
at all (one being cyan or ωO, the other being red or ωA for the
E = 1.5 case used in our figures), is yet another aspect to be
considered.

A way to categorize the diversity of wave modes in a
cold plasma is using the classical Clemmow-Mullaly-Allis or
CMA diagram (Stix, 1992). When plotting 1/ω2 vs. EI/ω2 (or
variations thereoff, like E2/ω2 or E/ω), the lines corresponding
to P = 0, R = 0 or R = ∞ and L = 0 or L = ∞, S = 0 and

RL = PS divide this phase-space into sixteen distinct regions.
These regions correspond to differences in wave propagation
characteristics, best visualized through the wave normal surfaces,
which plot phase velocity (1/n)[ϑ] for all anglesϑ . The 16 regions
correspond to topologically distinct morphologies of the wave
normal surface plots, and they can contain zero, one or two
solutions depending on the chosen frequency. In Figure 8, we
show this CMA-related view of the wave normal surfaces for the
E = 1.5 hydrogen plasma considered earlier, and this at three
fixed frequencies such that log10(ω) = −4,−0.1, 0.1, from left
to right. These frequencies are also indicated in the refractive
index plots shown in Figure 7, and we adopted the coloring
scheme we introduced for labeling the 5 wave modes ωA (red),
ωF (blue), ωM (purple), ωO (cyan) and ωX (black). Note e.g.,
how the blue ωF branch is in the textbook way a “fast” mode
for the left panel, while it becomes a “slow” mode in the middle
panel, although in all cases it corresponds to the blue branch
that behaves as fast MHD waves at long wavelengths. We did
not add the traditional L/R or O/E labels to the surfaces, as they
confuse wave modes due to avoided crossings. Indeed, at ϑ = 0
Figure 2 (left panel) shows that at log10(ω) = 0.1 one intersects
the purple and blue branch which are L and R, respectively, while
at any finite angle (see Figure 2, right panel or Figure 3) the cyan
ωO and purple ωM branch matter. The ϑ = π/2 panel from
Figure 2 has ωO as cyan being “ordinary” or O, while ωF , ωX

and ωM are all “extraordinary” or E, but has no label for the
Alfvén mode, while it appears as the “slow” mode in the leftmost
panel of Figure 8. We rather opt to use the 5-mode identification
which appears naturally, and handle the complications of avoided
crossings separately.

5.3. Magneto-Ionic Theory and the
Appleton-Hartree Relation
Awell-known special case of the general cold ion-electron plasma
dispersion relation is the Appleton-Hartree equation. It ignores
ion motion, and assumes that one is interested in high frequency
waves only. In particular, it is valid for frequencies above the
electron plasma frequency ωpe (the dimensional quantity where
ω2
pe = e2ne/ǫ0me), which should be above the ion plasma and

ion gyrofrequency. The Appleton-Hartree relation describes high
frequency electromagnetic waves that travel at arbitrary angle ϑ ,
and is used in magneto-ionic theory (Bittencourt, 2004; Thorne
and Blandford, 2017).

The Appleton-Hartree relation turns out to be a rather curious
limit of the general dispersion relation, where one sets the charge
to mass ratio to the unphysical value µ = 0 (or equivalently,
where one sets I = 0). This limit of Equation (2) allows one
to factor out a ω2 = 0 pair, and one is left with the 8th order
polynomial (4th order in ω2) given by

ω8 − ω6(3+ E2 + 2k2)+ ω4
[

3+ E2 + 2k2(2+ E2)+ k4
]

− ω2
[

1+ k2(2+ (1+ λ2)E2)+ k4(1+ E2)
]

+ k4λ2E2 = 0 .
(40)

Textbook discussions (Bittencourt, 2004; Chen, 2016; Thorne
and Blandford, 2017) rather write this relation in the form given
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FIGURE 7 | Dispersion diagram for a hydrogen ion-electron plasma at E = 1.5, this time displayed in refractive index view. The parameters and panels correspond to

the E = 1.5 hydrogen plasma at near-parallel ϑ = 0.001 (left) and oblique ϑ = π/3 propagation from Figure 3. The horizontal dashed lines correspond to the fixed

frequencies for which Figure 8 shows wave normal surfaces.

FIGURE 8 | Wave normal surfaces at fixed frequencies for the hydrogen ion-electron plasma at E = 1.5.

by Equation (31), where if we exploit expression (32), we can
write Equation (40) also as

n2 = 1− 1/ω2

1− (E2/ω2) sin2 ϑ

2(1−1/ω2)
±

(

(E2/ω2) sin4 ϑ

4(1−1/ω2)2
+ (E2/ω2) cos2 ϑ

)1/2
.

(41)
It is clear that the polynomial form (40) is preferable, to discuss
how its four solution pairs relate to the original 5 from the full
dispersion relation (2). Note that the assumption of µ = 0

means that the dimensionless frequency used in these expression
is actually ω̄ = ω/ωpe (where previously it meant ω/ωp).

Figure 9 shows the dispersion relation comparison between
the 5 modes of the true ion-electron dispersion relation at
E = 1.5, and the 4-mode approximation made by Appleton-
Hartree. The bottom panel actually quantifies the differences in
frequencies, which are hardly distinguishable in the top panel.
The approximate dispersion relation (40) also has the ω2 = 1
solution for exactly parallel orientation, and we find indeed at this
near-parallel angle a similar avoided crossing behavior for the 4
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FIGURE 9 | Comparing the Appleton-Hartree approximation to the actual

hydrogen ion-electron plasma dispersion diagram for E = 1.5, at a

near-parallel orientation (ϑ = 0.001). The top panel shows the branches (ωA is

off the scale shown) as in Figure 3 (left panel) in the same color scheme, while

the gray lines that are overplotted correspond to the 4 modes of the

Appleton-Hartree approximation. The inset shows their agreement near the

avoided crossings. The bottom panel quantifies their difference: this is largest

at small wavenumbers.

retained modes. The Appleton-Hartree approximation contains
the I = 0 limit of the crossings from Equation (20), so it has
k2 = E/(E± 1) as special wavenumbers. Note that the Appleton-
Hartree relation always discards the Alfvén related branch ωA.
The limit µ = 0 obviously implies that all subtleties related
to field strengths above E = 1/µ − 1, which enrich the actual
dispersion relation with cut-off frequencies that change their
relative ordering (see section 2.1 and Figure 1) are completely left
out of this approximation. Since we noted that beyond E = 1/µ
both the ωF and ωA branch will demonstrate avoided crossings,
this aspect can not be discussed on the basis of Appleton-
Hartree. Finally, the assumption µ = 0 is obviously completely
inappropriate for a pair plasma, where E = I and µ = 1.

5.4. Faraday Rotation
A final well-known effect that is described by the (cold) ion-
electron plasma dispersion relation is Faraday rotation (FR).
The effect is usually described for purely parallel propagation,
where as noted earlier, the dispersion relation in the form of
Equation (19) is recognized as the product (n2 − L)(n2 − R) =
0. At fixed frequency ω, and paying special attention to the
high-frequency electromagnetic branches (which are those for
frequencies ω > ωu above the upper cutoff frequency from
Equation 7), the solution from n2 − L is left circularly polarized
(LCP), while n2 = R is right circularly polarized (RCP). The
corresponding breaking nL and nR indices differ through their
difference in wavenumber, as nL − nR = c1k/ω. A linearly

polarized wave (which can always be decomposed in a LCR and
RCP wave) that travels along a magnetic field ends up with its
plane of polarization rotated over a finite angle. We can quantify
this in a variety of ways, e.g., by using the expressions (33, 34), we
find that without any approximation, we can write

n2L − n2R = 2(E− I)ω

(ω2 − E2)(ω2 − I2)
. (42)

This expression demonstrates that for purely parallel
propagation, the Faraday effect vanishes for an electron-
positron plasma (see also Stewart and Laing, 1992), and that
we can approximate the difference in breaking index using the
Appleton-Hartree-type recipe (µ = 0, high frequencies) to the
textbook expression

nL − nR ≈ E

ω3

[

≡
�eω

2
pe

ω3

]

, (43)

where the expression between brackets temporarily restores the
dimensions. We can then use this latter expression to get the
usual quantification for the change in angle χ for a linearly
polarized wave, written with the so-called rotation measure
RM as

χ = RM λ2 = e3λ2

8π2m2
eǫ0c

3

∫

B‖ne dl , (44)

where the integral is along the line of sight (LOS) and B‖ is the
component of B along it.

We note however that the proxy from Equation (43) is better
written as (E − I)/ω3 to allow for the vanishing FR effect when
µ = 1 and propagation is along the magnetic field (ϑ = 0).
Moreover, we meanwhile recognize that this difference in phase
speed between the high-frequency wave pair can actually be
quantified readily for all angles ϑ . The FR effect for a specific E =
1.5 hydrogen plasma case is then shown in Figure 10, where the
left panel shows the actual ϑ = 0 variation in nL−nR as function
of frequency in red, the proxy from Equation (43) in blue, and
the exact expression (42) in dashed red-blue. The right panel
quantifies 1n(ϑ ,ω), where the parallel (red line) result is the
same as in the left panel. It is clear from this plot that the variation
is a smooth function of ϑ , and that one can meaningfully extend
the FR quantification, as a corresponding phase speed difference
at fixed frequency, for all angles (and for all local magnetic field
and number density values incorporated in E). In that sense,
the widely adopted RM quantification from Equation (44) is a
(usually good) approximation only, since the integral quantifying
the line of sight variation of the parallel magnetic field may just
as well take the local 1n(ϑ ,ω;E) value into account when a field
region with varying orientation in B is traversed by a wave with
fixed LOS-oriented wavevector k.

This realization is important to revisit the claim that electron-
positron plasmas do not show any Faraday rotation (Stewart
and Laing, 1992): this statement is true for purely parallel
propagation, but a quantification for all angles similar to what
is shown in Figure 10, right panel, shows that finite to large
1n(ϑ ,ω;E) exist for cold electron-positron plasmas, especially
near ϑ = π/2 and at frequencies just above ωu.
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FIGURE 10 | Faraday rotation for an E = 1.5 proton-electron plasma. The left panel quantifies with the blue solid line the textbook expression nL − nR ≈ E/ω3 as

function of frequency (above the upper cut-off frequency, indicated as a vertical dotted line). The actual, exact value of nL − nR is given by the red solid line. The

dashed red-blue line shows the exact correspondence for the n2
L
− n2

R
variation. The right panel repeats the red solid line at parallel propagation, but shows how the

difference in breaking index between the two electromagnetic waves varies smoothly with angle ϑ .

6. CONCLUSIONS

We have revisited the cold ion-electron plasma wave theory, and
summarize our main findings as follows:

• The traditional means of using the plasma dielectric tensor for
obtaining dispersion relations is equivalent to our polynomial-
based treatment. This polynomial description emphasizes
the 5 real solution pairs ±ωX , ±ωO, ±ωM , ±ωF , and
±ωA of forward-backward propagating waves, at fixed (real)
wavenumber k. The only plasma parameters that matter are
the dimensionless ratios µ and E.

• The traditional labeling of waves as fast/slow, L/R, O/E type,
which rather fixes a real frequency ω and solves for (real or
complex) k has some distinct disadvantages, since avoided
crossings of the 5 branches actually alters the connectivity
between small and large wavenumber solution branches, from
those found at parallel (and sometimes also perpendicular, as
in pair plasmas) behavior. The fast/slow terminology confuses
the established ordering of MHDwaves at low frequency, large
wavenumber in slow-Alfvén-fast, which is the cornerstone
of all MHD spectroscopy (Goedbloed and Poedts, 2004;
Goedbloed et al., 2010, 2019). Our cold assumption has
removed the slow MHD waves from the description, which
will return in warm plasmas.

• We can use the polynomial representation to predict the
wavenumbers for avoided crossings by Equation (20), and at
fixed µ, the prevailing E value dictates which and how many
branches cross. Our description is valid for all combinations

of (E,µ), and covers especially also the high magnetization
regime where E > 1/µ. It covers all cold plasma waves, up
to full relativistic magnetization.

• The polynomial dispersion relation form gives us a direct
means to quantify and visualize the full 5-mode phase and
group diagrams, for all wavenumbers k, which contain all
relevant information on wave anisotropy and energy flow.
These are very different from the wave normal surfaces at fixed
frequencies, which are exploited in the CMA classification.
In particular, they show intricate changeovers when the
wavenumber crosses the special values from Equation (20).

• The Appleton-Hartree dispersion relation is a curious,
unphysical limit setting µ = 0, which gives satisfactory
agreement on the high-frequency waves (and also contains
some of the avoided crossings). It fails completely for pair
plasmas, and misses all intricacy associated with E > 1/µ −
1 regimes.

• Faraday rotation can be meaningfully extended to propagation
angles different fromϑ = 0, and the corresponding exact value
of the refractive index difference 1n(ϑ ,ω;E) depending on
angle, frequency and E can easily be quantified and used for
rotation measure computations.

Further work should discuss the full variation of the wave
polarizations, based on the 6 × 6 matrix formulation
exploited in Goedbloed and Poedts (2004) and Goedbloed
et al. (2019), which led to the polynomial dispersion
relation. Also, the effects of a warm plasma can be easily
incorporated, since then a 6th order polynomial in ω2
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enters, bringing in the slow MHD modes. This is left for
future work.
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